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Abstract: Quantification of uncertainty of a technical system is often
based on a surrogate model of a corresponding simulation model. In any
application the simulation model will not describe the reality perfectly, and
consequently also the surrogate model will be imperfect. In this article we
show how observed data of the real technical system can be used to im-
prove such a surrogate model, and we analyze the rate of convergence of
density estimates based on the improved surrogate model. The results are
illustrated by applying the estimates to simulated and real data.
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1. Introduction

Any design of complex technical systems by engineers nowadays is based on
some sort of mathematical model of the technical system. Such models are never
able to describe the reality perfectly, therefore their analysis has to take into
account some kind of uncertainty. This uncertainty might occur, e.g., because
some of the parameters of the model are not exactly known, because of the use
of an imperfect mathematical model of the technical system during the design
process which does not really describe all aspects of the underlying technical
system, or because of lack of knowledge about future use. A good quantification
of uncertainty of the system is essential in order to avoid oversizing and to
conserve resources.

In this article we quantify uncertainty of the technical system by estimating a
density of a real-valued random variable representing the outcome of an exper-
iment with the technical system. The starting point for our estimation problem
is a physical model of the technical system with uncertain parameters. This
physical model has parameters which are chosen randomly because their exact
values are uncertain and consequently unknown, and it computes the outcome
of the technical system by computing the value of a function depending on con-
crete values of these parameters. In case the distribution of the parameters is
known (which we will assume from now on) and the function, which has to be
computed, is given, Monte Carlo can be used to estimate either quantiles or the
density of the output of the technical system.

Usually, the distribution of X is estimated by random sampling using a com-
puter program, and computer experiments can be used to generate values for
the Monte Carlo estimates. However, it often happens that generation of the
values is rather time consuming, so that standard Monte Carlo estimates can-
not beused. Instead, one has to apply techniques which are able to quantify
the uncertainty in the computer experiment using only a few evaluations of
the computer program. There is vast literature on the design and analysis of
such computer experiments, cf., e.g., Santner, Williams and Notz (2003) and
the literature cited therein. Often, so–called surrogate models of the computer
experiment are used in order to analyze computer experiments. Surrogate mod-
els have been introduced and investigated with the aid of the simulated and
real data in connection with the quadratic response surfaces in Bucher and
Bourgund (1990), Kim and Na (1997) and Das and Zheng (2000), in context of
support vector machines in Hurtado (2004), Deheeger and Lemaire (2010) and
Bourinet, Deheeger and Lemaire (2011), in connection with neural networks
in Papadrakakis and Lagaros (2002), and in context of kriging in Sacks et al.
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(1989), Kaymaz (2005) and Bichon et al. (2008). Consistency and rate of con-
vergence of density estimates based on surrogate models have been studied in
Devroye, Felber and Kohler (2013), Bott, Felber and Kohler (2015) and Felber,
Kohler and Krzyżak (2015a). A method for the adaptive choice of the smoothing
parameter of such estimates has been presented in Felber, Kohler and Krzyżak
(2015b).

Computer simulation usually allows to estimate parameters of the computer
model to ensure that it closely matches the performance of the technical system.
In a Bayesian context, a corresponding approach towards parameter estimation
(so–called calibration) was described in Kennedy and O’Hagan (2001). Appli-
cations of this approach in various fields can be found, e.g., in Bayarri et al.
(2007), Goh et al. (2013), Han, Santner and Rawlinson (2009), Higdon et al.
(2013) and Wang, Chen and Tsui (2009). Tuo and Wu (2015) pointed out that
this approach might lead to estimates, which are not consistent (in the sense
introduced by them) in case of an imperfect computer model, for which there
exist no values of the parameters which fit the technical system perfectly. They
suggested and analyzed non-Bayesian methods for the choice of parameters of
such models.

It is clear that the mathematical/computer model cannot perfectly mimick
the performance of the technical system and thus the question arises about the
characterization of this mismatch in terms of uncertainty quantification. The
standard approach in science is to make some assumptions about the reality, and
to try to quantify the uncertainty under these assumptions. E.g., in Bayesian
analysis of computer experiments, Kennedy and O’Hagan (2001) and the papers
cited above, which applied their methods, suggested to model the discrepancy
between the computer experiments and the outcome of the technical system by
a Gaussian process. Under the assumption that the reality is described by this
Gaussian process perfectly, this enables to compute various estimates and to
compute bounds on their error even for small sample sizes. But of course the
derived bounds on the error of the estimates do only hold if the assumptions
about the reality are true, which illustrates the saying “We buy information
with assumptions” (Coombs (1964)).

Due to the fact that erroneous specification of uncertainty in the technical
system (e.g., inadequate physical model of the maximum relative compression of
the suspension strut of the airplane wheel assembly – see Section 4 and Fig. 5)
might result in catastrophic failure of the technical system during its opera-
tion (e.g., malfunction of the aircraft’s front wheel during touchdown), it is
very important to avoid arbitrary assumptions in uncertainty quantification as
much as possible. In this paper we are interested in a non-Bayesian approach
towards uncertainty quantification in case of imperfect models. Recently, such
an approach was proposed in Wong, Storlie and Lee (2017), where standard
nonparametric regression estimates have been applied in order to estimate the
discrepancy function between the model and the real data by using these meth-
ods to smooth the residuals of the model. The authors used bootstrapping for
uncertainty quantification by means of confidence regions and they analysed it
using an empirical norm.
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There are some similarities between our approach and gradient boosting in-
troduced by Friedman (2001; 2002). As in our approach the residuals are also
smoothed in gradient boosting, however in gradient boosting the residuals of
original data are smoothed while in our approach the residuals of the new (and
better) data are smoothed.

In this paper we use a similar approach as in Wong, Storlie and Lee (2017). We
assume that we have available an additional (small) sample of the real technical
system, and we consider the problem of estimation from this sample together
with the imperfect simulation model an improved surrogate model. But in order
to be able to apply our method also for small samples sizes (in our application
below we have just n = 10 real data points available) we use a weighted penalized
least squares estimates where we augment the n = 10 residuals of the model
by artificial data points. Furthermore, unlike Wong, Storlie and Lee (2017) we
analyze the error of our improved surrogate model in the theoretical (and not the
empirical) L2 norm which allows us to derive error bounds for density estimates
based on our improved surrogate model.

The mathematical setting which we consider is as follows: Let (X,Y ), (X1, Y1),
(X2, Y2), . . . be independent and identically distributed random variables with
values in R

d × R, and let m : Rd → R be a measurable function (known and
given). Here Y describes the outcome of an experiment with our technical sys-
tem, and our aim is to estimate the density g of Y (w.r.t. the Lebesgue measure),
which we assume to exist. The random vector X with known and given distribu-
tion and the measurable function m describe our physical model with uncertain
parameters, and in this model we use m(X) as an approximation of Y . Given
the data

(X1, Y1), . . . , (Xn, Yn), (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)),

Xn+Ln+1, . . . , Xn+Ln+Nn (1.1)

(where Ln, Nn ∈ N) our goal is to construct an estimate for g.
The simplest way of solving this problem is to ignore X and m and to use

only the data
Y1, . . . , Yn (1.2)

to estimate g by the kernel density estimate

ĝY,n(y) =
1

n · hn
·

n∑
i=1

K

(
y − Yi

hn

)
. (1.3)

Here K : R → R (so-called kernel, which is assumed to be a density) and hn > 0
(so-called bandwidth) are parameters of the estimate.

In the sequel we assume that for m∗ : Rd → R defined by m∗(x) = E{Y |X =
x} the expected squared error,

E
{
|Y −m∗(X)|2

}
,

is small. In this case an alternative way to estimate g is to use the data

(X1, Y1), . . . , (Xn, Yn), Xn+Ln+1, . . . , Xn+Ln+Nn (1.4)
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to construct an estimate

m̂(X,Y ),n(·) = m̂(X,Y ),n(·, (X1, Y1), . . . , (Xn, Yn)) : R
d → R (1.5)

of m∗, and to define the corresponding surrogate density estimate

ĝ(X,Y ),n(y) =
1

Nn · hNn

·
Nn∑
i=1

K

(
y − m̂(X,Y ),n(Xn+Ln+i)

hn

)
. (1.6)

In this article we are interested in situations, where the sample size n is
rather small (in our application in Section 4 we will have n = 10), since the
collection of the real data (1.2) is rather expensive owing to the complex nature
of the physical system. Consequently, it might also be useful to use data from
our model to estimate g. One possibility of doing this is to define an estimate
of g on the basis of the data

(Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)), Xn+Ln+1, . . . , Xn+Ln+Nn (1.7)

by first estimating a surrogate (often called an emulator in the literature)

m̂(X,m(X)),Ln
(·) = (1.8)

m̂(X,m(X)),Ln
(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))) : R

d → R

of m and by subsequently defining the corresponding surrogate density estimate
via

ĝ(X,m(X)),Ln
(y) =

1

Nn · hNn

·
Nn∑
i=1

K

(
y − m̂(X,m(X)),Ln

(Xn+Ln+i)

hn

)
. (1.9)

The main question which we want to investigate is whether there exist situations
in which suitably defined estimates based on the complete data (1.1) achieve
simultaneously better rate of convergence than the estimates (1.3), (1.6) and
(1.9). Due to the fact that our sample size n is rather small, we will consider
only those cases where the model m is rather good, and we will show that in
this case we can improve a density estimate based on this model by real data.

To do this, we propose in the next section a novel method for improving the
surrogate models (1.5) and (1.8) by using a combination of the real data (1.4)
and the simulation data (1.7). Our main result is that the rate of convergence
of the corresponding surrogate density estimate is at least as good as the rates
of convergence of the density estimates (1.3), (1.6) and (1.9), and is, in special
situations, better than any of the above rates of convergence. The finite sample
size behaviour of our estimates is validated on simulated data (see Section 4).
The usefulness of our newly proposed estimates for uncertainty quantification
is demonstrated by using it to analyze the uncertainty occurring in experiments
with a suspension strut.

Throughout this paper we use the following notation: N, N0 and R are the
sets of positive integers, nonnegative integers and real numbers, respectively.
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Let p = k + β for some k ∈ N0 and 0 < β ≤ 1, and let C > 0. A function
m : Rd → R is called (p, C)-smooth, if for every α = (α1, . . . , αd) ∈ N

d
0 with∑d

j=1 αj = k the partial derivative ∂km
∂x

α1
1 ...∂x

αd
d

exists and satisfies

∣∣∣∣ ∂km

∂xα1
1 . . . ∂xαd

d

(x)− ∂km

∂xα1
1 . . . ∂xαd

d

(z)

∣∣∣∣ ≤ C · ‖x− z‖β

for all x, z ∈ R
d. If X is a random variable, then PX is the corresponding

distribution, i.e., the measure associated with the random variable. Let D ⊆ R
d

and let f : Rd → R be a real-valued function defined on R
d.

The outline of this paper is as follows: In Section 2 the construction of the
improved surrogate model is explained. The main results are presented in Section
3 and proven in Section 5. The finite sample size performance of our estimates
is illustrated in Section 4 by applying it to simulated and real data.

2. A new method for improving an imperfect surrogate model by
real data

In this section we describe our ideas behind the construction of the improved
surrogate model.

In order to construct density estimates on the basis of the data (1.1) we
proceed as follows: We start by defining a surrogate model

m̂Ln(·) = m̂Ln(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln))) : R
d → R (2.1)

of m. The reason behind using this surrogate model instead of m is that it
might be much more complicated to evaluate m (because, e.g., we may have to
solve a partial differential equation in order to compute a function value) than
to evaluate the surrogate model. In principle, any nonparametric regression
estimate can be used to construct the surrogate model. In Section 4 we will use
the penalized least squares estimate defined by

m̃Ln,(k,λLn )(·) = arg min
f∈Wk(Rd)

(
1

Ln

n+Ln∑
i=n+1

|f(Xi)−m(Xi)|2 + λLn · J2
k (f)

)
,

(2.2)
where k ∈ N with 2k > d and

J2
k (f) =

∑
α1,...,αd∈N, α1+···+αd=k

k!

α1! · · · · · αd!

∫
Rd

∣∣∣∣ ∂kf

∂xα1
1 . . . ∂xαd

d

(x)

∣∣∣∣
2

dx

is a penalty penalizing the roughness of the estimate and where W k(Rd) denotes
the Sobolev space{

f :
∂kf

∂xα1
1 . . . ∂xαd

d

∈ L2(R
d) for all α1, . . . , αd ∈ N with α1 + · · ·+ αd = k

}
.
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The condition 2k > d implies that the functions in W k(Rd) are continuous and
hence the value of a function at a point is well defined. In order to be able to
analyze the rate of convergence of this estimate for an arbitrary distribution of
X and dimension d > 1 we will truncate this estimate at some level β > 0, i.e.,
we define

m̂Ln(x) = Tβ(m̃Ln,(k,λLn )(x)) (x ∈ R
d), (2.3)

where

Tβz =

⎧⎪⎨
⎪⎩
β, z > β

z, −β ≤ z ≤ β

−β, z < −β

for z ∈ R. If we know the bound on the estimated function in an application we
can truncate our estimate at the same level.

Next we compute the residuals on the data set (1.4) of the estimate (2.1),
i.e., we compute

ε̂i = Yi − m̂Ln(Xi) (i = 1, . . . , n). (2.4)

Then we define an estimate

m̂ε̂
n(·) : Rd → R (2.5)

which smoothes these residuals (see below) and define our final surrogate model
(X, m̂n(X)) (where m̂n is an estimate of m∗(·) = E{Y |X = ·}) by setting

m̂n(x) = m̂Ln(x) + m̂ε̂
n(x) (x ∈ R

d). (2.6)

In order to define the estimate (2.5) we use two data sets: The first data set
corresponding to the residuals of m̂Ln on X1, . . . , Xn, i.e., the data set

{(X1, ε̂1), . . . , (Xn, ε̂n)} = {(X1, Y1 − m̂Ln(X1))), . . . , (Xn, Yn − m̂Ln(Xn))} .
(2.7)

And the second data set corresponding to the residuals of m̂Ln on the artificial
sample with measurement errors

{(Xn+Ln+1, m̂Ln(Xn+Ln+1)), . . . , (Xn+Ln+Nn , m̂Ln(Xn+Ln+Nn))} (2.8)

of (X,Y ), i.e., the data set

{(Xn+Ln+1, 0), . . . , (Xn+Ln+Nn , 0)} . (2.9)

The second data set will be, in particular, useful in case when m̂Ln is already
very close to

m∗ : Rd → R,m∗(x) = E{Y |X = x},

since the sample size n of the data set (2.7) might be too small to detect that
0 ≈ m∗ − m̂Ln is the optimal choice for m̂ε̂

n.
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Since both data sets are not equally trustworthy, we weigh them by some
weight w(n) ∈ [0, 1], and set

m̃ε̂
n(·) = m̃ε̂

n(·, (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)),

Xn+Ln+1, . . . , Xn+Ln+Nn)

= arg min
f∈Wk(Rd)

(
w(n)

n

n∑
i=1

(ε̂i − f(Xi))
2
+

1− w(n)

Nn

Nn∑
i=1

(0− f(Xn+Ln+i))
2

+λn · J2
k (f)

)
(2.10)

and
m̂ε̂

n(x) = Tc1·αn(m̃
ε̂
n(x)) (x ∈ R

d), (2.11)

where c ≥ 1 and αn > 0. Finally, we use (X, m̂n(X)) as a surrogate model for
(X,Y ) and estimate the density g of Y by applying a kernel density estimate to
a sample of m̂n(X). To do this, we choose a kernel K : R → R and a bandwidth
hNn > 0 and define

ĝNn(y) =
1

Nn · hNn

·
Nn∑
i=1

K

(
y − m̂n(Xn+Ln+i)

hNn

)
. (2.12)

The procedure is summarized in Algorithm 1.

3. Main results

In the next theorem we present bounds on the rate of convergence of our sur-
rogate estimate, which we will use to derive bounds on the rate of convergence
of our density estimate. In principle, all of our error bounds are also valid for
finite n. In order to simplify the presentation, we consider the case n → ∞
and assume that the distribution of (X,Y ) and also the physical model with
uncertain parameters (X,m(X)) change for increasing n such that Y −m∗(X)
and the error m(X)−m∗(X) get smaller with increasing n. In order to simplify
the notation we write (X,Y ) and m instead of (X(n), Y (n)) and m(n), resp.

In order to derive our main result we will use the following assumptions:

(A1) (X,Y ), (X1, Y1), . . . are independent and identically distributed R
d × R–

valued random variables such that supp(X) is bounded and E{Y 2} < ∞.
(A2) For some α∗

n ≥ 0 and m∗(x) = E{Y |X = x} we have

E
{
|Y −m∗(X)|2

}
≤ (α∗

n)
2 and E

{
|Y −m∗(X)|3

}
≤ (α∗

n)
3. (3.1)

(A3) We are given some measurable function m : Rd → R satisfying for some
c2 ∈ R+ and 1 ≤ βn ≤ n+ Ln

|m(x)| ≤ βn (x ∈ R
d) and J2

k (m) ≤ c2 < ∞. (3.2)
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Collect real data (X1, Y1), . . . , (Xn, Yn) from experiment with the physical system;
generate additional data (Xn+1,m(Xn+1)), . . . , (Xn+Ln ,m(Xn+Ln)) using known
computer model m(x);
generate additional data Xn+Ln+1, . . . , Xn+Ln+Nn from the distribution of X;
Compute the penalized least squares regression estimate

m̃Ln,(k,λLn )(·) = argminf∈Wk(Rd)

(
1

Ln

∑n+Ln
i=n+1 |f(Xi)−m(Xi)|2 + λLn · J2

k(f)
)
,

Truncate m̃Ln,(k,λLn )(·) at level ±β yielding

m̂Ln (x) = Tβ(m̃Ln,(k,λLn )(x)) (x ∈ R
d)

Compute residuals for the real data
ε̂i = Yi − m̂Ln (Xi) (i = 1, . . . , n)
Compute the penalized least squares regression estimate weighing residuals
corresponding to real and artificial data

m̃ε̂
n(·) = arg min

f∈Wk(Rd)

(
w(n)

n

n∑
i=1

(ε̂i − f(Xi))
2 +

1− w(n)

Nn

Nn∑
i=1

(0− f(Xn+Ln+i))
2

+λn · J2
k(f)

)

Truncate estimate m̃ε̂
n yielding

m̂ε̂
n(x) = Tc1·αn (m̃

ε̂
n(x)) (x ∈ R

d),
Define final surrogate estimate by
m̂n(x) = m̂Ln (x) + m̂ε̂

n(x)
Use (X, m̂n(X)) as a surrogate model for (X,Y ) and estimate the density g by

ĝNn (y) =
1

Nn·hNn
·
∑Nn

i=1 K
(

y−m̂n(Xn+Ln+i)

hNn

)
. Set as result the value ĝNn (y)

return result;

Algorithm 1: Proposed estimate of the density g of Y using a surrogate
model for (X,Y ).

(A4) For some αn > α∗
n (where α∗

n is the value from (A2)) and for some K,σ0 >
0 we have

K2 ·
(
E

{
exp

(
(Y −m∗(X))2

αn ·K

) ∣∣X}
− 1

)
≤ σ0 a.s., (3.3)

and the regression function E{Y −m(X)|X = x} = (m∗ −m)(x) satisfies

sup
x∈Rd

|m∗(x)−m(x)| ≤ αn (3.4)

and
J2
k (m

∗ −m) ≤ (αn)
2. (3.5)

Here (A1) imposes some mild condition on the data (X1, Y1), . . . , (Xn, Yn)
from our experiments with the technical system. (A2) describes how well Y can
be approximated by a function of X, and α∗

n is an upper bound on the error
of this approximation. The simplest (but most restrictive) case is that (A2) is
satistfied for α∗

n = 0 which means that Y = m∗(X) holds. In (A3) the function
m : R

d → R describes the simulation model which we use. Here we impose
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smoothness assumptions on this function. Our main assumption is (A4): Here
αn is a bound on the error of our model m (when we compare it with m∗), and
we impose a smoothness assumption on m∗ −m.

Theorem 1. Let d, k ∈ N with 2k > d. Let n ∈ N with n ≥ 2 and let Ln, Nn ∈ N

with n ≤ Ln ≤ Nn and let αn > α∗
n ≥ 0. Assume that (A1), (A2), (A3) and

(A4) hold. Furthermore, assume that

αn ≥ 1

nl
for some l ∈ N. (3.6)

Define mLn,(k,λ) by (2.2) and (2.3), where

λLn = c3 ·
(
logLn

Ln

) 2k
2k+d

,

and assume that

αn ≥
(
logLn

Ln

) 2k
3(2k+d)

.

Define m̂ε̂
n by (2.10) and (2.11) for some Nn satisfying Nn ≤ c4 · nl for some

l ∈ N, choose λn > 0 such that

logn

n
≤ λn ≤

(
logn

n

) 2k
d

,

let w(n) ∈ [0, 1] and define m̂n by (2.6). Then there exist constants c5, . . . , c10 ∈
R+ such that

E
{
|Y − m̂n(X)|2

}
≤ c5 · (α∗

n)
2 + c6 · α2

n · λn + c7 · w(n) · α2
n · logn

n · λd/(2k)
n

+ c8 ·
(
logLn

Ln

) 2k
2k+d

+c9 · (1− w(n)) · α2
n

(
1 +

logNn

Nn · λd/(2k)
n

)
+

c10 · α2
n

min{n,Nn}
+

c10
Ln

.

In particular, in case w(n) = 1 and λn = c11 · ((logn)/n)2·k/(2·k+d) we get

E
{
|Y − m̂n(X)|2

}
≤ c12 ·max

{
(α∗

n)
2, α2

n ·
(
logn

n

) 2k
2k+d

,

(
logLn

Ln

) 2k
2k+d

}
.

Remark 1. In any application of the estimate in Theorem 1 we have to choose
the parameters depending on the data. In Section 4 we will use k–fold cross-
validation applied to the data (X1, Y1), . . . , (Xn, Yn) in order to choose w(n)

and λn, and we choose λLn by generalized cross-validation applied the data
(Xn+i,m(Xn+i)) (i = 1, . . . , Ln).

Theorem 1 implies the following corollary concerning the L1 error of the
density estimate (2.12):
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Corollary 1. Assume that the density g of Y is (r, C)–smooth for some r ∈
(0, 1] and that its support is compact. Let K : R → R be a symmetric and
bounded density which decreases monotonically on R+ and define the estimate
ĝNn as in Section 2, where m̂n is defined as at the end of Theorem 1. Assume
that the assumptions of Theorem 1 are satisfied, and that, in addition,

max

{
(α∗

n)
2,

(
logLn

Ln

) 2k
2k+d

}
≤ α2

n ·
(
logn

n

) 2k
2k+d

holds. Set

hNn = c13 ·
(
αNn ·

(
logNn

Nn

) k
2k+d

) 1
r+1

and assume

Nn ≥ 1

α
(2r+1)/(r+1)
n

·
(

n

logn

) k
2k+d ·

2r+1
r+1

.

Then we have for some c14 ∈ R+

E

∫
R

|ĝNn(y)− g(y)| dy ≤ c14 ·
(
αn ·

(
logn

n

) k
2k+d

) r
r+1

Proof. Lemma 1 in Bott, Felber and Kohler (2015) implies that for any z1, z2 ∈
R we have ∫ ∣∣∣∣K

(
y − z1
hn

)
−K

(
y − z2
hn

)∣∣∣∣ dy ≤ 2 ·K(0) · |z1 − z2|.

Consequently,

ĝY,Nn(y) =
1

Nn · hNn

·
Nn∑
i=1

K

(
y − Yn+Ln+i

hNn

)

satisfies∫
|ĝNn(y)− ĝY,Nn(y)| dy ≤ 1

Nn · hNn

·
Nn∑
i=1

2 ·K(0) · |m̂n(Xn+Ln+i)− Yn+Ln+i|.

From this and standard bounds on the L1 error of kernel density estimates (cf.,
e.g., proof of Theorem 1 in Felber, Kohler and Krzyżak (2015a)) we conclude

E

∫
R

|ĝNn(y)− g(y)| dy

≤ E

∫
R

|ĝNn(y)− ĝY,Nn(y)| dy +E

∫
R

|ĝY,Nn(y)− g(y)| dy

≤ 2 ·K(0)

hNn

·E {|m̂n(X)− Y |}+ c15√
Nn · hNn

+ c16 · hr
Nn
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≤ 2 ·K(0)

hNn

·
√

E {|m̂n(X)− Y |2}+ c15√
Nn · hNn

+ c16 · hr
Nn

.

Application of Theorem 1 yields the assertion.

Remark 2. It is well-known that the L1 error of the standard kernel density
applied to the data (1.2) achieves under the assumptions of Corollary 1 the
(optimal) rate of convergence

n−r/(2r+1).

It follows from the proof of Corollary 1 (together with standard error bounds
on the L2 error of smoothing spline estimates, cf., e.g., Chapter 21 in Györfi et
al. (2002)), that the L1 errors of the surrogate density estimates defined in (1.6)
and (1.9) achieve under the assumptions of Corollary 1 the rates of convergence

(
α∗
n +

(
logn

n

) k
2k+d

) r
r+1

and (αn)
r

r+1 , respectively.

For αn suitably small the bound on the rate of convergence in Corollary 1
converges faster to zero than any of the above rates of convergence, which proves,
that there exist situations in which our estimate theoretically outperforms the
estimates defined in (1.3), (1.6) and (1.9). So our main result is that in case
that our model m is really good, we can improve the rate of convergence of a
density estimate based on this model by incorporating real data. In the next
section we demonstrate with simulated data that this is also the case for finite
sample sizes.

Remark 3. In case that the error αn of our simulation model does not converge
to zero quickly enough, it might happen that the rate of convergence to zero
in Corollary 1 is slower than the rate n−r/(2r+1) of the standard kernel density
applied to the data (1.2). For large n it is easy to modify our estimate such that
it always achieves at least the rate of convergence of this standard kernel density
estimate: To do this we can split the data (1.2) in two parts of approximately
equal size, define our estimate in Corollary 1 and the standard kernel density
estimate by using only the first part of this data, and use the second part
to choose via the combinatorial method in density estimation of Devroye and
Lugosi (2001) the better of this estimate. By using the results presented in
Devroye and Lugosi (2001) it is easy to see that the L1 error of the resulting
density estimate converges to zero with the rate

min

⎧⎨
⎩
(
αn ·

(
logn

n

) k
2k+d

) r
r+1

, n− r
2r+1

⎫⎬
⎭

under the assumptions of Corollary 1. Since in this paper we are interested in
applications, where the sample size is rather small (we have n = 10 in our real
data application in the next section), we are interested in situations where the
standard kernel density estimate cannot produce satisfying results, and therefore
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we do not incorporate this splitting of the sample in our simulations in the next
section.

Remark 4. The rate of convergence in Corollary 1 gets worse in case that the
dimension d of X increases. This is a consequence of the well-known curse of di-
mensionality in nonparametric regression, which states that estimation of func-
tions in high-dimensions is particular difficult. In our method we use smoothing
splines in order to estimate a surrogate model of our model m and the differ-
ence between m and m∗. It is well–known that this kind of estimate usually
requires d ∈ {1, 2, 3} in order to produce satisfying results. For larger d one
has to use other techniques from function estimation in our procedure, and to
impose structural assumptions on the functions to be estimated in order to get
satisfying results. How this can be achieved with neural networks in the con-
text of the newly proposed density estimate is described in Götz, Kersting and
Kohler (2020).

4. Application to simulated and real data

In this section we illustrate the finite sample size performance of our estimates
by applying them to simulated and real data.

We begin with the simulated data, which we use to illustrate how the size of
the error of the model influences the performance of our estimate. To do this,
we choose X with d-dimensional standard normal distribution and ε uniformly
distributed on [0, 1] such that X and ε are independent and set

Y = m(X) + σ · ε

for some m : Rd → R defined below and σ ∈ {0.1, 0.5, 1}, and let (X1, Y1),
(X2, Y2), . . . be independent and identically distributed random variables. Our
estimate uses the data

(X1, Y1), . . . , (Xn, Yn)

from the real technical system as well as data

(Xn+1,m(Xn+1), . . . , (Xn+Ln ,m(Xn+Ln))

from the (imperfect) computer model (where σ controls the maximal error oc-
curring in this model), and the additional X-values

Xn+Ln+1, . . . , Xn+Ln+Nn .

If we compare this setting with Theorem 1 we see that following the notation
of Theorem 1 we have m∗(x) = E{Y |X = x} = m(x) + 1

2 · σ and it is easy to
see that in this setting the assumptions of Theorem 1 are satisfied if we choose
α∗
n = σ/(32)1/3 and αn = σ/2.
In all of our applications we choose n ∈ {10, 20, 40} and Ln = 500. As

surrogate estimate we use a thin plate spline as implemented in the routine
Tps() in the statistics software R, where we use 5–fold cross-validation (applied
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to the data Dn) to choose the degree of freedom df of the fitted spline from
the set {4, 8, 16, . . . , 256}. In the same way we also choose w(n) from the set
{0, 0.1, . . . , 1}, i.e., we choose simultaneously the degree of freedom df and the
weight w(n) by 5–fold cross-validation. During the 5–fold cross-validation we
compute an estimate of the L1 error of our smoothing spline estimate.

For our newly proposed density estimate we use a sample of sizeNn = 500,000
of m̂n(X) (where m̂n is the estimate introduced in Section 2) and construct a
kernel density estimate based on this sample with L2 cross-validation as imple-
mented in the routine density() in the statistics package R. Here the bandwidth
is chosen as the maximum of the bandwidth chosen by L2 cross-validation for
the kernel density estimate (as implemented in R), and two times the estimated
absolute L1 error of our smoothing spline estimates.

The density of Y is the convolution of the density of m(X) and a uniform
density. We do not try to compute its exact form, instead we compute it approx-
imately by applying a kernel density estimate (as implemented in the routine
density() in R) with a sample of size 1,000,000 of Y . In order to judge the qual-
ity of our density estimates the resulting density is treated in our simulations
as if it were the real density.

We compare our estimate (est. 4 ) with four other density estimates. The first
one (est. 1 ) is the standard kernel density estimate as implemented in R applied
to the sample of size n of Y , cf., (1.3). The estimates two and three are surrogate
density estimates, where the kernel density estimate of R is used with a sample
of size Nn = 500,000 of the surrogate model. For est. 2 the surrogate model is
chosen by applying a thin plate spline (as implemented in R) to the sample of
size n of (X,Y ), cf., (1.6). And for est. 3 the surrogate model is computed in
the same way, but using this time the sample of size Ln = 500 of our model
(X,m(X)), cf., (1.9). est. 5 is our newly proposed estimate, but this time with
weight w(n) = 1 chosen independent of the data.

We consider three different models. In the first model we choose d = 2 and
define it by

m(x1, x2) = 2 · x1 + x2 + 2.

Figure 1 shows plots of the reference density and of the five different density
estimates for a data set of model 1, where we use n = 20, σ = 0.5, Ln = 500
and Nn = 500,000.

In the second model we choose again d = 2, but define m this time by

m(x1, x2) = x2
1 + x2

2.

Figure 2 shows plots of the reference density and of the five different density
estimates for a data set of model 2, where we use n = 20, σ = 0.5, Ln = 500
and Nn = 500,000.

In the third model we choose d = 1 and define m by

m(x) = exp(x).

Figure 3 shows plots of the reference density and of the five different density
estimates for a data set of model 3, where we use n = 20, σ = 0.5, Ln = 500
and Nn = 500,000.
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Fig 1. The reference density and the five different density estimates (in red) in simulation
from model 1 with parameters n = 20, σ = 0.5, Ln = 500 and Nn = 500,000.

We compare the L1 errors of our five different estimates. To do this, we ap-
proximate the integral by a Riemann sum defined on an equidistant partition
consisting of 8192 subintervals of the interval [−6, 10] (in model 1) or the inter-
val [0, 10] (in models 2 and 3). Since this L1 error is random, we repeat each
simulation 100 times and report in Table 1 the median (and in brackets the
interquartile range) of the 100 L1 errors for each of our four estimates.

From Table 1 we see that our estimate outperforms the estimates 1 through
3 in 19 out of 27 settings, and in these cases often its error is between 2 to 3
times smaller than the errors of all other estimates. And in the five cases where
it does not achieves the smallest error compared with estimates 1 through 3, its
error is approximately of the same size as the smallest error (and at most 30
percent larger). These larger errors occur only in model 1, where the function
m is a linear function which can be easily estimated even from a small sample
of observation, and where therefore the surrogate density estimate based on an
estimated surrogate is rather good.

By comparing the performance of estimates 4 and 5 in Table 1, we can fur-
thermore get an idea about the usefulness of our choice for the data-dependent
weight. Here we see that estimate 4 is better than estimate 5 in 11 cases, and es-
timate 5 is better than estimate 4 in 11 cases. However, this occurs for different
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Fig 2. The reference density and the five different density estimates (in red) in simulation
from model 1 with parameters n = 20, σ = 0.5, Ln = 500 and Nn = 500,000.

sample sizes: for n = 10 estimate 4 with the data-dependent weight is 6 times
better (and only 1 time worse) than estimate 5 (with weight w(n) = 1). But for
n = 40 estimate 4 is only 2 times better (and 5 times worse) than estimate 5.
From this we see that our data-dependent choice of the weight is useful for very
small sample size (which is the most important case in practice).

The merits of the new uncertainty quantification approach proposed in this
paper are reinforced by applying it to the real data obtained in the experi-
mental study of the suspension strut illustrated in Figure 4. This assembly has
been used to study uncertainty in load distributions and feasibility to control
vibrations, stability and load paths in suspension struts such as aircraft landing
gears. The structure of the strut assembly is shown in the left panel of Figure 5.
The right panel presents the simplified physical model of the suspension strut.
This suspension strut consists of an upper structure and lower structure. The
lower structure contains a spring–damper component, which serves as mediat-
ing agent transmitting axial forces between the upper structure and the foot
of the suspension strut. Our goal is study the impact of the randomly selected
free–fall height hf on the maximum relative compression of the spring–damper
component. To that end we assume that the free–fall heights are independent
normally distributed random variables with mean 0.05 meter and standard de-
viation 0.0057 meter.
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Fig 3. The reference density and the five different density estimates (in red) in simulation
from model 3 with parameters n = 20, σ = 0.5, Ln = 500 and Nn = 500,000.

We analyze the uncertainty in the maximum relative compression in our sus-
pension strut using a simplified mathematical/physical model of the suspension
strut (cf., Figure 5 (right panel)). In the model the upper and the lower struc-
tures of the suspension strut are represented by the lump masses m and m1,
respectively, the spring-damper component is characterized by the stiffness and
damping coefficients k and b, respectively, and elasticity of the foot component
is described by the stiffness parameter kef . Assuming linear stiffness and an
axiomatic damping it is possible to compute the maximum relative compres-
sion by solving an ordinary differential equation using Runge-Kutta algorithm
(cf., model a) in Mallapur and Platz (2017)). We use Ln = 500 samples gener-
ated in computer experiments to construct a surrogate estimate m̂Ln described
above.

In Figure 6 we see in the upper left panel data from Ln = 500 computer
experiments together with the corresponding surrogate model (solid line), and
in the upper right panel the corresponding surrogate density estimate. In the
lower left panel we see again the surrogate model (dashed-dotted) based on the
data from the computer experiments together with n = 10 real data points
from the experiment. Clearly, our (dashed-dotted) surrogate model based only
on the computer experiment is imperfect since it does not really fit the real
data. We can improve this imperfect surrogate model by using the techniques
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Table 1

Simulation results in the three different models.

model d σ n est. 1 est. 2 est. 3 est. 4 est. 5
1 2 0.1 10 0.373 (0.205) 0.010 (0.004) 0.019 (0.003) 0.010 (0.005) 0.010 (0.006)
1 2 0.1 20 0.272 (0.125) 0.009 (0.003) 0.019 (0.003) 0.009 (0.003) 0.009 (0.003)
1 2 0.1 40 0.199 (0.111) 0.008 (0.002) 0.019 (0.003) 0.008 (0.003) 0.008 (0.003)
1 2 0.5 10 0.356 (0.220) 0.035 (0.031) 0.090 (0.003) 0.038 (0.030) 0.043 (0.036)
1 2 0.5 20 0.303 (0.126) 0.022 (0.017) 0.090 (0.003) 0.025 (0.017) 0.023 (0.015)
1 2 0.5 40 0.180 (0.095) 0.014 (0.011) 0.090 (0.003) 0.017 (0.014) 0.014 (0.011)
1 2 1 10 0.365 (0.188) 0.067 (0.047) 0.178 (0.003) 0.065 (0.057) 0.065 (0.059)
1 2 1 20 0.299 (0.146) 0.045 (0.043) 0.178 (0.003) 0.048 (0.035) 0.045 (0.037)
1 2 1 40 0.209 (0.095) 0.028 (0.026) 0.178 (0.003) 0.036 (0.026) 0.031 (0.019)
2 2 0.1 10 0.432 (0.203) 0.308 (0.181) 0.034 (0.002) 0.015 (0.013) 0.014 (0.013)
2 2 0.1 20 0.326 (0.149) 0.140 (0.060) 0.034 (0.002) 0.014 (0.008) 0.012 (0.008)
2 2 0.1 40 0.269 (0.082) 0.063 (0.034) 0.034 (0.002) 0.012 (0.006) 0.011 (0.006)
2 2 0.5 10 0.400 (0.208) 0.333 (0.143) 0.188 (0.003) 0.066 (0.041) 0.074 (0.037)
2 2 0.5 20 0.303 (0.115) 0.200 (0.091) 0.188 (0.003) 0.047 (0.024) 0.043 (0.018)
2 2 0.5 40 0.257 (0.098) 0.112 (0.047) 0.188 (0.003) 0.040 (0.021) 0.040 (0.017)
2 2 1 10 0.429 (0.203) 0.375 (0.226) 0.351 (0.003) 0.117 (0.058) 0.121 (0.057)
2 2 1 20 0.295 (0.141) 0.232 (0.087) 0.352 (0.003) 0.087 (0.043) 0.088 (0.048)
2 2 1 40 0.252 (0.101) 0.173 (0.058) 0.352 (0.003) 0.074 (0.023) 0.071 (0.023)
3 1 0.1 10 0.425 (0.187) 0.135 (0.066) 0.064 (0.003) 0.043 (0.039) 0.058 (0.075)
3 1 0.1 20 0.380 (0.139) 0.095 (0.070) 0.064 (0.002) 0.033 (0.026) 0.028 (0.024)
3 1 0.1 40 0.299 (0.094) 0.065 (0.030) 0.064 (0.003) 0.022 (0.019) 0.019 (0.012)
3 1 0.5 10 0.432 (0.171) 0.333 (0.197) 0.304 (0.003) 0.136 (0.065) 0.168 (0.080)
3 1 0.5 20 0.353 (0.136) 0.236 (0.136) 0.304 (0.003) 0.108 (0.052) 0.112 (0.056)
3 1 0.5 40 0.304 (0.082) 0.193 (0.077) 0.304 (0.003) 0.075 (0.042) 0.079 (0.040)
3 1 1 10 0.439 (0.188) 0.441 (0.211) 0.528 (0.003) 0.214 (0.105) 0.265 (0.106)
3 1 1 20 0.350 (0.115) 0.370 (0.195) 0.529 (0.003) 0.156 (0.059) 0.159 (0.060)
3 1 1 40 0.256 (0.097) 0.310 (0.145) 0.528 (0.003) 0.135 (0.051) 0.137 (0.052)

Fig 4. A photo of the demonstrator of a suspension strut and its experimental test setup.

introduced in this paper and effectively obtain the solid line in the lower left
panel of Figure 6. The corresponding surrogate density estimate is shown in
the lower right panel of Figure 6. We observe that the use of n = 10 addi-
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Fig 5. A CAD illustration of the suspension strut (left panel) and simplified physical model
of the suspension strut (right panel).

Fig 6. Data from Ln = 500 computer experiments together with a corresponding surrogate
model (upper left panel), the corresponding density estimate (upper right panel), the surrogate
model based only on the data from the computer experiments (dashed-dotted) together with
n = 10 experimental data points and the corresponding surrogate model proposed in this paper
(solid line) (lower left panel) and the corresponding density estimate proposed in this paper
(lower right panel).

tional data points clearly leads in this example to a different density estimate
than the estimate based only on the model data in the upper right panel of
Figure 6.
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5. Proofs

5.1. Auxiliary results

In this subsection we present various auxiliary results on smoothing spline esti-
mates, which we use in the next subsection in order to derive a new error bound
on smoothing splines applied to weighted data with additional measurement
errors in the dependent variable, cf., Theorem 2 below. This result will be used
to proof Theorem 1.

5.1.1. A deterministic lemma

Lemma 1. Let d,N ∈ N, t > 0, w1, . . . , wN ∈ R+, x1, . . . , xN ∈ R
d, βN ≥ L >

0, z1, . . . , zN ∈ R and z̄1, . . . , z̄N ∈ [−L,L]. Let m : Rd → R be a function. Let
FN be a set of functions f : Rd → R and for f ∈ FN let

pen2 (f) ≥ 0

be a penalty term. Define

m̃N = arg min
f∈FN

(
N∑
i=1

wi · |f(xi)− z̄i|2 + pen2 (f)

)

(where we tacitly assume that the above minimum exists), and

m̂N (x) = TβN
(m̃N (x)) (x ∈ R

d)

and let m̂∗
N ∈ FN be arbitrary. Then

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N ) (5.1)

≥ 3

(
N∑
i=1

wi · |m̂∗
N (xi)−m(xi)|2 + pen2 (m̂∗

N )

)
+ 128

N∑
i=1

wi · |zi − z̄i|2 + t

implies

N∑
i=1

wi · (m̂N (xi)− m̂∗
N (xi)) · (zi −m(xi))

≥ 1

24

(
N∑
i=1

wi · |m̂N (xi)− m̂∗
N (xi)|2 + pen2 (m̃N )

)
+

t

6
. (5.2)

Proof. Using

N∑
i=1

wi · |m̂N (xi)− z̄i|2 ≤
N∑
i=1

wi · |m̃N (xi)− z̄i|2

the assertion follows as in the proof of Lemma 5 in Furer and Kohler (2015).
A complete proof is included in the Appendix.
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5.1.2. A bound on a covering number

Definition 1. Let l ∈ N and let F be a class of functions f : Rl → R. The
covering number N2(ε,F , xn

1 ) is defined for any ε > 0 and xn
1 = (x1, ..., xn) ∈

(Rl)n as the smallest integer k such that there exist functions g1, ..., gk : Rl → R

with

min
1≤i≤k

⎛
⎝ 1

n

n∑
j=1

|f(xj)− gi(xj)|2
⎞
⎠

1/2

≤ ε

for each f ∈ F .

Lemma 2. Let L,A, c > 0 and set

F =
{
TLf : f ∈ W k(Rd) and J2

k (f) ≤ c
}
.

Then there exist constants c17, c18, c19 ∈ R+ depending only on A, k and d such
that for any ε > 0 and all x1, . . . , xn ∈ [−A,A]d

logN2(ε,F , xn
1 ) ≤

(
c17 ·

(√
c

ε

)d/k

+ c18

)
· log

(
c19 ·

L2n

ε2

)
. (5.3)

Proof. See Lemma 20.6 and Problem 20.9 in Györfi et al. (2002), or Lemma 3
in Kohler, Krzyżak and Schäfer (2002).

5.1.3. A bound on the error for smoothing spline estimates for fixed design
regression

Let L ≥ 0 and
Yi = m(xi) +Wi (i = 1, . . . , n)

for some x1, . . . , xn ∈ R
d, m : Rd → R and some random variables W1, . . . , Wn

which are independent and have expectation zero. We assume that the Wi’s are
sub-Gaussian in the sense that

max
i=1,...,n

K2E{eW 2
i /K

2 − 1} ≤ σ2
0 (5.4)

for some K,σ0 > 0. Our goal is to estimate m from (x1, Ȳ1,n), . . . , (xn, Ȳn,n),
where Ȳ1,n, . . . , Ȳn,n ∈ [−L,L] are arbitrary (bounded) random variables with
the property that the average squared measurement error

1

n

n∑
i=1

|Yi − Ȳi,n|2

is “small”. Let Fn be a set of functions f : Rd → R and consider the least
squares estimate with complexity penalty

m̃n(·) = arg min
f∈Fn

(
1

n

n∑
i=1

|f(xi)− Ȳi,n|2 + pen2
n(f)

)
and m̂n = Tβnm̃n,

(5.5)
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where for f ∈ Fn

pen2
n(f) ≥ 0

is a penalty term penalizing the complexity of f and where βn ≥ L. Set

‖f‖2n =
1

n

n∑
i=1

|f(xi)|2.

Lemma 3. Assume that the sub-Gaussian condition (5.4) holds. Let Fn be a
set of functions: Rd → R, let

m̃n(·) = m̃n(·, (x1, Ȳ1,n), . . . , (xn, Ȳn,n)) ∈ Fn

and set m̂n = Tβnm̃n. Then there exist constants c20, c21, c22 > 0 which depend
only on σ0 and K such that for any δn > c20/n with

√
n · δ ≥ c21

∫ √
48δ

δ/(12σ0)

(
logN2

(
u, {Tβnf − g : f ∈ Fn, (5.6)

1

n

n∑
i=1

|Tβnf(xi)− g(xi)|2 + pen2
n(f) ≤ 48 · δ}, xn

1

))1/2

du

for all δ ≥ δn/6 and all g ∈ Fn we have for any m∗
n ∈ Fn

P

{
‖m̂n − m̂∗

n‖2n + pen2
n(m̃n) + 4 · δn ≤ 24

n ·
∑n

i=1(m̂n(xi)− m̂∗
n(xi)) ·Wi

}

≤ c22 · exp
(
−n·min{δn,σ2

0}
c22

)
.

Proof. The result follows from the proof of Lemma 2 in Kohler and Krzyżak
(2012). A detailed proof is included in the Appendix.

5.1.4. A bound on the deviation between the L2 error and the empirical L2

error for smoothing splines

Let (X,Y ), (X1, Y1), . . . be independent and identically distributed R
d×R valued

random variables with EY 2 < ∞. Let m(x) = E{Y |X = x} be the correspond-
ing regression function. Let Ȳ1,n, . . . , Ȳn,n be R–valued random variables and
define the estimate m̂n by

m̃n(·) = arg min
f∈Fn

(
1

n

n∑
i=1

|f(Xi)− Ȳi,n|2 + pen2
n(f)

)
,

where Fn is a set of functions f : Rd → R and for f ∈ Fn

pen2
n(f) ≥ 0
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is a penalty term penalizing the complexity of f . Set

m̂n = Tβnm̃n

for some βn > 0. Then the following result holds.

Lemma 4. Let βn ≥ L ≥ 1 and assume that the m is bounded in absolute value
by L. Let Fn be a set of functions f : Rd → R, let

m̃n(·) = m̃n(·, (X1, Ȳ1,n), . . . , (Xn, Ȳn,n)) ∈ Fn

and set m̂n = Tβnm̃n. Then there exist constants c23, c24, c25, c26 > 0 such that
for any δn > 0 which satisfies

δn > c23 ·
β2
n

n

and

c24

√
nδ

β2
n

≥
∫ √

δ

c25δ/β2
n

(
logN2

(
u, {(Tβnf −m)2 : f ∈ Fn,

1

n

n∑
i=1

|Tβnf(xi)−m(xi)|2 ≤ δ

β2
n

, pen2
n(f) ≤ δ}, xn

1

))1/2

du

for all δ ≥ δn and all x1, . . . , xn ∈ R
d, we have for n ∈ N

P

{∫
|m̂n(x)−m(x)|2PX(dx) > δn + 3 · pen2

n(m̃n)

+3
1

n

n∑
i=1

|m̂n(Xi)−m(Xi)|2
}

≤ c26 · exp
(
−n · δn
c26β2

n

)
.

Proof. The result follows from the bound on P1,n presented in the proof of
Lemma 3 in Kohler and Krzyżak (2012). A detailed proof is included in the
Appendix.

5.2. A general result on penalized least squares estimates

Theorem 2. Let d, k, n, Ln ∈ N, w(n) ∈ [0, 1] with n ≥ 2 and 1 ≤ β ≤ n+ Ln.
Let (X,Y ), (X1, Y1), . . . be independent and identically distributed R

d×R–valued
random variables with E{Y 2} < ∞ and with supp(X) bounded. Set m(x) =
E{Y |X = x}. Let Ȳ1,n, . . . , Ȳn+Ln,n be arbitrary R–valued random variables
satisfying

max
i=1,...,n+Ln

E
{
|Ȳi,n|3

}
≤ c27 < ∞. (5.7)
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Set

wi =
w(n)

n
for i = 1, . . . , n

and

wi =
1− w(n)

Ln
for i = n+ 1, . . . , n+ Ln.

Assume 2 · k > d and define the estimate m̂n by

m̃n(·) = arg min
f∈Wk(Rd)

(
n+Ln∑
i=1

wi · |f(Xi)− Ȳi,n|2 + λn · J2
k (f)

)

and
m̂n(x) = Tβm̃n(x) (x ∈ R

d).

Assume

K2 ·
(
E

{
exp

(
(Y −m(X))2

K2

) ∣∣X}
− 1

)
≤ σ2

0 a.s. (5.8)

for some K,σ0 > 0,
|m(x)| ≤ β (x ∈ R

d) (5.9)

and
J2
k (m) < ∞. (5.10)

Choose λn ∈ R+ such that

logn

n
≤ λn ≤

(
1

logLn

) 2k
d

. (5.11)

Assume furthermore
n ≤ Ln ≤ nl (5.12)

for some l ∈ N. Then there exist constants c28, c29, c30, c31 ∈ R+ such that

E

∫
|m̂n(x)−m(x)|2PX(dx)

≤ c28 · λn · J2
k (m) + c29 · w(n) ·

(
logn

n · λd/2k
n

+E

{
1

n
·

n∑
i=1

|Ȳi,n − Yi|2
})

+c30 · (1− w(n)) ·
(

logLn

Ln · λd/2k
n

+E

{
1

Ln
·
n+Ln∑
i=n+1

|Ȳi,n − Yi|2
})

+
c31
n

.

Proof. Set βn = n+ Ln.
In the first step of the proof we show that we can assume w.l.o.g.

Ȳi,n ∈ [−βn, βn] for all i = 1, . . . , n+ Ln. (5.13)

To do this, we let

An =
{
|Ȳi,n| ≤ βn for all i = 1, . . . , n+ Ln

}
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be the event that all Ȳi,n be bounded in absolutely value by βn. The union
bound together with Markov inequality implies

P(Ac
n) ≤ (n+ Ln) ·maxi=1,...,n+Ln P{|Ȳi,n| > βn}

≤ (n+ Ln) ·
maxi=1,...,n+Ln E{|Ȳi,n|3}

β3
n

≤ c27
n

.

On the event An the estimate m̂n coincides with the estimate m̂
(trunc)
n defined

by

m̃(trunc)
n (·) = arg min

f∈Wk(Rd)

(
n+Ln∑
i=1

wi · |f(Xi)− Tβn Ȳi,n|2 + λn · J2
k (f)

)

and
m̂(trunc)

n (x) = Tβm̃
(trunc)
n (x) (x ∈ R

d).

From this we can conclude that

E
∫
|m̂n(x)−m(x)|2PX(dx)

≤ E
{∫

|m̂n(x)−m(x)|2PX(dx) · IAn

}
+ 4 · β2 ·P(Ac

n)

= E
{∫

|m̂(trunc)
n (x)−m(x)|2PX(dx) · IAn

}
+ 4 · β2 ·P(Ac

n)

≤ E
∫
|m̂(trunc)

n (x)−m(x)|2PX(dx) + 4 · β2 · c27
n ,

which completes the first step of the proof.
So from now on we assume that (5.13) holds. Set

δn = c32 ·
logn

n · λd/(2k)
n

, δLn = c32 ·
logLn

Ln · λd/(2k)
n

,

γn = w(n) · δn + (1− w(n)) · δLn

and

Tn =

∫
|m̂n(x)−m(x)|2PX(dx)

−
(
9 · λn · J2

k (m) + 384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
)
.

In the second step of the proof we show that the assertion follows from∫ ∞

36·γn

P{Tn > t} dt ≤ c33
n

.

To do this, we observe

E

∫
|m̂n(x)−m(x)|2PX(dx)
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≤ E

{∫
|m̂n(x)−m(x)|2PX(dx)

−
(
9 · λn · J2

k (m) + 384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
)}

+9 · λn · J2
k (m) + 384 ·E

{
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}

≤ 36 · γn +

∫ ∞

36·γn

P{Tn > t} dt+ 9 · λn · J2
k (m)

+384 ·E
{

n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
)}

.

The definition of γn and of the weights implies the assertion of step 2.
In the third step of the proof we show that we have for t > 0

P{Tn > t} ≤ P1,n(t) + P2,n(t),

where

P1,n(t) = P

{∫
|m̂n(x)−m(x)|2PX(dx)

>
t

2
+ 3 · λn · J2

k (m̃n) + 3 ·
n+Ln∑
i=1

wi · |m̂n(Xi)−m(Xi)|2
}

and

P2,n(t) = P

{
3 ·

n+Ln∑
i=1

wi · |m̂n(Xi)−m(Xi)|2 + 3 · λn · J2
k (m̃n)

>
t

2
+ 9 ·

(
n+Ln∑
i=1

wi · |m(Xi)−m(Xi)|2 + λnJ
2
k (m)

)

+384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
}
.

Using

Tn =

(∫
|m̂n(x)−m(x)|2PX(dx)− 3 · λn · J2

k (m̃n)

−3 ·
n+Ln∑
i=1

wi · |m̂n(Xi)−m(Xi)|2
)

+

(
3 ·

n+Ln∑
i=1

wi · |m̂n(Xi)−m(Xi)|2 + 3 · λn · J2
k (m̃n)
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−
(
9 ·

(
n+Ln∑
i=1

wi · |m(Xi)−m(Xi)|2 + λnJ
2
k (m)

)

+384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi,n|2
))

=: T1,n + T2,n

this immediately follows from

P{Tn > t} = P{T1,n + T2,n > t} ≤ P{T1,n > t/2}+P{T2,n > t/2}.

In the fourth step of the proof we derive a upper bound on∫ ∞

36·γn

P1,n(t) dt.

Let t ≥ 36 · γn. The definition of the weights together with

a+ b > c+ d ⇒ (a > c or b > d)

implies that we have

P1,n(t)

≤ P

{
w(n) ·

∫
|m̂n(x)−m(x)|2PX(dx) > w(n)·δn

w(n)·δn+(1−w(n))·δLn
· t
2

+w(n) · 3 · λn · J2
k (m̃n) + w(n) · 3 · 1

n ·
∑n

i=1 |m̂n(Xi)−m(Xi)|2
}

+P

{
(1− w(n)) ·

∫
|m̂n(x)−m(x)|2PX(dx)

>
(1−w(n))·δLn

w(n)·δn+(1−w(n))·δLn
· t
2 + (1− w(n)) · 3 · λn · J2

k (m̃n)

+(1− w(n)) · 3 · 1
Ln

·
∑n+Ln

i=n+1 |m̂n(Xi)−m(Xi)|2
}

≤ P

{∫
|m̂n(x)−m(x)|2PX(dx) > δn

w(n)·δn+(1−w(n))·δLn
· t
2

+3 · λn · J2
k (m̃n) + 3 · 1

n ·
∑n

i=1 |m̂n(Xi)−m(Xi)|2
}

+P

{∫
|m̂n(x)−m(x)|2PX(dx) >

δLn

w(n)·δn+(1−w(n))·δLn
· t
2

+3 · λn · J2
k (m̃n) + 3 · 1

Ln
·
∑n+Ln

i=n+1 |m̂n(Xi)−m(Xi)|2
}
.
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We show next that Lemma 4 is applicable to the two different probabilities,
where both times βn is replaced by β and where we use sample sizes n and Ln,
resp. Since t ≥ 36 · γn ≥ 2 · γn implies

δn
w(n) · δn + (1− w(n)) · δLn

· t
2
≥ δn

and
δLn

w(n) · δn + (1− w(n)) · δLn

· t
2
≥ δLn ,

in order to show that Lemma 4 is applicable to the first probability, it suffices
to show

δn > c34 ·
β2

n

and

c35

√
nδ

β2
≥

∫ √
δ

c36δ/β2

(
logN2

(
u, {(Tβf −m)2 : f ∈ Wk(R

d), J2
k (f) ≤

δ

λn
},

xn
1

))1/2

du

for all δ ≥ δn and all x1, . . . , xn ∈ R
d. Using |a2 − b2|2 ≤ (|a| + |b|)2 · |a − b|2

(a, b ∈ R) (which we apply with a = Tβf(xi)−m(xi) and b = g(xi), where g is
approximating Tβf −m), we see that we have

N2

(
u,

{
(Tβf −m)2 : f ∈ Wk(R

d), J2
k (f) ≤

δ

λn

}
, xn

1

)

≤ N2

(
u

16β2
,

{
Tβnf −m : f ∈ Wk(R

d), J2
k (f) ≤

δ

λn

}
, xn

1

)
.

Using this together with Lemma 2 we see that Lemma 4 is applicable to the

first probability, if δn > c34 · β2

n and the following inequality hold:

√
n · δ
β2

≥ c37 ·
∫ √

δ

0

⎛
⎝
⎛
⎝(√

δ/λn
u

16β2

)d/k

+ 1

⎞
⎠ · log(c38 · β2 · n3)

⎞
⎠

1/2

du.

The last condition is implied by

√
n · δ ≥ c39 ·

√
log(c38 · β2 · n3) ·

((
δ

λn

)d/(4k)

· δ 1
2− d

4k +
√
δ

)
,

which in turn follows from

δ ≥ c40 ·
logn

n · λd/(2k)
n

and δ ≥ c40 ·
log n

n
.
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In case that
λn ≤ 1

the last two conditions hold for all δ ≥ δn, provided c32 is chosen large enough.
In the same way one can show that Lemma 4 is also applicable to the second

probability above.
By applying Lemma 4 to the two different probabilities we get

P1,n(t) ≤ c41 · exp
(
−c42 · n · δn

w(n) · δn + (1− w(n)) · δLn

· t
2

)

+c41 · exp
(
−c42 · Ln · δLn

w(n) · δn + (1− w(n)) · δLn

· t
2

)
,

which implies∫ ∞

36·γn

P1,n(t) dt

≤ c43
n

· w
(n) · δn + (1− w(n)) · δLn

δn
· exp (−c44 · n · δn)

+
c43
Ln

· w
(n) · δn + (1− w(n)) · δLn

δLn

· exp (−c44 · Ln · δLn) ≤
c45
n

.

Here the last inequality follows from the assumptions (5.11) and (5.12), from
which we can conclude

n · δn ≥ c32 · log2(n), Ln · δLn ≥ c32 · log2(n),
w(n) · δn + (1− w(n)) · δLn

n · δn
≤ ns and

w(n) · δn + (1− w(n)) · δLn

Ln · δLn

≤ ns

for some s > 0.
In the fifth step of the proof we derive a upper bound on∫ ∞

36·γn

P2,n(t) dt.

Since |m(x)| ≤ β ≤ βn (x ∈ R
d) and wi ≥ 0 (i ∈ {1, . . . , n}) we have

n+Ln∑
i=1

wi · |m̂n(Xi)−m(Xi)|2 ≤
n+Ln∑
i=1

wi · |Tβnm̃n(Xi)−m(Xi)|2,

which will allow us to increase the truncation level in the following. To do this,
we observe that the above inequality together with (5.13) and Lemma 1 (applied
with m̂∗

n = m) implies

P2,n(t)

≤ P

{
3 ·

n+Ln∑
i=1

wi · |Tβn(m̃n)(Xi)−m(Xi)|2 + 3 · λn · J2
k (m̃n)
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>
t

2
+ 9 ·

(
n+Ln∑
i=1

wi · |m(Xi)−m(Xi)|2 + λnJ
2
k (m)

)

+384 ·
n+Ln∑
i=1

wi · |Yi − Ȳi|2
}

≤ P
{ n+Ln∑

i=1

wi · (Tβn(m̃n)(Xi)−m(Xi)) · (Yi −m(Xi)) ≥

1

24

(
n+Ln∑
i=1

wi · |Tβn(m̃n)(Xi)−m(Xi)|2 + λn · J2
k (m̄n)

)
+

t

36

}
.

Proceeding as in the proof of step 4 we can conclude from the definition of the
weights that the last probability is bounded by

P
{ 1

n
·

n∑
i=1

(Tβn(m̃n)(Xi)−m(Xi)) · (Yi −m(Xi)) ≥

1

n
· 1

24

(
n∑

i=1

|Tβn(m̃n)(Xi)−m(Xi)|2 + λn · J2
k (m̄n)

)

+
δn

w(n) · δn + (1− w(n)) · δLn

· t

36

}

+P
{ 1

Ln
·
n+Ln∑
i=n+1

(Tβn(m̃n)(Xi)−m(Xi)) · (Yi −m(Xi)) ≥

1

Ln
· 1

24

(
n+Ln∑
i=n+1

|Tβn(m̃n)(Xi)−m(Xi)|2 + λn · J2
k (m̄n)

)

+
δLn

w(n) · δn + (1− w(n)) · δLn

· t

36

}
,

and that Lemma 3 can be applied to both probabilities. From this we can
conclude that the above probabilities are bounded by

c46 · exp
(
−c47 · n · δn

w(n) · δn + (1− w(n)) · δLn

· t

36

)

+c46 · exp
(
−c47 · Ln · δLn

w(n) · δn + (1− w(n)) · δLn

· t

36

)
,

which implies as above∫ ∞

36·γn

P2,n(t) dt

≤ c48
n

· w
(n) · δn + (1− w(n)) · δLn

δn
· exp (−c49 · n · δn)
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+
c48
Ln

· w
(n) · δn + (1− w(n)) · δLn

δLn

· exp (−c49 · Ln · δLn)

≤ c50
n

.

Summarizing the above results we get the assertion.

5.3. Proof of Theorem 1

Using the definition of m̂n, (a+ b+ c)2 ≤ 3a2+3b2+3c2 (a, b, c ∈ R), (3.1), the
definition of m̂n and (3.2) we get

E
{
|Y − m̂n(X)|2

}
= E

{∣∣(Y −m∗(X)) + (m∗(X)−m(X)− m̂ε̂
n(X)) + (m(X)− m̂Ln(X))

∣∣2}
≤ 3 ·E

{
|Y −m∗(X)|2

}
+ 3 ·E

{∣∣m∗(X)−m(X)− m̂ε̂
n(X)

∣∣2}
+3 ·E

{
|m(X)− m̂Ln(X)|2

}
≤ 3(α∗

n)
2 + 3 ·E

∫ ∣∣m̂ε̂
n(x)− (m∗ −m)(x)

∣∣2 PX(dx)

+3 ·E
∫
|m̂Ln(x)−m(x)|2 PX(dx).

Hence in order to prove the assertion it suffices to show

E

∫
|m̂Ln(x)−m(x)|2 PX(dx) ≤ c51·λLn ·J2

k (m)+c52·
logLn

Ln · λd/(2k)
Ln

+
c53
Ln

(5.14)

and

E

∫ ∣∣m̂ε̂
n(x)− (m∗ −m)(x)

∣∣2 PX(dx)

≤ c54 · α2
n · λn + c55 · w(n) · α2

n · logn

n · λd/(2k)
n

+ c56 ·
(
logLn

Ln

) 2k
2k+d

+c57 · (1− w(n)) · α2
n ·

(
1 +

logNn

Nn · λd/(2k)
n

)
+

c58 · α2
n

min{n,Nn}
. (5.15)

Inequality (5.14) follows from Theorem 2 applied with (X,Y ) = (X,m(X)),
n = Ln, w

(n) = 1 and Ȳi,Ln+L̄n
= Yi = m(Xn+i) (i = 1, . . . , Ln) and suitably

chosen ȲLn+1,Ln+L̄n
, . . . , ȲLn+L̄n,Ln+L̄n

.
In order to prove (5.15) we first observe that

E{Y −m(X)|X = x} = m∗(x)−m(x),

hence m∗ −m is the regression function to (X,Y −m(X)), and (m∗ −m)/αn

is the regression function to (X, (Y −m(X))/αn). Clearly,∫ ∣∣m̂ε̂
n(x)− (m∗ −m)(x)

∣∣2 PX(dx)
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= α2
n ·

∫ ∣∣∣ 1
αn

· m̂ε̂
n(x)− 1

αn
· (m∗ −m)(x)

∣∣∣2 PX(dx).

By definition of m̂ε̂
n we have

1

αn
· m̂ε̂

n(x) =
1

αn
· Tc1·αn(m̃

ε̂
n(x)) = Tc1

(
1

αn
· m̃ε̂

n(x)

)
(x ∈ R

d),

where

1

αn
· m̃ε̂

n(·) = arg min
f∈Wk(Rd)

(
w(n)

n

n∑
i=1

(
1

αn
· ε̂i − f(Xi)

)2

+
1− w(n)

Nn

Nn∑
i=1

(0− f(Xn+Ln+i))
2
+ λn · J2

k (f)

)
.

The assumptions in Theorem 1 together with (5.14) imply that we have

sup
x∈Rd

∣∣∣∣ 1

αn
· (m∗ −m)(x)

∣∣∣∣ ≤ 1 ≤ c1

and

max
i=1,...,n

E

{∣∣∣∣Yi − m̂Ln(Xi)

αn

∣∣∣∣
3
}

≤ 27

α3
n

·
(
E
{
|Y −m∗(X)|3

}
+E

{
|m∗(X)−m(X)|3

}
+E

{
|m(X)− m̂Ln(X)|3

})

≤ (α∗
n)

3

α3
n

+ 1 +
c59 ·

(
logLn

Ln

) 2k
2k+d

α3
n

≤ 2 + c59.

We consider

1

αn
· ε̂i =

1

αn
· (Yi − m̂Ln(Xi))

=
1

αn
· (Yi −m(Xi)) +

1

αn
· (m(Xi)− m̂Ln(Xi))

as an observation of (Yi −m(Xi))/αn with an additional measurement error

1

αn
· (m(Xi)− m̂Ln(Xi))

(i = 1, . . . , n). And we consider

0 =
1

αn
· (Yn+Ln+i −m(Xn+Ln+i))−

1

αn
· (Yn+Ln+i −m(Xn+Ln+i))
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as an observation of 1
αn

· (Yn+Ln+i −m(Xn+Ln+i)) with an additional measure-
ment error

(−1) · 1

αn
· (Yn+Ln+i −m(Xn+Ln+i))

(i = 1, . . . , Nn).
From inequality (5.14) we can conclude

E

{
1

n

n∑
i=1

∣∣∣∣ 1

αn
· (m(Xi)− m̂Ln(Xi))

∣∣∣∣
2
}

≤ 1

α2
n

·
(
c51 · λLn · J2

k (m) + c52 ·
logLn

Ln · λd/(2k)
Ln

+
c53
Ln

)
,

and the assumptions of Theorem 1 imply

E

{
1

Nn

Nn∑
i=1

∣∣∣∣ 1

αn
· (Yn+Ln+i −m(Xn+Ln+i))

∣∣∣∣
2
}

≤ 2 ·E
{

1

Nn

Nn∑
i=1

∣∣∣∣ 1

αn
· (Yn+Ln+i −m∗(Xn+Ln+i))

∣∣∣∣
2
}

+2 ·E
{

1

Nn

Nn∑
i=1

∣∣∣∣ 1

αn
· (m∗(Xn+Ln+i)−m(Xn+Ln+i))

∣∣∣∣
2
}

≤ 2 · (α
∗
n)

2

α2
n

+ 2 ≤ 4.

Application of Theorem 2 yields

E

∫ ∣∣∣∣ 1

αn
· m̂ε̂

n(x)−
1

αn
· (m∗ −m)(x)

∣∣∣∣
2

PX(dx)

≤ c28 · λn · J2
k

(
1

αn
· (m∗ −m)

)

+c29 · w(n) ·
(

logn

n · λd/(2k)
n

+
1

α2
n

·
(
c51 · λLn · J2

k (m)

+c52 ·
logLn

Ln · λd/(2k)
Ln

+
c53
Ln

))

+c30 · (1− w(n)) ·
(

logNn

Nn · λd/(2k)
n

+ 4

)
+

c31
min{n,Nn}

,

which implies (5.15).
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Appendix

Proof of Lemma 1. Since |z̄i| ≤ L ≤ βn (i = 1, . . . , N) and wi ≥ 0 (i =
1, . . . , N) we have

N∑
i=1

wi · |z̄i − m̂N (xi)|2 =

N∑
i=1

wi · |z̄i − TβN
(m̃N (xi))|2

≤
N∑
i=1

wi · |z̄i − m̃N (xi)|2.

This together with the definition of the estimate implies

N∑
i=1

wi · |z̄i − m̂N (xi)|2 + pen2 (m̃N ) ≤
N∑
i=1

wi · |z̄i − m̂∗
N (xi)|2 + pen2 (m̂∗

N ) ,

hence

N∑
i=1

wi · |z̄i −m(xi)|2 + 2
N∑
i=1

wi · (m(xi)− m̂N (xi)) · (z̄i −m(xi))

+

N∑
i=1

wi · |m(xi)− m̂N (xi)|2 + pen2 (m̃N )

≤
N∑
i=1

wi · |z̄i −m(xi)|2 + 2

N∑
i=1

wi · (m(xi)−m∗
N (xi)) · (z̄i −m(xi))

+

N∑
i=1

wi · |m(xi)−m∗
N (xi)|2 + pen2 (m∗

N ) ,

which implies

N∑
i=1

wi · |m(xi)− m̂N (xi)|2 + pen2 (m̃N )

https://www.ams.org/mathscinet-getitem?mr=3887662
https://www.ams.org/mathscinet-getitem?mr=3405596
https://www.ams.org/mathscinet-getitem?mr=2756479
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1 −
N∑
i=1

wi · |m(xi)−m∗
N (xi)|2 − pen2(m∗

N )

≤ 2

N∑
i=1

wi · (z̄i −m(xi)) · (m̂N (xi)−m∗
N (xi))

= 2

N∑
i=1

wi · (z̄i − zi) · (m̂N (xi)−m∗
N (xi))

+2

N∑
i=1

wi · (zi −m(xi)) · (m̂N (xi)−m∗
N (xi))

=: T1 + T2.

We show next that T1 ≤ T2. Assume to the contrary that this is not true. Then∑N
i=1 wi · |m(xi)− m̂N (xi)|2 + pen2 (m̃N )

−
∑N

i=1 wi · |m(xi)−m∗
N (xi)|2 − pen2(m∗

N )

< 4
∑N

i=1 wi · (z̄i − zi) · (m̂N (xi)−m∗
N (xi))

≤ 4 ·
√∑N

i=1 wi · (z̄i − zi)2 ·
√∑N

i=1 wi · (m̂N (xi)−m∗
N (xi))2

≤ 4 ·
√∑N

i=1 wi · (z̄i − zi)2

·
(
2
∑N

i=1 wi · |m̂N (xi)−m(xi)|2 + 2pen2 (m̃N )

+2
∑N

i=1 wi · |m∗
N (xi)−m(xi)|2 + 2pen2(m∗

N )
)1/2

.

Using (5.1) we see that

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )

−
N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 − pen2(m∗

N )

≥ 1

2
·
(

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )

)

+
1

2
·
(
3

(
N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 + pen2(m∗

N )

)

+128 ·
N∑
i=1

wi · |zi − z̄i|2 + t

)

−
N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 − pen2(m∗

N )
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≥ 1

2
·
(

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )

+

N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 + pen2(m∗

N )

)
,

which implies

1

2
·
(

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )

+

N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 + pen2(m∗

N )

)1/2

< 4 ·
√
2 ·

√√√√ N∑
i=1

wi · |zi − z̄i|2

i.e.,

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )

+

N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 + pen2(m∗

N )

< 128 ·
N∑
i=1

wi · |zi − z̄i|2.

But this is a contradiction to (5.1), so we have indeed proved T1 ≤ T2. As a
consequence we can conclude from (5.1)

4
N∑
i=1

wi · (m̂N (xi)− m̂∗
N (xi)) · (zi −m(xi))

≥
N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )

−
N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 − pen2(m∗

N )

≥ 1

3

(
N∑
i=1

wi · |m̂N (xi)−m(xi)|2 + pen2 (m̃N )

)

+
2

3

(
2

N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 + 2pen2(m∗

N ) + t

)



688 M. Kohler and A. Krzyżak

−
N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 − pen2(m∗

N )

=
1

3

N∑
i=1

wi · |m̂N (xi)−m(xi)|2 +
1

3
pen2 (m̃N )

+
1

3

N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 +

1

3
pen2(m∗

N ) +
2

3
t

=
1

3

N∑
i=1

wi · | (m̂N (xi)−m∗
N (xi))− (m(xi)−m∗

N (xi)) |2

+
1

3
pen2 (m̃N ) +

1

3

N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 +

1

3
pen2(m∗

N ) +
2

3
t

≥ 1

6

N∑
i=1

wi · |m̂N (xi)−m∗
N (xi)|2 −

1

3

N∑
i=1

wi · |m(xi)−m∗
N (xi)|2

+
1

3
pen2 (m̃N ) +

1

3

N∑
i=1

wi · |m∗
N (xi)−m(xi)|2 +

1

3
pen2(m∗

N ) +
2

3
t

≥ 1

6

(
N∑
i=1

wi · |m̂N (xi)−m∗
N (xi)|2 + pen2 (m̃N )

)
+

2

3
t.

In the next to last inequality we have used, that a2/2− b2 ≤ (a− b)2 (a, b ∈ R)
with a = m̂N (xi)−m∗

N (xi) and b = m(xi)−m∗
N (xi).

Proof of Lemma 3. We have

P

{
‖m̂n − m̂∗

n‖2n + pen2
n(m̃n) + 4δn ≤ 24

n

n∑
i=1

(m̂n(xi)− m̂∗
n(xi)) ·Wi

}

≤ P1 + P2

where

P1 = P

{
1

n

n∑
i=1

W 2
i > 2σ2

0

}

and

P2 = P
{

1
n

∑n
i=1 W

2
i ≤ 2σ2

0 , ‖m̂n − m̂∗
n‖2n + pen2

n(m̃n) + 4δn

≤ 24
n

∑n
i=1(m̂n(xi)− m̂∗

n(xi)) ·Wi

}
.

Application of Chernoff’s exponential bounding method (cf. Chernoff (1952))
together with (5.4) yields

P1 = P

{
n∑

i=1

W 2
i /K

2 > 2nσ2
0/K

2

}
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≤ P

{
exp

(
n∑

i=1

W 2
i /K

2

)
> exp

(
2nσ2

0/K
2
)}

≤ exp
(
−2nσ2

0/K
2
)
·E

{
exp(

n∑
i=1

W 2
i /K

2)

}

≤ exp
(
−2nσ2

0/K
2
)
·
(
1 + σ2

0/K
2
)n

≤ exp
(
−2nσ2

0/K
2
)
· exp

(
n · σ2

0/K
2
)
= exp

(
−nσ2

0/K
2
)
.

To bound P2, we observe first that 1/n
∑n

i=1 W
2
i ≤ 2σ2

0 together with the
Cauchy-Schwarz inequality implies

24
n

∑n
i=1(m̂n(xi)− m̂∗

n(xi)) ·Wi ≤ 24 ·
√

1
n

∑n
i=1(m̂n(xi)− m̂∗

n(xi))2 ·
√

2σ2
0

≤ 24 ·
√

1
n

∑n
i=1(m̂n(xi)− m̂∗

n(xi))2 + pen2
n(m̃n) ·

√
2σ2

0

hence inside of P2 we have

1

n

n∑
i=1

(m̂n(xi)− m̂∗
n(xi))

2 + pen2
n(m̃n) ≤ 1152σ2

0 .

Set
S = min{s ∈ N0 : 4 · 2sδn > 1152σ2

0}.
Application of the peeling device (cf. Section 5.3 in van de Geer (2000)) yields

P2 =
∑S

s=1 P

{
1
n

∑n
i=1 W

2
i ≤ 2σ2

0 , 4 · 2s−1δn · I{s �=1}

≤ ‖m̂n − m̂∗
n‖2n + pen2

n(m̃n) < 4 · 2sδn,

‖m̂n − m̂∗
n‖2n + pen2

n(m̃n) + 4δn ≤ 24
n

∑n
i=1(m̂n(xi)− m̂∗

n(xi)) ·Wi

}

≤
∑S

s=1 P

{
1
n

∑n
i=1 W

2
i ≤ 2σ2

0 , ‖m̂n − m̂∗
n‖2n + pen2

n(m̃n) < 4 · 2sδn,

1
12 · 2sδn ≤ 1

n

∑n
i=1(m̂n(xi)− m̂∗

n(xi)) ·Wi

}

The probabilities in the above sum can be bounded by Corollary 8.3 in van de
Geer (2000) (use there R =

√
4 · 2sδn, δ = 1

12 · 2sδn and σ =
√
2σ0). This yields

P2 ≤
∞∑
s=1

c60 exp

(
−
n · ( 1

12 · 2sδn)2
4c60 · 4 · 2sδn

)
=

∞∑
s=1

c60 exp

(
−n · 2s · δn

c61

)

≤
∞∑
s=1

c60 exp

(
−n · (s+ 1) · δn

c60

)
≤ c62 exp

(
−nδn

c62

)
.
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Proof of Lemma 4. For f : Rd → R set

‖f‖2n =
1

n

n∑
i=1

|f(Xi)|2.

We have

P

{∫
|m̂n(x)−m(x)|2PX(dx)

> δn + 3 · pen2
n(m̃n) + 3

1

n

n∑
i=1

|m̂n(Xi)−m(Xi)|2
}

= P

{
2

∫
|m̂n(x)−m(x)|2PX(dx)− 2‖m̂n −m‖2n

> δn + 3 · pen2
n(m̃n) +

∫
|m̂n(x)−m(x)|2PX(dx) + ‖m̂n −m‖2n

}

≤ P

{
∃f ∈ Fn :

∣∣∫ |Tβnf(x)−m(x)|2PX(dx)− ‖Tβnf −m‖2n
∣∣

δn + 3 · pen2
n(f) +

∫
|Tβnf(x)−m(x)|2PX(dx) + ‖Tβnf −m‖2n

>
1

2

}

≤
∞∑
s=1

P

{
∃f ∈ Fn : I{s �=0} · 2s−1 · δn ≤ pen2

n(f) ≤ 2sδn,

∣∣∫ |Tβnf(x)−m(x)|2PX(dx)− ‖Tβnf −m‖2n
∣∣

δn + 3 · pen2
n(f) +

∫
|Tβnf(x)−m(x)|2PX(dx) + ‖Tβnf −m‖2n

>
1

2

}

≤
∞∑
s=1

P

{
∃f ∈ Fn : pen2

n(f) ≤ 2sδn,

∣∣∫ |Tβnf(x)−m(x)|2PX(dx)− ‖Tβnf −m‖2n
∣∣

2s−1δn +
∫
|Tβnf(x)−m(x)|2PX(dx) + ‖Tβnf −m‖2n

>
1

2

}
.

The probabilities in the above sum can be bounded by Theorem 19.2 in Györfi
et al. (2002) (which we apply with

F =
{
(Tβnf −m)2 : f ∈ Fn, pen

2
n(f) ≤ 2sδn

}
,

K = 4β2
n, ε = 1/2, and α = 2s−1δn. Here in the integral of the covering number

we use the fact that for δ ≥ α ·K/2 ≥ 2·α = 2s ·δn the condition pen2
n(f) ≤ 2sδn

inside F implies pen2
n(f) ≤ δ.) This yields

P1,n ≤
∞∑
s=1

15 · exp
(
−n · 2s · δn

c63 · β2
n

)
≤ c64 · exp

(
− n · δn
c64 · β2

n

)
.
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