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Abstract

Infinite horizon optimal stopping problems for a Lévy processes with a two-sided
reward function are considered. A two-sided verification theorem is presented in
terms of the overall supremum and the overall infimum of the process. A result to
compute the angle of the value function at the optimal thresholds of the stopping
region is given. To illustrate the results, the optimal stopping problem of a compound
Poisson process with two-sided exponential jumps and a two-sided payoff function is
solved. In this example, the smooth-pasting condition does not hold.
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1 Introduction

The presence of the maximum in the solution of optimal stopping problems for Lévy
processes is nowadays understood, as it was summarized in the monograph by Kyprianou
[8]. After the work of Surya [15] (see also Mordecki and Mishura [12]) it became
clear that one sided problems with arbitrary payoff functions could be solved with the
help of an averaging function. More recently, some formulas appeared for two sided
problems, where the infimum and the supremum took part in the solution. For instance,
in Mordecki and Salminen [13], with the help of representation techniques, a formula
for the value function through the sum two averaging functions (one for the maximum
and another for the minimum) was obtained. Afterwards, a similar formula was obtained
through verification techniques by Christensen et al. [6]. This second result involved the
supremum of the two averaging functions.

The purpose of the present work is then to obtain a verification theorem for the
optimal stopping problem of a Lévy process in the two sided case, through the sum of
two averaging functions, and to provide a simple example that seems not possible to be
solved with the existing techniques.

References on optimal stopping problems for Lévy processes with two sided solutions,
to our knowledge, are few. Perpetual American strangle options are considered by Chang
and Sheu [5], through the solution of a free boundary integro-differential problem with
moving boundaries. In this case, the smooth pasting condition is a key ingredient, and a
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Two-sided stopping for Lévy processes

non vanishing gaussian part in the Lévy process is used to ensure this condition. These
results follow previously obtained unpublished ones by Boyarchenko [3]. Similar type of
techniques were applied in Buonaguidi and Muliere [4] to solve a statistical problem:
the Bayesian sequential testing of two simple hypothesis. More recently, De Donno et
al. [7] found disconnected continuation regions in American put options with negative
discount rates in Lévy models.

The content of the rest of the paper is as follows. In section 2 we formulate the
verification result for two-sided optimal stopping with the corresponding proof. In section
3 a result to compute the angle (i.e. the difference of the right and left derivatives) of
the value function at a critical threshold is obtained. Section 4 contains an example: the
optimal stopping problem of a compound Poission process with two-sided exponential
jumps, (no gaussian component) and payoff function g(x) = |x|.

2 A verification result for optimal stopping

Let X = {Xt : t ≥ 0} be a Lévy process defined on a stochastic basis (Ω,F ,F =

(Ft)t≥0,Px) departing from X0 = x. The corresponding expectation is denoted by Ex,
and for short we denote E = E0 and P = P0. The Lévy-Khintchine formula characterizes
the law of the process, stating, for z ∈ iR, that E ezXt = etψ(z) with

ψ(z) = az +
σ2

2
z2 +

∫
R

(ezy − 1− zh(y)) Π(dy),

where a ∈ R, σ ≥ 0 and Π(dy) is a non-negative measure (the jump measure) that
satisfies

∫
R

(1∧y2)Π(dy) <∞. Here h(y) = y1{|y|<1} is a truncation function. For general
references on Lévy processes see Bertoin [2] or Kyprianou [8]. The set of stopping times
is the set of random variables

M = {τ : Ω→ [0,∞] such that {τ ≤ t} ∈ Ft for all t ≥ 0}.

Observe that we allow the possibility τ =∞ as for several optimal stopping problems, the
optimal stopping time is within this class. A key rôle in the solution of two-sided problems
is played by the overall supremum and infimum of the process, defined respectively by

M = sup{Xt : 0 ≤ t ≤ er}, I = inf{Xt : 0 ≤ t ≤ er},

where er is an exponential random variable of parameter r > 0, independent of X.
Observe that as r > 0 both random variables M and I are proper.

Given a non-negative continuous payoff function g(x), a Lévy process X, and a
discount factor r > 0, the optimal stopping problem (OSP) consists in finding the value
function V (x) and the optimal stopping rule τ∗ such that

V (x) = sup
τ∈M

Ex(e−rτg(Xτ )) = Ex(e−rτ
∗
g(Xτ∗)). (2.1)

We assume that the payoff received in the set {ω : τ(ω) =∞} is zero, in fact, we identify

e−rτg(Xτ ) = e−rτg(Xτ )1{τ<∞}.

In the present paper we are interested in problems with two-sided solutions, i.e. such
that the optimal stopping rule is of the form

τ∗ = inf{t ≥ 0: Xt /∈ (−x1, x2)}, (2.2)

for some critical thresholds −x1 < 0 < x2. As the process is space-invariant, the
thresholds are chosen negative and positive for simple convenience of notation. Observe
that, having into account the asymptotic behavior of a Lévy process (see Thm. VI.12 in
Bertoin [2]) the stopping time in (2.2) satisfies P(τ∗ <∞) = 1.
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Two-sided stopping for Lévy processes

Theorem 2.1. Consider a Lévy process X, a discount rate r > 0, and a continuous
reward function g : R→ [0,∞). Assume that there exist two points −x1 < 0 < x2 and two
continuous monotonous functions: Q1 non-increasing with Q1(x) = 0 for −x1 ≤ x; Q2

non-decreasing with Q2(x) = 0 for x ≤ x2 (named averaging functions); and such that

g(x) = ExQ1(I) + ExQ2(M), for all x /∈ (−x1, x2). (2.3)

Define the function

V (x) = Ex(Q1(I) +Q2(M)), for all x ∈ R. (2.4)

Then, if the condition

V (x) ≥ g(x), (2.5)

holds for all x ∈ [−x1, x2], the OSP (2.1) has value function V (x) in (2.4), and (2.2) is an
optimal stopping time for the problem.

As usual in optimal stopping, in order to prove Theorem 2.1, we verify two statements:

V (x) ≥ E(e−rτg(Xτ )), ∀τ ∈M, (2.6)

V (x) = E(e−rτ
∗
g(Xτ∗)). (2.7)

The proof of these two facts are stated in two corresponding lemmas. Their proofs follow,
with the necessary modifications, from the respective proofs in Mordecki and Mishura
[12]. For a definition of r-excessive function see Christensen et al. [6].

Lemma 2.2. For a Lévy process and r > 0, consider two non-negative continuous
functions: f(x) non-decreasing; g(x) non-increasing. Then:

(a) The function

h(x) = Ex(f(M) + g(I)) (x ∈ R)

is r-excessive, and, in consequence,

(b) the process {e−rth(Xt) : t ≥ 0} is a supermartingale.

Proof. The fact that (b) follows from (a) is standard. In fact, if h is r-excessive

e−r(t+h) Ex (h(Xt+h) | Ft) = e−r(t+h) Ex (h(Xh ◦ θt) | Ft)
= e−rte−rhEXt h(Xh) ≤ e−rth(Xt),

where θt is the shift operator, giving the super-martingale property. To prove (a) we
know, from Lemma 2.2 in Christensen et al. [6], that the following two functions are
excessive:

u(x) := Ex sup
0≤t≤er

f(Xt) = Ex f

(
sup

0≤t≤er
Xt

)
= Ex f(M),

v(x) := Ex sup
0≤t≤er

g(Xt) = Ex g

(
inf

0≤t≤er
Xt

)
= Ex g(I).

The proof concludes as h = u+ v, and excessivity is preserved by summation.
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Two-sided stopping for Lévy processes

Remark 2.3. When comparing the representations of payoffs for two-sided problems in
Theorem 2.7 in Christensen et al. [6] and Proposition 4.4. in Mordecki and Salminen [13],
it should be noticed that in the first case, the excessive function is Ex(f(M) ∨ g(I)), and
in the second, Ex(f(M) + g(I)). These two constructions give different representations
of the payoff of the problem. In the present work we use the second one.

Lemma 2.4. Consider a Lévy process X, a discount rate r > 0, and functions Q1, Q2 and
g such that (2.3) and (2.5) hold, for V defined by (2.4). Then (2.7) holds.

Proof. Denote S = R \ (−x1, x2). As Xτ∗ ∈ S and V = g on S, we have

Ex(e−rτ
∗
g(Xτ∗)) = Ex(e−rτ

∗
V (Xτ∗)). (2.8)

On the other side,

V (x) = Ex(Q1(I) +Q2(M)) = Ex

(
sup

0≤t≤er
Q1(Xt) + sup

0≤t≤er
Q2(Xt)

)
.

Observe that if er < τ∗ we have M < x2 and I > −x1, and then

sup
0≤t≤er

Q1(Xt) + sup
0≤t≤er

Q2(Xt) = 0,

because Q1(x) = Q2(x) = 0 in [−x1, x2]. So, denoting

V1(x) := Ex

(
sup

τ∗≤t≤er
Q1(Xt)

)
= ExQ1(I), (2.9)

V2(x) := Ex

(
sup

τ∗≤t≤er
Q2(Xt)

)
= ExQ2(M). (2.10)

we have
V (x) = V1(x) + V2(x).

Consider now X̃ = {X̃s = Xτ∗+s −Xτ∗ : s ≥ 0} that, by the strong Markov property, is
independent of Fτ∗ and has the same distribution as X, and denote by Ẽx the expectation
w.r.t. X̃. Based on these considerations, we have

V1(x) = Ex

(
sup

τ∗≤t≤er
Q1(Xt)

)
= Ex

(∫ ∞
τ∗

sup
τ∗≤t≤u

Q1(Xt)re
−rudu

)
(2.11)

= Ex

(
e−rτ

∗
∫ ∞
0

sup
τ∗≤t≤τ∗+v

Q1(Xt)re
−rvdv

)
(2.12)

= Ex

(
e−rτ

∗
∫ ∞
0

sup
τ∗≤t≤τ∗+v

Q1(Xτ∗ +Xt −Xτ∗)re−rvdv

)
(2.13)

= Ex

(
e−rτ

∗
∫ ∞
0

sup
0≤s≤v

Q1(Xτ∗ +Xτ∗+s −Xτ∗)re−rvdv

)
(2.14)

= Ex

(
e−rτ

∗
∫ ∞
0

sup
0≤s≤v

Q1(Xτ∗ + X̃s)re
−rvdv

)
= Ex

(
e−rτ

∗
ẼXτ∗

[∫ ∞
0

sup
0≤s≤v

Q1(X̃s)re
−rvdv

])
= Ex

(
e−rτ

∗
ẼXτ∗

[
sup

0≤s≤er
Q1(X̃s)

])
= Ex

(
e−rτ

∗
V1(Xτ∗)

)
,

where we change variables according to v = u − τ∗ to pass from (2.11) to (2.12), and
denote s = t − τ∗ to pass from (2.13) to (2.14). The same relation holds with V2 and
Q2. Summing up these two relations, and in view of (2.8), we conclude the proof of the
Lemma.
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Proof of Theorem 2.1. The proof now follows, as, according to Lemma 2.2 the non-
negative process {e−rtV (Xt) : t ≥ 0} is a supermartingale, giving

V (x) ≥ E(e−rτV (Xτ )) ≥ E(e−rτg(Xτ )),

by Doob’s optional sampling Theorem first and the application of condition (2.5) second.
This establishes (2.6). On its turn, Lemma 2.4 gives equality (2.7), concluding the
proof.

3 On the smooth pasting condition

Smooth pasting results for general Lévy processes were obtained for put American
perpetual options for Lévy processes in Alili and Kyprianou [1], and afterwards general-
ized to put-type (bounded) payoffs by Surya [15]. The following result gives some natural
necessary conditions for smooth pasting, that depend on the exponential moments of
the process and the behaviour of the averaging function. They can be applied both to
one-sided problems (as the ones considered in Mordecki and Mishura [12]) and to the
two sided problems considered in the present paper.

Theorem 3.1. Consider a Lévy process X, a discount rate r > 0 and a continuous
reward function g : R → [0,∞). Assume that there exist a point x0 and a continuous
non-decreasing averaging function Q with Q(x) = 0 for x ≤ x0, such that

g(x) = ExQ(M), for all x ≥ x0.

Assume that Q ∈ C2[x0,∞), and satisfies

|Q′′(x)| ≤ Aeαx, ∀x ≥ x0,

for some A > 0 and some α > 0. Regarding the process, assume that

E eαX1 < er. (3.1)

Then, the candidate to value function of the OSP (2.1)

V (x) = ExQ(M), for all x ∈ R

satisfies
V ′(x0+)− V ′(x0−) = Q′(x0+)P(M = 0), (3.2)

and
V ′(x+)− V ′(x−) = 0, for x > x0. (3.3)

Proof. We first prove (3.2). Denoting by FM (y) (y ≥ 0) the distribution function of M ,
we have

V ′(x0+)− V ′(x0−)

= lim
h↓0

1

h
E[Q(x0 + h+M) +Q(x0 − h−M)− 2Q(x0 +M)]

= lim
h↓0

1

h

∫
[0,∞)

[Q(x0 + h+ y) +Q(x0 − h− y)− 2Q(x0 + y)] dFM (y)

= lim
h↓0

1

h

{
[Q(x0 + h) +Q(x0 − h)− 2Q(x0)]P(M = 0) (3.4)

+

∫
(0,h)

[Q(x0 + h+ y) +Q(x0 − h+ y)− 2Q(x0 + y)] dFM (y) (3.5)

+

∫
(h,∞)

[Q(x0 + h+ y) +Q(x0 − h+ y)− 2Q(x0 + y)] dFM (y)
}
. (3.6)
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To compute the limit in (3.4), as Q(x) = 0 for x ≤ x0, we have

lim
h↓0

1

h
[Q(x0 + h) +Q(x0 − h)− 2Q(x0)]P(M = 0) = Q′(x0+)P(M = 0).

Concerning (3.5), we have

lim
h↓0

1

h

∣∣∣∣∣
∫
(0,h)

[Q(x0 + h+ y) +Q(x0 − h+ y)− 2Q(x0 + y)] dFM (y)

∣∣∣∣∣
≤ 4 lim

h↓0

Q(x0 + 2h)

h
P(0 < M ≤ h) = 8Q(x0)′ lim

h↓0
P(0 < M ≤ h) = 0.

To consider the term in (3.6), denote x = x0 + y ≥ x0 + h,

|Q(x+ h) +Q(x− h)− 2Q(x)| =

∣∣∣∣∣
∫ x+h

x

du

∫ u

u−h
Q′′(v)dv

∣∣∣∣∣
≤ A

∫ x+h

x

du

∫ u

u−h
eαvdv =

A

α2

(
eα(x+h) + eα(x−h) − 2eαx

)
.

We now apply Lemma 1 in Mordecki [10] to the Lévy process αX, to obtain that condition
(3.1) implies that E eαM <∞. In consequence, we have∣∣∣∣∣
∫
(h,∞)

[Q(x0 + h+ y) +Q(x0 − h+ y)− 2Q(x0 + y)] dFM (y)

∣∣∣∣∣
≤ A

α2
E
(
eα(x0+h+M) + eα(x0−h+M) − 2eα(x0+M)

)
≤ A

α2

(
eα(x0+h) + eα(x0−h) − 2eαx0

)
E eαM .

In conclussion

lim
h↓0

1

h

∫
(h,∞)

[Q(x0 + h+ y) +Q(x0 − h+ y)− 2Q(x0 + y)] dFM (y) = 0,

concluding the proof of (3.2). To verify (3.3) the same computations apply with x instead
of x0. The difference is that, in the term (3.4), we have now

lim
h↓0

1

h
[Q(x+ h) +Q(x− h)− 2Q(x)]P(M = 0) = (Q′(x+)−Q′(x−))P(M = 0) = 0.

This concludes the proof of the Theorem.

4 An application

To illustrate our results, we consider a compound Poisson process X = {Xt : t ≥ 0}
with double-sided exponential jumps, given by

Xt = x−
N

(1)
t∑
i=1

Y
(1)
i +

N
(2)
t∑
i=1

Y
(2)
i , (4.1)

where N (1) = {N (1)
t : t ≥ 0} and N (2) = {N (2)

t : t ≥ 0} are two Poisson processes with

respective positive intensities λ1, λ2; Y (1) = {Y (1)
i : i ≥ 1} and Y (2) = {Y (2)

i : i ≥ 1}
are two sequences of independent exponentially distributed random variables with
respective positive parameters α1, α2. The four processes N (1), N (2), Y (1), Y (2), are
independent. We consider then the OSP (2.1) for the function g(x) = |x| and the Lévy
process X.
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4.1 Wiener-Hopf factorization

The characteristic exponent of X is given by

ψ(z) = −λ1
z

α1 + z
+ λ2

z

α2 − z
.

The equation ψ(z) = r has two roots

−r1 =
α1(r + λ1)

r + λ1 + λ2
, r2 =

α2(r + λ2)

r + λ1 + λ2
,

that satisfy

−α1 < −r1 < 0 < r2 < α2.

We apply the Wiener-Hopf factorization to determine the law of M and I. We directly
obtain the factors:

r

r − ψ(z)
=

r(z − α2)(z − α1)

(r + λ+ µ)(z − r2)(z − r1)
=
r1r2(α1 + z)(α2 − z)
α1α2(r1 + z)(r2 − z)

.

=

(
r1
α1

+
α1 − r1
α1

r1
r1 + z

)(
r2
α2

+
α2 − r2
α2

r2
r2 − z

)
.

In conclusion, due to the uniqueness of the factorization (see Thm. 5(ii) Ch. VI of Bertoin
[2]), we obtain

E ezI =
r1
α1

+
α1 − r1
α1

r1
r1 + z

,

and

E ezM =
r2
α2

+
α2 − r2
α2

r2
r2 − z

.

This means that the random variables M and −I have defective exponential distributions
with parameters r2 and r1, and atoms at zero of respective size r2/α2 and r1/α1. With a
slight abuse of notation, we denote these respective densities

fI(x) =
r1
α1
δ0(x) +

α1 − r1
α1

r1e
r1x, x ≤ 0,

fM (x) =
r2
α2
δ0(x) +

α2 − r2
α2

r2e
−r2x, x ≥ 0,

where δ0(x)dx denotes the Dirac mass measure at x = 0. In order to introduce our result,
we also need the following notations.

E1 = −E I =
1

r1
− 1

α 1
> 0, E2 = EM =

1

r2
− 1

α 2
> 0, (4.2)

F1 = (E er2I)−1 =
α1

r1

r1 + r2
α1 + r2

> 1, F2 = (E e−r1M )−1 =
α2

r2

r1 + r2
r1 + α2

> 1, (4.3)

G1 = F1 − 1 =
r2(α1 − r1)

r1(α1 + r2)
> 0, G2 = F2 − 1 =

r1(α2 − r2)

r2(r1 + α2)
> 0. (4.4)

Theorem 4.1. Consider the Lévy process X in (4.1), the payoff function g(x) = |x|, and
r > 0. Denote

x1 =
E1(1− e−(r1+r2)u) + F1ue

−r2u

1 +G1e−(r1+r2)u + F1e−r2u
, (4.5)

x2 =
E2(1− e−(r1+r2)u) + F2ue

−r1u

1 +G2e−(r1+r2)u + F2e−r1u
, (4.6)
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where u is the unique root of the equation

u =
E1 + E2 + (E1G2 + E2G1)e−(r1+r2)u + E1F2e

−r1u + E2F1e
−r2u

1−G1G2e−(r1+r2)u
. (4.7)

Denote

D1 =
x1 − x2e−r2(x1+x2)

1− e−(r1+r2)(x1+x2)
, D2 =

x2 − x1e−r1(x1+x2)

1− e−(r1+r2)(x1+x2)
. (4.8)

Then, the value function

V (x) =


−x, for x < −x1,
D1e

−r1(x+x1) +D2e
r2(x−x2), for −x1 ≤ x ≤ x2,

x, for x2 < x,

(4.9)

and stopping time defined in (2.2) conform the solution of the OSP (2.1).

Remark 4.2. An application of Theorem 3.1 (or more directly in this case, the computa-
tion of the corresponding derivatives in formula (4.9)) shows that the smooth pasting
condition does not hold in any of the thresholds of the problem: the averaging functions
have non-vanishing derivatives at the roots, and both the maximum and the infimum
have atoms at the origin.

Proof. First observe that the r.h.s of (4.7) is decreasing, as the numerator decreases and
the denominator increases with u (all coefficients are positive). It decreases from

2(E1F2 + E2F1)

1−G1G2
> 0,

when u = 0 to E1 + E2, as u→∞. Then, equation (4.7) has only one positive root. Here
it was used that G1G2 < 1, fact that follows directly from the definitions (4.4). We need
a technical result.

Lemma 4.3. Both equations (4.7) and

u =
E1(1− e−(r1+r2)u) + F1ue

−r2u

1 +G1e−(r1+r2)u + F1e−r2u
+
E2(1− e−(r1+r2)u) + F2ue

−r1u

1 +G2e−(r1+r2)u + F2e−r1u
, (4.10)

have a unique common positive root.

Proof of the Lemma. Denoting for short δ = r1 + r2, equation (4.10) reads

u =
E1(1− e−δu) + F1ue

−r2u

1 +G1e−δu + F1e−r2u
+
E2(1− e−δu) + F2ue

−r1u

1 +G2e−δu + F2e−r1u
.

Multiplying by the denominators, we obtain

u(1 +G1e
−δu + F1e

−r2u)(1 +G2e
−δu + F2e

−r1u)

= (E1(1− e−δu) + F1ue
−r2u)(1 +G2e

−δu + F2e
−r1u)

+ (E2(1− e−δu) + F2ue
−r1u)(1 +G1e

−δu + F1e
−r2u).

We first take on the l.h.s. the terms with the factor u. Afer computations in the l.h.s.,
many terms simplify, and in the r.h.s we take a common factor. The result of this
computations is the equation

u

1− e−δu
=
E1 + E2 + (E1G2 + E2G1)e−δu + E2F1e

−r2u + E1F2e
−r1u

1− (1 +G1G2)e−δu +G1G2e−2δu
. (4.11)
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The denominator factorizes

1− (1 +G1G2)e−δu +G1G2e
−2δu = 1− e−δu −G1G2e

−δu +G1G2e
−2δu

= 1− e−δu −G1G2e
−δu(1− e−δu) = (1− e−δu)(1−G1G2e

−δu)

and equation (4.11) simplifies to (4.7), concluding the proof of the lemma.

We continue with the proof of Theorem 4.1. In view of the previous lemma and
definitions (4.5) and (4.6), we obtain that u = x1 + x2. In order to apply Theorem 2.1,
introduce the functions

Q1(x) =

{
−x− E1 − F1D2e

r2(x−x2), for x ≤ −x1,
0, for x > −x1,

Q2(x) =

{
0, for x ≤ x2,
x− E2 − F2D1e

−r1(x+x1), for x ≥ x2,
(4.12)

We prove that these two functions are monotonous, non-increasing and non-decreasing
respectively, and continuous. The equation:

x1 =
E1(1− e−(r1+r2)u) + F1ue

−r2u

1 +G1e−(r1+r2)u + F1e−r2u
, (4.13)

is equivalent to

x1 = E1 + F1
x2 − x1e−r1u

1− e−(r1+r2)u
e−r2u = E1 + F1D2e

−r2(x1+x2). (4.14)

We proceed to check the equivalence between (4.13) and (4.14) by using the definition
of G1 (4.4) and the equality u = x1 + x2. Multiplying by the denominator in (4.13) we
obtain

x1(1 + F1e
−(r1+r2)u − e−(r1+r2)u + F1e

−r2u) = E1(1− e−(r1+r2)u) + F1e
−r2uu,

that, after substitution of u by x1 + x2 and rearrengments gives,

x1(1− e−(r1+r2)u) = E1(1− e−(r1+r2)u)− x1F1e
−(r1+r2)u + x2F1e

−r2u,

that, dividing by the the (1− e−(r1+r2)u) gives the first equality in (4.14). The second one
derives from the definition of D2 (4.8), concluding the equivalence between (4.13) and
(4.14).

Observe now that the statement (4.14) is equivalent to Q1(−x1) = 0, giving the
continuity of Q1, that is clearly positive and non-increasing. Identical arguments apply
to Q2.

To check equality (2.3), consider first x ≥ −x1 and compute

ExQ1(I) =

∫
(−∞,0]

Q1(x+ y)fI(y)dy

=

∫ x

−∞
Q1(z)fI(z − x)dz =

∫ −x1

−∞
Q1(z)fI(z − x)dz

=
α1 − r1
α1

e−r1(x+x1)

[
x1 +

1

α1
− α1

α1 + r2
D2e

−r2(x1+x2)

]
,
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where we used the definition of E1 in (4.2) and F1 in (4.3). Observing that D1 and D2

are the solutions of the linear system of equations{
D1 +D2e

−r2(x1+x2) = x1,

D1e
−r1(x1+x2) +D2 = x2,

(4.15)

we obtain

ExQ1(I) =
α1 − r1
α1

e−r1(x+x1)

[
x1 +

1

α1
− α1

α1 + r2
(x1 −D1)

]
=
α1 − r1
α1

e−r1(x+x1)

[
r2

α1 + r2
x1 +

1

α1
+

α1

α1 + r2
D1

]
. (4.16)

Regarding the maximum, now for x > x2,

ExQ2(M) =
r2
α2
Q2(x) + er2x

∫ ∞
x

Q2(z)fM (z)dz

=
r2
α2

[
x− E2 − F2D1e

−r1(x+x1)
]

+
α2 − r2
α2

[
x+

1

α2
− α2

r1 + α2
D1e

−r1(x+x1)

]
= x− r2

α2
F2D1e

−r1(x+x1) − α2 − r2
r1 + α2

D1e
−r1(x+x1)

= x−D1e
−r1(x+x1).

Summing up,

ExQ1(I) + ExQ2(M)

= x+ e−r1(x+x1)

{
α1 − r1
α1

[
r2

α1 + r2
x1 +

1

α1
+

α1

α1 + r2
D1

]
−D1

}
.

To show that the second summand in the r.h.s. of the previous formula vanishes, we
compute

α1 − r1
α1

[
r2

α1 + r2
x1 +

1

α1
+

α1

α1 + r2
D1

]
−D1

= x1
α1 − r1
α1

r2
α1 + r2

+
α1 − r1
α2
1

+
α1 − r1
α1 + r2

D1 −D1

= x1
r2
α1

α1 − r1
α1 + r2

+
α1 − r1
α2
1

− r1 + r2
α1 + r2

D1.

Taking into account (4.14) and the first equation in (4.15), we obtain

x1 =
D1F1 − E1

F1 − 1
=
r1
r2

α1 + r2
α1 − r1

(D1F1 − E1),

and substitute

x1
r2
α1

α1 − r1
α1 + r2

+
α1 − r1
α2
1

− r1 + r2
α1 + r2

D1

=
r1
α1

(D1F1 − E1) +
α1 − r1
α2
1

− r1 + r2
α1 + r2

D1

= D1

(
r1
α1
F1 −

r1 + r2
α1 + r2

)
− r1
α1
E1 +

α1 − r1
α2
1

= 0,

in view of the definitions of E1 in (4.2) and F1 in (4.3). Similarly, for x < −x1, we obtain
ExQ1(I) +Q2(M) = −x. This concludes the verification of (2.3).
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We now verify (2.5). From the computations above, we obtained that

D1 =
α1 − r1
α1

[
r2

α1 + r2
x1 +

1

α1
+

α1

α1 + r2
D1

]
. (4.17)

This gives that, for x ≥ −x1, we have:

ExQ1(I) = D1e
−r1(x+x1).

Applying the corresponding same arguments (or considering the the dual Lévy process
{−Xt : t ≥ 0}), for x < x2 we obtain

ExQ2(M) = D2e
r2(x−x2). (4.18)

In particular, this gives that D1 > 0, and, for −x1 ≤ x ≤ x2,

ExQ1(I) + ExQ2(M) = D1e
−r1(x+x1) +D2e

r2(x−x2),

so the definition (2.4) gives (4.9). To conclude with the proof, it remains to verify
condition (2.5) for x ∈ [−x1, x2]. We take 0 ≤ x ≤ x2. We have

ExQ2(M) = E
(
x+M − E2 − F2D1e

−r1(x+M+x1)
)+

≥ E
(
x+M − E2 − F2D1e

−r1(x+M+x1)
)

= x+ EM − E2 −D1F2 E
(
e−r1M

)
e−r1(x+x1)

= x−D1e
−r1(x+x1) = x−ExQ1(I),

in view of the definition of E2 in (4.2), F2 in (4.3), and formulas (4.16) and (4.17). For
−x1 ≤ x ≤ 0 the symmetric computation completes the verification of (2.5). This
completes the verification of all the hypothesis of Theorem 2.1, and the proof of Theorem
4.1.

Remark 4.4. It is interesting to note that the function x − E2 appearing in the first
two summands in the r.h.s. of (4.12), in the terminology of Surya [15], is the averaging
function of the one sided problem with payoff function g2(x) = x+ (see Mordecki [11]).
So the remaining term in the r.h.s. in (4.12) is a correction due to the presence of the
infimum in the two-sided problem. As x2 is the root of Q2, we obtain x2 ≥ E2.

Remark 4.5. The proof of Theorem 4.1 also provides bounds to find u numerically. First
observe that Q2(x) ≤ x for x ≥ 0, so EQ2(M) ≤ E2. Furthermore, in view of (4.14) and
(4.18), we have

x1 = E1 + F1D2e
−r2(x1+x2) = E1 + F1 EQ2(M)e−r2x1 ≤ E1 + F1E2.

In view of the previous remark, the conclusion is that

E1 + E2 ≤ u ≤ E1(1 + F2) + E2(1 + F1).

4.2 Numerical examples

To illustrate our results we consider two examples. In the first one we choose
(α1, λ1, α2, λ2, r) = (1, 3, 3, 1, 1). The thresholds are x1 = 1.17 and x2 = 0.87. The second
example is symmetric, with (α1, λ1, α2, λ2, r) = (1, 1, 1, 1, 1) The critical thresholds are
x1 = x2 = 1.04. The corresponding value functions (4.9) are shown in Figure 1.
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Figure 1: The payoff functions V for the set of parameters (1, 3, 3, 1, 1) (left) and
(1, 1, 1, 1, 1) (right).
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