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We present a novel approach to test for heteroscedasticity of a nonstation-
ary time series that is based on Gini’s mean difference of logarithmic local
sample variances. In order to analyse the large sample behaviour of our test
statistic, we establish new limit theorems for U-statistics of dependent trian-
gular arrays. We derive the asymptotic distribution of the test statistic under
the null hypothesis of a constant variance and show that the test is consistent
against a large class of alternatives, including multiple structural breaks in the
variance. Our test is applicable even in the case of nonstationary processes,
assuming a locally stationary mean function. The performance of the test and
its comparatively low computation time are illustrated in an extensive simu-
lation study. As an application, we analyse Google Trends data, monitoring
the relative search interest for the topic “global warming.”

1. Introduction. Constancy of the variance is a common assumption and several au-
thors have proposed tests for it. Wichern, Miller and Hsu [29], Abraham and Wei [1] and
Baufays and Rasson [5] do so in the parametric framework of autoregressive models. Inclán
and Tiao [23] and Gombay, Horváth and Hušková [22] propose nonparametric tests based
on cumulative sums of squares against the alternative of a single structural break in a se-
quence of independent data. Lee and Park [24] and Wied et al. [30] extend this work to time
series data fulfilling different short-range dependence conditions. Gerstenberger, Vogel and
Wendler [21] use Gini’s mean difference instead of sums of squares to test against the same
family of alternatives. Galeano and Peña [18] and Aue et al. [4] consider the multivariate
case. Chen and Gupta [12] combine binary segmentation and the Schwarz information crite-
rion for detection of multiple change-points in independent Gaussian data. Bloomfield, Hurd
and Lund [6] propose a test against the alternative of a periodic variance cycle.

In these and other papers, the mean of the data is assumed to be constant. Tests of the
stationarity of the variance in the presence of a time-varying mean have been derived only
recently by Dette, Wu and Zhou [16] and by Gao et al. [19]. While the latter authors assume
independent Gaussian observations, the former ones apply wild bootstrap to derive critical
values because the covariance structure of the limiting Gaussian process depends in a com-
plex manner on the dependencies in the data generating process.

We construct a nonparametric asymptotic test for the constancy of the variance against the
alternative of one or several change-points, allowing the data to be short-range dependent
and the mean to be possibly time-varying. The statistic underlying our test has been pro-
posed by Wornowizki, Fried and Meintanis [31], who use the permutation principle to test
the constancy of the variance in a sequence of independent observations. They illustrate the
advantages of this test statistic over several competitors in a series of simulation experiments.
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For the construction of our asymptotic test, we develop new theory under the assump-
tion that we observe time series data X1, . . . ,Xn generated by a particular locally stationary
process in the sense of Dahlhaus [13]. Formally, we work with a triangular array

(1) Xi := Xi,n = σ(i/n)Yi + μ(i/n),

where (Yi)i∈N is a stationary β-mixing process with mean zero and variance one. The local
means and variances are described by the functions μ : [0,1] → R and σ 2 : [0,1] → (0,∞),
respectively. We will test the null hypothesis σ(x) ≡ σH against the alternative that σ is a
nonconstant càdlàg function. We show that under some mild regularity conditions on μ and
σ , this test is consistent against all nonconstant variance functions. In contrast, tests that are
specifically designed for the alternative of a single change-point in the variance, as modelled
by the local variance function σ 2(x) = σ 2

1 1[0,τ )(x) + σ 2
2 1[τ,1](x), will hardly be consistent

against arbitrary alternatives as considered here.
A model of the above type (1) is quite common, for instance in the context of nonpara-

metric regression (see, for instance, Wu and Zhao [32]), where the mean function is usually
assumed to be Lipschitz-continuous, possibly with jumps, and where the variance is required
to be stationary. In this regard, conducting our test can be understood as a preliminary step in
determining whether the latter model assumption is met. We develop our test in the first place
under the assumption of a Lipschitz-continuous mean function μ, and discuss an extension
to piecewise Lipschitz-continuous mean functions using the differenced time series later in
Section 4. While our test for constant variance is novel even under the restrictive assumption
of a constant mean, we thus allow for more realistic scenarios where the mean function is
nearly constant on a small time scale o(n), but possibly nonconstant on larger time scales.

More precisely, our test is based on the statistic U(n), which takes the form of Gini’s
mean difference 1

bn(bn−1)

∑
1≤j �=k≤bn

|νj −νk| of the logarithmic local sample variances νj =
log(σ̂ 2

j ). Specifically, we subdivide the time interval {1, . . . , n} into blocks of length �n, the
j th block being given by {(j − 1)�n + 1, . . . , j�n}. Let bn denote the number of full blocks
that fit into {1, . . . , n}, that is, bn = �n/�n	, and σ̂ 2

j be the local sample variance in the j th
block,

σ̂ 2
j,n = σ̂ 2

j = 1

�n

j�n∑
i=(j−1)�n+1

(
Xi − 1

�n

j�n∑
r=(j−1)�n+1

Xr

)2

.

Using this notation, the statistic U(n) reads

(2) U(n) = 1

bn(bn − 1)

∑
1≤j �=k≤bn

∣∣log σ̂ 2
j − log σ̂ 2

k

∣∣.
The use of the log-transformed local variances makes U(n) scale invariant. Note that, on
a broader level, U(n) constitutes a U -statistic with kernel h(x, y) = |x − y|, whose entries
are given by the triangular array log σ̂ 2

j,n, 1 ≤ j ≤ bn. These entries, after proper centering
and scaling, converge in distribution to a normal law. We develop U-statistic theory for this
type of triangular arrays in order to show that U(n) is asymptotically normal under the null
hypothesis. Our results hold for absolutely regular processes, and thus cover a large class
of time series models. Absolute regularity is also known under the term β-mixing and is a
slightly stronger assumption than the well-known “strong mixing”-condition. Still, it covers
a wide range of examples such as certain classes of Markov chains, stationary nondegenerate
Gaussian processes with a particular form of the spectral density (see Bradley [8]) as well as
ARMA- and GARCH-models (see Example 2.2 below).

Our test is computationally feasible even in case of huge data sets since we analyse devia-
tions between local statistics and compare them to critical values calculated from the asymp-
totical distribution derived in this paper. Its low computation time is confirmed in an extensive



3462 SCHMIDT, WORNOWIZKI, FRIED AND DEHLING

simulation study. Considering a wide range of data generating processes and alternatives, we
find our test to have good finite sample properties and to be especially well suited in case of
multiple structural breaks or nonmonotone variation of the variance function. In particular,
we compare our procedure to the approach in Dette, Wu and Zhou [15, 16]. Moreover, we
illustrate that our test performs well for both types of mean scenarios, Lipschitz-continuous
mean functions and mean functions with jumps. As an application, we use our test to detect
periods of different volatility in the annual increments of the relative search interest for the
topic “global warming” retrieved from Google Trends.

The rest of the paper is structured as follows: Section 2 covers some central definitions,
presents the key asymptotic results for the test statistic U(n) and outlines the estimation of
the long run variance in our particular setting. The main ideas of the proof are sketched
in Section 3. Section 4 treats several extensions of our theory, among which are possible
modifications of the test statistic, an application to data with jumps in the mean and the
estimation of the change-point locations. The results of the simulation study and the data
example are reported in Sections 5 and 6, respectively. All further proofs and some additional
simulation results are deferred to the Supplementary Material [28].

2. Main results.

2.1. Basic definitions and assumptions. Throughout the paper, we assume that n obser-
vations, X1, . . . ,Xn, generated by the model (1) are given, that is, Xi = σ(i/n)Yi + μ(i/n),
where (Yi)i∈N is a short-range dependent or, more precisely, an absolutely regular stationary
process. In the following, we assume

μ : [0,1] → R

to be a Lipschitz-continuous mean function and

σ : [0,1] → [σ0,∞)

for some σ0 > 0 to be a càdlàg-function. We want to test the hypothesis of a constant variance,
that is, σ ≡ σH , against the alternative of a nonconstant variance function. Note that under
the null hypothesis, we have E(Xi) = μ( i

n
) and Var(Xi) = σ 2

H .
Lipschitz-continuity of the mean function μ implies that the means E(Xi) = μ(i/n) are

nearly constant on a small time scale o(n), as for |i − r| = o(n), we have μ(i/n)−μ(r/n) =
o(1). In contrast, the mean function will generally be nonconstant on the larger time scale
O(n), as E(Xc1·n) −E(Xc2·n) = μ(c1) − μ(c2) for c1, c2 ∈ [0,1]. In fact, one can even relax
the assumption on μ to Hölder-continuity, see Remark 4.3 below, but we will restrict our-
selves to the notationally more feasible case of Lipschitz-continuity. In addition, we will later
also present an approach that can handle piecewise Lipschitz-continuous mean functions by
considering first order differences of the data.

The dependence structure of (Xi)i∈N is determined by the underlying process (Yi)i∈N,
which is assumed to be absolutely regular. Such processes are also known under the term
β-mixing.

DEFINITION 2.1. A sequence of random variables (Yi)i∈N is called absolutely regular if

βY (k) := sup
m∈N

β
(
σ(Yi,1 ≤ i ≤ m),σ(Yi, k + m ≤ i ≤ ∞)

) → 0 as k → ∞,

where the β-mixing coefficient of two σ -fields A and B is given by

β(A,B) := E
(
ess sup

A∈A
∣∣P(A|B) − P(A)

∣∣).
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Regarding the moments and the mixing rate of the process (Yi)i∈N, we assume that there
exists a ϑ > 0 such that the following two conditions are satisfied:

(A1) E
(|Y1|4+2ϑ )

< ∞,

(A2)
∞∑

k=1

βY (k)ϑ/(2+ϑ) < ∞.

Given these assumptions, the long run variance

κ2 := Var
(
Y 2

1
) + 2

∞∑
k=1

Cov
(
Y 2

1 , Y 2
k+1

)
is finite since βY 2(k) ≤ βY (k) (see Theorem 10.7 in Bradley [9]). Throughout, we will assume
the long run variance to be strictly positive, κ2 > 0.

Most of the classical models in time series analysis satisfy the above assumptions. The
following example points out some suitable processes that meet all the conditions required to
derive the asymptotic results below.

EXAMPLE 2.2.

1. Let (Yi)i∈N be a strictly stationary, causal ARMA(p, q)-process following the model:

Yi = εi +
p∑

j=1

αjYi−j +
q∑

m=1

βmεi−m

with independent innovations (εi)i∈N and with all roots of 1 − ∑p
j=1 αjz

j being larger than
one in absolute value. Additionally, assume that the AR-and MA-polynomials have no com-
mon roots, and that the innovations (εi)i∈N have an absolutely continuous distribution with
respect to the Lebesgue measure. Then, (Yi)i∈N is absolutely regular with a geometric rate,
that is, β(k) = O(e−ξk) for some ξ > 0 (see Theorem 1 in Mokkadem [26]).

2. Strictly stationary GARCH(p, q)-processes are strictly stationary solutions to the equa-
tions

Yi = σiεi and σ 2
i = α0 +

p∑
j=1

αjY
2
i−j +

q∑
m=1

βmσ 2
i−m.

They are likewise absolutely regular with a geometric rate if the i.i.d. noise sequence (εi)i∈N
has finite absolute r th moment for some r ∈ (0,∞), that is, E(|ε1|r ) < ∞, and if ε1 has an
absolutely continuous distribution with a density that is strictly positive in a neighbourhood
of zero (see Lindner [25] and the references therein for this result and an overview on the
existence of strictly stationary solutions and the existence of moments for GARCH-models).

The aim of this paper is to test for changes in the variance of the time series (Xi)i∈N by
means of the statistic U(n) = 1

bn(bn−1)

∑
1≤j �=k≤bn

| log σ̂ 2
j − log σ̂ 2

k | from (2), which com-

pares the local estimates σ̂ 2
j , j = 1, . . . , bn, derived from splitting the data into bn blocks of

length �n. Both bn and �n are assumed to grow with the sample size and, for simplicity, to
be integers. Moreover, we have to impose certain growth restrictions on the block length �n

and therewith the number of blocks bn in order to ensure the desired convergence of the test
statistic. Throughout the paper, we will need the block length �n to grow faster than the num-
ber of blocks. In particular, if we set �n = ns for some s ∈ (0,1) and consequently bn = n1−s ,
this translates to s > 0.5. A change in the variance should result in large differences between
the block-estimates σ̂ 2

j and ultimately in a high value of U(n), which will lead to a rejection
of the hypothesis.
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2.2. Asymptotical results. First, we show the convergence of the statistic U(n) defined
in (2) towards a two-dimensional Riemann-integral.

THEOREM 2.3. Given the assumptions (A1) and (A2) and if �n = ns with s ∈ (0.5,0.75),
it holds

U(n)
P−→

∫ 1

0

∫ 1

0

∣∣logσ 2(x) − logσ 2(y)
∣∣ dx dy as n → ∞.

Obviously, U(n) converges to 0 in probability under the null hypothesis, while it converges
to a strictly positive value under any alternative for which σ is not almost surely constant with
respect to the Lebesgue measure on [0,1]. This will imply that our test is consistent against
the very general alternative of a changing variance function.

By standardizing the statistic U(n) via the long run variance κ2 and by using an appropriate
scaling

√
�n, we can now state a law of large numbers for U(n) under the null hypothesis.

THEOREM 2.4. Let the above assumptions (A1) and (A2) be fulfilled and let �n = ns

with s ∈ (0.5,0.75). If there exists a sequence mn → ∞ as n → ∞ such that mn = o(n2s−1)

and bnβY (mn) → 0, then it holds under the null hypothesis
√

�n

κ
U(n)

P−→ 2√
π

as n → ∞.

Theorem 2.4 already reveals the double asymptotics governing the statistic U(n). While
there holds a central limit theorem for the inner block sums σ̂j for which we need the scaling√

�n, there holds a law of large numbers for the outer structure of a U-statistic. Under the
additional assumption of polynomially decaying mixing coefficients, a central limit theorem
for the outer U-statistic holds as well.

THEOREM 2.5. Assume there exist constants 0 < δ ≤ 1 and ρ > 1 ∨ 9δ
(δ+1)(δ+2)

such

that E(|Y1|4+2δ) < ∞ and for all k ∈ N it holds βY (k) ≤ Ck−ρ(2+δ)(1+δ)/δ2
. Moreover,

choose �n = ns with s ∈ (0.5,0.75) as well as s > 1/(1 + δ
ρ−1
ρ+1) ∨ (1 + δ2

ρ(2+δ)(1+δ)
)/(2 +

δ2

ρ(2+δ)(1+δ)
). Then it holds under the null hypothesis

√
bn

(√
�n

κ
U(n) − 2√

π

)
D−→ N

(
0,

4

3
+ 8

π
(
√

3 − 2)

)
as n → ∞.

EXAMPLE 2.6. Coming back to Example 2.2, consider the ARMA(p, q)- and
GARCH(p, q)-models presented there with independent standard normally distributed inno-
vations. Their mixing coefficients decay at a geometric rate, β(k) = O(e−ξk) for some ξ > 0,
which corresponds to the border case ρ → ∞ in Theorem 2.5. The conditions incorporating
ρ thus boil down to s > 1/(1 + δ). Put differently, we may choose the tuning parameter
s ∈ (0.5,0.75) and have to ensure E(|Y1|2+2/s+ε) < ∞ for some ε > 0 for Theorem 2.5 to
hold.

Theorem 2.5 requires an additional outer scaling factor
√

bn depending on the number
of blocks for the U-statistic central limit theorem to hold. Referring to the theory of U-
statistics, one can then derive convergence towards a normal distribution whose variance
ψ2 = 4 Var(h1(Z)) with h1(x) := E(|x − Z′|) − 2/

√
π for two independent standard nor-

mally distributed random variables Z and Z′ equals the limit limn→∞ Var(
√

nŨn), where Ũn
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denotes Gini’s mean difference computed from a sample of n i.i.d. standard normal obser-
vations. The latter limit can be calculated explicitly, see Gerstenberger and Vogel [20], such
that ψ2 = 4

3 + 8
π
(
√

3 − 2).
In particular, Theorem 2.5 can be used for structural break testing. Based on the data

x1, . . . , xn, one can compute the value of the properly standardized test statistic and compare
it to the asymptotic critical values obtained from the limit distribution. We shall reject the
hypothesis of a constant variance if the computed value exceeds the (1 − α)-quantile of the
N (0, 4

3 + 8
π
(
√

3 − 2))-distribution. Note that this test is consistent against arbitrary alterna-
tives for which σ(x) is not almost surely constant with respect to the Lebesgue measure on
[0,1]. A key factor is the reliable estimation of the unknown long run variance κ2, which is
discussed in Section 2.3.

2.3. Estimation of the long-run variance. For a practical implementation of our test, we
need to estimate the long-run variance

κ2 = Var
(
Y 2

1
) + 2

∞∑
k=1

Cov
(
Y 2

1 , Y 2
k+1

)
.

In the literature, there are various procedures for estimating such long-run variances. We
employ the subsampling approach, introduced by Carlstein [11]. We will use the relation

E(| 1√
n

∑n
i=1(Y

2
i −E(Y 2

1 ))|) → κ
√

2
π

for the construction of our estimator. For standard sub-

sampling, we divide the observations into b̃n nonoverlapping blocks of length �̃n, and con-
sider the estimator

1

b̃n

√
π

2

b̃n∑
j=1

∣∣∣∣∣ 1√
�̃n

j �̃n∑
i=(j−1)�̃n+1

(
Y 2

i − 1

n

n∑
r=1

Y 2
r

)∣∣∣∣∣.
Various authors have established consistency of this estimator for a wide class of short-range
dependent data.

As we do not observe the Y 2
i directly, but only Xi = σ( i

n
)Yi + μ( i

n
), we need to modify

the standard subsampling procedure. We will use a subsampling that is consistent under the
null hypothesis σ(x) ≡ σH , that is, when the observations are given by Xi = σHYi + μ( i

n
).

We first center the observations by their local means, defining

X̃i = Xi − 1

�n

j�n∑
r=(j−1)�n+1

Xr for i ∈ {
(j − 1)�n + 1, . . . , j�n

}
.

Setting σ̂ 2
H = 1

n

∑n
i=1 X̃2

i , we then define the subsampling long-run variance estimator

κ̂ := 1

b̃n

√
π

2

1

σ̂ 2
H

b̃n∑
j=1

∣∣∣∣∣ 1√
�̃n

j �̃n∑
i=(j−1)�̃n+1

(
X̃2

i − σ̂ 2
H

)∣∣∣∣∣.
The next proposition shows that consistency of the above estimator κ̂ indeed remains valid

given the additional scaling factor
√

bn.

PROPOSITION 2.7. Assume that there exist constants 0 < δ ≤ 1 and ρ > 1 such that
E(|Y1|4+2δ) < ∞ and for all k ∈N it holds βY (k) ≤ Ck−ρ(2+δ)(1+δ)/δ2

. Moreover, let �n = ns

and �̃n = nq such that s > 0.5, 1 − s < qδ(ρ − 1)/(ρ + 1), q < s and q < 3(1 − s). Then it
holds under the null hypothesis√

bn|κ̂ − κ| P−→ 0 as n → ∞.



3466 SCHMIDT, WORNOWIZKI, FRIED AND DEHLING

By Proposition 2.7, we can replace the long run variance κ2 in the central limit Theo-
rem 2.5 by its estimator:

COROLLARY 2.8. Assume there exist constants 0 < δ ≤ 1 and ρ > 1 ∨ 9δ
(δ+1)(δ+2)

such

that E(|Y1|4+2δ) < ∞ and for all k ∈ N it holds βY (k) ≤ Ck−ρ(2+δ)(1+δ)/δ2
. Moreover, let

�n = ns and �̃n = nq such that s ∈ (0.5,0.75), s > 1/(1 + δ
ρ−1
ρ+1) ∨ (1 + δ2

ρ(2+δ)(1+δ)
)/(2 +

δ2

ρ(2+δ)(1+δ)
), 1 − s < qδ(ρ − 1)/(ρ + 1), q < s and q < 3(1 − s). Then it holds under the

null hypothesis

√
bn

(√
�n

κ̂
U(n) − 2√

π

)
D−→ N

(
0,

4

3
+ 8

π
(
√

3 − 2)

)
as n → ∞.

Long run variance estimators often have the drawback of diverging under the alternative.
This is unfortunate since the long run variance serves in the denominator as a standardiza-
tion and its overestimation thus results in a nonnegligible loss of power. Still, the following
proposition ensures that the divergence here is not fast enough to cancel out the growth rate
associated with the test statistic in the numerator.

PROPOSITION 2.9. Let the assumptions (A1) and (A2) be fulfilled and assume q < s as
well as q < 4(1 − s) for �n = ns and �̃n = nq . Then it holds

1√
�̃n

κ̂
P−→

∫ 1
0 |σ 2(x) − ∫ 1

0 σ 2(y)dy|dx∫ 1
0 σ 2(z)dz

as n → ∞.

COROLLARY 2.10. Given the assumptions (A1) and (A2) and if �n = ns with s ∈
(0.5,0.75) as well as �̃n = nq with q < s, it holds

√
�̃n

U(n)

κ̂

P−→
∫ 1

0
∫ 1

0 |logσ 2(x) − logσ 2(y)|dx dy · ∫ 1
0 σ 2(z)dz∫ 1

0 |σ 2(x) − ∫ 1
0 σ 2(y)dy|dx

as n → ∞.

Due to �̃n = o(�n), the expression within the central limit theorem thus still diverges under
the alternative, though at a slower rate.

3. Outline and main ideas of the proofs. This section outlines the key ideas to prove
our main results, whereas the technical details are given in the Supplementary Material ([28],
Supplement A). The proofs rely on a series of approximations of the statistic

U(n) = 1

bn(bn − 1)

∑
1≤j �=k≤bn

∣∣log σ̂ 2
j − log σ̂ 2

k

∣∣
by simpler statistics that are easier to analyze and have the same large sample behavior as
U(n). In a first step, we replace the block means 1

�n

∑j�n

i=(j−1)�n+1 Xi in the definition of the

local sample variance σ̂ 2
j by the expected values μ(i/n). For the resulting U-statistic U1(n)

one can then derive an analogue of Theorem 2.3.
To obtain additional limit theory under the null hypothesis in Theorems 2.4 and 2.5,

two more approximations are required. In a second approximation step, we linearize the
logarithm, that is, we use the approximation log(1 + x) ≈ x, which is valid for x close
to 0. Finally, employing a coupling technique for absolutely regular observations (see
Borovkova, Burton and Dehling [7]), we replace the slightly shortened dependent blocks
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(X(j−1)�n+1, . . . ,Xj�n−mn) by close-by independent blocks (X′
(j−1)�n+1, . . . ,X

′
j�n−mn

) with
the same marginal distributions. The resulting U-statistic U3(n) can be analyzed by an adap-
tation of U-statistic theory to triangular arrays since its entries stem from a triangular array
of row-wise independent random variables.

3.1. A first approximation. Centering the observations Xi in each block j by their ex-
pected value μ(i/n) instead of the block mean 1

�n

∑j�n

r=(j−1)�n+1 Xr , we obtain the following
approximation to the empirical block variances:

s2
j,n := s2

j := 1

�n

j�n∑
i=(j−1)�n+1

(
Xi − μ

(
i

n

))2
= 1

�n

j�n∑
i=(j−1)�n+1

σ 2
(

i

n

)
Y 2

i .

Taking Gini’s mean difference of the log s2
j , we get the statistic

U1(n) = 1

bn(bn − 1)

∑
1≤j �=k≤bn

∣∣log s2
j − log s2

k

∣∣.
Our first approximation theorem shows that U1(n) is sufficiently close to U(n) for all limit
theorems to carry over.

PROPOSITION 3.1. Assume that conditions (A1) and (A2) hold and that �n = ns with
s ∈ (0.5,0.75). Then, we have

√
n
∣∣U(n) − U1(n)

∣∣ P−→ 0,

as n → ∞.

Proposition 3.1 holds both under the null hypothesis as well as under the alternative. Thus,
we may henceforth restrict our analysis to the U-statistic U1(n), and to the centered data Xi −
μ(i/n) = σ(i/n)Yi . Without loss of generality, we may assume from now on that μ(i/n) =
0, and that the data are given by

Xi = σ

(
i

n

)
Yi.

3.2. Outline of the proof of Theorem 2.3. Recall that the statistic U1(n) employs the
arguments log s2

j for 1 ≤ j ≤ bn, where s2
j = 1

�n

∑j�n

i=(j−1)�n+1 σ 2( i
n
)Y 2

i . Their mean can be
approximated via

E
(
s2
j

) =
j�n∑

i=(j−1)�n+1

σ 2
(

i

n

)
≈ σ 2

(
j�n

n

)
= σ 2

(
j

bn

)

and one can moreover show that Var(s2
j ) → 0 as n → ∞. Hence, we set s2

j ≈ σ 2(j/bn) and
this in turn implies

U1(n) ≈ 1

b(bn − 1)

∑
1≤j �=k≤bn

∣∣∣∣logσ 2
(

j

bn

)
− logσ 2

(
k

bn

)∣∣∣∣.
The latter double sum is a Riemann-type approximation of the desired limit integral∫ 1

0
∫ 1

0 | logσ 2(x) − logσ 2(y)|dx dy. A rigorous proof is given in the Supplementary Ma-
terial.
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3.3. Two further approximations. The second and third approximation are essential in-
gredients in the analysis of the asymptotic behavior of U(n) under the null hypothesis, that
is, when σ(x) ≡ σH . In this case, we have s2

j = σ 2
H

1
�n

∑j�n

i=(j−1)�n+1 Y 2
i and hence

∣∣log s2
j − log s2

k

∣∣ =
∣∣∣∣∣log

(
1

�n

j�n∑
i=(j−1)�n+1

Y 2
i

)
− log

(
1

�n

k�n∑
i=(k−1)�n+1

Y 2
i

)∣∣∣∣∣
= ∣∣log(1 + Sj ) − log(1 + Sk)

∣∣,
where we have defined

Sj := Sj,n := 1

�n

j�n∑
i=(j−1)�n+1

Y 2
i − 1 = s2

j

σ 2
H

− 1.

Since E(Yi) = 0 and Var(Yi) = 1, the law of large numbers implies that for a sufficiently
large sample size, Sj is close to 0. This motivates a Taylor expansion of log(1 + x) around
x = 0. Replacing log(1 + Sj ) by Sj in the definition of U1(n) yields the statistic

U2(n) := 1

bn(bn − 1)

∑
1≤j �=k≤bn

|Sj − Sk|.

PROPOSITION 3.2. Assume that conditions (A1) and (A2) hold, and that �n = ns with
s > 0.5. Then, under the null hypothesis,

√
n
(
U1(n) − U2(n)

) P−→ 0,

as n → ∞.

In a third and final approximation step, we replace the arguments Sj , 1 ≤ j ≤ bn, of U2(n)

by close-by independent random variables S′
j , 1 ≤ j ≤ bn. In order to achieve this, we use

a coupling technique for β-mixing processes. First, we divide each of the blocks Bj,n =
(Y(j−1)�n+1, . . . , Yj�n) into a long block

B̃j := B̃j,n := (Y(j−1)�n+1, . . . , Yj�n−mn)

of length �n − mn and a short block

Rj := Rj,n := (Yj�n−mn+1, . . . , Yj�n)

of length mn = o(�n). The latter blocks function as separation between the main blocks whose
interdependence decreases when mn → ∞, as n → ∞. At the same time, the separating
blocks Rj need to be sufficiently short to be asymptotically negligible compared to the longer
blocks B̃j , and thus mn should grow only slowly. By Lemma 2.4 in Borovkova, Burton and
Dehling [7], there exists a sequence of i.i.d. random vectors

B̃ ′
j,n := B̃ ′

j := (
Y ′

(j−1)�n+1, . . . , Y
′
j�n−mn

)
with the same marginal distribution as B̃j such that

P
(
B̃ ′

j = B̃j

) = 1 − βY (mn),

for all 1 ≤ j ≤ bn. Define the corresponding block sums

S̃′
j,n := S̃′

j := 1

�n

j�n−mn∑
i=(j−1)�n+1

((
Y ′

i

)2 − 1
)
,
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and note that for any n, the random variables S̃′
j , 1 ≤ j ≤ bn, are independent and identically

distributed. Finally, we consider the U-statistic

U3(n) := 1

bn(bn − 1)

∑
1≤j �=k≤bn

∣∣S̃′
j − S̃′

k

∣∣.
PROPOSITION 3.3. Assume that �n = ns with s > 0.5, and that mn is chosen in such a

way that mn = o(n2s−1) as well as bnβ(mn) → 0. Then, under the null hypothesis,
√

n
∣∣U2(n) − U3(n)

∣∣ P−→ 0,

as n → ∞.

REMARK 3.4. The exact choice of mn is insignificant for the structural break test-
ing. For polynomially decaying mixing coefficients, that is, βY (k) ≤ Ck−ρ(2+δ)(1+δ)/δ2

,
the conditions mn = o(n2s−1) and bnβY (mn) → 0 are met as long as one chooses s >

(1 + δ2

ρ(2+δ)(1+δ)
)/(2 + δ2

ρ(2+δ)(1+δ)
).

3.4. Outline of the proof of Theorem 2.4. Given the above approximations, under the
null hypothesis, it suffices to analyze the asymptotic behavior of the U-statistic U3(n), whose
entries S̃′

j = 1
�n

∑j�n−mn

i=(j−1)�n+1((Y
′
i )

2 − 1) form a row-wise independent and identically dis-

tributed triangular array. Moreover, E(S̃′
1) = 0 and given the assumptions (A1) and (A2), we

have

κ2
n := Var

(√
�nS̃

′
1
)

= �n − mn

�n

Var
(
Y 2

1
) + 2

�n−mn−1∑
k=1

�n − mn − k

�n

Cov
(
Y 2

1 , Y 2
k+1

) −→ κ2,

by dominated convergence. By the central limit theorem for partial sums of β-mixing pro-
cesses,

√
�nS

′
j converges in distribution to a normal law with mean 0 and variance κ2. In our

further analysis, we will essentially show that we may replace S′
j by κ√

�n
Zj , where Zj are

independent standard normal random variables.
We first establish a law of large numbers for a rescaled version of U3(n).

PROPOSITION 3.5. Assume that (A1) and (A2) hold and that mn = o(�n). Then, under
the hypothesis,

√
�n

κ
U3(n)

P−→ 2√
π

,

as n → ∞.

PROOF. In order to prove Proposition 3.5, we first show that E(
√

�n

κ
U3(n)) → 2√

π
. Note

that

E

(√
�n

κ
U3(n)

)
= E

(∣∣∣∣
√

�n

κ
S̃′

1 −
√

�n

κ
S̃′

2

∣∣∣∣
)
.

An application of the central limit theorem to the stationary β-mixing process ((Y ′
i )

2 − 1)i∈N
yields

E

(∣∣∣∣
√

�n

κ
S̃′

1 −
√

�n

κ
S̃′

2

∣∣∣∣
)

→ E
(∣∣Z − Z′∣∣) = 2√

π
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and it suffices to additionally verify that Var(
√

�nU3(n)) → 0. By the definition of U3(n) and
by the independence of the S′

j , we obtain

Var
(√

�nU3(n)
) = 1

bn(bn − 1)
Var

(∣∣√�nS̃
′
1 − √

�nS̃
′
2
∣∣)

+ 2

bn

Cov
(∣∣√�nS̃

′
1 − √

�nS̃
′
2
∣∣, ∣∣√�nS̃

′
1 − √

�nS̃
′
3
∣∣).

Now, one can check that the right-hand side converges to zero. Details of the proof are given
in the Supplementary Material. �

Theorem 2.4 is an immediate corollary of Proposition 3.5 and the above approximation
steps.

3.5. Outline of the proof of Theorem 2.5. A standard tool from U-statistics theory is the
Hoeffding decomposition of the kernel h(x, y), given by

h(x, y) = θ(n) + h
(n)
1 (x) + h

(n)
1 (y) + h

(n)
2 (x, y),

where

θ(n) = E
(
h
(√

�nS̃
′
1/κ,

√
�nS̃

′
2
)
/κ

)
),

h
(n)
1 (x) = E

(
h
(
x,

√
�nS̃

′
1/κ

)) − θ(n),

h
(n)
2 (x, y) = h(x, y) − θ(n) − h

(n)
1 (x) − h

(n)
1 (y).

Note that since we are dealing with a U-statistic of a triangular array, the decomposition
depends upon the sample size n. Using the independence of S̃′

j and Fubini’s theorem, we
obtain

E
(
h

(n)
1

(√
�nS̃

′
1/κ

)) = 0,

E
(
h

(n)
2

(
x,

√
�nS̃

′
1/κ

)) = E
(
h

(n)
2

(√
�nS̃

′
1/κ, y

)) = 0

for all x, y ∈ R. Thus, the random variables h
(n)
1 (

√
�nS̃

′
1/κ) are independent and have

mean 0. In addition, the kernels h
(n)
2 (x, y) are degenerate, and thus the random variables

h
(n)
2 (

√
�nS̃

′
j )/κ,

√
�nS̃

′
k/κ) are pairwise uncorrelated. The Hoeffding decomposition of the

kernel gives rise to the Hoeffding decomposition of U3(n),

√
bn

(√
�n

κ
U3(n) − θ(n)

)
= 2√

bn

bn∑
j=1

h
(n)
1

(√
�n

S̃′
j

κ

)

+
√

bn

bn(bn − 1)

∑
1≤j �=k≤bn

h
(n)
2

(√
�n

S̃′
j

κ
,
√

�n

S̃′
k

κ

)
.

By the degeneracy of h
(n)
2 (x, y), we obtain

Var
( √

bn

bn(bn − 1)

∑
1≤j �=k≤bn

h
(n)
2

(√
�n

S̃′
j

κ
,
√

�n

S̃′
k

κ

))

= 1

bn − 1
Var

(
h

(n)
2

(√
�n

S̃′
1

κ
,
√

�n

S̃′
2

κ

))
,
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and some further calculations show that the right-hand side converges to 0. To handle the
linear term in the Hoeffding decomposition, we can apply Lyapunov’s central limit theorem
for row-wise independent triangular arrays, and obtain convergence towards a normal law
with mean 0 and variance

ψ2 = 4 lim
n→∞ Var

(
h

(n)
1

(√
�n

S̃′
1

κ

))
.

Since
√

�n
S̃′

1
κ

→ N(0,1), one can prove h
(n)
1 (x) = E(h(x,

√
�n

S̃′
1
κ

)) − θ(n) → h1(x) =
E(h(x,Z)) − θ with θ = E(h(Z,Z′)) and the above variance equals 4 Var(h1(Z)). In the
end, we obtain the following central limit theorem for U3(n).

PROPOSITION 3.6. Assume that �n = ns with s > 0.5, mn = o(ns ∧ n2s−1) and that
there exist constants ρ > 1 ∨ 9δ

(δ+1)(δ+2)
and 0 < δ ≤ 1 such that E(|Y1|4+2δ) < ∞ and for all

k ∈N, it holds βY (k) ≤ Ck−ρ(2+δ)(1+δ)/δ2
. Then, we obtain under the null hypothesis

√
n
U3(n)

κ
− √

bnθ
(n) D−→ N

(
0,ψ2)

,

where ψ2 = 4 Var(h1(Z)), h1(x) = E(|x − Z′|) − 2/
√

π , where Z and Z′ are two indepen-
dent standard normal random variables.

Note that the centering θ(n) likewise depends on the sample size, and is generally unknown.
Thus, it is important to replace θ(n) by its limit θ = 2/

√
π .

LEMMA 3.7. Assume that there exist constants ρ > 1 and 0 < δ ≤ 1 such that
E(|Y1|4+2δ) < ∞ and for all k ∈N it holds βY (k) ≤ Ck−ρ(2+δ)(1+δ)/δ2

. Moreover, let �n = ns

with s > (1 + δ
ρ−1
ρ+1)−1 and let mn = o(ns). Then, under the null hypothesis, we have

√
bn

(
θ(n) − 2√

π

)
→ 0,

as n → ∞.

The proof of Theorem 2.5 now follows from a combination of the former results. Proposi-
tion 3.1, Proposition 3.2, and Proposition 3.3 together imply

√
n
(
U3(n) − U(n)

) → 0.

Proposition 3.6 and Lemma 3.7 yield
√

n
κ

U3(n)−√
bn

2√
π

D−→ N(0,ψ2). Thus, Theorem 2.5
is a consequence of Slutzky’s lemma.

4. Extensions.

4.1. Modifications of our test statistic. Our test statistic corresponds to Gini’s mean dif-
ference with entries given by the logarithms of local empirical variances. It explores the
variability of estimated local variabilities. There are several possible extensions of this idea
which might be useful not only for testing the constancy of the variance.

One possibility is the choice of other kernel functions h : R ×R → R with suitable char-
acteristics. In particular, we obtained similar limit results for the more general statistic

U(n) = 1

bn(bn − 1)

∑
1≤j �=k≤bn

∣∣log
(
σ̂ 2

j

) − log
(
σ̂ 2

k

)∣∣α for α ∈ (0,1]
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but they come at the price of additional requirements regarding the growth conditions of the
blocks, for instance bn/�

α
n → 0. Moreover, additional simulations not reported here suggest

that not much is gained by employing values other than α = 1. The good performance ob-
tained for α = 1 can partly be explained by the rather large efficiency and better robustness
of Gini’s mean difference as compared to standard measures of variability like the standard
deviation, see Gerstenberger, Vogel and Wendler [21] and the references cited therein.

Another modification is the evaluation of the variability of other local statistics, which
shall be addressed in future work. More robust measures of scale as considered by Gersten-
berger, Vogel and Wendler [21] in a setting with a single change point might replace the
empirical variances. Using estimates of central location, kurtosis or tail behavior allows test-
ing the stability of the corresponding characteristic. A hypothesis of particular interest is the
assumption of the stability of second order characteristics.

REMARK 4.1. Davis, Huang and Yao [14] investigate likelihood ratio statistics for test-
ing whether the time series can be described by a stable autoregressive process against the
alternative of a single change. A change of the variance is not of direct interest but implicitly
considered there since a change of the autoregressive parameters usually implies a change
of the marginal variance if the variance of the innovations is constant. Within the somewhat
restrictive parametric framework of Davis, Huang and Yao [14], one can apply a version of
their test which allows for changing variances of the innovation process to check the as-
sumption of a stable dependence structure underlying our test. If we are willing to accept the
hypothesis of a stable autoregressive model after application of this preliminary test, testing
the stability of the marginal variance using our approach is equivalent to testing the stability
of the innovational variance.

Dette, Wu and Zhou [15, 16] investigate CUSUM-statistics for testing the constancy of
second order characteristics, that is, of the variance or the correlation structure. They work on
detrended data, allowing for a possibly time-varying mean under the null hypothesis, like we
do. Given the complicated structure of their limiting process, they need bootstrap procedures
for the calculation of critical values. Their test for the constancy of the correlation structure
could be combined with our test, as outlined above for the test in Davis, Huang and Yao [14].

Tests for the null hypothesis of stable second order characteristics which are consistent not
only against alternatives with a single change might be constructed by analyzing the variabil-
ity of local variance and local correlation estimates jointly. Such multivariate extensions of
the theory developed here are left to future work.

4.2. Application to data with a discontinuous or a Hölder-continuous mean. So far, we
have assumed a time series setting with a Lipschitz-continuous mean function. This assump-
tion might be too restrictive, for example, if structural breaks may occur not only in the vari-
ance but also in the mean. In such contexts, the hypothesis that the variance of the observed
data (Xi)i∈N is constant can be tested using the time series (Zi)i∈N of differences

Zi = Xi − Xi−1 = σH (Yi − Yi−1) + (μi − μi−1).

It inherits many properties from (Xi)i∈N itself, like the existence of moments and the absolute
regularity. Under the null hypothesis, the variance of the observations becomes

Var(Zi) = σ 2
H · (

Var(Yi) + Var(Yi−1) + 2 Cov(Yi, Yi−1)
)

= 2σ 2
H · (

Var(Y1) + Cov(Y1, Y2)
)
.

If the covariances are stationary, which comes along with the strict stationarity of (Yi)i∈N
assumed in this entire work, changes in the variance of (Xi)i∈N can thus be detected from
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the sequence of differences (Zi)i∈N. Moreover, the mean function of the differences not only
preserves the Lipschitz-continuity and gets arbitrarily small, |μi − μi−1| = O(1/n), but a
close look at the proofs reveals that the results still hold in case of finitely many outliers in
the mean (i.e., if μ is only piecewise Lipschitz-continuous on the intervals between finitely
many jumps and we consider the time series (Zi)i∈N). Hence, resorting to the differenced
time series is advisable if abrupt changes in the mean are suspected.

EXAMPLE 4.2. Assume that we observe an increasing number of �n observations in
each of an increasing number of bn groups. One-way analysis of variance allows testing
whether the group centers are identical, assuming all observations to be independent and
identically distributed within each of the groups, with the same variance σ 2

j = σ 2 for all
groups j = 1, . . . , bn. The results derived in this paper allow testing the basic assumption of
constant variance even if the observations within the different groups are dependent, as long
as �n and bn increase at appropriate rates. If the mean of the observations is not constant
but only Lipschitz-continuous within each group, we can take differences of the observations
within each group and proceed as described above. The condition of identical group sizes �n

is restrictive but can presumably be relaxed as long as the group sizes �
(j)
n increase at identical

rates �
(j)
n = O(�n).

REMARK 4.3. A careful inspection of our proofs shows that one can moreover weaken
the assumption of a Lipschitz-continuous mean function of (Xi)i∈N to include a Hölder-
continuous one with |μi − μr | ≤ L|i − r|/ns+1/4. This signifies that the overall variation of
μ on the interval [0,1] is even allowed to grow at rate n3/4−s . By reverting to the differenced
time series (Zi)i∈N, one is in addition able to deal with an increasing number of jumps J (n)

or a growing jump height �(n), as long as the condition J (n)�(n)2 = o(n1/2) holds, and
with a continuous part of the mean function fulfilling |μi − μr | ≤ L|i − r|/n1/4.

4.3. Estimation of the change-points and the variance function. Another interesting issue
is the estimation of the scale function σ(·) in case our test rejects the null hypothesis of σ

being constant. If we assume the scale function to be piecewise constant, it is reasonable
to estimate the change-point locations in advance and to calculate the empirical standard
deviations of the observations in between subsequent change-points. Keeping in mind that our
test is consistent also against smoothly varying alternatives, one could alternatively calculate
local estimates using moving window techniques, possibly with an adaptive choice of the
window width.

Under the assumption of a piecewise constant scale, we can adopt the approach from
Wornowizki, Fried and Meintanis [31] as a first means to determine the number and location
of the change-points. This approach is based on a recursive procedure which conducts in
every step the change-point test described above. If the hypothesis is rejected, the dominant
change point of the (sub-)sample is located by narrowing down the set of candidates to two
blocks Bj∗ = {(j∗ − 1)�n + 1, . . . , j∗�n} and Bj∗+1 = {j∗�n + 1, . . . , (j∗ + 1)�n} via

j∗ = argmax
j∈{1,...,bn−1}

∣∣log
(
σ̂ 2

j

) − log
(
σ̂ 2

j+1
)∣∣.

Afterwards, the location of the change-point t∗ is determined by

t∗ = argmax
t∈Bj∗∪Bj∗+1

∣∣σ̂ 2(X(j∗−1)�n+1, . . . ,Xt ) − σ̂ 2(Xt+1, . . . ,X(j∗+1)�n)
∣∣,

where σ̂ 2(Xi, . . . ,Xk) for i ≤ k is the empirical variance based on the observations
Xi, . . . ,Xk and where we exclude values of t that are very close to the boundaries in order to
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ensure a reliable estimation on both subsets {X(j∗−1)�n+1, . . . ,Xt } and {Xt+1, . . . ,X(j∗+1)�n}.
Once the change-point t∗ is detected, we split the sample at t∗ into two parts and the proce-
dure is repeated on both subsamples. If the hypothesis can no longer be rejected, the proce-
dure stops and it is assumed that all change points have been located. This procedure looks
somewhat ad hoc and can probably be improved. Nevertheless, in our simulations it yielded
similarly good results as the MOSUM approach described by Eichinger and Kirch [17],
which in turn performed well as compared to several other state-of-the-art procedures in the
simulations reported there.

5. Simulation study. We investigate the empirical size and power of the change-point
test introduced in Section 2 and compare its performance to the procedure proposed in an
earlier version [15] of Dette, Wu and Zhou [16]. Moreover, we discuss the performance of
the long run variance estimator κ̂ introduced in Section 2.3.

As data-generating processes, we consider two examples of independent observations,
namely standard normal, Xi ∼ N (0,1), and exponential ones, Xi ∼ Exp(1), and four ex-
amples under dependence. The latter consist of two AR(1)-processes with α1 = 0.4 and
α1 = 0.7, respectively, an ARMA(2,2)-process

Xi = 0.8Xi−1 − 0.4Xi−2 + εi + 0.5εi−1 + 0.34εi−2

and a GARCH(1,1)-process

Xi = σiεi with σ 2
i = 0.1 + 0.1X2

i−1 + 0.8σ 2
i−1,

each with independent standard normal innovations (εi)i∈N. The parameter choice for the
GARCH-process is as in Andreou and Ghysels [3] and describes a high volatility persistence.
ARMA- and GARCH-processes are, as mentioned in Example 2.2, mixing at an exponential
rate. Moreover, all models considered possess finite sixth moments (see Theorem 5 in Lindner
[25] for the GARCH-case). Based on extensive simulations not reported here, we recommend
setting the tuning parameters to s = 0.7 and q = 0.5 with �n = ns and �̃n = nq . Note that this
choice is in line with all restrictions on the block lengths imposed by our asymptotic theory.

We investigate the empirical power of the tests under various (local) alternatives listed
below. These include scenarios with one, two and four structural breaks, as well as a smoothly
changing variance function, each with variance changes of magnitude n−1/2.

A1 : σ(x) = 1 · 1{0≤x<1/2} + (1 + 0.2
√

2000/n) · 1{1/2≤x≤1},

A2 : σ(x) = 1 · 1{0≤x<1/3} + (1 + 0.2
√

2000/n) · 1{1/3≤x<2/3} + 1 · 1{2/3≤x≤1},

A3 : σ(x) = 1 · 1{0≤x<1/5} + (1 + 0.2
√

2000/n) · 1{1/5≤x<2/5} + 1 · 1{2/5≤x<3/5}

+ (1 + 0.2
√

2000/n) · 1{3/5≤x<4/5} + 1 · 1{4/5≤x≤1},

A4 : σ(x) = 1 + 0.1 · sin(4πx) ·
√

2000/n.

All simulations are conducted in R [27]. The long run variance κ̂ is estimated as described
in Section 2.3, whereas the centering term E(|Z − Z′|) = 2/

√
π and the variance of the limit

distribution ψ2 = 4/3 + 8/
√

π(
√

3 − 2) can be calculated explicitly. All results are obtained
for a nominal significance level of α = 5%. The analysis in Sections 5.1–5.3 is conducted
for centered observations. We investigate the influence of nonconstant mean functions on our
test results in Section 5.4 and on the performance of the long run variance estimator κ̂ in
Section 5.5.
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5.1. Comparison to the procedure of Dette, Wu and Zhou [15, 16]. This section compares
our test (henceforth denoted by SWFD) to the results of Dette, Wu and Zhou [15, 16] (denoted
by DWZ), who employ a CUSUM-approach to detect change points in the variance. Since the
asymptotic distribution of their test statistic crucially depends upon the dependence structure
of the underlying time series, they use a bootstrap approach to obtain critical values.

The comparison is limited to the sample lengths n = 500,2000 and the simulated rejec-
tion probabilities are based on only 4000 replications each, due to the computational cost
of the DWZ procedure. As a rough comparison of the computation times of the respective
procedures, we measured the overall computation time (on a 3.4 GHz Intel Core i7) required
to obtain the results in Table 1, that is, the time required for 4000 · 30 executions of the re-
spective test (including the time for the simulation of the data sets). For n = 500 (n = 2000),
the SWFD procedure needed on average 0.00064 (0.00138) seconds per execution, while the
DWZ procedure took 0.88813 (7.73488) seconds.

Table 1 shows the simulated rejection probabilities of the SWFD and the DWZ proce-
dure under the hypothesis and the local alternatives A1–A4. Our SWFD test performs anti-
conservative for n = 500 as we observe empirical sizes of about 10% or even higher instead
of the nominal 5% level. For n = 2000, the empirical sizes fall below 10%, except for the
GARCH(1,1). A closer analysis of the SWFD procedure will be presented in the next sub-
section. For the DWZ test, we concentrate on the two sample sizes because of its much larger
computation times. The size of the DWZ procedure is adequate for independent normal data
but conservative for the exponential data and anti-conservative in the presence of higher pos-
itive dependencies. In case of the GARCH(1,1), it performs worse than the SWFD test.

TABLE 1
Simulated rejection probabilities of the SWFD and DWZ test at the significance level α = 0.05 for the sample
sizes n = 500,2000 under the null hypothesis H and various local alternatives A1 to A4 with effect sizes of

magnitude n−1/2 and for different data-generating processes. For the results under the alternatives, a
size-correction has been conducted

N(0,1) Exp(1) AR(1), 0.4 AR(1), 0.7 ARMA(2,2) GARCH(1,1)

n = 500
H SWFD 0.085 0.112 0.098 0.134 0.106 0.180

DWZ 0.052 0.029 0.064 0.088 0.073 0.290
A1 SWFD 0.734 0.318 0.630 0.356 0.400 0.336

DWZ 0.999 0.649 0.980 0.824 0.836 0.680
A2 SWFD 0.457 0.186 0.376 0.200 0.253 0.178

DWZ 0.618 0.159 0.492 0.258 0.252 0.134
A3 SWFD 0.221 0.126 0.202 0.128 0.154 0.114

DWZ 0.088 0.047 0.069 0.044 0.061 0.042
A4 SWFD 0.481 0.194 0.399 0.222 0.255 0.199

DWZ 0.372 0.118 0.274 0.144 0.160 0.096

n = 2000
H SWFD 0.073 0.091 0.074 0.096 0.084 0.148

DWZ 0.052 0.039 0.058 0.108 0.074 0.394
A1 SWFD 0.891 0.344 0.784 0.439 0.505 0.375

DWZ 1 0.760 0.995 0.875 0.920 0.727
A2 SWFD 0.734 0.246 0.610 0.310 0.343 0.251

DWZ 0.869 0.239 0.748 0.382 0.446 0.228
A3 SWFD 0.805 0.269 0.674 0.368 0.397 0.294

DWZ 0.318 0.066 0.261 0.127 0.140 0.070
A4 SWFD 0.644 0.185 0.504 0.256 0.279 0.218

DWZ 0.516 0.136 0.392 0.192 0.248 0.138
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To achieve a fair comparison, we report size-corrected empirical powers under the four
alternatives, using the empirical 95% percentile of the test results for the same distribution
and the same sample size as critical values (see Table 1 in the Supplementary Material ([28],
Supplement B) for the rejection rates at the nominal (asymptotical) 5%-level). While the
DWZ procedure obtains higher empirical power in case of one or few structural breaks (A1
and A2), the SWFD does so in case of multiple breaks and for the sine function (A3 and A4).
Moreover, both tests show difficulties in coping with models of strong dependence, especially
the GARCH(1,1)-model, as well as with exponentially distributed observations.

5.2. Analysis of the empirical size. In the next subsections, we will analyse the perfor-
mance of the SWFD-test in more detail. Throughout, we will base our results on 6000 repli-
cations. Figure 1 depicts the empirical size as a function of the sample length, where we used
n = 500,1000,2000,3000,4000,5000,8000,12,000 and 16,000.

The empirical size is about 10% or even larger in case of moderately large samples
(n = 500). It approaches the nominal significance level alpha = 5% as the sample size in-
creases, though the test stays liberal in case of the scenarios considered here. Moreover, the
dependence as well as the distribution of the data seem to be important. The empirical sizes
are smaller if the dependences among the observations are low (N(0,1), AR(1) with param-
eter α1 = 0.4), while stronger dependences as in the GARCH(1,1) process lead to much
higher rejection rates. The rejection rates are also rather large in case of the exponentially
distributed observations, despite their independence.

5.3. Analysis of the empirical power. Figure 2 shows the empirical power at the nominal
significance level α = 0.05 as a function of the sample size separately for each of the local
alternatives A1–A4 and for the same choices of n as considered before (see Figure 1 in Sup-
plement B for the size-corrected version). All simulated rejection probabilities are based on
6000 replications. Across all alternatives, the graphs for the different underlying distributions
show the same order, which is almost a reversed image of the order in Figure 1. The highest
empirical power is obtained for the distributions with the lowest dependence (N(0,1), AR(1)

with parameter α1 = 0.4), while all other processes lead to somewhat smaller rejection rates.
The performance for small sample sizes is significantly worse compared to the empirical

FIG. 1. Empirical rejection rates of the SWFD test under the null hypothesis as a function of the sample size for
different distributions of the data-generating process. The nominal significance level α = 0.05 is represented by
the solid black line.
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FIG. 2. Empirical power of the SWFD test for the local alternatives A1(top left)-A4(bottom right) with effect
sizes of magnitude n−1/2 as a function of the sample size n at the nominal significance level α = 0.05.

power for larger n ≥ 2000, but once an appropriate sample length is reached, the rejection
rates stabilize at a certain level. Besides, the partitioning into blocks of length �n = n0.7 might
have a certain influence, being less ideal for some n with respect to the location of the break
points. As an example, observe the peak at n = 4000 under alternative A2 (top right). The
partition there is close to ideal due to (40000.7) · 4 ≈ 1328 while the break points are located
at 4000/3 ≈ 1333 and at 2666.

5.4. Performance for noncentred data. Our limit theory likewise holds for time series
that are not stationary in the mean. Table 2 shows the simulated rejection rates at the nominal
significance level α = 0.05 for samples of length n = 3000 and for the mean functions μ(x) =
x, μ(x) = sin(2πx) and μ(x) = 0 · 1{0≤x<1/2} + 1 · 1{1/2≤x≤1} (see Table 3 in Supplement B
for the size-corrected version). The theory developed here requires that our test is applied
to data with a Lipschitz-continuous mean function, implying that jumps in the mean cause
problems. As pointed out in Section 4, this issue can be resolved by analysing the differenced
time series (Zi)i∈N, Zi = Xi − Xi−1. The results for the last mean function demonstrate that
this approach is indeed also effective in practice.

5.5. Performance of the long run variance estimator κ̂ . We briefly discuss the perfor-
mance of the estimator κ̂ introduced in Section 2.3 on the basis of its empirical bias and root
mean square error (RMSE). To facilitate a comparison, we standardize the data-generating
processes introduced above to yield a theoretical long run variance of 1. All results are based
on 6000 replications. Table 3 shows the results for the sample lengths n = 500,1000,3000
and for the mean functions μ(x) = 0, μ(x) = sin(2πx) and μ(x) = 1{1/2<x≤1}. Note that for
the latter mean function, we consider the differenced time series (Zi)i∈N. The dependence
structure and underlying distribution seem to influence the quality of the estimate, with high
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TABLE 2
Simulated rejection probabilities of the test SWFD at the nominal significance level α = 0.05 for the sample size
n = 3000 under the hypothesis and various local alternatives with effect sizes of magnitude n−1/2. Results for

different data-generating processes and different mean functions μ are given

N(0,1) Exp(1) AR(1), 0.4 AR(1), 0.7 ARMA(2,2) GARCH(1,1)

μ(x) = x

H 0.062 0.081 0.066 0.085 0.076 0.134
A1 0.954 0.441 0.863 0.578 0.619 0.561
A2 0.822 0.330 0.703 0.426 0.463 0.464
A3 0.783 0.312 0.639 0.400 0.420 0.418
A4 0.723 0.267 0.582 0.354 0.368 0.387

μ(x) = sin(2πx)

H 0.062 0.086 0.077 0.094 0.070 0.148
A1 0.940 0.451 0.854 0.579 0.607 0.569
A2 0.835 0.360 0.697 0.436 0.466 0.457
A3 0.696 0.278 0.576 0.382 0.409 0.383
A4 0.722 0.267 0.574 0.360 0.370 0.367

μ(x) = 0 · 1{0≤x<1/2} + 1 · 1{1/2≤x≤1} for time series (Zi)i∈N
H 0.067 0.091 0.064 0.062 0.079 0.124
A1 0.814 0.390 0.889 0.924 0.664 0.491
A2 0.648 0.306 0.737 0.783 0.512 0.391
A3 0.587 0.279 0.692 0.733 0.454 0.369
A4 0.538 0.234 0.628 0.687 0.405 0.340

dependence leading to a larger bias and a higher RMSE. The empirical bias is usually neg-
ative, thereby providing an explanation for the liberal behaviour of our test in Figure 1. In
contrast, the mean function seems to have little influence. These results suggest that an im-
proved estimator κ̂ might yield even better results for our test procedure. However, the task of

TABLE 3
Simulated Bias and RMSE of κ̂ for the mean functions μ(x) = 0 (top row for each n), μ(x) = sin(2πx) and
μ(x) = 1{1/2<x≤1} (bottom row for each n) for different sample lengths n, q = 0.5 and s = 0.7. For the last

mean function, the time series (Zi)i∈N is used. The observations are standardized to yield a theoretical long run
variance κY 2 = 1

N(0,1) Exp(1) AR(1), 0.4 AR(1), 0.7 ARMA(2,2) GARCH(1,1)

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

n = 500
−0.045 0.172 −0.130 0.261 −0.089 0.192 −0.199 0.267 −0.096 0.200 −0.285 0.350
−0.006 0.174 −0.127 0.255 −0.054 0.185 −0.183 0.257 −0.089 0.198 −0.275 0.344
−0.017 0.179 −0.120 0.256 −0.030 0.175 −0.033 0.173 −0.087 0.200 −0.273 0.344

n = 1000
−0.029 0.147 −0.101 0.206 −0.065 0.160 −0.137 0.209 −0.063 0.163 −0.219 0.287
−0.004 0.147 −0.101 0.209 −0.035 0.155 −0.129 0.201 −0.063 0.165 −0.219 0.283
−0.001 0.154 −0.091 0.204 −0.024 0.150 −0.024 0.149 −0.059 0.168 −0.223 0.289

n = 3000
−0.014 0.106 −0.064 0.141 −0.032 0.108 −0.075 0.132 −0.035 0.111 −0.145 0.195
−0.002 0.106 −0.060 0.137 −0.016 0.107 −0.066 0.131 −0.032 0.114 −0.140 0.192

0.012 0.110 −0.051 0.135 −0.012 0.105 −0.012 0.106 −0.033 0.115 −0.152 0.198
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finding a suitable estimator is rather intricate since we only observe noncentred data (Xi)i∈N
and additionally require a convergence rate of

√
bn.

6. Data example. As a data example, we consider the worldwide relative search interest
for the topic “global warming” retrieved from Google Trends (www.google.com/trends). Data
from Google Trends has frequently been used in environmental research as a measure for
public interest; see, for instance, Anderegg and Goldsmith [2] and Burivalova, Butler and
Wilcove [10]. Google Trends does not provide the absolute search volume but adjusts the
data in two steps: Each time period, the number of searches for the topic “global warming”
as a proportion of the total searches within that time period is calculated. Afterwards, these
proportions of the total searches are scaled, with the time period of the highest proportion
being assigned the value 100 (for details, see the Google Trends FAQs (https://support.google.
com/trends/answer/4365533?hl=en&ref_topic=6248052).

Figure 3 shows the weakly worldwide relative search interest from January 2004 to De-
cember 2019. The increase in relative search interest between 2006/2007 and 2010/2011 is
often related to the release of the documentary film “An Inconvenient Truth” in 2006 as well
as the two media events colloquially often referred to as “climategate” and “glaciergate” in
November 2009 and January 2010, respectively (see [2] and [10]). While a rise in the mean
can be interpreted as a general rise of the public interest in the topic, an increase in the vari-
ance might hint at frequent news publication and an increased media coverage causing spikes
and overall more fluctuation in the search interest.

To eliminate seasonal effects, we work with the time series of annual differences (Zi)i∈N,
that is, Zi = Xi − Xi−52, starting in January 2005, and thus consider changes in the relative
search interest. After eliminating the last week in all years with 53 weeks (2006, 2012 and
2017) in the original time series X, we are left with n = 780 differences. In the following, we
test for a stationary variance in the series of annual differences.

As we find our test to behave rather liberal for small sample sizes in the simulation study
in Section 5.2, we consider not only the usual significance level α = 5% but also α = 1%.
Figure 4 shows the seasonally differenced observations Z1, . . . ,Z780 as well as the detected
changes in the variance for α = 5%, which are estimated as described in Section 4.3 and lo-
cated at the weeks of the 18.12.2005, 24.12.2006, 18.09.2011 and 08.11.2015. The estimated
change points seem to capture the periods of increased variance of (Zi)i∈N quite well, thereby
not only indicating changes during the time period of increased interest mentioned above, but
additionally detecting a change in late 2015. For α = 1%, we detect the same except for the
last change point.

FIG. 3. Weekly worldwide relative search interest for the topic “global warming” from January 2004 to Decem-
ber 2019 obtained from Google Trends.

http://www.google.com/trends
https://support.google.com/trends/answer/4365533?hl=en&ref_topic=6248052
https://support.google.com/trends/answer/4365533?hl=en&ref_topic=6248052
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FIG. 4. Change in the weekly worldwide relative search interest for the topic “global warming” from January
2005 to December 2019 obtained from Google Trends. Detected variance change points for α = 5% are marked
by the vertical green lines.

Moreover, a close look at the data hints at a possibly nonstationary mean, with which our
procedure seems to cope quite well due to the centering via the block means. A cumulative
sum test for a change in mean does not reject the null hypothesis at α = 1%, while at α =
5%, it sequentially detects a very large number of 11 changes when being combined with
binary segmentation. There is hence considerable uncertainty concerning mean stationarity
when applying such a standard test. In contrast, our test consistently indicates a nonstationary
variance, irrespective of the chosen significance level.
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