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Comment: On the Potential for Misuse of
Outcome-Wide Study Designs, and Ways
to Prevent It
Stijn Vansteelandt and Oliver Dukes

We congratulate the authors, VanderWeele, Mathur and
Chen (2020) (hereafter referred to as VMC), for making
an interesting and important proposal, and thank the edi-
tor for the opportunity to comment on it. We agree with
VMC that outcome-wide epidemiology has the potential
to overcome many of the weaknesses of the traditional
epidemiological approach. Scientific reports that express
the effects of an exposure on a variety of different out-
comes provide a more complete view of the exposure im-
pact, while lessening the risk of selective analysis and re-
porting. We see much value in it, though caution is war-
ranted. In this commentary, we highlight a number of key
limitations, which will in turn suggest preferred analysis
strategies that we find important to consider in addition to
(or instead of) those described by VMC.

1. BIAS INFLATION

With the analysis of multiple outcomes comes a grow-
ing of risk of bias in the effect of the exposure on (at
least one of) those outcomes. Such inflated risk of bias
may be the result of the more elaborate need for mod-
elling (e.g., modelling each outcome separately) and the
ensuing risk of model misspecification, the increased risk
of (informative) missing data in those outcomes, a poten-
tially reduced lack of care in collecting data on risk factors
for all these outcomes (see Section 3) or in modelling the
outcomes’ dependence on measured risk factors, . . . . This
expresses itself in particular into an inflated risk of Type I
errors. Such inflation is not acknowledged by multiplic-
ity adjustments such as the Bonferroni correction, which
assume the absence of bias.
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To appreciate this, let θ̂j express the estimated effect of
exposure on the j th outcome (j = 1, . . . , k). Suppose that
θ̂j is normally distributed around θj with standard devi-
ation σ/

√
n, where n is the sample size. Suppose further

that the exposure has no effect on any of the outcomes, but
that θj is nonetheless normally distributed with mean θ

and standard deviation τ , which may both differ from zero
as a result of bias. Under the above settings, the probabil-
ity to find the exposure being associated with at least one
of k mutually independent outcomes at the α100% signif-
icance level, when Bonferroni correction is used, equals
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Figure 1 displays this for n = 100, σ = 1, α = 0.05 and
θ = 0, τ = 0.1 (left), amounting to bias up to 2 standard
errors away from zero for most outcomes, θ = 0.1, τ = 0
(middle), amounting to bias of 1 standard error for all out-
comes, and θ = 0.1, τ = 0.1 (right), amounting to bias
between −1 and 3 standard errors away from zero for
most outcomes. These figures visualise the growing risk
of false detections that may result from an accumulated
risk of bias across all outcomes.

In view of these concerns, it is essential in our opin-
ion that outcome-wide epidemiologic analyses be based
on propensity scores. Since the same propensity score
model can be used across all analyses, analyses that solely
rely on correct specification of a propensity score model
(see Sections 2 and 3 for specific proposals) do not suf-
fer an increasing risk of model misspecification bias as
more outcomes are being considered. In particular, their
risk of bias due to model misspecification is the same
as in the traditional epidemiologic design, in which one
primary outcome is carefully studied. Further support for
a propensity score analysis comes when drawing a par-
allel with outcome-wide randomised experiments; here,
the propensity score is known by design, rendering an
analysis that solely relies on correct specification of a
propensity score (model) arguably the method of choice.
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FIG. 1. Probability to falsely find the exposure to be associated with at least one of k mutually independent outcomes at the 5% significance
level when Bonferroni correction is used. The bias in the exposure effects is normally distributed with mean θ and standard deviation τ , for θ = 0,
τ = 0.1 (left), θ = 0.1, τ = 0 (middle) and θ = 0.1, τ = 0.1 (right); the standard error of the exposure effect is 0.1 for all outcomes.

For similar reasons that confounding bias in outcome-
wide epidemiologic designs is—in our opinion—best ad-
dressed using propensity scores, outcome missingness
due to dropout (in which case all outcomes are missing)
is best addressed using analyses that solely rely on cor-
rect specification of a dropout model. This prevents an in-
creasing risk of bias as more outcomes are being consid-
ered, as the same model can then apply to all outcomes.

Betting on one propensity score model being correct
may also pose an increased risk (when that model is mis-
specified) as opposed to spreading the risk of misspeci-
fication over different postulated outcome models. In our
opinion, this need not be the case, however, as the need for
more modelling may also imply a reduced care in building
these models. In spite of this, in Section 3 we will propose
a strategy which inherits the above mentioned advantages
of a propensity score analysis, while not betting entirely
on correct specification of a propensity score model.

2. ANALYSIS OF OUTCOME-WIDE VERSUS
TRADITIONAL DESIGNS

It is instructive to contrast the outcome-wide epidemi-
ologic design with the traditional epidemiologic design
in which one primary outcome is carefully studied. This
shows that the consideration of multiple outcomes, in the
way proposed by VMC, may imply dilution of evidence
when some of those outcomes are not or only indirectly
affected by the exposure (e.g., via its effect on previously

considered outcomes). Figure 2 (bottom, right) illustrates
this for a setting where 1 (upper, left), 2 (upper, right),
3 (bottom, left) and 10 (bottom, right) of the considered
outcomes are affected by the exposure. In particular, we
consider mutually independent and normally distributed
effect estimates θ̂j , j = 1, . . . , k with standard deviation
σ/

√
n, of which l < k have mean θ �= 0 and the others

have mean zero. Figure 2 displays the probability to find
the exposure being associated with at least one of the k

outcomes at the α100% significance level, when separate
tests with Bonferroni correction are used (solid, black).
The solid black lines in Figure 2 were calculated as
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for θ = 0.5, σ = 1, n = 10 and α = 0.05. Note the ef-
fect of dilution in all 4 panels as additional outcomes are
considered that are not affected by the exposure. We view
this as undesirable as it implies a potential loss of power,
relative to the traditional epidemiologic design.

It seems tempting to prevent such power loss by first
conducting a global test whether any of the outcomes is
impacted by the exposure. Such global test may for in-
stance be based on propensity scores via the likelihood
ratio test whether θ1 = · · · = θk = 0 in model

logitP(A = 1|Z,Y1, . . . , Yk) = β ′Z +
k∑

j=1

θjYj ,
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FIG. 2. Probability to find the exposure to be associated with at least one of k mutually independent outcomes (of which the first l are affected by
the exposure) at the 5% significance level when Bonferroni correction (solid, black) versus one global test (dashed, red) is used. Upper Left: l = 1
outcome is affected by exposure; Upper Right: l = 2 outcomes are affected by exposure; Lower Left: l = 3 outcomes are affected by exposure; Lower
Right: l = 10 outcomes are affected by exposure.

where A is the dichotomous exposure of interest and Z

is a set of variables that is sufficient to adjust for con-
founding of the exposure effect on all outcomes Yj , j =
1, . . . , k. The red dashed lines in Figure 2 show that also
the global test dilutes evidence as redundant outcomes are
being added. Nonetheless, major power gains can some-
times be achieved relative to the strategy proposed by
VMC, and contrary to what is somewhat suggested by
VMC, who expect the increase in efficiency via global
inference to be “modest.” The red lines were calculated
as the probability that a noncentral chi-square distributed
random variable with k degrees of freedom and noncen-
trality parameter lθ2n/σ 2 exceeds the (1 − α)100% per-
centile of the central chi-square distribution with k de-
grees of freedom.

It follows from the above discussion that a global test
can help prevent some of the power loss, which the pro-
posal by VMC may suffer relative to a traditional epi-
demiologic design. It may even imply an increasing po-
tential to detect outcomes that are impacted by the expo-
sure. For example, several individual tests on the thresh-
old of statistical significance could result in a (highly) sig-

nificant global p-value, giving researchers the incentive to
increase the number of outcomes in the analysis. We also
view this as undesirable, as we believe the purpose of the
outcome-wide epidemiologic design should not be to ar-
tificially increase power via the consideration of multiple
outcomes.

We therefore recommend that the analysis of the
outcome-wide epidemiologic design proceeds as follows.
First, we test whether at least one of the outcomes is im-
pacted by the exposure. For this, we perform a global test
(e.g., the above suggested test), which returns a p-value
pglobal. We moreover perform each of the k unadjusted in-
dividual tests obtained by testing whether θj = 0 in model

logitP(A = 1|Z,Yj ) = β ′Z + θjYj ,

which returns a p-value pj . We then propose to reject the
null hypothesis that none of the outcomes is impacted by
the exposure at the α100% significance level only when

max
(
pglobal,min

j
pj

)
< α,

for the following reasons. By using pglobal, we ensure
protection of the family-wise error rate (at level α) of
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the overall procedure. By using the maximum of pglobal
and minj pj , we moreover prevent an artificial increase of
power via the consideration of multiple outcomes, as this
first test can only do as good as the best of the individual
tests. In doing so, note that our use of unadjusted p-values
pj prevents a power loss relative to the traditional epi-
demiologic design (and is justified via the earlier reliance
on pglobal).

Next, when this first test is significant, one may pro-
ceed to evaluate the individual tests to assess precisely
which outcomes are affected by the exposure. Having al-
ready protected the family-wise error rate, this in princi-
ple necessitates no further multiplicity adjustment (when,
as noted by the associate editor, one can content oneself
with weak control of the familywise error rate). Use of
the unadjusted p-values is also attractive as it delivers a
subsequent procedure that is consistent with the first: by
taking the maximum of pglobal and minj pj we ensure that
when it is smaller than α (so that the test rejects the global
null hypothesis), then at least one of the individual tests
will also reject the corresponding null hypothesis at the
α100% significance level. This is in contrast to common
post-hoc procedures. One drawback is that it may imply
a large number of false positives whenever the first test
falsely rejects. Whenever this is a concern, one may in-
stead proceed by rejecting the null hypothesis correspond-
ing to the individual test j∗ = argminj pj that resulted
in the smallest p-value, in order to be consistent with the
global test, and then adjusting the cut-off with which the
remaining p-values are contrasted. In the Appendix, we
explain how this can be done with the aim of control-
ling the expected number of remaining hypotheses that
are falsely rejected whenever the first test rejects and θ1 =
· · · = θk = 0, or the probability that at least one of the re-
maining hypotheses is falsely rejected whenever the over-
all test rejects and θ1 = · · · = θk = 0. While we provide
a decision procedure in the Appendix, it remains to be
studied how to construct corresponding adjusted p-values
and confidence intervals, and whether strong control of
the familywise error rate is achievable along similar lines.

3. CONFOUNDER SELECTION

VMC recognise that in most epidemiologic analyses
there is uncertainty surrounding which variables should
be adjusted for in order to control confounding. The ad-
ditional challenge in outcome-wide analyses is that one
must identify the confounders of every exposure-outcome
relationship considered. VMC also recognise that select-
ing an adjustment set through fitting a series of models for
each Yj and choosing only those that are strongly corre-
lated with the outcome is problematic. Leeb and Pötscher
(2005) show that for a single exposure and outcome, such
procedures can lead to biased exposure effect estimators
with complex nonnormal distributions. In light of the pre-

vious concerns about bias inflation with an increasing
number of outcomes, we emphasise the need for a prin-
cipled approach to inference after confounder selection in
outcome-wide epidemiology.

The preference of the authors is to adjust for a com-
mon set of covariates across all analyses. One could sep-
arately assess which covariates are predictive of each of
the outcomes (adjusting for the exposure) using stepwise
strategies or penalisation methods such as the Lasso; the
same could be done to check which covariates are predic-
tive of the exposure. Only variables that are not associ-
ated with the exposure or any of the outcomes are then
excluded. Such a proposal is closely related to “double
selection”, recently proposed in the economics literature
(Belloni, Chernozhukov and Hansen, 2014, Belloni, Cher-
nozhukov and Wei, 2016). Remarkably, under certain as-
sumptions double selection procedures deliver hypothesis
tests and confidence intervals that are uniformly valid, es-
sentially meaning that there is a minimal sample size at
which they attain their nominal size/coverage (within cer-
tain error margins), no matter what the data-generating
process is. This counters the commonly-held wisdom that
post-selection inferences do not honestly reflect the uncer-
tainty induced via the data-adaptive selection procedure.
Nevertheless, VMC also recognise that such a procedure
could lead to a very large adjustment set in outcome-wide
analyses.

We therefore suggest the following procedure; first,
postulate a regression model for the conditional mean of
the exposure A:

E(A|Z) = g−1(
τ + δ′Z

)
,

where g(·) is a known link function. When A is binary, it
is typical to choose g(x) = logit(x), but our proposal gen-
eralises to other choices of g(x). We will first select vari-
ables associated with the exposure, for example, via fitting
the above model with a Lasso penalty (or using stepwise
variable selection); let P̂ denote the estimates of E(A|Z)

from a model refitted using only the selected covariates.
Second, for outcome Y1, we consider the linear model

E(Y1|A,Z) = α1 + β1A + γ ′
1Z.

We will select variables associated with the outcome (con-
ditional on the exposure), for example, via fitting the
above model with a Lasso penalty forcing the exposure
into the model. Let Z(1) refer to the vector of selected
variables in this step. In the third step, we fit the linear
model

E(Y1|A,Z) = α1 + β1A + βP1P̂ + γ ∗′
1 Z(1)

and test whether β1 differs from 0. One can obtain a p-
value via standard software, so long as a sandwich esti-
mator of the standard error is used. Steps 2 and 3 can then
be repeated for (Y2, . . . , Yk). This procedure can also be
extended to test the global null hypothesis that β1 = β2 =
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· · · = βk = 0 by fitting the third step regressions together
using software for multiple-equation estimation, for ex-
ample, the packages for generalised method of moments
estimation available in Stata and R (Chaussé, 2010).

Such a proposal has the advantage that it is expected to
deliver uniformly valid p-values and confidence intervals,
similar to double selection (see the justification in Farrell,
2015 and Dukes and Vansteelandt, 2020). Although the
authors object to allowing the adjustment variables Z(j)

to depend on the choice of outcome j , the above proce-
dure delivers the same set of covariates in the exposure
model used in each analyses. Their concerns about inves-
tigators fitting a series of regressions and choosing one
to their liking are also addressed. It is indeed tempting
to drop covariates that are weakly associated with Yj but
strongly with A. Doing so may result in a more precise
estimate of the exposure effect (and potentially in a lower
p-value), but also one that is biased, given that such vari-
ables may be important confounders. However, in our pro-
posal, such variables will be nevertheless flagged via ad-
justment for P̂ in the third step. We have focused on linear
models for Yj here, but the procedure extends to count or
binary outcomes (see Dukes and Vansteelandt, 2020 for
details). The above proposal can in principle be adapted
to deliver valid results when the propensity score model
is misspecified, provided that the outcome model is cor-
rect (see the discussion at the end of Section 1). However,
modifications of the fitting strategy may then be required
to retain uniform validity in the presence of variable se-
lection (Dukes and Vansteelandt, 2020, Dukes, Avagyan
and Vansteelandt, 2020).

The discussion above also has implications for study
design and data-collection. A concern about outcome-
wide epidemiology is that with a single outcome, the in-
vestigators may make more effort in collecting data on
predictors of the exposure and outcome of interest. With
multiple outcomes, it is easier to be less careful about
measuring the predictors of all outcomes, which reduces
the potential for valid confounding adjustment in case one
had not realised a certain outcome predictor to be also
predictive of the exposure. Therefore, in collecting data,
for each Yj considered one should ideally try to collect
as many variables that predict either the exposure or the
outcome as possible, to improve the chances of measuring
all confounders.

APPENDIX: POST-HOC TESTING PROCEDURE

Building on Branson and Bind (2019), we recommend a
randomisation procedure whereby first a propensity score
model for P(A = 1|Z) is fitted. This model is then used
to randomly reassign treatment to all participants, thereby
imposing the null hypothesis that θ1 = · · · = θk = 0. For
the mth re-randomised data, m = 1, . . . ,M with M , for
example, 10000, we perform the global test, p

(m)
global, as

well as each of the k unadjusted individual tests, p(m)
j , and

calculate p(m) = max(p
(m)
global,minj p

(m)
j ). Over all repeti-

tions where p(m) < α for some chosen significance level
α, for example, 0.05, we then exclude the most signifi-
cant test j∗(m) = argminj p

(m)
j and evaluate either qe(α

∗),
the expected number of remaining tests with p

(m)
j < α∗,

or qp(α∗), the chance that at least one of the remaining

tests has p
(m)
j < α∗. We then determine the value α∗ for

which either qe(α
∗) or qp(α∗) takes a pre-specified level,

for example, 0.05. The choice between a procedure based
on qe(α

∗) or qp(α∗) should ideally be guided by context;
the use of qp(α∗) is expected to be more conservative.
The uncertainty in the estimated propensity scores can be
taken into account by drawing the propensity score co-
efficients from their sampling distribution in each of the
repetitions m = 1, . . . ,M .
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