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GENERAL AND FEASIBLE TESTS WITH MULTIPLY-IMPUTED DATASETS

BY KIN WAI CHANa

Department of Statistics, The Chinese University of Hong Kong, akinwaichan@cuhk.edu.hk

Multiple imputation (MI) is a technique especially designed for handling
missing data in public-use datasets. It allows analysts to perform incomplete-
data inference straightforwardly by using several already imputed datasets
released by the dataset owners. However, the existing MI tests require ei-
ther a restrictive assumption on the missing-data mechanism, known as equal
odds of missing information (EOMI), or an infinite number of imputations.
Some of them also require analysts to have access to restrictive or nonstan-
dard computer subroutines. Besides, the existing MI testing procedures cover
only Wald’s tests and likelihood ratio tests but not Rao’s score tests, there-
fore, these MI testing procedures are not general enough. In addition, the MI
Wald’s tests and MI likelihood ratio tests are not procedurally identical, so
analysts need to resort to distinct algorithms for implementation. In this pa-
per, we propose a general MI procedure, called stacked multiple imputation
(SMI), for performing Wald’s tests, likelihood ratio tests and Rao’s score tests
by a unified algorithm. SMI requires neither EOMI nor an infinite number of
imputations. It is particularly feasible for analysts as they just need to use a
complete-data testing device for performing the corresponding incomplete-
data test.

1. New thoughts on the old results.

1.1. Introduction. Missing data are usually encountered in real-data analysis, both in ob-
servational and experimental studies. Statistical inference of incomplete datasets is harder
than that of complete datasets. Multiple imputation (MI), proposed by Rubin (1978), is one
of the most popular ways of handling missing data. This method requires specifying an im-
putation model for filling in the missing data multiple times so that standard complete-data
procedures can be straightforwardly applied to each of the imputed datasets; see Sections 1.2
and 1.3 for a review. Also see Rubin (1987), Carpenter and Kenward (2013), and Kim and
Shao (2013) for an introduction. Although a fairly complete theory for performing MI tests is
available, all existing results suffer from at least one of following three problems: (i) reliance
on strong statistical assumptions, (ii) requirement of infeasible computer subroutines, and
(iii) lack of unified combining rules for various types of tests. We will discuss these problems
thoroughly in Section 1.4.

The major goal of this paper is to derive a handy MI test that resolves the aforementioned
problems. This paper is structured as follows. In the remaining part of this section, the ex-
isting MI tests are reviewed. We also discuss their pros and cons. In Section 2, we motivate
the proposal test statistics and present the plan to achieve our proposed test. In Section 3,
our proposed methodology and principle are discussed. In Section 4, a novel theory for es-
timating the odds of missing information is presented. In Section 5, a new test based on
multiply-imputed datasets is derived. In Section 6, applications and simulation experiments
are illustrated. In Section 7, we conclude the paper and discuss possible future work. Proofs,
auxiliary results, additional simulation results and an R-package stackedMI are included
as Supplementary Material (Chan (2021)).
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1.2. Background and problem setup. Let X be a dataset in the form of a n × p matrix
consisting of n rows of independent units. Assume that X is generated from a probabil-
ity density f (X | ψ), where ψ ∈ � is the model parameter. The parameter of interest is a
sub-vector of ψ denoted by θ ∈ � ⊆ R

k . We are interested in testing H0 : θ = θ0 against
H1 : θ �= θ0 for some fixed θ0 ∈ �. If the complete dataset Xcom := X is available, we may
perform the Wald’s test, likelihood ratio (LR) test, and Rao’s score (RS) test. The test statis-
tics are

dW(X) := dW(θ̂ , V̂ ) := (θ̂ − θ0)
TV̂ −1(θ̂ − θ0),(1.1)

dL(X) := dL(ψ̂, ψ̂0 | X) := 2 log
{
f (X | ψ̂)/f (X | ψ̂0)

}
,(1.2)

dR(X) := dR(ψ̂0 | X) := u(ψ̂0)
T{

I (ψ̂0)
}−1

u(ψ̂0),(1.3)

respectively, where θ̂ := θ̂ (X) is the maximum likelihood estimator (MLE) of θ ; V̂ := V̂ (X)

is a variance estimator of θ̂ ; ψ̂ := ψ̂(X) and ψ̂0 := ψ̂0(X) are the unrestricted and H0-
restricted MLEs of ψ ; u(ψ) := u(ψ | X) := ∂ logf (X | ψ)/∂ψ is the score function; and
I (ψ) := I (ψ | X) := −∂2 logf (X | ψ)/∂ψ∂ψT is the Fisher’s information. See Lehmann
and Romano (2005) for more details. Throughout the paper, we use ℵ ∈ {W,L,R} to abbrevi-
ate the name of the test in various subscripts. In each of (1.1)–(1.3), the mapping X �→ dℵ(X)

is a function of the dataset X only. We call such function X �→ dℵ(X) a standard testing
device (i.e., a testing subroutine or a testing procedure) in computer software. The device
dℵ(·) is the only requirement for complete-data testing. Under standard regularity conditions
(see, e.g., Section 4.4 of Serfling (2001)) and under H0, we have, for any ℵ ∈ {W,L,R},
that

(1.4) dℵ(X)/k ⇒ χ2
k /k, as n → ∞,

where “⇒” denotes weak convergence; see Chapter 2 of van der Vaart (2000).
If a part of Xcom = {Xobs,Xmis} is missing such that only Xobs is available, testing H0 is

more involved. One widely used method is multiple imputation (MI), which is a two-stage
procedure.

• The first stage involves an imputer to handle the missing data. The imputer draws
X1

mis, . . . ,X
m
mis from the conditional distribution [Xmis | Xobs] so that the missing part

Xmis can be filled in by X1
mis, . . . ,X

m
mis to form m completed datasets X� := {Xobs,X

�
mis}

(� = 1, . . . ,m). Note that MI assumes the missing mechanism is ignorable (Rubin (1976)).
See Remark 1.1 for more discussion of this stage.

• The second stage involves possibly many analysts to perform inference of their own in-
terests. Each of them receives the same completed datasets X1, . . . ,Xm from the imputer.
Then, s/he can repeatedly apply some standard complete-data procedures to X1, . . . ,Xm,
and obtain m preliminary results. The final result is obtained by appropriately combining
them; see Section 1.3 for a review.

MI is an attractive method because it naturally divides imputation and analysis tasks into two
separate stages so that analysts do not need to be trained for handling incomplete datasets.
Indeed, it has been a very popular method in various fields; see, for example, Rubin (1987)
Tu, Meng and Pagano (1993), Rubin (1996), Schafer (1999), King et al. (2001), Peugh and
Enders (2004), Kenward and Carpenter (2007), Harel and Zhou (2007), Horton and Klein-
man (2007), Rose and Fraser (2008), Holan et al. (2010), Kim and Yang (2017), and Yu et al.
(2021).

REMARK 1.1. MI is originally designed for handling public-use datasets. Hence, the
imputers in stage 1 are in general different from the analysts in stage 2; see, for example,
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Parker and Schenker (2007). Consequently, analysts cannot produce arbitrarily many imputed
datasets as they wish. For example, only multiply-imputed datasets are released in National
Health Interview Survey (NHIS) conducted in the United States; see Schenker et al. (2006).
In particular, only five imputed datasets are released in 2018 NHIS; see https://www.cdc.
gov/nchs/nhis/nhis_2018_data_release.htm. Moreover, because the imputers usually belong
to the organizations, for example, a census bureau of the government, who collect the data,
they usually know better how the data are missing, and have auxiliary variables to impute the
missing data. So, the ignorability could be a reasonable assumption. See Rubin (1996) for
more comprehensive discussions of these matters.

1.3. MI combining rules and reference null distribution. Applying the functions θ̂ (·),
V̂ (·), ψ̂(·) and ψ̂0(·) to each of the imputed datasets X1, . . . ,Xm, an analyst obtains θ̂ � :=
θ̂ (X�), V̂ � := V̂ (X�), ψ̂� := ψ̂(X�) and ψ̂�

0 := ψ̂0(X
�) for � = 1, . . . ,m. Define

d̃ ′
W := 1

m

m∑
�=1

dW
(
θ̂ �, V̄

)
, d̃ ′′

W := dW(θ̄ , V̄ ),(1.5)

d̃ ′
L := 1

m

m∑
�=1

dL
(
ψ̂�, ψ̂�

0 | X�), d̃ ′′
L := 1

m

m∑
�=1

dL
(
ψ̄, ψ̄0 | X�),(1.6)

where θ̄ := ∑m
�=1 θ̂ �/m, and V̄ , ψ̄ , ψ̄0 are similarly defined. The MI Wald’s statistic (Li,

Raghunathan and Rubin (1991)) and MI LR statistic (Meng and Rubin (1992)) are D̃W and
D̃L, respectively, where, for ℵ ∈ {W,L},

(1.7) D̃ℵ := d̃ ′′ℵ
k{1 + (1 + 1

m
)μ̃r,ℵ} and μ̃r,ℵ := d̃ ′ℵ − d̃ ′′ℵ

k(m − 1)/m
.

The factor {1 + (1 + 1/m)μ̃r,ℵ} in D̃ℵ is used to deflate d̃ ′′ℵ in order to adjust for the loss of
information due to missingness. The LR test statistic D̃L may be negative. Chan and Meng
(2021+) recently proposed a corrected version.

If m is fixed and n → ∞, the limiting distribution of D̃ℵ is notoriously complicated be-
cause of the dependence on the unknown matrix F := ImisI

−1
com in a tangled way, where

Icom := E
{
−∂2 logf (X | ψ)

∂θ∂θT

}
and Imis := E

{
−∂2 logf (X | Xobs,ψ)

∂θ∂θT

}
are the complete-data and missing-data Fisher’s information of θ , respectively. We also de-
note Iobs := Icom − Imis as the observed-data Fisher’s information of θ . Let the eigenvalues
of F be f1 ≥ · · · ≥ fk , and denote rj := fj/(1 − fj ) for each j . The values fj and rj are
known as the fraction of missing information (FMI) and the odds of missing information
(OMI), respectively. There is no loss in information if r1 = · · · = rk = 0, or, equivalently,
f1 = · · · = fk = 0. Under regularity conditions (RCs) and H0,

(1.8) D̃ℵ ⇒ D :=
1
k

∑k
j=1{1 + (1 + 1

m
)rj }Gj

1 + 1
k

∑k
j=1(1 + 1

m
)rjHj

,

as n → ∞, where G1, . . . ,Gk ∼ χ2
1 and H1, . . . ,Hk ∼ χ2

m−1/(m − 1) are independent. The
RCs and derivation of (1.8) are presented in Proposition 5.1. Since the distribution D depends
on the nuisance parameters r1, . . . , rk in a complicated way, it is not immediately possible to
use D as a reference null distribution. In order to mitigate this fundamental difficulty, it has
been a common practice to assume some structure on r1, . . . , rk (see Condition 1 below),
and/or resort to asymptotic (m → ∞) approximation. We present these existing strategies
one by one, and give a summary in Table 1.

https://www.cdc.gov/nchs/nhis/nhis_2018_data_release.htm
https://www.cdc.gov/nchs/nhis/nhis_2018_data_release.htm
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TABLE 1
Summary of the asymptotic reference null distributions. The reference distribution refers to the common weak

limit (n → ∞ and m > 1) of the existing test statistic D̃ ∈ {D̃W, D̃L} defined in (1.7) and the proposed test
statistics D̂ ∈ {D̂W, D̂L, D̂R} to be defined in (2.3)

Assumptions Asymptotic null distribution of D̃ or D̂

Condition 1 m → ∞ Exact Approximated Name

Required Required χ2
k /k χ2

k /k T1
Required Not required D0 in (1.9) ≈ F(k, q̂) (Li, Raghunathan and Rubin (1991)) T2
Not required Required D∞ in (1.10) ≈ ĉ0 + ĉ1χ2

k /k (Meng (1990)) T3

Not required Not required D in (1.8) ≈ D̂ (Algorithm 2.1) T4 (proposal)

CONDITION 1 (Equal odds of missing information (EOMI)). There is μr such that r1 =
· · · = rk = μr .

Condition 1 is equivalent to f1 = · · · = fk , known as equal fraction of missing information
(EFMI). Although it is a strong assumption and is almost always violated in real problems, it
is widely used in the literature because of simplicity; see Rubin (1987). Under Condition 1,
D can be represented as

(1.9) D0 := {1 + (1 + 1
m

)μr}G
1 + (1 + 1

m
)μrH

,

where G ∼ χ2
k /k and H ∼ χ2

k(m−1)/{k(m − 1)} are independent. In this case, D0 depends
only on one unknown μr , hence, approximating (1.9) is easier. The first approximation of D0
was provided by Rubin (1987). Then Li, Raghunathan and Rubin (1991) refined it to F(k, q̂),
where q̂ is an estimate of

q :=

⎧⎪⎪⎨⎪⎪⎩
4 + (Km − 4)

[
1 + (1 − 2/Km)

{(
1 + 1

m

)
μr

}−1]2
, if Km > 4;

(m − 1)

[
1 +

{(
1 + 1

m

)
μr

}−1]2
(k + 1)/2, otherwise,

where Km := k(m − 1). In practice, q̂ is constructed by plugging in an estimate of μr into q .
Li, Raghunathan and Rubin (1991) and Meng and Rubin (1992) proposed to estimate μr by
μ̃r,W and μ̃r,L if Wald’s test and the LR test are used, respectively. Many software routines
have implemented this approximation, for example, van Buuren and Groothuis-Oudshoorn
(2011). Besides, some approximations of D0 designed for small n can be found in Rubin and
Schenker (1986), Barnard and Rubin (1999) and Reiter (2007).

If Condition 1 does not hold but m → ∞, then D is simplified to D∞, which can be
represented by

D∞ := 1

k(1 + μr)

k∑
j=1

(1 + rj )Gj , where μr := 1

k

k∑
j=1

rj .(1.10)

Meng (1990) and Li, Raghunathan and Rubin (1991) proposed approximating D∞ by
ĉ0 + ĉ1χ

2
k /k via matching their first two moments. The coefficients ĉ0 and ĉ1 are esti-

mates of c1 := {1 +
√

σ 2
r /(1 + μ2

r )}1/2 and c0 := 1 − c1, where σ 2
r := ∑k

j=1(rj − μr)
2/k.

It is remarked that Meng (1990) is an improvement over Li, Raghunathan and Rubin
(1991). Meng (1990) proposed estimating μr and σ 2

r by ˜̃μr,W := tr{B̂V̄ −1}/k and ˜̃σ 2
r,W :=
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tr{(B̂V̄ −1)2}/k − ˜̃μ2
r,W{1 + k/(m − 1)}, respectively, where B̂ := ∑m

�=1(θ̂
� − θ̄ )(θ̂ � −

θ̄ )T/(m − 1).
If both Condition 1 and m → ∞ are satisfied, then D ∼ χ2

k /k, that is, the standard refer-
ence distribution in (1.4). This very rough approximation was discussed in Section 3.2 of Li,
Raghunathan and Rubin (1991).

1.4. Theoretical, implementational and universal concerns. Although fairly complete
theories for performing MI tests are available, they are not fully satisfactory because of the
following three concerns.

The first concern is a theoretical consideration. As we discussed in Section 1.3, all existing
MI tests (e.g., T1, T2 and T3 in Table 1) require Condition 1 and/or m → ∞. In many real
applications, they are very restrictive and can hardly be satisfied. Roughly speaking, Con-
dition 1 means that all parameters in θ = (θ1, . . . , θk)

T are equally impacted by the missing
data. It is violated in many applications, for example, linear regression (see Section 6.1),
testing variance-covariance matrix (see Section B.3 of the Supplementary Material), etc. The
assumption of m → ∞ does not match the current practice as well. For public-use datasets,
the dataset owners may refuse to release a large number of imputed datasets to the public due
to storage problem, processing inconvenience, or privacy concern, therefore, m ≤ 30, or even
m ≤ 10, is typically used; see Remark 1.1 for an example. Moreover, unlike typical simula-
tion study, the analysts cannot arbitrarily generate a large number imputed datasets. Hence,
the value of m is typically not very large.

The second concern is about implementation. MI tests are most useful if users only need
to apply their intended complete-data testing device X �→ d (X), that is, either (1.1), (1.2)
or (1.3), repeatedly to the imputed datasets X1, . . . ,Xm. Unfortunately, this ideal minimal
requirement is not sufficient for most existing MI tests (e.g., T2, and T3 in Table 1). In-
stead of merely requiring the device d (·), they may need (i) the variance-covariance ma-
trix estimator V̂ (X), or (ii) a nonstandard likelihood function. The device (i) is required
for computing, for example, μ̃r,W (Li, Raghunathan and Rubin (1991)), and ˜̃μr,W and ˜̃σ 2

r,W
(Meng (1990)). It is infeasible because, in some problems, V̂ (X) is typically unavailable
in standard computer subroutines. For example, to perform a G-test, that is, the LR test for
goodness of fit in contingency tables (see Section 6.4.3 of Shao (1999)), one may use the
R function GTest in the package DescTools. But this function does not provide V̂ (X)

in the output. In some problems, computing V̂ (X) is highly nontrivial, for example, testing
variance-covariance matrices; see Section B.3 of the Supplementary Material. The device (ii)
usually requires analysts’ effort to build, so, it can be challenging or simply troublesome for
them. For example, (X,ψ0,ψ1) �→ dL(ψ1,ψ0 | X), instead of the standard X �→ dL(X), is
required in μ̃r,L (Meng and Rubin (1992)). Arguably, most (if not all) LR test statistic sub-
routines are not built in this way. Although the recent work by Chan and Meng (2021+)
only requires X �→ dL(X) for performing MI tests, it assumes equal OMI and is restricted
to LR tests. In order to handle unequal OMI, we need a substantially more sophisticated
principle and technique, which are completely novel and have never been discussed in the
literature.

The third concern is about universality. Computing D̃W and D̃L require different algo-
rithms as the functional forms of (d̃ ′

W, d̃ ′′
W) in (1.5) and (d̃ ′

L, d̃ ′′
L) in (1.6) are different. It is

inconvenient for users. In addition, the existing MI procedures only cover Wald’s test and
LR test but not RS test. Since many tests are RS tests in nature (see, e.g., Bera and Bilias
(2001)), it reveals a gap between MI testing theory and practical usage. As discussed in Rao
(2005), there are many reasons to use RS test. For example, RS test does not require fitting
the full models, which are nonidentifiable or computationally intensive in some problems;
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see Section B.6 of the Supplementary Material for an example. So, it is desirable to have a
unified MI procedure for all tests.

This paper addresses these three problems. A general, unified and feasible MI test without
requiring Condition 1 or m → ∞ is proposed. It only requires the analysts to have a standard
complete-data test device X �→ d (X), where d (·) can be either dW(·), dL(·) or dR(·) defined
in (1.1)–(1.3).

2. Motivation and plan of proposal.

2.1. Motivation. Complete-data Wald’s and LR test statistics are asymptotically equiva-
lent under H0; see Section 4.4 of Serfling (2001). Meng and Rubin (1992) showed that this
asymptotic equivalence continues to hold for the MI statistics defined in (1.5) and (1.6), that

is, d̃ ′
W ∼ d̃ ′

L and d̃ ′′
W ∼ d̃ ′′

L, where An ∼ Bn means that An − Bn
pr→ 0, and “

pr→” denotes con-
vergence in probability. So, we may asymptotically represent d̃ ′

W and d̃ ′
L as d̃ ′, and represent

d̃ ′′
W and d̃ ′′

L as d̃ ′′. Then D̃W and D̃L equal to D̃ asymptotically, where

(2.1) D̃ := d̃ ′′

k{1 + (1 + 1
m

)μ̃r}
and μ̃r := d̃ ′ − d̃ ′′

k(m − 1)/m
.

From (2.1), we know that the MI test statistic D̃ depends on X1, . . . ,Xm only through d̃ ′ and
d̃ ′′. So, all information contained in X1, . . . ,Xm is summarized by d̃ ′ and d̃ ′′. In general, the
two-number summary (d̃ ′, d̃ ′′) is not enough for estimating k unknown parameters r1, . . . , rk .
Hence, in order to estimate all individual r1, . . . , rk , it is necessary to derive a more general
class of MI statistics other than d̃ ′ and d̃ ′′.

Besides, we would like to have a MI testing procedure that can be completed solely by the
device d (·). In order to achieve this goal, we begin with representing the statistics d̃ ′ and d̃ ′′
in terms of d (·). According to Xie and Meng (2017), we can asymptotically represent d̃ ′ and
d̃ ′′ as

(2.2) d̃ ′ ∼ 1

m

m∑
�=1

d
(
X�) and d̃ ′′ ∼ 1

m
d

(
X{1:m}),

where X{1:m} := [(X1)T, . . . , (Xm)T]T is a stacked dataset. Using (2.2), we may interpret d̃ ′
and d̃ ′′ as summary statistics via stacking one and all imputed datasets, respectively. Stacking
different numbers of imputed datasets produces distinct inferential tools. For example, d̃ ′′, the
numerator of the MI test statistic D̃ in (2.1), measures the amount of evidence against H0;
whereas d̃ ′ − d̃ ′′, which is proportional to the estimator μ̃r in (2.1), measures the amount of
information loss due to missing data. Hence, it motivates us to derive new MI statistics by
stacking imputed datasets in various ways.

2.2. Overview and plan of proposal. Following the motivations in Section 2.1, we pro-
pose a MI test statistic that admits the form

(2.3) D̂ := d̂{1:m}

k{1 + (1 + 1
m

)μ̂r}
,

where d̂{1:m} and μ̂r are some statistics to be derived so that (i) they can be computed solely
by using the device d (·), and (ii) the asymptotic null distribution of D̂ is D (see (1.8)) without
any ad-hoc approximation. The goals (i) and (ii) are completed in Sections 3 and 5, respec-
tively. Since the distribution of D depends on r1, . . . , rk , we propose to approximate them by
their estimators r̂j ’s, which are derived in Section 4 by using various stacked statistics. Al-
gorithm 2.1 computes our proposed test statistic D̂ and the corresponding p-value. We will
explain the steps of Algorithm 2.1 in the subsequent sections.
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Algorithm 2.1: Asymptotically correct MI test for H0

Input:
(i) X �→ d (X) – any complete-data testing device in (1.1)–(1.3);
(ii) X1, . . . ,Xm – m properly imputed datasets; and
(iii) k – the dimension of �.
begin

Stack X1, . . . ,Xm row-by-row to form X{1:m}.
Compute d̂{1:m} ← d (X{1:m})/m.
for � ∈ {1, . . . ,m} do

Stack X1, . . . ,X�−1,X�+1, . . . ,Xm row-by-row to form X{−�}.
Compute d̂{−�} ← d (X{−�})/(m − 1).
Compute d̂{�} ← d (X�).
Compute T̂� ← (m − 1)d̂{−�} + d̂{�} − md̂{1:m}.

Compute t̂j ← ∑m
�=1 T̂

j
� /m for each j = 1, . . . , k.

Compute r̂1:k ← M−1
1 (M−1

2 (̂t1:k)) according to Proposition 4.1.
Compute D̂ according to (2.3).
Draw G

(ι)
j ∼ χ2

1 and H
(ι)
j ∼ χ2

m−1/(m − 1) independently for ι = 1, . . . ,N and j = 1, . . . , k.

Compute D̂
(ι), ι = 1, . . . ,N , according to (5.1). Set N = 104 by default.

Compute p̂ ← ∑N
ι=1 1(D̂(ι) ≥ D̂)/N .

return: p̂ – the p-value for testing H0 against H1.

3. Methodology and principle.

3.1. Stacking principle. In this section, we introduce a new class of MI statistics by
stacking X1, . . . ,Xm in various ways. As we shall see in Theorem 3.1 below, stacking them
differently extracts different information from X1, . . . ,Xm. We refer this phenomenon to a
stacking principle. Define the stacked dataset XS by stacking {X� : � ∈ S} row-by-row for
some nonempty S ⊆ {1, . . . ,m}. For example, XS = [(X�1)T, . . . , (X�s )T]T is an (ns) × p

matrix if S = {�1, . . . , �s}. Define

(3.1) d̂S := 1

|S|d
(
XS)

,

where |S| is the cardinality of S, and d (·) is any testing device in (1.1)–(1.3). In particular, we
have d̂{�} = d (X�), d̂{−�} = d (X{−�})/(m− 1), and d̂{1:m} = d (X{1:m})/m, where {1 : m} :=
{1, . . . ,m} and {−�} := {1, . . . ,m} \ {�}. We denote d̂S by d̂S

W, d̂S
L and d̂S

R to emphasize that
dW, dL and dR are used, respectively.

It is worth mentioning that “stacking” is a universal operation. Since it is problem-
independent, the analysts can apply this operation to all kinds of testing problems universally.
This nature is similar to some well-known procedures, for example, bootstrapping (Efron
(1979)), jackknife resampling (Quenouille (1956)), subsampling (Politis, Romano and Wolf
(1999)), etc. All these procedures are model-free and fully nonparametric.

The usefulness of d̂S can be seen from its asymptotic distribution. To derive it, we need
some RCs.

CONDITION 2. The observed-data MLE θ̂obs of θ satisfies T −1/2(θ̂obs − θ�) ⇒
Nk(0k, Ik), where T := I−1

obs is well-defined, θ� is the true value of θ ; 0k is a k-vector of
zeros; and Ik is a k × k identity matrix.

CONDITION 3. The imputed statistics (θ̂1, V̂ 1), . . . , (θ̂m, V̂ m) are conditionally inde-
pendent given Xobs. Moreover, for each � = 1, . . . ,m, they satisfy {B−1/2(θ̂ � − θ̂obs) |
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Xobs} ⇒ Nk(0k, Ik) and {T −1(V̂ � −V ) | Xobs} pr→ Ok , where B := I−1
obs − I−1

com and V := I−1
com

are well-defined, and Ok is a k × k matrix of zeros.

Condition 2 is satisfied under the usual RCs that guarantee asymptotic normality of MLEs;
see, for example, Wang and Robins (1998) and Kim and Shao (2013). Condition 3 is satisfied
if a proper imputation model (Rubin (1987)) is used. The posterior predictive distribution
f (Xmis | Xobs) is an example of proper imputation models, which have been widely used
and adopted in MI; see Sections 2.4–2.7 of Rubin (1996) for a comprehensive discussion of
this assumption. We emphasize that the analysts do not need to compute or know the im-
puted statistics (θ̂ �, V̂ �) by themselves. Condition 3 guarantees that the imputer does his/her
imputation job correctly. It is remarked that if the analyst’s and imputer’s models are uncon-
genial (Meng (1994)), then the standard Rubin’s MI procedure may not be valid. Generaliz-
ing MI procedures to the uncongenial case is not completely solved yet. Interested readers
are referred to a recent discussion article (Xie and Meng (2017)) for a simple remedy when
m → ∞. Extending our proposed method to the uncongenial case is left for further study.

DEFINITION 1. Let θ� be the true value of θ , and θ0 be the null value of θ specified in
H0. The difference θ� − θ0 satisfies that

√
nA(θ� − θ0) → δ ≡ (δ1, . . . , δk)

T for some δ and
invertible matrix A.

Definition 1 defines a sequence of local alternative hypotheses; see, for example, van der
Vaart (2000). Note that it is required for proving asymptotic equivalence of the test statis-
tics dW(X), dL(X) and dR(X); see, for example, Serfling (2001) and Lehmann and Romano
(2005). This general setting allows us to prove the validity of MI estimators, even when H0
is not true. Moreover, practical testing problems are more challenging under a local alterna-
tive hypothesis than under an obviously wrong fixed alternative hypothesis because, under
a fixed alternative hypothesis, all three test statistics obviously diverge to infinity, and have
power one asymptotically. Hence, our setting is sufficient for most practical applications. The
following theorem states the asymptotic distribution of d̂S .

THEOREM 3.1. Assume Conditions 2–3. Let Wj,Zj1, . . . ,Zjm, j = 1, . . . , k, be inde-
pendent N(0,1) random variables, and Z̄j (S) = ∑

�∈S Zj�/|S| be the average of {Zj� : � ∈ S}.
Then, for any nonempty multiset S from {1, . . . ,m},

(3.2) d̂S ⇒ dS :=
k∑

j=1

{
δj + (1 + rj )

1/2Wj + r
1/2
j Z̄j (S)

}2
,

where the convergence is true jointly for all S.

Theorem 3.1 is true for any multiset S, for example, S = {1,1,2,3}. In this case, Z̄j (S) =
(Zj1 + Zj1 + Zj2 + Zj3)/4. We emphasize that Theorem 3.1 requires neither Condition 1
nor m → ∞. So, it is in line with the practical situation. The convergence (3.2) is with re-
spect to the regime n → ∞, hence, it is simply a usual large-sample asymptotic result. More
importantly, Theorem 3.1 sheds light on performing hypothesis tests because of two reasons.
First, the limiting distribution dS depends on δ. When H0 is true, that is, δ1 = · · · = δk = 0,
the statistic d̂S converges weakly to a nondegenerated distribution. When δj → ∞ for some
j , d̂S diverges to infinity. So, the statistic d̂S can be used to test H0 for every nonempty S.
Second, dS depends on r1, . . . , rk , but the dependence on r1, . . . , rk varies among S. Conse-
quently, pooling information from different d̂S may help to estimate r1, . . . , rk .

However, d̂S is not immediately useful because of two reasons. First, dS depends on
r1, . . . , rk in a complicated way. In particular, the j th summand on the right-hand side of
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(3.2) depends on rj nonlinearly. Thus, it is not clear how to use d̂S to estimate r1, . . . , rk .
Second, for any nonempty S1 and S2, the statistics d̂S1 and d̂S2 are asymptotically dependent
through both {Wj } and {Zj�}. The random variables W1, . . . ,Wk always appear in the limit-
ing distributions of d̂S1 and d̂S2 , no matter how S1 and S2 are chosen. So, d̂S1 and d̂S2 are too
correlated to be useful if S1 and S2 are blindly selected.

3.2. Stacked multiple imputation—a new class of MI procedures. In this section, we pro-
pose a novel methodology for properly using d̂S . According to the discussion in Section 3.1,
we know that d̂S is too complex to be useful because of two sources of dependence: (i) the
nonlinear dependence of the limiting distribution of d̂S on r1, . . . , rk , and (ii) the strong prob-
abilistic dependence among different d̂S through the random variables W1, . . . ,Wk . In this
section, we propose a method to get rid of all these two unwanted sources of dependence.

For any nonempty sets S1, S2 ⊆ {1, . . . ,m} such that S1 �= S2, define

T̂S1,S2 = |S1| + |S2|
|S1| + |S2| − 2|S1 ∩ S2|

{|S1|d̂S1 + |S2|d̂S2 − (|S1| + |S2|)d̂S1⊕S2
}
,

where S1 ⊕ S2 is the multiset addition, for example, {1,3} ⊕ {1,2} = {1,1,2,3}. We call
T̂S1,S2 a stacked multiple imputation (SMI) statistic. Note that the SMI statistic T̂S1,S2 can
be computed solely by stacking the imputed datasets and applying the complete-data test-
ing device d (·). Besides, as we shall see in Proposition 3.2 below, T̂S1,S2 is free of the two
aforementioned sources of unwanted dependence. Hence, the SMI statistic T̂S1,S2 has nice
computational and theoretical properties. Consequently, it is qualified to be a building block
for all MI procedures proposed in this paper. Let

(3.3) Rτ :=
k∑

j=1

rτ
j , τ = 1, . . . , k.

The asymptotic distribution of T̂S1,S2 and its properties are shown below.

PROPOSITION 3.2. Assume Conditions 2–3. Let S1, S2 ⊆ {1, . . . ,m} be any nonempty
and nonidentical sets. Define Wj,Zj1, . . . ,Zjm, j = 1, . . . , k as in Theorem 3.1.

1. T̂S1,S2 ⇒ TS1,S2 , where TS1,S2 is represented as

TS1,S2 := |S1| × |S2|
|S1| + |S2| − 2|S1 ∩ S2|

k∑
j=1

rj {Z̄j (S1) − Z̄j (S2)}2.(3.4)

2. TS1,S2 has the same marginal distribution as T := ∑k
i=1 riUi , where U1, . . . ,Uk ∼ χ2

1
independently.

3. Let tτ := E(Tτ ) for τ ∈ {1, . . . , k}, and t0 := 1. Then t1, . . . , tk can be found iteratively
as follows:

(3.5) t1 = R1 and tτ =
τ∑

j=1

(τ − 1)!
(τ − j)!2

j−1Rj tτ−j

for τ = 2, . . . , k. In particular, E(T) = R1 and Var(T) = 2R2.

According to Proposition 3.2(1), the limiting distribution TS1,S2 depends on r1, . . . , rk lin-
early, and is independent on the random variables W1, . . . ,Wk that appear in (3.2). Hence,
the SMI statistic T̂S1,S2 “filters” out the two unwanted dependence structures. Consequently,
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T̂S1,S2 is easier to work with. Proposition 3.2(2) states that T̂S1,S2 ’s are asymptotically iden-
tically distributed over different S1, S2. Proposition 3.2(3) states that the τ th moments of T
depends on r1, . . . rk only through R1, . . . ,Rτ for each τ = 1, . . . , k.

Proposition 3.2 implies that the sample τ th moments of T̂S1,S2 over a set of pairs of (S1, S2)

is a natural estimator of tτ . Let � ⊆ L := {(S1, S2) ⊆ {1, . . . ,m}2 : S1, S2 �= ∅;S1 �= S2} so
that � is a set of appropriately chosen pairs of (S1, S2). For τ ∈ {1, . . . , k}, define an estimator
of tτ by

(3.6) t̂τ := t̂τ (�) := 1

|�|
∑

(S1,S2)∈�

T̂ τ
S1,S2

,

where the short notation t̂τ is used when � is clear in the context. Some examples of � are
given below.

EXAMPLE 3.1. The following selection rules of � are suggested. Let

�Jack := {({�}, {−�})}1≤�≤m, �Full := {({�}, {1 : m})}1≤�≤m,

�Pair := {({�}, {
�′})}

1≤�<�′≤m

(3.7)

be the Jackknife, full and pair selection rules for �. Note that |�Jack| = |�Full| = m, whereas
|�Pair| = m(m − 1)/2. Putting � = �Jack,�Full,�Pair into (3.6), we obtain the following
three estimators of tτ :

t̂τ (�Jack) = 1

m

m∑
�=1

T̂ τ{�},{−�}, t̂τ (�Full) = 1

m

m∑
�=1

T̂ τ{�},{1:m},

t̂τ (�Pair) = 2

m(m − 1)

m∑
�′=2

�′−1∑
�=1

T̂ τ
{�},{�′},

respectively. Since t̂τ (�Pair) requires stacking at most two datasets, it should be used when
computing d (X) is difficult for a large dataset X. Although the device d (·) has to be im-
plemented 3m(m − 1)/2 = O(m2) times, the computations can be parallelized easily. On
the other hand, computing t̂τ (�Jack) and t̂τ (�Full) requires implementing the device d (·)
3m = O(m) times only. It is preferable when m is large.

The message behind Example 3.1 is that stacked MI is flexible enough to allow users
to choose the most computationally viable statistics according to their problems. Although
testing on stacked datasets is more computationally intensive and requires more computing
memory, these computational requirements are usually affordable by standard laptop com-
puters nowadays. Indeed, the increase in computing cost is used to exchange for a decrease
in human time cost of deriving or searching nonstandard computing devices required in the
exiting tests T2 and T3 stated in Table 1.

3.3. Asymptotic properties. In this section, we study the asymptotic properties of t̂τ (�)

in the L2 sense. From now on, we denote the indicator function by 1(·). The following con-
dition is required for developing L2 convergence results.

CONDITION 4. For any nonempty and nonidentical S1, S2 ⊆ {1, . . . ,m}, denote
T̂S1,S2(n) = T̂S1,S2 as a sequence indexed by the sample size n. The sequence {T̂ 2τ

S1,S2
(n) :

n ∈N} is assumed uniformly integrable, that is,

lim
C→∞ sup

n∈N
E
[
T̂ 2τ

S1,S2
(n)1

{∣∣T̂S1,S2(n)
∣∣ > C

}] = 0.
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The following theorem derives the limits of E{̂tτ (�)} and Var{̂tτ (�)} as n → ∞.

THEOREM 3.3. Assume Conditions 2–4. Let m > 1, � ⊆ L and τ ∈ N. Then the follow-
ing hold. (1) E{̂tτ (�)} → tτ as n → ∞. (2) For (S1, S2), (S3, S4) ∈ �, define

ρ(S1, S2, S3, S4) := (s1 + s2 − 2s12)
−1/2(s3 + s4 − 2s34)

−1/2

×
(

s13

s1s3
− s14

s1s4
− s23

s2s3
+ s24

s2s4

)
,

where sa = |Sa| and sab = |Sa ∩ Sb| for a, b ∈ {1,2,3,4}. Then

Var
{̂
tτ (�)

} → 1

|�|2
∑

(S1,S2)∈�

∑
(S3,S4)∈�

ρ2(S1, S2, S3, S4)Cτ (S1, S2, S3, S4),(3.8)

where Cτ (S1, S2, S3, S4) satisfies sup(S1,S2),(S3,S4)∈� |Cτ (S1, S2, S3, S4)| ≤ Cτ for some finite
Cτ which depends on τ, r1, . . . , rk . In particular, C1(S1, S2, S3, S4) = 2R2.

From Theorem 3.3, the choice of � only affects the limit of Var{̂tτ (�)} but not the limit
of E{̂tτ (�)}. The asymptotic variance of t̂τ (�) is affected by two factors: (i) 1/|�|2 and (ii)
the double summation in (3.8). If |�| is too small, the first factor 1/|�| is large. On the other
hand, if |�| is too large, then {T̂S1,S2 : (S1, S2) ∈ �} may be highly correlated in the sense
that most of the ρ(S1, S2, S3, S4)’s in (3.8) are large. Hence, � needs to be chosen carefully
so that the estimator t̂τ (�) has a small asymptotic variance. Theorem 3.3 is easy to use. Once
the set � is fixed, one can easily compute ρ(S1, S2, S3, S4). By simple counting, the order of
magnitude of the asymptotic variance of t̂τ (�) can also be found. In particular, we show that
t̂τ (�Jack), t̂τ (�Full) and t̂τ (�Pair) in Example 3.1 are all good estimators of tτ .

COROLLARY 3.4. Define �Jack, �Full and �Pair according to (3.7). Assume Condi-
tions 2–4. For any S ∈ {Jack,Full,Pair} and any τ ∈ {1, . . . , k}, we have Var{̂tτ (�S)} →
VS,τ (m) as n → ∞, where VS,τ (m) = O(1/m) as m → ∞. In particular, VJack,1(m) =
VFull,1(m) = VPair,1(m) = 2R2/(m − 1).

Corollary 3.4 shows that, asymptotically, the precision of t̂τ (�S) increases with m for any
selection rule S ∈ {Jack,Full,Pair}. Together with Theorem 3.3(1), the mean squared error
(MSE) of t̂τ (�S), that is, MSE{̂tτ (�S)} := E{̂tτ (�S)− tτ }2 decreases in the order of O(1/m)

as m increases.
Unless otherwise stated, we use � = �Jack by default. Then the estimator t̂τ (�Jack) is as

simple as

t̂τ := 1

m

m∑
�=1

T̂ τ
� , where T̂� := d̂{�} + (m − 1)d̂{−�} − md̂{1:m}.

4. Estimation of OMI. This section proposes estimators for all individual r1, . . . , rk .
For notational simplicity, we denote r1:k = (r1, . . . , rk)

T. We also abbreviate other variables
similarly, for example, t1:k = (t1, . . . , tk)

T.
From Proposition 3.2, t1:k are defined via the following two-step mapping:

(4.1) r1:k
M1�→ R1:k

M2�→ t1:k,
where the maps M1 and M2 are defined according to (3.3) and (3.5), respectively. From The-
orem 3.3, t̂1:k are good estimators of t1:k . Our goal is to estimate r1:k , through “reverse engi-
neering” the two-step transformation (4.1). However, it is impossible unless r1:k is uniquely
determined by t1:k . The following proposition shows that (4.1) is a one-to-one function, that
is, the function inverse of M2(M1(·)) always exists.
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PROPOSITION 4.1. Define the functions M1(·) and M2(·) according to (3.3) and (3.5),
respectively.

1. The inverse function r1:k = M−1
1 (R1:k) exists, that is, r1:k are uniquely determined by

R1:k . Let

(4.2) A :=
[

0k−1 Ik−1

a1 a2 · · · ak

]
,

where ak := R1 and ak−j+1 := (Rj − ∑j−1
i=1 Riak−j+i+1)/j , for j = 2, . . . , k. Then rj is the

j th largest modulus of the eigenvalue of A for j = 1, . . . , k.
2. The inverse function R1:k = M−1

2 (t1:k) exists, that is, R1:k are uniquely determined by
t1:k as follows: R1 = t1 and

Rτ = tτ

(τ − 1)!2τ−1 −
τ−1∑
j=1

tτ−jRj

(τ − j)!2τ−j
, τ = 2, . . . , k.(4.3)

Proposition 4.1 implies that the parameters r1:k are identifiable via the moment conditions
E(Tτ ) = tτ (τ = 1, . . . , k) in such a way that r1:k = M−1

1 (M−1
2 (t1:k)). Since the function

M−1
1 (M−1

2 (·)) is continuous and does not depend on any unknown, we can estimate R1:k and
r1:k by

(4.4) R̂1:k := M−1
2 (̂t1:k) and r̂1:k := M−1

1 (R̂1:k),

respectively. The corollary below states the large-n asymptotic MSEs of r̂j .

COROLLARY 4.2. Let � be either �Jack, �Full or �Pair. Under Conditions 2–4, as n →
∞, MSE(̂rj ) := E(̂rj − rj )

2 → V (m), where V (m) is a function of m such that V (m) → 0
as m → ∞.

Corollary 4.2 guarantees that the estimators r̂1:k have small MSEs when m, n are suf-
ficiently large. The step-by-step procedure for computing r̂1:k with � = �Jack is shown in
Algorithm 2.1. This algorithm is user-friendly for analysts as only the complete-data testing
device X �→ d (X) is required. It is, indeed, the minimal requirement even for compete-data
testing.

Besides, it is sometimes informative to summarize r1, . . . , rk through their mean and vari-
ance, that is,

μr := 1

k

k∑
j=1

rj and σ 2
r := 1

k

k∑
j=1

(rj − μr)
2.

These two values are required for approximating the limiting null distribution D in (1.8)
for testing H0, for example, T2 and T3 in Table 1; see Meng (1990), Li, Raghunathan and
Rubin (1991), and Meng and Rubin (1992) for details. In Section A.1 of the Supplementary
Material, we show that

(4.5) μ̂r := t̂1

k
and σ̂ 2

r := {k(m − 1) + 2}̂t2 − (m − 1)(k + 2)̂t2
1

2k2(m − 2)

are asymptotically unbiased estimators of μr and σ 2
r , respectively. The precise statement and

their properties are deferred to the Supplementary Material due to space constraint. There are
two immediate applications of (4.5).
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FIG. 1. The log of sum of MSEs of r̂1:k , that is, log
∑k

j=1 E(̂rj − rj )2; see Example 4.1.

1. The estimators μ̂r and σ̂ 2
r can be used to compute the approximated null distributions

of T2 and T3 in Table 1 as the distributions depend only on μr and σ 2
r . We emphasize that

the original approximations T2 (Li, Raghunathan and Rubin (1991)) and T3 (Meng (1990))
work for Wald’s test only. Although Meng and Rubin (1992) extended T2 to LR test, T2 and
T3 were still inapplicable to RS test. With the proposed estimators in (4.5), the generalized
T2 and T3 support Wald’s, LR and RS tests.

2. The statistic σ̂ 2
r /μ̂2

r estimates the squared coefficient of variation of {rj }. It can be
used to construct a formal test for the validity of EOMI; see Section A.2 of the Supplementary
Material for details.

We conclude this subsection with an example.

EXAMPLE 4.1. Let r1, . . . , rk be evenly spread in [0.1, rmax], that is,

(4.6) rj = 0.1 + (rmax − 0.1)
j − 1

k − 1
, j = 1, . . . , k,

where rmax ∈ {0.1,0.2, . . . ,0.9} and k ∈ {2,4,6}. The coefficient of variation (CV) of r1:k in-
creases with the value of rmax. We evaluate r̂1:k under H0 and H1. Under H0, δ1 = · · · = δk =
0 in (3.2). Under H1, we set δ1 = · · · = δk = 1 in particular. In the simulation experiments,
we assume that the sample size n → ∞ but the number of imputation m is fixed. So, the
experiments assess solely the performance of the MI procedure instead of the performance
of the large-n χ2-approximation (1.4). Applications and simulation experiments with finite n

are studied in Section 6.
The sum of the MSEs of r̂1:k , that is, E := ∑k

j=1 E(̂rj − rj )
2 is shown in Figure 1. The

values of E under H0 and H1 are nearly identical, implying that it is safe to use r̂1:k , no matter
H0 is true or not. Second, the value of E decreases when m increases. It verifies Corollary 4.2.
However, the performance of r̂1:k declines when rmax or k increases. It is reasonable as the
CV of r1:k increases with rmax, and the number of estimands (r1:k) increases with k. In either
case, the estimation problem is harder by nature.

5. General multiple imputation procedures.

5.1. Hypothesis testing of model parameters. We denote D̂ by D̂W, D̂L, D̂R to empha-
size that d = dW,dL,dR is used, respectively. The limiting distribution of D̂ is stated below.

PROPOSITION 5.1. Assume Conditions 2–3. Let D̂ ∈ {D̂W, D̂L, D̂R} and m > 1. Under

H0, we have, as n → ∞, that (1) D̂ − D̃
pr→ 0, where D̃ ∈ {D̃W, D̃L}; and (2) D̂ ⇒ D, where

D is defined in (1.8).
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Proposition 5.1 states that D̂ and D̃ are asymptotically (n → ∞) equivalent for any m,
and have the same limiting null distribution D. We emphasize again that computing D̃ is
not feasible as it requires problem-specific devices other than d (·). However, computing our
proposed D̂ requires only d (·).

We propose approximating the limiting null distribution D by substituting rj = r̂j into
(1.8). Although it is not a named distribution, we can easily compute its quantile via Monte
Carlo methods. Precisely, we first generate G

(ι)
j ∼ χ2

1 and H
(ι)
j ∼ χ2

m−1/(m − 1) indepen-
dently for j = 1, . . . , k and ι = 1, . . . ,N . Upon conditioning on r̂1, . . . , r̂k , we can generate
N random replicates of D̂ as follows:

(5.1) D̂
(ι) :=

1
k

∑k
j=1{1 + (1 + 1

m
)̂rj }G(ι)

j

1 + 1
k

∑k
j=1(1 + 1

m
)̂rjH

(ι)
j

, ι = 1, . . . ,N.

The 100(1 −α0)% quantile of D can then be estimated by the 100(1 −α0)% sample quantile
of {D̂(1), . . . , D̂(N)}, where α0 ∈ (0,1). The sample quantile can be served as a critical value
for testing H0 : θ = θ0. Similarly, the p-value can be found by p̂ = ∑N

ι=1 1{D̂(ι) ≥ D̂}/N . The
null hypothesis H0 is rejected at size α0 if p̂ < α0. We emphasize that the proposed MI test
is asymptotically correct with or without Condition 1. Step-by-step procedure for computing
p̂ is presented in Algorithm 2.1.

In Section A.3 of the Supplementary Material, we present several alternative approxima-
tion schemes by projecting D to some distributions that depend only on μr and σ 2

r instead
of r1:k . This idea is similar to Meng (1990). Such approximations can be used if one only
wants to estimate μr and σ 2

r . Although these approximations are algorithmically simpler,
the resulting MI tests control type-I error rates substantially worse than our proposal (5.1).
A quick simulation example is presented in Section B.1 of the Supplementary Material for
illustration.

5.2. Discussion on applications. Our proposed method uses p-value as a one-number
summary for assessing variability of estimators in the presence of missing data. It can be ap-
plied not only to hypothesis testing but also other statistical procedures that require variability
assessment or use p-value as a part of the automatic procedures.

Let p̂(θ0) be the p-value returned by Algorithm 2.1 for testing H0 : θ = θ0. The func-
tion p̂(·) : � → [0,1] is called a p-value function (Fraser (2019)). It measures the degree of
falsity of H0 : θ = θ0. Similar concepts include confidence curves (Birnbaum (1961)), confi-
dence distributions (Xie and Singh (2013), Xie, Singh and Strawderman (2011)), significance
functions (Fraser (1991)), plausibility functions (Martin (2015)), etc. There are many auto-
matic procedures that are built on the p-value function; see, for example, Martin (2017). We
are not able to exhaust all applications. Only four examples are presented here.

First, one obvious application is confidence regions (CR) construction. By the duality of
hypothesis testing and CR (Section 5.4 of Lehmann and Romano (2005)), a 100(1−α0)% CR
for θ is C = {θ0 ∈ � : p̂(θ0) ≥ α0}, which can be obtained by repeatedly using Algorithm 2.1.
Second, if researchers prefer not to fix the confidence level in advance, it is possible to report
the p-value function as an estimator of θ ; see Infanger and Schmidt-Trucksäss (2019) for
some examples in medical studies. Third, p-value has been a commonly-used tool for com-
bining evidence in meta-analysis (Heard and Rubin-Delanchy (2018)). For example, if the
p-value for testing H0 : θ = θ0 by the gth dataset is p̂g(θ0) for g = 1, . . .G, a possible com-
bined p-value is

∑G
g=1 log p̂g(θ0) (Fisher (1934)). Fourth, p-values can be used for stepwise

variable selection in generalized linear model (Section 4.6.1 of Agresti (2015)).
In a nutshell, classical Rubin’s rule use variance as a medium for assessing uncertainty,

whereas our proposed method use p-value. Our proposal is useful not only for the standard
null hypothesis testing but also for other statistical procedures that require variability assess-
ment.
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6. Monte Carlo experiments and applications. Incomplete-data testing of linear re-
gression coefficient and region estimation of a probability vector are presented in Sections 6.1
and 6.2, respectively. Due to space constraints, some additional simulation experiments and
real-data examples are deferred to the Supplementary Material. They include (i) inference of
variance-covariance matrix in Section B.3, (ii) variable selection in generalized linear model
in Section B.4, (iii) contingency tables in Sections B.5, and (iv) logistic regression in Sec-
tion B.6.

6.1. Linear regression. Let yi and xi = (xi1, . . . , xip)T be a univariate random response
and p deterministic covariates of the ith unit, respectively, where i = 1, . . . , n. Consider the

linear regression model: yi = β0 +xT
i β + εi for each i, where ε1, . . . , εn

iid∼ N(0, σ 2). The full
set of model parameters is ψ = (β0, β

T, σ )T; and the parameter of interest is θ = β . We want
to test H0 : θ = 0p against H1 : θ �= 0p . Clearly, in this case, k = p.

For each i, suppose yi and xi1 are always observed, while xi2, . . . , xip may be missing.
Let Iij = 0 if xij is missing, otherwise Iij = 1. Suppose further that Iij follows a logistic
regression model:

(6.1) P(Iij = 1 | xi,j−1, Ii,j−1 = a) = expit(γ0 + γ1xi,j−1)1(a = 1)

for i = 1, . . . , n and j = 2, . . . , p, where expit(t) := 1/(1 + e−t ). The missing data Xmis =
{xij : Iij = 0} are then imputed m ∈ {10,30} times by a Bayesian model; see Section B.2 of
the Supplementary Material for details.

In the simulation experiment, all three devices dW, dL and dR are studied; see Section B.2
for their formulas. We compute the MI test statistics D̂W, D̂L and D̂R, and refer them to four
different approximated null distributions in Table 1, that is, T1 (χ2

k /k), T2 (Li, Raghunathan
and Rubin (1991)), T3 (Meng (1990)), and T4 (the proposal in Algorithm 2.1). Note that the
unknowns μr and σ 2

r in T2 and T3 are estimated by (4.5) with the devices dW, dL and dR for
D̂W, D̂L and D̂R, respectively.

We consider n = 1000, p = 5, xi
iid∼ Np(1p,�x) with (�x)ab = 2−|a−b| for each 1 ≤ a, b ≤

p, σ 2 = 1 and β0 = 1, where 1p is a p-vector of ones. Two sets of (γ0, γ1) ∈ {(1,0), (0,1)}
are considered. Note that the data are missing completely at random (MCAR) when γ1 = 0,
whereas the data are missing at random (MAR) when γ1 = 1. Note that the fractions of
missing covariates are about (0,16%,29%,41%,50%) and (0,24%,40%,51%,61%) in the
MCAR and MAR cases, respectively.

We record the sizes of the tests (denoted by α) at various nominal size α0 ∈ [1%,5%]. The
results for m = 30 are shown in Figure 2. The proposed test T4 controls the size substantially
more accurately than all other competitors in all cases. Although the widely used T2 performs
well when Condition 1 is true (see Li, Raghunathan and Rubin (1991)), it only has a marginal
improvement over T1 when Condition 1 does not hold. Besides, our proposed test is a unified
method for Wald’s test, LR test, and RS test. So, users only need to change the testing device
(i.e., dW, dL, dR) in Algorithm 1. It is worth mentioning again that our proposal is the only
MI procedure that can handle RS tests.

The results for m = 10 are deferred to Figure 5 of the Supplementary Material. The pat-
terns are similar to Figure 2 except for T3. Note that T3 is not trustworthy unless m is large.
In this example, its performance converges to an increasingly bad state as m increases. The
powers of the MI tests are not directly comparable as their sizes are not equally accurate.
Their size-adjusted powers are identical because they are based on the same test statistic D̂

(or its asymptotic equivalent). For reference, the power curves are shown in Section B.2 of
the Supplementary Material. Additional discussions about the effects of m are deferred to
Section B.2.
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FIG. 2. Size accuracy of the MI tests regarding regression coefficients in Section 6.1.

6.2. Confidence region and p-value function of a probability vector. Let [yi | xi] ∼
Bern(θ

xi

1 θ
1−xi

0 ) independently for i = 1, . . . , n, where x1, . . . , xn ∈ {0,1} are fixed binary
covariates, and θ0, θ1 ∈ (0,1) are unknown parameters. The covariates x1, . . . , xn are always
observed, but the responses y1, . . . , yn may be missing. If yi is observed, we denote Ii = 1,
otherwise Ii = 0. Suppose that the missing mechanism is [Ii | xi] ∼ Bern(π

xi

1 π
1−xi

0 ), where
π0, π1 ∈ (0,1) are unknown. The goal is to estimate θ = (θ0, θ1)

T with the incomplete dataset
{(xi, yiIi)}ni=1. In the simulation study, n = 100 and around 40% of the xi ’s are 1. The un-
known true values are θ0 = 0.15, θ1 = 0.75, π0 = 0.9 and π1 = 0.1. Note that yi is very likely
to be missing when xi = 1. As discussed in Section 5.2, we could construct a CR or p-value
function as an estimator of θ . We try both in this example.

Traditionally, one may construct the Wald’s CR by Rubin’s rule:

CW =
{
θ ∈ R

2 : (θ̄ − θ)T
(
B̂ + m + 1

m
V̄

)−1
(θ̄ − θ) ≤ c

}
,

where the critical value c can be found according to Li, Raghunathan and Rubin (1991). It is
well-known that the Wald’s CR CW must be an ellipse, which is restrictive in some problems.
Moreover, CW may not be a subset of the support � = (0,1)2. Figure 3(a) visualizes these
two problems. Alternatively, one may invert the LR test to construct a CR CL (say). It does
not have the two aforementioned structural problems; see Figure 3(a) again.

We assess the performance of the likelihood-based 100(1 − α0)% CRs for θ by using T1–
T4. We compute the actual noncoverage rates α̂ for different methods, and compare them with
the nominal value α0. The relative error |α̂−α0|/α0 is reported for each method in Figure 3(b)
under various α0 ∈ [0.01,0.05]. The relative error of the Wald’s CR is also computed for
reference. Our proposed method has the lowest error uniformly. Figure 3(c) shows the p-
value function p̂(θ) produced by our proposed T4 and Algorithm 2.1. It offers an alternative
way for estimating θ with variability assessment but without specifying the confidence level
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FIG. 3. (a) One typical realization of 95% CRs of θ using different methods, where the grey region is the support
(0,1)2 of θ . (b) Coverage accuracy of different CRs. (c) Heat-map of the p-value function by using the proposed
T4. The solid black dots in plots (a) and (c) denote the true value of θ = (0.15,0.75)T. See Section 6.2 for detailed
descriptions.

in advance. From the above example, our proposed method is particularly useful for handling
nonnormal data and parameters with bounded supports.

7. Conclusion, discussion and future work. The proposed test for handling multiply-
imputed datasets is general as it does not require m → ∞ or equal odds of missing infor-
mation. So, it is particularly suitable for handling public-use datasets that have nontrivial
missingness structures; see Remark 1.1 and Section 6 for some examples. The test is feasi-
ble in the sense that only a standard complete-data testing device is needed for performing
incomplete-data Wald’s, likelihood ratio, and Rao’s score tests; see Algorithm 2.1. Besides,
the proposed method is also useful for general statistical procedures that use p-value as an as-
sessment tool; see Section 5.2. So, it has a wide range of applications. Although the proposed
test improves the existing counterparts, further studies are needed in the following directions.

First, this paper assumes the sample size n is large enough so that the standard large-
sample χ2 approximation kicks in. Small-sample approximations (e.g., approaches similar
to Barnard and Rubin (1999) and Reiter (2007)) are likely to further improve the proposed
test. Second, we need to perform more computationally expensive tests on several stacked
datasets. We increase the computing cost in order to minimize the human time cost needed
to build nonstandard computing functions required in tests T2 and T3; see Table 1. Given the
computing power of the current computers, we believe that computing time cost is a lesser
constraint than human time cost. However, it is still desirable to further reduce the computing
cost.
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Supplement to “General and feasible tests with multiply-imputed datasets” (DOI:
10.1214/21-AOS2132SUPP; .pdf). The supplementary note includes proofs, supplementary
results and additional examples. An R-package stackedMI is also provided.
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