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Comment: Clarifying Endogeneous Data
Structures and Consequent Modelling
Choices Using Causal Graphs
Erica E. M. Moodie and David A. Stephens

We read with great interest the article by Qian, Klasnja
and Murphy (2020), and commend the authors for focus-
ing on principled estimation and providing a quantitative
approach to healthcare delivery through mobile devices.
The quantitative analyses studied here could have wide-
ranging applications that may serve to increase patient
empowerment by taking medical monitoring and even in-
tervention out of the clinic and into the home.

Here, we wish to delve into two complementary aspects
of the work: first, we attempt to give clarifications con-
cerning the parameter(s) of interest, and second, we pro-
vide visualizations of potential scenarios that may help
to clarify estimands and when biases due to endogeneity
may arise.

1. TREATMENT EFFECTS: ONE, TWO
OR TOO MANY?

The authors focus on the setting of (micro)randomized
trials, where the treatment of interest is assigned entirely
at random. In this setting, one would often expect to be
able to perform causal inference, since a key barrier to
doing so— confounding—is eliminated thanks to the ran-
domized nature of the treatment assignment. In the mo-
tivating HeartSteps study, for instance, the question of
interest is to determine the optimal treatment strategy to
remind an individual to exercise or not based on their lo-
cation and recent step activity, with the goal of maximiz-
ing steps taken over the next 30 minutes. This question
suggests a causal estimand, targeting the effect of the re-
minder and any modification of the reminder effect by in-
dividual covariates.

We attempt here to provide a more precise focus on the
estimand in plausible scenarios of interest: a single treat-
ment effect (a ‘main effect model’), an effect that is mod-
ified by covariates (an interaction model), or a truly in-
dividualized treatment effect characterized by a random
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slopes model. In such cases, the effect of covariates be-
yond their modification of treatment are not of primary in-
terest. Looking to equation (15) and Table 2 of Qian, Klas-
nja and Murphy (2020), the βs are the only parameters
of interest, while the random effects bi1 will, themselves,
also be essential to tailoring treatment recommendations.
As we will demonstrate in the next section, sharpening
attention to the parameters of interest allows the analyst
to step back from the complexities of all dependencies
within the longitudinal data generating structure, and take
note of those most relevant to the scientific question.

Suppose that there does exist heterogeneity in the treat-
ment effect that cannot only be explained by covariates,
but rather requires a random slope term. This would im-
ply a treatment strategy that requires knowing or inferring
an individual’s random effect prior to being able to im-
plement the treatment strategy. In the setting described in
the study, where there are over 150 measures available on
average for the participants, this is feasible; however, the
strategy would not immediately generalize to future users.
Rather, a potentially significant volume of data would first
need to be collected to estimate each user’s random slope.

2. VISUALIZATION WITH ACYCLIC GRAPHS:
UNDERSTANDING ENDOGENIETY AND
CONSEQUENT MODELLING CHOICES

Qian, Klasnja and Murphy (2020) raise a number of in-
teresting scenarios where bias arises even in seemingly
simple situations, such as when treatment is randomized.
Some of the scenarios raised may be familiar to those with
a causal inference background, whereas there are others
that are less obvious and perhaps made somewhat less
clear without the explicit specification of the estimand of
interest. Here, we attempt to clarify, through the visual
means provided by causal diagrams (Greenland, Pearl
and Robins, 1999), the estimand(s) of interest and pos-
sible sources of bias. To emphasize the estimand-focused
framework of a causal paradigm, the effects of interest are
shown as black arrows, with other conditional dependen-
cies in the data-generative model are shown in grey.

Consider Figure 1, panel A, which follows the notation
of Qian, Klasnja and Murphy (2020): a longitudinal set-
ting where X is endogenous. The relationship of interest
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is the effect of Xj on Yj+1. Using the usual principles
of conditional independences in directed acyclic graphs
(DAGs), there is the potential for bias in estimation of
the effect of interest if there exists an open ‘backdoor’
path between Xj and Yj+1, that is, a sequence of edges
connecting nodes that is neither blocked by conditioning
on the node variables nor by a ‘collider’ node that has
two inbound directed edges (Greenland, Pearl and Robins,
1999). In panel A, we observe a backdoor path from Yj+1
to Xj through the random effect b0 and the previous out-
come Yj . It is therefore clear that it is necessary to block
this path, and one means to doing so is by using a model
that conditions on the random effect. Note that we assume
no correlation between the covariates and the random ef-
fect; if such correlations were suspected, these could be
incorporated into the graph, for example, by including a
new node in the graph that was a common cause of both
Xj and b0.

We now add a randomized treatment to the scenario in
panel B of Figure 1, without any further complications:
we assume no heterogeneity in the treatment effect, ei-
ther through a random slope or via interactions with the
covariates. It is evident that there is no path between Aj

and Yj+1 except the one which is directly of interest, and
which encapsulates the estimand of the direct effect of
treatment on the proximal outcome. The endogeneity of
X is irrelevant here, because X is not a confounder nor
does it play any role in the estimand of interest, which is
the treatment (A) effect.

Finally, consider scenarios most pertinent to behavioral
treatment delivery: in the first, treatment is modified by
covariates, and thus what is optimal for a given individual
at one time point may not be so for someone else, or even
for that individual at another time due to their evolving co-
variate profile. In the second, treatment effects vary across
individuals, with this heterogeneity being captured in a
random slope. Visualizing these scenarios is less straight-
forward.

There has been some discussion, and a number of pos-
sible representations, of interactions in DAGs (Weinberg,
2007, Lopez, Subramanian and Schooling, 2019) and,
as recently as 2014, it has been stated that “DAGs can-
not represent interactions or effect modification” (Foraita,
Spallek and Zeeb, 2014) though many would disagree
(VanderWeele and Robins, 2007). Regarding the DAG as
a structural but not quantitative representation of the prob-
abilistic relationship between variables, we may conclude
that an interaction node is merely a node that receives
inbound directed edges from the interacting variables in
a deterministic relationship. Consequently, we represent
an interaction via arrows from the interacting variables to
both the outcome and a product node (see Figure 1, panels
C and D).

In panel C, the critical pathways to determining indi-
vidualized treatment recommendations are then the direct

FIG. 1. Directed acyclic graphs depicting potential scenarios of
interest. (A) Endogenous covariate X and a random intercept b0.
(B) Scenario A + a sequentially randomized treatment A. (C) Sce-
nario B + treatment covariates interactions (A · X), depicted by *.
(D) Scenario B + treatment heterogeneity in the form of a random
slope, b1, that interacts with treatment as depicted by *. Black arrows
denote relationships of interest (which will ultimately be parameter-
ized in some way to describe the estimand of interest); grey arrows
denote conditional dependencies that are not of explicit interest. For
simplicity, serial dependence between Xs and between Y s is omitted.

effect of Aj on Yj+1 (i.e., the impact of treatment at refer-
ence levels of covariates Xj ) and all effects of Aj on Yj+1
that are moderated by Xj . Here, as in the first scenario
from panel A, we see there exists a path through the ran-
dom intercept that could bias estimation. Although there
is an open path between Yj+1 to Xj , conditioning on Xj

blocks the back door path between XjAj and Yj+1, im-
plying conditioning on the random intercept b0 is not nec-
essary. In contrast, in panel D, treatment heterogeneity is
in the form of a random slope (but no treatment-covariate
interactions). The effect of interest is thus encoded in the
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pair of arrows from Aj and Ajb1 into Yj+1, and so it is
clear that conditioning on b1 is needed to account for the
individual-specific component of the treatment effect.

These plots can of course be elaborated upon, based
on assumptions concerning the data generation process—
e.g. heterogeneity due to both treatment-covariate interac-
tions and a random slope on the treatment effect could be
considered. While the graphs become more complex, de-
liberate focus on the estimand(s) of interest may help to
elucidate when a mixed model is an appropriate choice,
and whether a conditional-on-random effect model is re-
quired.

Using simple visualizations requires careful considera-
tion and a precise elaboration of the assumptions in the
domain science context, as was noted by Qian, Klasnja
and Murphy (2020) regarding the conditional indepen-
dence assumption. Many of these assumptions will not
be empirically testable; however, an explicit description
can help to clarify ideas, and open dialogue between re-
searchers.

3. TIME-VARYING CONFOUNDING AND MEDIATION

The issue of time-varying confounding is discussed in
an early section of the article. We contend that the defi-
nition given warrants elaboration. It is well established in
the literature that a time-varying confounder need not be
a mediator, and different inferential methods may be re-
quired depending on whether or not mediation is present.
For example, in a marginal model, inverse probability of
treatment weighting (IPTW) will provide valid inference
whether or not mediation is present. However, a model
that conditions on the time-dependent variables may only
give valid inference if there is no mediation. Graphi-
cal representations such as those in Figure 1 are again
useful in elucidating these issues (see, e.g., Moodie and
Stephens, 2010, Moodie and Stephens, 2011). In partic-
ular, it can easily be seen from a causal diagram that a
time-varying confounder that is not also a mediator is not,
in general, endogenous.

4. FINAL REMARKS

Mobile health is a growing area that promises to revolu-
tionize health management. It is encouraging to see atten-
tion being paid to the statistical approaches that can make

use of data from mobile phones and wearable devices,
and in particular, interesting to see that familiar models
such as those including random effects remain useful. Al-
though the sample size was quite modest in the Heart-
Steps analysis of Qian, Klasnja and Murphy (2020), data
volume will be the next challenge to consider with mo-
bile health data. However, whatever the length of the time
series or the number of individuals under study, careful
consideration of the underlying data generating process
should form the basis of all analyses.
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