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As advances in technology allow the acquisition of complementary in-
formation, it is increasingly common for scientific studies to collect multiple
datasets. Large-scale neuroimaging studies often include multiple modalities
(e.g., task functional MRI, resting-state fMRI, diffusion MRI, and/or struc-
tural MRI) with the aim to understand the relationships between datasets. In
this study, we seek to understand whether regions of the brain activated in
a working memory task relate to resting-state correlations. In neuroimaging,
a popular approach uses principal component analysis for dimension reduc-
tion prior to canonical correlation analysis with joint independent component
analysis, but this may discard biological features with low variance and/or
spuriously associate structure unique to a dataset with joint structure. We in-
troduce SImultaneous Non-Gaussian component analysis (SING) in which
dimension reduction and feature extraction are achieved simultaneously, and
shared information is captured via subject scores. We apply our method to
a working memory task and resting-state correlations from the Human Con-
nectome Project. We find joint structure as evident from joint scores whose
loadings highlight resting-state correlations involving regions associated with
working memory. Moreover, some of the subject scores are related to fluid in-
telligence.

1. Introduction.

1.1. The importance of data integration in neuroimaging. Different neuroimaging tech-
niques can provide complementary views of the same information in a person’s brain, and
integrating this information can provide a more meaningful summary of an individual’s brain
function. Neuroimaging studies commonly collect multiple modalities from the same set of
subjects, where we define modality broadly to include task functional magnetic resonance
imaging (fMRI), resting-state fMRI (rs-fMRI), diffusion MRI, structural images, electroen-
cephalography, and positron emission tomography, among others. A motivating principal is
that combining information across modalities will lead to a more accurate understanding of
the underlying biology compared to one modality alone (Calhoun and Sui (2016)). Studies
combining information across datasets have been applied to many scientific questions in-
cluding the neural correlates of cognition (Lerman-Sinkoff et al. (2017)), brain networks and
alcohol use (Crespi et al. (2019)), brain morphology alterations in bipolar disorder (Tang
et al. (2020)), gray and white matter changes in Alzheimer’s (Ouyang et al. (2015)), func-
tional alterations in schizophrenia (Sui et al. (2011), Sui et al. (2013)), and cognitive control
in simultaneous EEG and fMRI (Hinault et al. (2019)). These studies used data fusion meth-
ods to define a set of joint components where each component consists of subject scores (a
vector in R

n, where n is the number of subjects) and loadings for each dataset (a vector in
R

pk , where pk is the number of variables in the kth dataset). For a given component, the
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subject scores are equal or highly correlated across datasets. The loadings indicate the im-
portance of a variable relative to the other variables, and a larger subject score indicates the
vector of loadings is more important in that individual. The subject scores can also be related
to external variables such as behavior and disease status. In our application, we extract linked
features across two neuroimaging data types. Our method finds linked structure via the sub-
ject scores, and in our application this results in loadings that exhibit spatial correspondence,
even though our formulation does not explicitly incorporate spatial information. We argue
this is empirical evidence of meaningful extraction of shared information, whereas shared
information is less evident when using existing methods.

1.2. Motivating dataset. Our motivating dataset comes from the young adult Human
Connectome Project (HCP), which seeks to characterize brain connectivity and function
in healthy adults and examine how brain networks and activity compare across individuals
(Van Essen et al. (2012)). The HCP comprises high-resolution multimodality data, including
60 minutes of rs-fMRI, task fMRI from seven tasks, diffusion MRI data, and behavioral data
from over 1000 subjects, enabling a detailed examination of the human brain (Barch et al.
(2013), Glasser et al. (2016a), Smith et al. (2013)). In this paper, we focus on the N -back
working memory task, which is a popular task used in cognition studies that may be related
to fluid intelligence (Jaeggi et al. (2010)), and rs-fMRI. These datasets were also analyzed
in a data integration study on cognition (Lerman-Sinkoff et al. (2017)). Task fMRI seeks to
manipulate brain neural states while a subject is in the scanner in order to create an activation
map. Rs-fMRI is used to examine functional connectivity between brain regions when a sub-
ject is staring at crosshairs, in which functional connectivity is commonly measured by the
Pearson correlation between the spontaneous activity of different regions. An important sci-
entific goal is to understand whether regions recruited in the performance of a cognitive task
are related to spontaneous brain activity. The link between task and rs-fMRI is of particular
interest in cognition because it may offer insight into the regional-specialization paradigm,
wherein single-brain areas perform specific functions, and the network paradigm of the brain,
wherein different parts of the brain interact and may perform multiple functions (Bressler and
Menon (2010)).

1.3. Data integration methods and limitations. Discovering information that is shared
between datasets is a fundamental problem in statistics dating back to early work in canon-
ical correlation analysis (CCA) (Hotelling (1936)). This problem has received renewed at-
tention in the Omics era, where genetics studies often collect multiple data types, including
methylation, gene expression, copy number, and mutation. Combining information across
data types has been used to estimate subject scores that cluster cancer subtypes, which may
be useful in biomarker development (Gaynanova and Li (2019), Lock et al. (2013), Mo et al.
(2013)). Methods have been developed to address the novel challenges in genetics datasets,
in particular the p � n setting, including sparse CCA (Witten (2010)), joint and individual
variation explained (JIVE) (Feng et al. (2018), Lock et al. (2013)), common and individual
feature extraction (CIFE) (Zhou et al. (2016a)), and multiomics factor analysis (Argelaguet
et al. (2018)). For a comprehensive list of methods, see Love (2019). However, data integra-
tion methods tailored for multimodal neuroimaging have received comparably less attention
and must address distinct challenges due to the different statistical properties of imaging
data, most notably that imaging features capturing brain activation and intrinsic functional
connectivity are highly non-Gaussian, as discussed further in Section 2.1.

Methods using principal component analysis (PCA) for dimension reduction and indepen-
dent component analysis (ICA) for subspace interpretation have been proposed in the neuro-
science literature (Calhoun and Sui (2016), Sui et al. (2012), Zhou et al. (2016b)). ICA is a
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popular approach in neuroimaging, where computationally scalable objective functions based
on marginal non-Gaussianity extract spatial components in task fMRI (Sui et al. (2010)) and
derive interesting network structure in resting-state correlations (Amico et al. (2017)). In Joint
ICA, also called concatenation ICA, data are standardized and concatenated to form a single
large dataset, then PCA is applied, and finally the PCs are rotated to estimate joint indepen-
dent components (ICs) (Calhoun, Liu and Adali (2009), Calhoun et al. (2006a), Calhoun et al.
(2006b)). This results in joint subject scores that are equal in the two datasets. This method
is very flexible in that the datasets have the same subjects but can be of different dimensions.
Multimodal CCA with Joint ICA (mCCA + jICA) is a popular extension that first applies
PCA separately to each dataset to reduce the number of features (Sui et al. (2011)). It then
applies a modified CCA to find highly correlated joint subject scores, and third, it adjusts
these scores and loadings using Joint ICA. As noted above, it was used to examine activa-
tion maps from two tasks (N -back and relational processing), resting-state correlations, and
cortical thickness in Lerman-Sinkoff et al. (2017), and subject scores were related to cogni-
tive measures. Parallel ICA is a method that iterates between ICA for the separate datasets
and maximizing the correlation between matched subject scores (Liu et al. (2009), Vergara
et al. (2014)). Linked ICA uses a variational Bayes approximation to estimate shared sub-
ject scores, and it allows the scaling of the scores to vary between datasets (Groves et al.
(2011)). There are also joint and individual methods for independent components in a sin-
gle modality where structure is shared in the voxel dimension (Pakravan and Shamsollahi
(2019)), but here we focus on the multimodal integration studies. Although the maximization
of non-Gaussianity used in the ICA steps results in components that better separate brain
regions than PCA-only methods, these methods have other limitations. We will argue that:
1) previous methods can miss joint structure, for example when PCA discards low variance
but biologically important components, and 2) previous methods can spuriously associate
structure unique to a dataset with joint structure.

1.4. Goal of this paper. Although Joint ICA, mCCA + jICA, and related methods
have been widely used in the neuroimaging community, novel approaches that utilize non-
Gaussianity for both dimension reduction and latent variable extraction may offer new in-
sights. Projection pursuit and non-Gaussian component analysis (NGCA) have been used to
find low-rank structure based on maximizing non-Gaussian measures of information, which
contrasts with PCA based on maximizing variance (Bickel, Kur and Nadler (2018), Blanchard
et al. (2005), Friedman and Tukey (1974), Nordhausen et al. (2017), Risk, Matteson and Rup-
pert (2019), Virta, Nordhausen and Oja (2016)). However, projection pursuit and NGCA have
not been extended to multimodal data analyses. Additionally, the likelihood in the LNGCA
model in Risk, Matteson and Ruppert (2019) can not be applied to p � n due to a rank-
deficient p×p covariance matrix. Characterizing shared structure requires a novel model that
applies to p � n, which in turn requires a new estimation framework. We propose simultane-
ous non-Gaussian component analysis (SING), which formulates an objective function based
on maximizing the skewness and kurtosis of latent components with a penalty to encourage
similarity between subject scores. Similar to JIVE (Lock et al. (2013)), our approach focuses
on information shared in subject score subspaces. Subject scores can be viewed as weighing
the importance of the corresponding non-Gaussian components in the subjects’ datasets, and
our decomposition allows the scaling to differ between datasets.

In summary, our contributions are the following:

1. We propose a new matrix decomposition for shared non-Gaussian structure across
datasets, and we derive an estimation algorithm based on the use of higher-order moments.

2. The proposed approach improves estimation of subject scores compared to popular
methods for multimodal analysis in neuroimaging.
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3. In the analysis of the HCP data, the joint loadings in SING capture spatially localized
patches of contiguous cortex in the working memory task and the spatially coinciding node
in the rs correlations along with its edges, while joint structure is less apparent in the existing
approaches. Additionally, we find the joint subject scores of a subset of the components are
significantly associated with fluid intelligence.

The remainder of this paper is organized as follows. In Section 2, we propose the novel
model and algorithm called SING. In Section 3, we compare SING to Joint ICA and mCCA +
jICA, and we evaluate the impact of the penalty controlling the similarity between subject
scores in SING. In Section 4, we analyze working-memory task activation maps and resting-
state correlations from the HCP. Section 5 presents a summary and discussion.

2. Methods.

2.1. Matrix decomposition for one dataset. We first summarize a matrix decomposition
for a single dataset X ∈ R

n×px (n subjects and px features) into a non-Gaussian subspace
and a Gaussian subspace based on linear non-Gaussian component analysis (LNGCA). This
matrix decomposition differs from (Risk, Matteson and Ruppert (2019)), who used a likeli-
hood with statistical independence between components, whereas our matrix decomposition
uses non-Gaussianity with orthogonality constraints. This is discussed further in Remark 2.

Each row of X is a vector of features from the ith subject. Let Xc denote the double-
centered data matrix such that 1�Xc = 0� and Xc1 = 0, which has rank n − 1 when px > n.
Let I rx denote the rx × rx identity matrix. Then define the decomposition

Xc = MxSx + MNxNx,(1)

where:

1. Mx ∈ R
n×rx and MNx ∈ R

n×(n−rx−1). The columns of Mx are called subject scores,
and the matrix [Mx,MNx] is called the mixing matrix and has rank n − 1.

2. Sx ∈ R
r×px and Nx ∈ R

(n−rx−1)×px . SxS
�
x = pxI rx , NxS

�
x = 0(n−rx−1)×rx . The rows

of Sx are the non-Gaussian components, and elements of Sx are called variable loadings
because XcS

�
x = Mx . The rows of Nx are the Gaussian components.

3. The rows of Sx have maximum non-Gaussianity subject to the aforementioned orthog-
onality constraints.

The goal is to estimate Mx and Sx , while the Gaussian components are regarded as noise.
Note that any signed permutation of the columns of Mx and corresponding signed permuta-
tion of the rows of Sx also satisfies (1). The double-centering results in mean-zero scores and
mean-zero components, which is useful for defining shared structure in Section 2.3.

The decomposition (1) is fitted based on maximizing the non-Gaussianity of the features.
This is useful in neuroimaging because: 1) the goal is to maximize the non-Gaussian measure
in the image space, where vectorized features like brain activation maps and resting-state net-
works have highly non-Gaussian distributions, and 2) p � n, where, in general, the number
of subjects is small relative to the number of voxels or edges. Maximizing non-Gaussianity
across voxels is also recommended in multisubject spatial ICA of fMRI, which has been used
in over 20,000 papers (Calhoun and Adalı (2012)), and is used in ICA decompositions of vec-
torized correlation matrices (Amico et al. (2017)). Maximizing non-Gaussianity across edges
and spatial locations is used in mCCA + jICA (Lerman-Sinkoff et al. (2017)), where the ICA
step results in improved separation of sources, compared to mCCA (Sui et al. (2011)). We
note that from a probabilistic perspective, this corresponds to a model in which the number
of subjects is fixed, which will be discussed in Section 2.2.
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To obtain the decomposition in (1), we must find an unmixing matrix Ax such that
AxXcX

�
c A�

x = SxS
�
x = pxI rx . To satisfy this constraint, we reparameterize the model us-

ing a prewhitening matrix. Let �̂x = XcX
�
c /px . Then define the eigenvalue decomposition

�̂x = V x�xV
�
x and the prewhitening matrix L̂x = V x�

−1/2
x V �

x . This is defined for rank-
degenerate Xc via the economy eigenvalue decomposition. Note Ax = UxL̂x . Let f () be a
measure of non-Gaussianity. Then (1) is estimated using

minimize
Ux

−
rx∑

l=1

f
(
u�

xlL̂xXc

)
subject to UxU

�
x = I rx ,

(2)

where u�
xl is the lth row of the rx × n matrix Ux .

The key difference between this matrix decomposition and ICA approaches in Calhoun
et al. (2006a) and Beckmann and Smith (2014) is that while we retain all n directions of vari-
ance during prewhitening, the latter only retain rx � n directions associated with maximum
variance. Specifically, let V rx and �rx denote the first rx eigenvectors and eigenvalues of
�̂x . Let Orx×rx denote the class of rx × rx orthonormal matrices. The ICA objective function
estimating rx < n components is

argmin
Ux∈Orx×rx

−
rx∑

l=1

f
(
u�

xl�
−1/2
rx

V �
rx

Xc

)
,(3)

where u�
xl is the lth row of Ux . Some fMRI ICA implementations whiten using (�rx −

σ 2I rx )
−1/2V �

rx
, where σ 2 is the average of the eigenvalues of the discarded directions

(Beckmann and Smith (2014)). Let Ŝ
ICA
x denote the components resulting from (3). Then

Ŝ
ICA
x maximizes the non-Gaussianity of the principal component loadings (scaled to have

norm equal to one), whereas in LNGCA, Ŝx maximizes the non-Gaussianity of Xc. Since the
set of matrices defined by U�

rx
�

−1/2
rx V rx , U rx ∈ Orx×rx is a subset of UxL̂x , Ux ∈ Orx×n,

LNGCA achieves greater non-Gaussianity.
We measure non-Gaussianity using the Jarque–Bera (JB) statistic, which is a weighted

combination of squared skewness and kurtosis (Jarque and Bera (1987)) and was applied to
LNGCA in Virta, Nordhausen and Oja (2016). For a vector s ∈ R

p , the JB statistic is

(4) f (s) = 0.8
(

1

p

∑
j

s3
j

)2
+ 0.2

(
1

p

∑
j

s4
j − 3

)2
.

Unlike some measures of non-Gaussianity, such as the logistic function used in Infomax (Bell
and Sejnowski (1995)), the JB statistic extracts both sub- and super-Gaussian components.

2.2. Matrix decomposition for two datasets. We now propose a matrix decomposition
of two datasets X ∈ R

n×px and Y ∈ R
n×py into a joint non-Gaussian subspace defined by

shared subject score directions, individual non-Gaussian subspace (where here individual
means unique to a dataset), and a Gaussian subspace. Let rJ denote the rank of the joint non-
Gaussian subspace. Define the double-centered Xc such that 1�Xc = 0� and Xc1 = 0, and
similarly for Y . Let rx and ry denote the rank of the non-Gaussian subspace (i.e., signal rank)
for datasets Xc and Y c, respectively. We consider

Xc = MJ DxSJx + MIxSIx + MNxNx,

Y c = MJ DySJy + MIySIy + MNyNy,
(5)

where:
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1. MJ ∈ R
n×rJ , MIx ∈ R

n×(rx−rJ ), MIy ∈ R
n×(ry−rJ ), MNx ∈ R

n×(n−rx−1), and MNy ∈
R

n×(n−ry−1). Additionally, the columns of MJ have unit L2 norm to allow explicit scaling
via Dx and Dy .

2. Dx and Dy are diagonal and allow the size of the joint signal to vary between datasets.
3. SJx are the joint non-Gaussian components, SIx are the individual non-Gaussian

components, and Nx are the individual Gaussian components, respectively, for X, with
SJxS

�
Jx = pxI rJ , SIxS

�
Ix = pxI rx−rJ , SJxS

�
Ix = 0rJ ×(rx−rJ ), NxS

�
Jx = 0(n−rx−1)×rJ ,

NxS
�
Ix = 0(n−rx−1)×(rx−rJ ), and similarly define the components of Y .

4. The rows of [S�
Jx,S

�
Ix]� and [S�

Jy,S
�
Iy]� have maximum non-Gaussianity subject to

the aforementioned orthogonality constraints and the shared MJ defined in (5).

The primary goal is to estimate MJ , SJx , and SJy . While the individual components may
also be of interest, the Gaussian components are regarded as noise.

REMARK 1. We can treat (5) as a probabilistic model by defining random vectors x ∈R
n

and y ∈ R
n. Let sJx ∈R

rJ and sIx ∈R
rx−rJ be non-Gaussian random vectors with mean zero

and variance equal to one, and let nx ∈ R
n−rx−1 be standard Gaussian. We further assume

[s�
Jx, s

�
Ix,n

�
x ] have mutually independent elements. Similarly define [s�

Jy, s
�
Iy,n

�
y ] for y.

Then the probabilistic model is

x = MJ DxsJx + MIxsIx + MNxnx,

y = MJ DysJy + MIysIy + MNyny.
(6)

Now consider x. The concatenated matrix [MJ Dx,MIx] is unique up to signed permutations
of the columns from Theorem 10.3.9 in (Kagan, Rao and Linnik (1973)); see also Theorem 1
in Risk, Matteson and Ruppert (2019). Let Mx = [MJ Dx,MIx]P be the mixing matrix
for the separate LNGCA model of x, where P belongs to the class of signed permutation
matrices P±. Similarly define My . Consider the squared chordal distance

(7) d(x,y) =
∥∥∥∥ xx�

‖x‖2
2

− yy�

‖y‖2
2

∥∥∥∥2

F

,

which is between 0 and 2. Then uniqueness implies that MJ Dx and MJ Dy must correspond
to the matched columns of Mx and My that have chordal distance equal to zero, where the
chordal distance is applied separately to each pair of matched columns. Thus, MJ is unique
up to signed permutations of the columns. Next, MIx and MIy correspond to the columns
having chordal distance greater than zero for all possible matchings. The columns of MNx

and MNy are not unique.

To summarize, the probabilistic model for joint structure posits the existence of a linear
transformation MJ (i.e., mixing) that acts on both sJx and sJy , whereas the individual struc-
ture is subject to different linear transformations.

Compared to the measurement error model where nx ∈ R
n, here nx ∈ R

n−rx−1. The rank
of the noise influences: 1) whether the non-Gaussian signals can be recovered without noise,
and 2) whether the PCA step in ICA methods discards non-Gaussian components. To see
this, consider the LNGCA and measurement error models for a single dataset differing only
in the Gaussian components: x = Mxs +Mnn and x∗ = Mxs +M∗

nn
∗, where the latter is the

measurement error model with full rank M∗
n ∈ R

n×n. Then define M−
x such that M−

x Mx =
I rx . In LNGCA we define M−

x = M�
x L2, where L is the square root of the generalized

inverse of Cov(x). Then it can be shown that M−
x Mn = 0. In contrast, M∗

n spans R
n in the

measurement error model, so M−
x M∗

n �= 0 for all M−
x . Consequently, s is corrupted by noise

even if the true Mx and M∗
n were known. Second, the eigenvalues of Cov(x) from (6) capture
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the largest directions of variance, which are in general not related to the non-Gaussian signal.
Thus, a probabilistic PCA decomposition used in ICA (Beckmann and Smith (2014)) can
fail to extract the non-Gaussian subspace. If one instead assumes full-rank Gaussian noise,
the probabilistic SING model in (6) can provide a useful approximation; this is related to the
noisy ICA model approximated by LNGCA. In fact, LNGCA can also be more effective than
PCA+ICA for full-rank noise (Figure S.2 in Risk, Matteson and Ruppert (2019)). Also note,
in the measurement error model, higher variance directions of noise can dominate the PCA if
the noise is not isotropic, and LNGCA may be more effective.

REMARK 2. In LNGCA, maximizing the JB statistic provides a consistent estimator of
the LNGCA model under finite eighth moments of the components sj for an independent and
identically distributed sample j = 1, . . . , p; see Theorem 5.2 in Virta, Nordhausen and Oja
(2016). Let xj ∈ R

n, j = 1, . . . , px , be an iid sample from (6). Then we obtain a consistent
estimate of the object Mx = [MJ Dx,MIx] up to signed permutations of the columns, as
px → ∞ for fixed n. Similarly for yk ∈ Rn, k = 1, . . . , py . Since the estimators of Mx and
My are consistent, the sum of the chordal distances between matched columns of Mx and My

converges to zero. Hence, we obtain a consistent estimator of MJ . This motivates the initial
estimator used in Section 2.3 and described in Supplementary Material S.1. We acknowledge
that this is nonstandard from a probabilistic perspective but reiterate that maximizing non-
Gaussianity across features has been used in thousands of neuroimaging studies (Calhoun
and Adalı (2012)), and this remark provides a perspective on this approach in the context of
(5) and related integration methods like Joint ICA.

2.3. Simultaneous NGCA fitting and algorithm. Recall the whitening matrix for Xc is
L̂x , and define L̂

−1
x = (XcX

�
c /n)1/2 = V x�

1/2
x V �

x . Let Xw = L̂xXc. Similarly define the
whitening matrix L̂y for Y c and whitened data Yw . Note that, for an estimate M̂x , we can

write M̂x = L̂
−1
x Û

�
x , where U�

x is semi-orthogonal. Similarly M̂y = L̂
−1
y Û

�
y . Let f be the

JB statistic, as defined in (4). We consider

minimize
Ux,Uy

[
−

rx∑
l=1

f
(
u�

xlXw

) −
ry∑

l=1

f
(
u�

ylYw

) + ρ

rJ∑
l=1

d
(
L̂

−1
x uxl, L̂

−1
y uyl

)]

subject to UxU
�
x = I rx ,UyU

�
y = I ry ,

(8)

where d(x,y) is the chosen distance metric between vectors x and y. When ρ = 0, prob-
lem (8) reduces to two separate LNGCA optimization problems (2) with rx and ry compo-
nents, respectively. When ρ → ∞, the constraint leads to equality of the first rJ columns in
M̂x and M̂y with respect to the chosen distance metric, thus the first rJ columns, rescaled to
have norms equal to one, provide an estimate of M̂J . In practice, we recommend choosing
ρ to result in columns that are approximately equal. In our data application, this is satisfied
by setting ρ equal to the sum of the JB statistics of all joint components from the separate
LNGCA divided by 10; see Section 4.1. Because model (5) allows for different scales be-
tween datasets, we choose a distance metric that is scale and sign invariant—the squared
chordal distance (7). Since each column of Xc and Y c has mean zero, a chordal distance
equal to zero corresponds to correlation equal to one.

There are two difficulties in solving problem (8): it has a nonconvex objective function and
it has two orthogonality constraints. In ICA, it is common to use a fixed point algorithm where
each iteration includes an approximate Newton update to the unmixing matrix U , followed
by an orthogonalization step to project the unmixing matrix back to the Stiefel manifold
(Hyvärinen (1999)). However, the algorithm can not be easily generalized to our case due to
the addition of a distance metric on the mixing matrices. Instead, we propose to modify the
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Algorithm 1: Curvilinear search algorithm for (8), see Supplementary Material S.2 for
additional details

Input: Xw , Yw , L̂
−1
x , L̂

−1
y , U (0)

x , U (0)
y , ρ > 0, ε > 0

1 Gx(Ux,Uy),Gy(Ux,Uy)—gradients of objective function with respect to Ux and
Uy , respectively, at current values of Ux , Uy ; depend on the Input

2 k = 0;
3 repeat
4 k = k + 1;

5 W x = U (k−1)
x

�
Gx(U

(k−1)
x ,U (k−1)

y )� − Gx(U
(k−1)
x ,U (k−1)

y )U (k−1)
x ;

6 W y = U (k−1)
y

�
Gy(U

(k−1)
x ,U (k−1)

y )� − Gy(U
(k−1)
x ,U (k−1)

y )U (k−1)
y ;

7 Select step size τk > 0;
8 U (k)

x = U (k−1)
x (I − τk

2 W x)(I + τk

2 W x)
−1;

9 U (k)
y = U (k−1)

y (I − τk

2 W y)(I + τk

2 W y)
−1;

10 until
√

PMSE(U (k−1)
x ,U (k)

x ) +
√

PMSE(U (k−1)
y ,U (k)

y ) < ε

curvilinear search algorithm of Wen and Yin (2013). The algorithm is designed for problems
with differentiable objective functions and orthogonality constraints. The main advantage
of the algorithm is that it performs feasible updates, unlike the fixed-point algorithm, and
therefore does not need an extra projection step onto the manifold.

A direct application of the algorithm to problem (8) is to consider alternating minimization
over Ux and Uy . While this works well for moderately-sized problems, we found that it is
possible to modify the algorithm to perform joint updates over Ux and Uy , which leads to sig-
nificant speed improvements. Let Gx(Ux,Uy) be the gradient of the objective function with
respect to Ux evaluated at the current values of Ux and Uy , and similarly define Gy(Ux,Uy).
The value of ρ affects both Gx(·) and Gy(·). The proposed optimization algorithm for (8) is
summarized in Algorithm 1, and the full derivation together with the discussion of alter-
natives and step size selection is presented in the Supplementary Material Section S.2. To
monitor convergence, we use

√
PMSE, as defined in (9).

Let Ûx and Ûy be the values of Ux and Uy at convergence. The corresponding esti-
mated non-Gaussian components are defined as Ŝx = ÛxXw , Ŝy = ÛyYw . Then the first rJ

columns of M̂x = L̂
−1
x Û

�
x , scaled to unit norm, provide an estimate of M̂J , and for suffi-

ciently large ρ, this is equal up to scaling to the first rJ columns of M̂Y . Additionally, the
first rJ rows of Ŝx correspond to ŜJx .

Since problem (8) is nonconvex, Algorithm 1 requires careful initialization of U (0)
x and

U (0)
y . We initialize the algorithm with the solutions obtained by solving two separate NGCA

problems (problem (8) with ρ = 0) using a fixed-point algorithm with multiple random start-
ing points. Then the columns in U (0)

x are reordered to match the columns in U (0)
y , based on

greedy pairwise matching of chordal distances between corresponding M̂
(0)
x and M̂

(0)
y , as

described in Supplementary Material S.1. A permutation test is used to determine whether
the correlation between matched columns is significant, as described in Section 2.4.2.

2.4. Selecting the number of components.

2.4.1. Signal rank: Choosing rx . Resampling and asymptotic tests for the signal rank of
the non-Gaussian subspace in LNGCA have been developed (Jin, Risk and Matteson (2019),
Nordhausen, Oja and Tyler (2016)). We also propose a permutation test that has some com-
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putational advantages, as each iteration estimates a single non-Gaussian component (Sup-
plementary Material S.3). We can further reduce computational expense by estimating the
ranks of the joint components only (next section), using as input the estimate of the saturated
LNGCA model, i.e., where the number of components is equal to the rank of the data. This
approach works well for recovering the joint components, which is our focus here.

2.4.2. Joint rank: Choosing rJ . Let M̂
u
x and M̂

u
y be the estimates of the mixing matrices

from the separate LNGCA decompositions of X and Y , which contain an unordered con-
catenation of estimates of joint and individual subject scores. We use a greedy algorithm that
sequentially matches a column of M̂

u
x with M̂

u
y by minimizing chordal distance, removes

the matched columns and then finds the next pair. This is equivalent to maximizing absolute
correlation for data in which each column has mean equal to zero. Let M̂

(0)
x and M̂

(0)
y de-

note the ordered mixing matrices. Next, we determine which pairs of columns are sufficiently
close to be deemed estimates of joint subject scores. Let ψr be the chordal distance between
the matched columns for the r th pair of components, r = 1, . . . , n − 1. For permutations
t = 1, . . . , T , we fix M̂

(0)
x and generate M̂

[t]
y = P [t]M̂(0)

y , where P [t] is a random permuta-

tion matrix. Let ψ
[t]
lm be the distance between the lth column of M̂

(0)
x and the mth column of

M̂
[t]
y . Define ψ

[t]
min = minl={1,...,rx},m={1,...,ry} ψ [t]

lm . Then an FWER-adjusted p-value for the

r th component is 1
T

∑
t 1(ψr > ψ

[t]
min), where 1 is the indicator function. We set rJ equal

to the largest index with p < α, for example, α = 0.01. For a given joint component, this
approach assumes the chordal distance between two correctly matched columns will be less
than the distance between mismatched columns.

3. Simulations. We consider the following methods for comparison: Joint ICA,
mCCA + jICA (Sui et al. (2011)), separate LNGCA (corresponding to ρ = 0), and SING
with three values of ρ designed to examine the impact of this tuning parameter on accuracy.
In addition, we consider an alternative approach to fitting the SING model based on aver-
aging the mixing matrices from separate LNGCA models (SING-averaged). Given M̂J , this
approach estimates the non-Gaussian components using the Procrustes solution to result in
orthogonal components, in contrast to least-squares. The detailed description is in the Sup-
plementary Material S.4. We use our own implementation of Joint ICA and mCCA + jICA.
To improve comparability, we use the same measure of non-Gaussianity (JB statistic) in all
approaches. All analyses were implemented in R.

We evaluate the quality of estimation of non-Gaussian components and mixing matrices
based on scale and permutation invariant mean squared error set forth in Risk, Matteson
and Ruppert (2019). Let S ∈ R

p×r be the matrix of true non-Gaussian components, and
let Ŝ ∈ R

p×r be the corresponding estimate. We assume that both S and Ŝ are scaled to
have column variance one. Let P± be the class of r × r signed permutation matrices. The
permutation-invariant mean squared error is defined on scaled S and Ŝ as

(9) PMSE(S, Ŝ) = 1

rp
argmin
P∈P±

‖S − P Ŝ‖2
F ,

and we report error as
√

PMSE. The error for mixing matrices M and M̂ is calculated simi-
larly, where scale invariance is achieved using column scaling.

In addition, we evaluate the overall error in estimating joint structure in model (5). De-
fine J x = MJ DxSJx , and similarly J y = MJ DySJy . Then the corresponding estimates are
Ĵ x = M̂x Ŝx , and similarly Ĵ y . The mean squared error is defined as

(10) MSE(J , Ĵ ) = ‖J − Ĵ‖2
F

‖J‖2
F

,

and we report this error as
√

MSE.
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An important factor impacting the accuracy of estimates of the mixing matrix and/or non-
Gaussian components is the amount of variance in the non-Gaussian subspace. We decom-
pose the total variance into joint, individual, and noise contributions. Let ‖X‖F be the Frobe-
nius norm of X. Then define

R2
Jx = ‖MJ DxSJx‖2

F /‖X‖2
F =

∥∥∥∥ 1

px

XS�
JxSJx

∥∥∥∥2

F

/‖X‖2
F ,(11)

and R2
Ix = ‖ 1

px
XS�

IxSIx‖2
F /‖X‖2

F . With the orthogonality conditions in (5), the total non-

Gaussian signal variance is R2
Sx = R2

Jx + R2
Ix . We also define the signal variance to noise

variance ratio (SNR) for each dataset as the ratio of the variance in the non-Gaussian subspace
to the variance in the Gaussian subspace. Letting R2

Nx denote the proportion of variance in
the Gaussian subspace, SNR = R2

Sx/R
2
Nx , which is equivalent to the SNR definition in Risk,

Matteson and Ruppert (2019).

3.1. Simulation Setting 1. In this section, we evaluate the estimation accuracy of SING
when data are generated from (5) with the number of subjects n = 48. We use three non-
Gaussian components for dataset X and four non-Gaussian components for dataset Y , with
rJ = 2. Figure 1 displays all the components for each dataset. The components Sx are vec-
torized 33 × 33 images, corresponding to 1089 features. The components Sy are the lower
diagonals of 100 × 100 symmetric matrices, corresponding to 4950 features, in which a con-
tiguous block has values equal to 1, and the other values are generated from a mean zero
normal distribution with variance σ 2 = 0.005. The spatially adjacent features in Sx and the
block features in Sy share similarities with the Joint ICA decomposition of task maps and
resting-state correlations in Lerman-Sinkoff et al. (2017).

For each simulation, we generate the joint subject scores MJ = [mJ1,mJ2] ∈ R
n×2 with

mJ1 ∼ N(μ1, In), mJ2 ∼ N(μ2, In), μ1 = (1�
24,−1�

24)
� and μ2 = (−1�

24,1�
24)

�. We set
Dx = I and Dy = diag(−5,2) to have differences in both sign and scale between the two
datasets. We generate MIx and MIy similar to MJ using iid unit variance Gaussian entries
with means equal to μ3y = (−1�

6 ,1�
6 ,−1�

6 ,1�
6 ,−1�

6 ,1�
6 ,−1�

6 ,1�
6 )�, μ4y = (1�

24,−1�
24)

�,
μ3x = (−1�

12,1�
12,−1�

12,1�
12)

�. These means result in various degrees of correlation between
the columns of the mixing matrices. For the Gaussian noise, we generate MNx , MNy , Nx and

FIG. 1. Top: True components for X. The first is individual, and the remaining two are shared. Bottom: True
components for Y . The first two are shared, and the remaining two are individual.
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Ny using iid Gaussian mean zero entries. We set the noise variance to reach the prespecified
SNR regime, as defined in Section 2.2. We consider a crossed design for the SNR in X and
Y with low SNR = 0.2 and high SNR = 5, specifically: 1) low SNR X, low SNR Y ; 2)
low SNR X, high SNR Y ; 3) high SNR X and low SNR Y and 4) high SNR Y and high
SNR X. This results in R2

Jx ∈ [0.09,0.13] (low SNR X), R2
Jx ∈ [0.40,0.65] (high SNR X),

R2
Jy ∈ [0.15,0.16] (low SNR Y ) and R2

Jy ∈ [0.72,0.80] (high SNR Y ).
We first evaluate the performance of the proposed scheme for selecting the number of joint

components (Section 2.4.2) over 100 simulations for each SNR combination. As described
in Section 2.4.2, we estimated the saturated model for each dataset using 20 restarts and
α = 0.01. Here we did not perform double centering since the true scores have sample mean
approximately equal to zero, and hence the saturated model corresponds to rx = ry = 48. We
found that this leads to correct r̂J = 2 in 397 out of 400 simulations. In the remaining three
simulations (1 for low SNR X, high SNR Y ; 2 for high SNR X, high SNR Y ), the rJ is
slightly overestimated with r̂J = 3.

We next consider the quality of estimation of non-Gaussian components and mixing matri-
ces. Let ρ̂ equal the sum of the JB statistics of joint components from the separate analyses.
We compare multiple estimation schemes: 1) Joint ICA with the true number of joint com-
ponents rJ = 2, where we follow the default normalization in Rachakonda, Liu and Calhoun
(2012) in which each dataset is scaled by the square root of the mean of squared elements
before applying Joint ICA; 2) mCCA + jICA with true rx = 3, ry = 4 and rJ = 2, where
each dataset is scaled by the square root of the mean of squared elements, as in Joint ICA;
3) separate analysis (ρ = 0) with true rx = 3 and ry = 4 and subsequent matching as in Sec-
tion 2.4.2 to determine two joint components, 4) small ρ, set equal to 0.1ρ̂, 5) medium ρ = ρ̂,
6) large ρ = 20ρ̂, and 7) SING-averaged from ρ = 0 (Supplementary Material S.4). For Joint
ICA, mCCA + jICA and the separate analysis with ρ = 0, we use 20 random starting points
to choose the solution that optimizes the objective function. For ρ > 0, we use the solution
obtained at ρ = 0 as a starting point. Figure 2 shows the results for all methods. Although in
truth MJx = MJy = MJ , we report separate estimates of MJ corresponding to the estimate
from Xc and Y c, denoted M̂Jx and M̂Jy , since these estimates are not in general equal in
SING or mCCA + jICA.

All variants of SING perform reasonably well across SNR settings with improvements
with larger ρ, while Joint ICA and mCCA + jICA are effective only in the high SNR X
and high SNR Y setting (Figure 2, top panel). For both Joint ICA and mCCA + jICA, the
methods perform poorly for low SNR because the Gaussian noise components dominate the
non-Gaussian components (top panel, column 1). Joint ICA uses PCA after concatenating
standardized datasets, and mCCA applies PCA separately to each dataset prior to CCA on the
subject scores. In the low SNR X and low SNR Y scenarios, the non-Gaussian directions are
discarded. In the high SNR Y and low SNR X setting (top panel, column 2), the performance
of Joint ICA improves particularly for ŜJy , M̂Jx , M̂Jy , Ĵ x , and Ĵ y . This is likely due to the
fact that X has only 1089 features while Y has 4950 features, and thus signal in Y dominates
the SVD of the concatenated data that is at the core of Joint ICA. However, mCCA + jICA is
only accurate with respect to ŜJy , M̂Jy , and Ĵ y . In the high SNR X and low SNR Y setting
(column 3), in Joint ICA, the noisy Y dominates the SVD and the overall performance is poor
across all ŜJx , ŜJy , M̂Jx , M̂Jy , Ĵ x , and Ĵ y . Similar to the previous setting, mCCA + jICA
performs better with respect to the high SNR dataset, namely, ŜJx , M̂Jx , and Ĵ x , but poorly
for ŜJy , M̂Jy , and Ĵ y . In the high SNR X and high SNR Y scenarios, both Joint ICA and
mCCA + jICA perform well across ŜJx , ŜJy , M̂Jx , M̂Jy , Ĵ x , and Ĵ y . This is because the
non-Gaussian signal is now contained in the directions of large variance, and hence the PCA
steps are appropriate.

In the bottom panel in Figure 2, we see that increasing ρ leads to improvements with
respect to M̂Jx and M̂Jy , as the SING algorithm leads to effective data integration. The
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FIG. 2. Simulation Setting 1 of Section 3.1: Results are over 100 replications for each combination of sig-
nal to noise ratio (SNR). Top: Results from SING with large ρ, SING-averaged from ρ = 0, Joint ICA, and
mCCA + jICA. The errors are evaluated using

√
PMSE from (9) (components and mixing matrices). By defi-

nition,
√

PMSE ∈ [0,
√

2] = [0,1.414]. The errors on Ĵ x and Ĵ y are evaluated using
√

MSE from (10). Bottom:
The impact of ρ on subject score estimation in SING variants.

estimates of M̂J improve uniformly as ρ increases, where large values of ρ result in M̂Jx ≈
M̂Jy . In particular, in the low SNR X and high SNR Y setting, we see improvements in M̂Jx

in addition to M̂Jy . In the high SNR X and low SNR Y , we see improvements in M̂Jy in
addition to M̂Jx . Relative to SING with ρ > 0, SING-averaged is competitive but performs
worse than large ρ, particularly for low SNR X and high SNR Y . In this setting, comparing
M̂Jx and M̂Jy for SING with ρ = 0, we see greater accuracy for M̂Jy than M̂Jx . Then as
we increase ρ, SING appears to leverage the greater accuracy in M̂Jy to improve M̂Jx . In
contrast, SING-average treats the two datasets as having equal information, and so the noisier
M̂Jx leads to overall reduced accuracy of the average. In the Supplementary Material Figure
S.2, we see that as ρ increases, there is a small cost in terms of the accuracy of ŜJy , although
all SING variants are accurate. The small decline in accuracy for large ρ may be related to
the fact that the penalized objective can lead to components that have lower non-Gaussianity
compared to the unpenalized formulation.

In summary, relative to the low SNR setting, Joint ICA can improve subject scores in the
mixed SNR setting when the larger dataset (with respect to the number of features) has high
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SNR; mCCA can improve subject scores in the mixed SNR setting for the dataset containing
high SNR; and SING can improve subject scores across SNR settings.

3.2. Simulation Setting 2. We consider a large-scale simulation setting with n = 48 sub-
jects, px = 59,412, and py = 71,631. We generate a dataset from (5) with 12 non-Gaussian
components for each X and Y . To mimic the non-Gaussian components from real data, we
select components estimated from the HCP data as the truth. We fix rJ = 2 shared subject
score directions, and MJ Dx and MJ Dy are generated as in Section 3.1. The elements of
MIx and MIy are generated using independent normals with zero mean and standard devia-
tions 10 and 30, respectively. For the Gaussian noise, we generate MNx , MNy , Nx and Ny

using iid Gaussian mean zero entries, which are then rescaled to reach SNRx = SNRy = 0.5.
The resulting proportions of joint variance explained are R2

Jx = 0.0014 and R2
Jy = 0.0021,

which is similar to the values observed in the HCP data (Section 4). First, we investigate the
performance of the joint rank selection procedure from Section 2.4.2. We consider two sce-
narios: (i) estimation based on the saturated model; (ii) estimation based on the model with
the true number of components with rx = ry = 12. In both cases, the true rJ = 2 is selected
for α ∈ {0.01,0.05,0.1}.

Next, we compare the estimation performance between Joint ICA, mCCA + jICA, and
SING variants. As before, let ρ̂ equal the sum of the JB statistics of joint components from
the separate analyses. We consider: 1) separate analysis with matched components (ρ = 0),
2) small ρ = ρ̂/10, 3) medium ρ = ρ̂, 4) large ρ = 10ρ̂, and 5) SING-averaged from ρ =
0, as described in the Supplementary Material S.4. For the algorithm initialization at ρ >

0, we input the first 12 components estimated from the separate analyses and set r̂J = 2.
Supplementary Material Table S.1 displays the errors of ŜJx , ŜJy , M̂Jx , M̂Jy , Ĵ x , and Ĵ y

for Joint ICA, mCCA + jICA and the SING variants. The conclusions are similar to the low
SNR results in Section 3.1. Both Joint ICA and mCCA + jICA perform poorly compared to
the SING variants. In this setting the small, medium and large ρ all lead to M̂Jx ≈ M̂Jy , and
the accuracies are similar. Compared to ρ = 0, M̂Jx and M̂Jy are more accurate with ρ > 0.
Compared to SING-averaged, ŜJx and ŜJy are more accurate with ρ > 0. The results in this
simulation setting are insensitive to the sizes of ρ > 0 evaluated here, where all the choices
resulted in M̂Jx ≈ M̂Jy .

Figure 3 compares true SJx and SJy with ŜJx and ŜJy estimated by SING with large ρ,
Joint ICA, and mCCA + jICA. Panel a in Figure 3 depicts the first row of SJx plotted on
the cortical surface. ŜJx from SING is visually indistinguishable from the true components
(panels b vs. a, f vs. e). In contrast, neither Joint ICA (panels c and g) nor mCCA + jICA
(panels d and h) capture the true loadings. In Joint ICA component 2, the features that appear
in Figure 3 are found in the true individual loadings SIx but were spuriously estimated as
part of the joint structure, as depicted in Supplementary Material Figure S.3. To create the
scatterplots in the bottom row in Figure 3, we first constructed the 379 × 379 loadings matri-
ces from the vectorized loadings ŜJy , as depicted in Supplementary Material Figure S.4. We
then summed the absolute values of the rows of the loadings matrices to simplify the presen-
tation in Figure 3. One node is prominent for each of the true component loadings, and SING
accurately captures the same nodes. However, prominent nodes in Joint ICA and mCCA +
jICA joint loadings do not coincide with the truth for either component.

In Simulation Setting 2, the true components Sx and Sy do not contain exact zeros. Sparse
brain activation maps and networks may be more interpretable. We thus also considered a
simulation where the true Sx and Sy are exactly sparse (Simulation Setting 3 in Supplemen-
tary Material S.7), and obtained the same qualitative conclusions.

4. Analysis of task and resting-state data from the Human Connectome Project.
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FIG. 3. Simulation Setting 2 of Section 3.2. Comparison of loadings of the joint components.
Top and middle rows: Joint loadings SJx and ŜJx . A row of the joint loadings matrix is visualized on the cortical
surface using four views corresponding to the lateral left hemisphere, lateral right, medial right, and medial left
views. The gray area denotes the medial wall and does not contain gray matter. SING recovers the true loadings.
Joint ICA and jICA+mCCA are inaccurate because these methods use PCA for dimension reduction, and the
joint components simulated here have low variance. Both the second Joint ICA component loadings and second
mCCA + jICA component loadings spuriously associate features from the individual non-Gaussian components
(see Supplementary Material Figure S.3 for comparison with individual components). Bottom row: L1 norms of
the rows of the network matrices formed from SJy and ŜJy . The p × p representations are in the Supplementary
Material Figure S.4. The plots of Truth and SING look very similar, revealing accurate estimation of joint load-
ings. Joint ICA and mCCA+JICA loadings do not correspond to the truth. Additional details are in Supplementary
Material Table S.1.

4.1. Data and methods. We applied SING to estimate the shared structure in the work-
ing memory task (task maps) and resting state correlations (rs correlations) from the Human
Connectome Project. In the SING decomposition, a loading for a joint component in the
working memory dataset represents the importance of a vertex (spatial location) to the com-
ponent, and can be interpreted in a manner similar to a task activation map. A loading in the rs
correlations represents the importance of an edge (pair of regions) to the component, and the
loadings form a symmetric matrix that can be interpreted in a manner similar to a connectivity
matrix. A subject score captures the importance of the linked loadings to the individual, such
that a large score indicates the associated component is prominent in that subject. If the sub-
ject scores of a joint component are related to fluid intelligence, then the loadings correspond
to the locations and edges associated with fluid intelligence. We summarize the data here
with details provided in the Supplementary Material S.8. We used the statistical parametric
maps created by the HCP from the working memory task. An example subject is depicted in
the Supplementary Material Figure S.5. The data are the z-statistics at px = 59,412 vertices



SING: SIMULTANEOUS NON-GAUSSIAN COMPONENT ANALYSIS 1445

(cortical locations) from the contrast of the 2-back and 0-back memory tasks and represent
an estimate of the cortical regions that are engaged in working memory. Working memory
involves the manipulation of temporarily stored information. In the 2-back working memory
task, a participant presses a clicker only when she/he sees a picture that was viewed prior to
the previous picture, whereas in a 0-back task, a participant presses a clicker if she/he views a
prespecified picture at any point during the sequence. Data are vectorized for input to SING.
For rs correlations, we used the ICA-FIX preprocessed rs-fMRI data from subjects with four
rs-fMRI scans (Glasser et al. (2013)). Time courses for each vertex were standardized (zero
mean and variance one) prior to averaging the vertices within a region. For each subject, cor-
relation matrices for each run were created, Fisher-transformed, and then averaged. Example
subjects are shown in Supplementary Material Figure S.6. The lower triangular values were
extracted to form a vector of length py = 71,361 for each subject.

There were n = 996 subjects with task maps and rs correlations. We standardized each
feature (across subjects), centered each subject (across features), and iterated this until cen-
tering each subject had a negligible impact on the variance of the features (here, six iterations
such that the variance across rows for each feature equaled one, the mean across rows equaled
zero, and the mean across columns equaled zero). Hence, the rank of each dataset is 995.

We initially estimated 995 components in each dataset. However, there is a well-known
problem of local minima in fitting ICA models due to nonconvexity that is even more pro-
nounced for higher dimensions (Risk et al. (2014)). To reduce sensitivity to initializations,
we utilized 100 initializations and identified the estimate with the largest objective function
value, which is our estimate of the argmax. We matched each initialization by absolute corre-
lation with the argmax. Repeating this across initializations, this created a 995 × 100 matrix.
We then retained all non-Gaussian components in the argmax in which the absolute correla-
tion was > 0.95 in 75% of the initializations. This resulted in 156 non-Gaussian components
in the task maps and 611 components in the rs correlations. We then applied the joint rank test
with α = 0.01, which resulted in 30 components (min correlation between matched columns
= 0.17, max correlation = 0.34). We chose ρ to result in correlations between columns of
M̂Jx and M̂Jy ≥ 0.99. Here ρ was set to the sum of the JB values of the joint components
divided by 10. We then repeated this estimation scheme for a second set of 100 initializa-
tions and compared the resulting components between the two batches. In the second batch
the first stage resulted in 155 task map components and 609 rs correlation components. The
joint rank test resulted in 32 components. To examine the impact of α, we also conducted the
permutation test with α = 0.05 and obtained 35 and 40 components, respectively. Plots of
the matched correlations are available in the Supplementary Material Figure S.7. We applied
SING to the two batches with components from α = 0.01. We matched the columns of the
joint mixing matrices from the two batches and retained all joint components with absolute
correlations > 0.95, resulting in 26 joint components. We performed the same matching pro-
cedure to obtain individual components from each dataset, resulting in 103 and 553 individual
components.

Each initialization of the separate LNGCA took approximately 2.2 hours (range 1.6–2.9)
in the task maps and 1.5 hours (range 1.0–2.0) for the rs correlations on a cluster with 2.4 GHz
Xeon CPUs. For each batch the greedy matching algorithm took <1 second; the permutation
test took <1 minute; the SING algorithm took 17 hours to converge with tolerance 1e-06.

To explore the biological meaning in joint subject scores, we examined the relationship
between fluid intelligence and joint subject scores. Subjects’ abstraction and mental flexi-
bility were measured in the HCP behavioral data using the Penn Matrix Reasoning Task A
(PMAT24_A_CR), hereafter fluid intelligence. We created a multiple linear regression model
predicting fluid intelligence from the 26 joint subject scores.
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We also estimated joint components using Joint ICA and mCCA + jICA. We again used
the JB statistic as our measure of non-Gaussianity for both methods. In Joint ICA, the num-
ber of components was set to 26, and 100 initializations were used to find the argmax. In
mCCA + jICA, we used 135 components in the initial PCA for the working memory and
135 components in the initial PCA for the rs correlations. This is the number of components
used in Cohort 1 in the mCCA + jICA in Lerman-Sinkoff et al. (2017). We then estimated
26 canonical variables for input to the joint ICA step with 100 initializations.

4.2. Results. Our results indicate there is joint information in the working memory task
maps and rs correlations. The rows of ŜJx and ŜJy exhibit strong spatial correspondence.
We provide an example of this by a detailed examination of the joint scores that were most
strongly related to fluid intelligence in the multiple regression. In the results that follow, the
signs of the components were chosen to result in positive skewness. Component 24 (t = 5.13,
p < 1e − 06 uncorrected) has a small patch of cortex with large task map loadings (Fig-
ure 4a). The loadings of the rs correlations are prominent in edges corresponding to a single
node, visible as a red cross in Figure 4b. We calculate the L1 norm of each row, reducing the
379 × 379 matrix of loadings to 379 points, which are colored by their community member-
ship from Akiki and Abdallah (2019) in Figure 4c. This shows a single prominent node in
the central executive network. We then plot the L1 norms for all nodes on their correspond-
ing locations on the cortical surface (Figure 4d). The prominent node in this rs correlation
component strongly coincides with the spatial locations of the most activated vertices in the

FIG. 4. SING component corresponding to subject scores most strongly related to fluid intelligence: a) Joint
component loadings from the working memory task. b) Joint component loadings from the rs correlations. VI:
visual; SM: somatomotor; DS: dorsal salience; VS: ventral salience; DM: default mode; CE: central executive;
SC: subcortical and cerebellum. c) L1 norms of the edges in each region (equal to the sum of the absolute values
of the rows of b). d) L1 norms for the regions visualized on the cortical surface. e) Loadings for the row of b)
corresponding to the prominent region (L_7Pm_ROI) plotted on the cortical surface.
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task map component (Figure 4a and d). This node is called the left medial area 7P region of
interest (L_7Pm_ROI) and is a member of the central executive community, which is a net-
work involved in cognition and memory. In Glasser et al. (2016b), L_7Pm_ROI is described
as more activated in the working memory task relative to its neighboring parcels. Also, Fig-
ure 4b shows it has strong connections with other nodes in the central executive as well as
nodes in the dorsal salience network, and some opposite connections with the default mode
network. In Figure 4e, we plot the row of Figure 4b corresponding to L_7Pm_ROI, where the
red areas indicate positive loadings, which occur in nodes of the central executive and dor-
sal salience network, while blue areas indicate negative loadings, which occur in the default
mode network (see Akiki and Abdallah (2019)). The salience network is thought to be in-
volved in switching between the default mode network and central executive (Goulden et al.
(2014)). The default mode network tends be prominent when subjects are not focusing on the
external world, including day dreaming and self-reflection, and the opposite loadings relative
to central executive suggest less activity in this region for the subjects with higher activity in
L_7Pm_ROI.

The strong spatial correspondence applies to the other joint components, five of which are
displayed in Figure 5. A visual examination of the 26 non-Gaussian components from the task
maps and the L1 norms in the rs correlations suggests some spatial correspondence in all but
one component. The joint structure represents a small amount of the total variation in each
dataset, R2

Jx = 0.023 and R2
Jy = 0.024 for the task maps and rs correlations, respectively,

which underscores how our method finds information that is distinct from variance-based
approaches. This spatial correspondence is learned in an unsupervised manner, as no infor-
mation about the spatial locations is involved in the model estimation.

To gain insight into the regions extracted by SING, we created composite images of the
joint loadings for the task and rs correlations. The sum of the absolute values of the loadings
across components shares some similarities to a subset of the regions highlighted in the task
activation maps, in particular, highlighting lateral regions of the prefrontal cortex, medial re-
gions near left and right 7Pm_ROI, and some portions of the temporal lobe (Supplementary
Material Figure S.8). This suggests that in a different task, the regions highlighted in the rs
correlation loadings would be related to the specific task, rather than an underlying similarity
between fMRI datasets. To examine whether the subject scores differed greatly in magnitude
between datasets, we calculated D̂x and D̂y (corresponding to working memory and rs cor-
relations, respectively). A joint component with subject scores that are very small in scale
relative to other components may represent a component that holds negligible joint structure.
The diagonal elements of D̂x ranged from 0.86 to 1.03, and those in D̂y ranged from 0.71
to 1.28. This provides evidence that the joint components represent nontrivial structure in all
cases. Additionally, the ratio of the diagonal elements of D̂x to D̂y varied from 0.71 to 1.45.
Taken together, these results indicate SING can be a powerful tool to discover meaningful
shared structure between datasets.

To examine the relative importance of the joint versus individual information within each
dataset, we compared the L2 norms of the columns of M̂Ix to the diagonal elements of
D̂x , and similarly for M̂Iy and D̂y . For the working memory task, the norms of the 103
columns of M̂Ix ranged from 0.97 to 1.99 with median 1.12, compared to the 26 diagonal
elements of D̂x ranging from 0.86 to 1.03 with median 0.94. For the rs correlations, the
norms of the 553 columns of M̂Iy ranged from 0.47 to 2.20 with median 1.06, compared to
the 26 diagonal elements from D̂y ranging from 0.71 to 1.28 with median 0.91. Thus, in both
datasets the contribution of a typical individual component tended to be larger than a typical
joint component, although there was wide overlap in the ranges.

The estimated components in Joint ICA and mCCA + jICA differ greatly from SING,
and the shared structure of their joint components is harder to adjudicate. In Joint ICA, one
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FIG. 5. Five components from SING. Each component has four views (clockwise: lateral left, lateral right,
medial right, medial left) from the task map component (left two columns) and four views from the L1 norms of
the edges for each node in the symmetric loadings matrix from the rs correlations (right two columns). These
five components were selected because the areas of activation are visible on the inflated surface in a common
orientation. In all images the colorbar is set with absolute percentage [2, 99.9].

modality tends to contain clear structure and the other modality contains less structure, as
shown in Supplementary Material Figure S.9. In particular, there is little spatial correspon-
dence between components. In mCCA + jICA, the correlation between the subject scores
from the same component ranged from 0.70 (component 1) to 0.31 (component 13) with a
trend in decreasing correlations with higher component number (correlation between com-
ponent correlations and component number = −0.68). In mCCA + jICA, there tends to be
spatial correspondence in early components, but later components exhibit a lack of spatial
correspondence; see Supplementary Material Figure S.10 for components 1, 7, 13, 19 and
25.

We compared a component from each method that was strongly related to fluid intelli-
gence. Figures 6a and d show the SING component from Figure 4. The area highlighted
in the working memory loadings in SING (Figure 6a, yellow in the medial view of the left
hemisphere) is also prominent in the working memory loadings in Joint ICA and mCCA +
jICA (Figure 6b and c, respectively). However, the corresponding region of interest in the rs
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FIG. 6. Loadings from a component strongly related to fluid intelligence in SING, Joint ICA, and mCCA +
jICA. Top: Working memory loadings. Bottom: L1 norms of the rows of the rs correlation loadings. In all methods,
parcel L_7Pm_ROI has large loadings in the working memory task (area in yellow in panel a, also visible in b
and c). This area is also prominent in the rs correlations in SING (panel d), but not in Joint ICA (panel e) nor
mCCA + jICA (panel f). Panels a) and d) correspond to the SING component depicted in Figure 4. In all images
the colorbar is set with absolute percentage [2, 99.9].

correlation loadings is not visible in Joint ICA or mCCA + jICA (Figures 6e and f, respec-
tively). Also notable is that the contralateral parcel R_7Pm_ROI in SING is highlighted in
component 11 (not shown), again with high spatial correspondence between working mem-
ory and rs correlations, and is also associated with fluid intelligence (t = 4.5, p < 1e − 05).
In Joint ICA, the subject scores corresponding to the loadings depicted in Figure 6b and e
are strongly related to fluid intelligence (t = 5.10, p < 1e − 06), but there is little evidence
of spatial correspondence. In mCCA + jICA, the subjects’ scores corresponding to panels c
and f are most strongly related to fluid intelligence (t = 11.34, p < 1e − 16 and t = 7.62,
p < 1e − 13, respectively; correlation between scores: ρ = 0.46). In panel f, the yellow area
in the lateral view of the right hemisphere of the L1 norms of the rs correlation loadings
corresponds to R_PFm_ROI, which is a major node in the task positive network. This region
is visible in red and orange in the working memory loadings (panel c). However, the promi-
nent yellow areas in the working memory loadings roughly correspond to R_7Pm_ROIs and
L_7Pm_ROI, which is the region discussed in the SING component, and R_p9-46v_ROI and
L_p9-46v_ROI, which is in the dorsolateral prefrontal cortex. These areas are not apparent
in the rs correlation loadings in panel f. The observed spatial correspondence in SING, but
not in Joint ICA or mCCA + jICA, is consistent with our large-scale simulation (Figure 3).
Additional discussion of joint loadings is in Supplementary Material S.8 and Figure S.11.

5. Discussion. We propose Simultaneous non-Gaussian component analysis (SING) for
extracting shared structure from two datasets, which reveals a different view of human brain
function compared to two existing methods. In simulations, our algorithm extracts shared
structure, whereas Joint ICA and mCCA + jICA discard this structure and/or incorrectly as-
sociate structure unique to a dataset. In our application to the Human Connectome Project,
each component identifies spatial locations of high activation in a working memory task that
are linked to a spatially coinciding region in the resting-state correlations. For the regions
that contribute to working memory, SING reveals those locations that also have a large con-
tribution to brain activity in the resting state. The spatial correspondence is learned from the
model, and in itself is an important biological discovery.
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Our results may shed light into the regional-specialization paradigm and network paradigm
of the brain: a specialized region in the task fMRI is associated with the same region in the rs
correlations plus a picture of its connections to other regions. It has been hypothesized that
the salience network mediates between central executive (which involves working memory)
and default-mode networks (Bressler and Menon (2010)). We provided an illustration of the
meaning in the subject scores and loadings by examining the component most strongly re-
lated to fluid intelligence. The locations highlighted in the working memory task coincided
with the L_7Pm_ROI in the resting-state correlation loadings, which is in the central execu-
tive network. The rs correlation loadings in SING also revealed that this region has positive
connections with regions in the dorsal salience network and negative connections with the
default mode network, lending support to the multinetwork switching hypothesis. The region
7Pm_ROI was also prominent in the working memory loadings in Joint ICA and mCCA +
jICA; however, the resting-state correlation loadings did not have spatial correspondence. In
a related study, Lerman-Sinkoff et al. (2017) examined four modalities from the HCP dataset:
the 2-Back working memory activation maps, activation maps from a relationship processing
task, cortical thickness, and rs correlations. They examined how subject scores were related
to a composite measure of cognition, which was based on four variables, including the mea-
sure of fluid intelligence examined here. They identified one component significantly related
to cognition for all four modalities. The loadings highlighted regions of the visual system in
both tasks, as well as a small region near 7Pm_ROI in the 2-Back task. The resting-state cor-
relations indicated modular community organization with the visual system, dorsal attention,
and cingulo-opercular, while cortical thickness loadings were prominent in the insula. The
authors note that a limitation of their approach is that ICA-based methods may not guarantee
a perfect decomposition and separation of sources. We agree this is a limitation of current
approaches, and we suggest SING is an improvement. A limitation of our approach is that
we only considered two datasets, and an important avenue for future research is the extension
to multiple datasets that may contain partially shared structure. For each subject, our rs cor-
relations were generated by averaging correlations from four scans. An interesting extension
would be to develop a hierarchical model that can leverage longitudinal measurements on the
same modality.

Our approach results in components with smaller brain regions of high activation com-
pared to Joint ICA and mCCA + jICA. Previous studies applying ICA to subject-by-voxel
data have used an empirical approach to selecting the number of components. In Willette
et al. (2014), 20 components resulted in “poor specificity,” while a larger number of com-
ponents produced “fragmentary” ICs. We speculate that the smaller areas of cortex in SING
may result in improved specificity in the sense that the subject scores are localized to smaller
brain regions; in contrast, approaches with larger brain regions may aggregate subregions that
perform different functions, decreasing the specificity of the associated subject scores.

There are some shortcomings of the current work that should be investigated in future
research. Local optima are a challenge in ICA and LNGCA because the Stiefel manifold
is a nonconvex space, and the choice of non-Gaussian measure may also be nonconvex, as
in the JB statistic. In practice, we have found that it is more challenging to find the argmax
when estimating a large number of components, as in our data example, than when estimating
components from an initial PCA step, although issues with local minima do also occur in the
latter case (Risk et al. (2014)). Additionally, the number of components may be sensitive to
the choice of α in data applications due to the lack of a clear gap between the correlations of
joint and individual components. Hence, we recommend using two sets of initializations and
retaining reliable components, as described in Section 4.1, but acknowledge this approach
may discard some non-Gaussian information.

We examined the relationship between a working memory task and rs-fMRI. Supplemen-
tary Material Figure S.8 suggests a substantial portion of the locations with large loadings in
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the task are associated with working memory activation, and similarly for the loadings in the
rs correlations. An important avenue for future research is to examine which regions of the
brain are prominent when integrating rs-fMRI with other tasks. For example, areas of the mo-
tor cortex may be highlighted in rs-fMRI when analyzing shared structure between a motor
task and resting-state data. While we used Pearson correlations as our estimate of functional
connectivity, Mohanty et al. (2020) suggest a composite measure of functional connectivity
including Pearson correlation, coherence, mutual information, and dissimilarity measures.
SING could be investigated as a method to integrate multiple measures. Another important
avenue for future research is a sparse method that produces exact zeros in the loadings, for
example, by using the L1-norm to measure non-Gaussianity of loadings rather than the JB
statistic employed here. This may improve interpretability.
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Sections 3 and 4 (Risk and Gaynanova (2021)).

R code and simulated dataset (DOI: 10.1214/21-AOAS1466SUPPB; .zip). R code to
replicate the simulations is available at https://github.com/irinagain/SING (Risk and Gay-
nanova (2021)).
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