
Statistical Science
2020, Vol. 35, No. 3, 430–433
https://doi.org/10.1214/20-STS772
Main article: https://doi.org/10.1214/20-STS721
© Institute of Mathematical Statistics, 2020

Comment: Invariance and Causal Inference
Stefan Wager

The problem of distinguishing causal effects from non-
causal correlations is one of the oldest and most chal-
lenging questions in statistics. In recent years, Professor
Bühlmann and co-authors have outlined new methodol-
ogy for estimating causal effects that starts from an in-
variance postulate: A set of variables X is causally rel-
evant to an outcome Y if the distribution of Y condi-
tionally on X, L(Y | X), is invariant across all relevant
environments. This hypothesis then leads to statistical
methodologies that seek causal effects by fitting mod-
els that are robust across numerous environments (Peters,
Bühlmann and Meinshausen, 2016, Rothenhäusler et al.,
2019). The present paper, generously prepared by Profes-
sor Bühlmann, is an enlightening summary of this ground-
breaking line of work and a valuable addition to the liter-
ature.

This invariance hypothesis presents a marked and
thought-provoking departure from the currently domi-
nant paradigm for understanding causal effects in epi-
demiology and econometrics, which defines causal ef-
fects in terms of potential outcomes and emphasizes the
role of experimental design in identifying causal effects
(Neyman, 1923, Holland, 1986, Robins and Richardson,
2010, Rubin, 1974, Rubin, 2005). In general, the poten-
tial outcomes based approach allows treatment effects to
vary arbitrarily with both observed and unobserved fea-
tures and is focused on defining, identifying and estimat-
ing various (weighted) treatment effect functionals under
minimal assumptions. Characterizing how the invariance
hypothesis fits into the potential outcomes framework
is important to understanding how the results of Peters,
Bühlmann and Meinshausen (2016) and Rothenhäusler
et al. (2019) connect to more classical approaches.

Potential outcomes and weighted treatment effects. The
earliest application of the potential outcomes framework
was Neyman’s analysis of the randomized controlled trial.
In this setting, we are interested in measuring the effect of
a binary treatment Wi on a real-valued outcome Yi . We
posit the existence potential outcomes {Yi(0), Yi(1)} cor-
responding to the outcome the ith observation would have
experienced had they received treatment assignment 0 or
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1, respectively, such that Yi = Yi(Wi), and then define the
sample average treatment effect1

(1) τSATE = 1

n

n∑
i=1

(
Yi(1) − Yi(0)

)
.

The seminal result of Neyman (1923) is that, if the
treatment assignment Wi is randomized, that is, the
treatment assignment is exchangeable and {Wi}ni=1 ⊥⊥
{Yi(0), Yi(1)}ni=1, then we can construct an unbiased es-
timate of τSATE without assumptions: No modeling as-
sumptions are made on the potential outcomes Yi(w), and
in fact the potential outcomes may even be taken as de-
terministic such that only Wi is random.2 In particular,
it is not necessary to assume that the causal effect is the
same for each unit, for example, that Yi(1) − Yi(0) = τ

for some shared (or invariant) causal parameter τ .
Starting with Rubin (1974), there has been consider-

able interest in generalizing the ideas of Neyman (1923)
beyond the randomized controlled trial, and in develop-
ing appropriate treatment effect estimators that remain
justified without making structural assumptions on the
per-unit treatment effects Yi(1) − Yi(0). One setting that
has received considerable attention is that of Rosenbaum
and Rubin (1983), where treatment assignment Wi is
not randomized, but we observe covariates Xi such that
Wi is as good as random after we condition on them,
{Yi(0), Yi(1)} ⊥⊥ Wi | Xi . Under an IID sampling model,
the semiparametric efficient variance V for estimating the
average treatment effect τ = E[Yi(1)−Yi(0)] can be writ-
ten in terms of the propensity score e(x) = P[Wi = 1 |
Xi = x] (Hahn, 1998, Robins and Rotnitzky, 1995),

V = Var
[
E

[
Yi(1) − Yi(0) | Xi

]]

+E

[
Var[Yi(0) | Xi]

1 − e(Xi)
+ Var[Yi(1) | Xi]

e(Xi)

]
,

and efficient estimators satisfy
√

n(τ̂ − τ) ⇒ N (0,V ).
One complaint about this result, however, is that V

scales with the inverse of the propensity score, and can
get quite large if we have poor overlap (i.e., e(Xi) can get

1One major assumption here is that of no interference, that is, that
Wi only affects the outcome of the ith unit (Imbens and Rubin, 2015).
For a discussion of potential outcomes modeling under interference;
see Basse, Feller and Toulis (2019), Hudgens and Halloran (2008) and
references therein.

2These results can be considerably generalized. For example, Ding,
Feller and Miratrix (2019) and Lin (2013) for a discussion of regres-
sion adjustments in this setting.
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close to 0 or 1). We can avoid this problem by changing
estimands. In medical settings, it is common to have some
units who are essentially guaranteed to get control and
have e(Xi) very close to 0 because the studied treatment
is simply not applicable to them. In cases like these, it
may be more fruitful to estimate the average treatment ef-
fect on the treatment τATT = E[Yi(1)−Yi(0) | Wi = 1], in
which case the semiparametric efficiency bound depends
inversely on 1−e(Xi) but not e(Xi) (Hahn, 1998). Mean-
while, if we have overlap problems near both 0 and 1,
Crump et al. (2008) and Li, Morgan and Zaslavsky (2018)
advocate further modifying the estimand to improve the
precision we can estimate it with; for example, one could
target the overlap-weighted average treatment effect

τATO = E
[
e(Xi)

(
1 − e(Xi)

)(
Yi(1) − Yi(0)

)]
/E

[
e(Xi)

(
1 − e(Xi)

)]
.

The upshot is that, under the unconfoundedness as-
sumption of Rosenbaum and Rubin (1983), the accuracy
with which we can estimate treatment effects in different
parts of the feature space depends on the propensity score,
and it is possible to mitigate excess variance by focus-
ing on those parts of the feature space where e(·) is clos-
est to 0.5. However, in a general sampling design, such
re-weighting changes the estimand, and the literature on
treatment effect estimation has gone to considerable trou-
ble to understand how.3

Questions on how best to weight heterogeneous treat-
ment effects are also of central importance in many set-
tings beyond the above one. Imbens and Angrist (1994)
consider treatment effect estimation under noncompli-
ance, and discuss when instrumental variables methods
can be used to identify the average treatment effect on
the compliers. Regression discontinuity designs exploit
sharp treatment assignment rules to identify treatment ef-
fects for marginal units close to the treatment boundary
(Hahn, Todd and Van der Klaauw, 2001), and again care-
fully weighting our estimand can lead to gains in preci-
sion (Imbens and Wager, 2019). Athey and Wager (2017)
and Kitagawa and Tetenov (2018) consider the problem
of learning simple treatment assignment rules under arbi-
trary treatment heterogeneity.

Identification via invariance. The invariance-based ap-
proach takes a view that goes in essentially the oppo-
site direction from the potential outcomes approach as
discussed above. Instead of starting from a perspective
that treatment effects are heterogeneous and then studying

3One interpretation of the overlap-weighted estimand τATO is the
following. Suppose a statistician erroneously believed that all treat-
ment effects were constant, Yi(1) − Yi(0) = τ , and sought to estimate
the parameter τ using the popular estimator of Robinson (1988). Then,
in large samples, the resulting estimate τ̂ would not converge to the av-
erage treatment effect, but rather to τATO.

how different estimators can recover different weighted
averages of the treatment effect function, it starts by posit-
ing the targeted causal effects as invariant, and then uses
this invariance to design new identification strategies.

The invariance assumption is obviously a powerful
idea, and has led to some striking empirical successes.
In particular, it is far from clear how one might have ap-
proached the impressive gene-knockout study of Meins-
hausen et al. (2016) starting from a definition of causal
effects via potential outcomes. What is not clear to me
is the relationship between the kinds of effects that are
identified via the invariance-based methods discussed by
Bühlmann, and (appropriately weighted) treatment effects
that are the focus of epidemiological or econometric stud-
ies following the potential outcomes paradigm as outlined
in Imbens and Rubin (2015). Understanding this con-
nection further seems like an important topic for further
study.

One area where synthesis between the potential
outcome- and invariance-based approaches to causal in-
ference may be particularly fruitful is in modeling “ex-
ternal validity”, that is, how causal effects measured in
once context are relevant in a new context. In a very crude
sense, one could argue that the potential outcomes com-
munity strives to measure well-defined weighted in-study
average treatment effects under minimal assumptions, but
has focused less on how these effects transport to different
contexts. Conversely, the invariance-based approach takes
external validity as given and uses it to highlight causal
effects that would remain unidentified in a pure potential
outcomes setting. One question that is likely to benefit
from insights from both communities is in understand-
ing which representations of causal effects have the most
reliable external validity. Such representations would be
extremely helpful for data-driven policy making across
heterogeneous environments. In any case, effects that are
both “invariant” in the sense of Bühlmann’s paper and
“causal” in the sense of potential outcomes modeling are
likely to be of particular scientific interest.

The California GAIN study. To highlight these issues in
the context of an application, consider the following stud
whose goal was to evaluate the efficacy of a jobs train-
ing program. California’s Greater Avenues to Indepen-
dence (GAIN) program is designed to help welfare recipi-
ents rejoin the workforce. Starting in 1988, the Manpower
Demonstration Research Corporation conducted a ran-
domized evaluation of the GAIN program; see Hotz, Im-
bens and Klerman (2006) for a detailed discussion of the
experiment. The GAIN evaluation was run across multi-
ple counties, including Alameda, Los Angeles, Riverside
and San Diego. Each county participating in the experi-
ment was given considerable discretion in how to imple-
ment GAIN. Riverside chose to focus on a labor force at-
tachment approach centered around quickly moving peo-
ple on welfare into jobs—even if they are low-paying
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TABLE 1
Site-specific average treatment effect estimates for the GAIN trial. All
confidence intervals were obtained using a Welch two-sample t-test

County: Alameda Los Angeles Riverside San Diego

95% CI 0.16 +/− 0.19 0.03 +/− 0.09 0.25 +/− 0.10 0.13 +/− 0.11

jobs. In contrast, Alameda, Los Angeles and San Diego
adopted more of a focus on human capital development,
including education and vocational training.

Table 1 shows estimates of the average treatment ef-
fect of GAIN across the four counties. Following Hotz,
Imbens and Klerman (2006), the outcome measure is av-
erage quarterly income (in $1000s) over the 9-year post-
randomization period. We immediately see that the treat-
ment effect estimate in Riverside is much larger than that
in any other county. The finding that Riverside achieved
a greater treatment effect than the other counties was
quickly interpreted by several stakeholders to mean that
labor force attachment was a more effective principle for
the design of welfare-to-work programs than human capi-
tal development. To formalize this claim, one would need
to make a kind of invariance argument: If we believed that
all counties with a human capital development focused
welfare-to-work program should have similar treatment
effects, and the Riverside program stands out, then it is
natural to attribute the exceptional success of the River-
side program to its use of a labor force attachment ap-
proach.

Hotz, Imbens and Klerman (2006), however, question
this interpretation. The GAIN dataset includes a num-
ber of pre-treatment covariates Xi , and some interest-
ing patterns arise when including them into the analy-
sis. First, the participants in Riverside’s GAIN evalua-
tion had a different covariate distribution from GAIN par-
ticipants.4 Second, these covariates appear to explain a
considerable amount of treatment heterogeneity, that is,
the conditional average treatment effect function function
τ(x) = E[Yi(1) − Yi(0) | Xi = x] varies in x. Finally, ad-
justing for these pre-treatment covariates is able to explain
at least some of differences between the treatment effects
measured in different counties. For example, when train-
ing a causal forest for τ(x) (Athey, Tibshirani and Wager,
2019), the average of the out-of-bag predictions τ̂ (−i)(Xi)

in Los Angeles is 0.10 whereas the average of τ̂ (−i)(Xi)

in Riverside is 0.16.5

4For example, the average age of GAIN participants in Riverside
was 33.6 years, as opposed to 35.4 years in the other counties. 52%
of GAIN participants in Riverside were white, as opposed to 30% in
other counties.

5Reporting the average out-of-bag predictions is a simple but rather
crude way of showing that the Xi explain at least part of the difference
in treatment effects between Los Angeles and Riverside. The problem

Thus, our interpretation of what the GAIN study
teaches us depends largely on what we are willing to take
as invariant. Initial analyses of the GAIN program implic-
itly assumed the effect of specific intervention types, such
as labor force attachment or human capital development,
to be invariant across sites, and used this to argue in favor
of the labor force attachment approach. In contrast, once
we control for covariates Xi , the data also appears plau-
sibly consistent with an assumption that the conditional
average treatment effect function τ(x) is invariant across
sites, regardless of whether the sites framed their interven-
tions in terms of labor force attachment or human capital
development. In other words, the first approach assumes
invariance across sites to identify differential effects from
different variants of the intervention, whereas the latter as-
sumes invariance across types of intervention and instead
highlights the effect of covariates τ(x). Methodological
innovations that enable us to synthesize between these
two modeling approaches would be of considerable use
here.6

ACKNOWLEDGMENTS

I am grateful for helpful conversations with Guillaume
Basse, Guido Imbens and Dominik Rothenhäusler. This
work was supported by National Science Foundation
Grant DMS-1916163.

REFERENCES

ATHEY, S., TIBSHIRANI, J. and WAGER, S. (2019). General-
ized random forests. Ann. Statist. 47 1148–1178. MR3909963
https://doi.org/10.1214/18-AOS1709

ATHEY, S. and WAGER, S. (2017). Efficient policy learning. Preprint.
Available at arXiv:1702.02896.

BAREINBOIM, E. and PEARL, J. (2016). Causal inference and the
data-fusion problem. Proc. Natl. Acad. Sci. USA 113 7345–7352.

BASSE, G. W., FELLER, A. and TOULIS, P. (2019). Randomization
tests of causal effects under interference. Biometrika 106 487–494.
MR3949317 https://doi.org/10.1093/biomet/asy072

CRUMP, R. K., HOTZ, V. J., IMBENS, G. W. and MITNIK, O. A.
(2008). Nonparametric tests for treatment effect heterogeneity. Rev.
Econ. Stat. 90 389–405.

DING, P., FELLER, A. and MIRATRIX, L. (2019). Decomposing
treatment effect variation. J. Amer. Statist. Assoc. 114 304–317.
MR3941256 https://doi.org/10.1080/01621459.2017.1407322

of how best to transport potentially heterogeneous effects across sites
has received a fair amount of attention, with recent contributions from
Bareinboim and Pearl (2016), Hernán and VanderWeele (2011) and
Hirshberg, Maleki and Zubizarreta (2019).

6It is also possible to have collider-type phenomena, such that τ (x)

is not be invariant across settings, but that there is some coarsening
Z = f (X) such that τZ(z) = E[Yi(1) − Yi(0) | f (Xi) = z] is invari-
ant. One could attempt to learn the best function for predicting treat-
ment effects in a new environment by using leave-environment-out
cross-validation with a loss function that targets the conditional aver-
age treatment effect (Nie and Wager, 2017, van der Laan and Dudoit,
2003).

http://www.ams.org/mathscinet-getitem?mr=3909963
https://doi.org/10.1214/18-AOS1709
http://arxiv.org/abs/arXiv:1702.02896
http://www.ams.org/mathscinet-getitem?mr=3949317
https://doi.org/10.1093/biomet/asy072
http://www.ams.org/mathscinet-getitem?mr=3941256
https://doi.org/10.1080/01621459.2017.1407322


COMMENT 433

HAHN, J. (1998). On the role of the propensity score in efficient semi-
parametric estimation of average treatment effects. Econometrica
66 315–331. MR1612242 https://doi.org/10.2307/2998560

HAHN, J., TODD, P. and VAN DER KLAAUW, W. (2001). Iden-
tification and estimation of treatment effects with a regression-
discontinuity design. Econometrica 69 201–209.

HERNÁN, M. A. and VANDERWEELE, T. J. (2011). Compound treat-
ments and transportability of causal inference. Epidemiology 22
368.

HIRSHBERG, D. A., MALEKI, A. and ZUBIZARRETA, J. (2019). Min-
imax linear estimation of the retargeted mean. Preprint. Available
at arXiv:1901.10296.

HOLLAND, P. W. (1986). Statistics and causal inference. J. Amer.
Statist. Assoc. 81 945–970. MR0867618

HOTZ, V. J., IMBENS, G. W. and KLERMAN, J. A. (2006). Evaluating
the differential effects of alternative welfare-to-work training com-
ponents: A reanalysis of the California GAIN program. J. Labor
Econ. 24 521–566.

HUDGENS, M. G. and HALLORAN, M. E. (2008). Toward causal
inference with interference. J. Amer. Statist. Assoc. 103 832–842.
MR2435472 https://doi.org/10.1198/016214508000000292

IMBENS, G. W. and ANGRIST, J. D. (1994). Identification and estima-
tion of local average treatment effects. Econometrica 62 467–475.

IMBENS, G. W. and RUBIN, D. B. (2015). Causal Inference—
For Statistics, Social, and Biomedical Sciences: An introduction.
Cambridge Univ. Press, New York. MR3309951 https://doi.org/10.
1017/CBO9781139025751

IMBENS, G. and WAGER, S. (2019). Optimized regression disconti-
nuity designs. Rev. Econ. Stat. 101 264–278.

KITAGAWA, T. and TETENOV, A. (2018). Who should be treated?
Empirical welfare maximization methods for treatment choice.
Econometrica 86 591–616. MR3783340 https://doi.org/10.3982/
ECTA13288

LI, F., MORGAN, K. L. and ZASLAVSKY, A. M. (2018). Balanc-
ing covariates via propensity score weighting. J. Amer. Statist. As-
soc. 113 390–400. MR3803473 https://doi.org/10.1080/01621459.
2016.1260466

LIN, W. (2013). Agnostic notes on regression adjustments to experi-
mental data: Reexamining Freedman’s critique. Ann. Appl. Stat. 7
295–318. MR3086420 https://doi.org/10.1214/12-AOAS583

MEINSHAUSEN, N., HAUSER, A., MOOIJ, J. M., PETERS, J., VER-
STEEG, P. and BÜHLMANN, P. (2016). Methods for causal in-
ference from gene perturbation experiments and validation. Proc.
Natl. Acad. Sci. USA 113 7361–7368.

NEYMAN, J. (1923). Sur les applications de la théorie des probabilités
aux experiences agricoles: Essai des principes. Rocz. Nauk Rol. 10
1–51.

NIE, X. and WAGER, S. (2017). Quasi-oracle estimation of heteroge-
neous treatment effects. Preprint. Available at arXiv:1712.04912.

PETERS, J., BÜHLMANN, P. and MEINSHAUSEN, N. (2016). Causal
inference by using invariant prediction: Identification and confi-
dence intervals. J. R. Stat. Soc. Ser. B. Stat. Methodol. 78 947–1012.
MR3557186 https://doi.org/10.1111/rssb.12167

ROBINS, J. M. and RICHARDSON, T. S. (2010). Alternative graphical
causal models and the identification of direct effects. In Causality
and Psychopathology: Finding the Determinants of Disorders and
Their Cures 103–158. Oxford Univ. Press, Oxford.

ROBINS, J. M. and ROTNITZKY, A. (1995). Semiparametric effi-
ciency in multivariate regression models with missing data. J. Amer.
Statist. Assoc. 90 122–129. MR1325119

ROBINSON, P. M. (1988). Root-N -consistent semiparametric regres-
sion. Econometrica 56 931–954. MR0951762 https://doi.org/10.
2307/1912705

ROSENBAUM, P. R. and RUBIN, D. B. (1983). The central role of
the propensity score in observational studies for causal effects.
Biometrika 70 41–55. MR0742974 https://doi.org/10.1093/biomet/
70.1.41

ROTHENHÄUSLER, D., MEINSHAUSEN, N., BÜHLMANN, P. and PE-
TERS, J. (2018). Anchor regression: Heterogeneous data meets
causality. Preprint. Available at arXiv:1801.06229.

RUBIN, D. B. (1974). Estimating causal effects of treatments in ran-
domized and nonrandomized studies. J. Educ. Psychol. 66 688.

RUBIN, D. B. (2005). Causal inference using potential outcomes: De-
sign, modeling, decisions. J. Amer. Statist. Assoc. 100 322–331.
MR2166071 https://doi.org/10.1198/016214504000001880

VAN DER LAAN, M. J. and DUDOIT, S. (2003). Unified cross-
validation methodology for selection among estimators and a gen-
eral cross-validated adaptive epsilon-net estimator: Finite sample
oracle inequalities and examples. Paper 130, U.C. Berkeley Divi-
sion of Biostatistics Working Paper Series.

http://www.ams.org/mathscinet-getitem?mr=1612242
https://doi.org/10.2307/2998560
http://arxiv.org/abs/arXiv:1901.10296
http://www.ams.org/mathscinet-getitem?mr=0867618
http://www.ams.org/mathscinet-getitem?mr=2435472
https://doi.org/10.1198/016214508000000292
http://www.ams.org/mathscinet-getitem?mr=3309951
https://doi.org/10.1017/CBO9781139025751
http://www.ams.org/mathscinet-getitem?mr=3783340
https://doi.org/10.3982/ECTA13288
http://www.ams.org/mathscinet-getitem?mr=3803473
https://doi.org/10.1080/01621459.2016.1260466
http://www.ams.org/mathscinet-getitem?mr=3086420
https://doi.org/10.1214/12-AOAS583
http://arxiv.org/abs/arXiv:1712.04912
http://www.ams.org/mathscinet-getitem?mr=3557186
https://doi.org/10.1111/rssb.12167
http://www.ams.org/mathscinet-getitem?mr=1325119
http://www.ams.org/mathscinet-getitem?mr=0951762
https://doi.org/10.2307/1912705
http://www.ams.org/mathscinet-getitem?mr=0742974
https://doi.org/10.1093/biomet/70.1.41
http://arxiv.org/abs/arXiv:1801.06229
http://www.ams.org/mathscinet-getitem?mr=2166071
https://doi.org/10.1198/016214504000001880
https://doi.org/10.1017/CBO9781139025751
https://doi.org/10.3982/ECTA13288
https://doi.org/10.1080/01621459.2016.1260466
https://doi.org/10.2307/1912705
https://doi.org/10.1093/biomet/70.1.41

	Acknowledgments
	References

