
Electronic Journal of Statistics
Vol. 14 (2020) 3606–3643
ISSN: 1935-7524
https://doi.org/10.1214/20-EJS1757

Data-driven semi-parametric detection

of multiple changes in long-range

dependent processes

Jean-Marc Bardet and Abdellatif Guenaizi
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Abstract: This paper is devoted to the offline multiple changes detec-
tion for long-range dependent processes. The observations are supposed
to satisfy a semi-parametric long-range dependent assumption with dis-
tinct memory parameters on each stage. A penalized local Whittle con-
trast is considered for estimating all the parameters, notably the number
of changes. Consistency as well as convergence rates are obtained. Monte-
Carlo experiments exhibit the accuracy of the estimators. They also show
that the estimation of the number of breaks is improved by using a data-
driven slope heuristic procedure of choice of the penalization parameter.
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1. Introduction

There exists now a very large literature devoted to long-range dependent pro-
cesses. Their most commonly used definition requires a second order stationary
process X = (Xn)n∈Z with spectral density f such that:

f(λ) = |λ|−2d L
(
|λ|

)
for any λ ∈ [−π, π], (1.1)

where 0 < d < 1/2 and L is a positive slowly varying function, i.e. satisfying

limh→0
L(c |h|)
L(|h|) = 1 for any c > 0. Typically L is a function with a positive limit

or a logarithm.
From an observed trajectory (X1, . . . , Xn) of a long-range dependent process,

the estimation of the parameter d is an interesting statistical question. The case
of a parametric estimator for which the explicit expression of the spectral den-
sity f is known was successively solved in many cases using maximum likelihood
estimators (see for instance Dahlhaus, 1989) or Whittle estimators (see for in-
stance Fox and Taqqu, 1987, Giraitis and Surgailis, 1990, or Giraitis and Taqqu,
1999).

However, with numerical applications in view, knowing the explicit form of
the spectral density is not a realistic framework. A semi-parametric estimation of
d where only the behaviour (1.1) is assumed should be preferred. Thus, numerous
semi-parametric estimators of d were defined and studied, the main ones being
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the log-periodogram (see Geweke and Porter-Hudak, 1983, or Robinson, 1995a),
the wavelet based (see Bardet et al., 2000) and the local Whittle estimators (see
Robinson, 1995b).

This last one is a version of the Whittle estimator for which only asymp-
totically small frequencies are considered. It provides certainly the best trade-
off between computation time and accuracy of the estimation (see for instance
Bardet et al., 2003b). Its asymptotic normality was extended for numerous kinds
of long-memory processes (see Dalla et al., 2006) and also non-stationary pro-
cesses (see Abadir et al., 2007). However, there is still no satisfactory adaptive
method of choice of the bandwidth parameter even if several interesting at-
tempts have been developed (see for instance Henry and Robinson, 1996, or
Henry, 2007). Hence, the usual choice valid for FARIMA or Fractional Gaussian
noise is commonly chosen.

In this paper, we consider the classical framework of offline multiple change
detection. Let (X1, . . . , Xn) be an observed trajectory of a process X that is par-
titioned into K∗+1 sub-trajectories on which it is a linear long-range dependent
process whose long-memory parameters are distinct from one stage to another
(see a more formal definition in (2.5)). Thus, there is dependence between all
the sub-trajectories since all the different linear processes are constructed from
the same white noise. The aim of this paper is to present a method for estimat-
ing from (X1, . . . , Xn) the number K∗ of abrupt changes, the K∗ change-times
(t∗1, . . . , t

∗
K∗) and the K∗+1 different long-memory parameters (d∗1, . . . , d

∗
K∗+1),

which are unknown.
The framework of offline multiple changes we have chosen has to be dis-

tinguished from that of the online one, for which a monitoring procedure is
adopted and test of detection of change is successively applied (such as CUSUM
procedure). The book of Basseville and Nikiforov (1993) is a good reference
for an introduction on both online and offline methods. There exist several
methods for building a sequential detector of long memory, in several frame-
works, see for instance Beran and Terrin (1996), Giraitis et al. (2001), Horvath
(2001), Ray and Tsay (2002), Kokoszka and Leipus (2003), Yamaguchi (2011),
Lavancier et al. (2013) or Bibinger et al. (2017). In Wang and Wang (2006), a
semi-parametric statistics based on a distance between two spectral estimators
of the memory parameter allows to test if a change in this parameter occurs and
alos provides an estimator of the change date.

For our offline framework, following the previous purposes, we have chosen
to set to build a penalized contrast based on a sum of successive local Whittle
contrasts and to minimize it. The principle of this method, minimizing a pe-
nalized contrast, provides very convincing results in many frameworks: in case
of mean changes with least squares contrast (see Bai, 1998), in case of linear
models changes with least squares contrast (see Bai and Perron, 1998, general-
ized by Lavielle, 1999, and Lavielle and Moulines, 2000) or least absolute devi-
ations (see Bai, 1998), in case of spectral densities changes with usual Whittle
contrasts (see Lavielle and Ludena, 2000), in case of time series changes with
quasi-maximum likelihood (see Bardet et al., 2012), . . . . Clearly, the remark-
able paper of Lavielle and Ludena (2000) was the model of this article except
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that we used a semi-parametric version of their Whittle contrast with the local
Whittle contrast, and this engenders additional difficulties.

Restricting our paper to long-range dependent linear processes, we obtained
several asymptotic results. First the consistency of the estimator has been es-
tablished under assumptions on the second order term of the expansion of the
spectral density close to 0. A convergence rate of the change times estimators
is also provided, but we are not able to reach the usual OP(1) converge rate,
which is obtained for instance in the parametric case (see Lavielle and Ludena,
2000).

Monte-Carlo experiments illustrate the consistency of the estimators. When
the number of changes is known, the theoretical results concerning the consis-
tencies of the estimator are satisfying and n = 5000 provides very convincing
results while they are still mediocre for n = 2000 and bad for n = 500. This
is not surprising since we considered a semi-parametric statistical framework.
When the number of changes is unknown, although we choose an asymptotically
consistent choice of penalization sequence, the consistency is not satisfying even
for large sample such that n = 5000. The accuracy of the number of changes
estimator is extremely dependent on the precise choice of the penalization se-
quence, even if this choice should not be important asymptotically. Then we
have chosen to use a data-driven procedure for computing “optimal” penalty,
the so-called “slope heuristic” procedure defined in Arlot and Massart (2009).
It provides more accurate results than with a fixed penalization sequence and
it leads to convincing results when n = 5000.

The following Section 2 is devoted to define the framework and the estimator.
Its asymptotic properties are studied in Section 3. The concrete estimation pro-
cedure and numerical applications are presented in Section 4. Finally, Section 5
contains the main proofs.

2. Definitions and assumptions

2.1. The multiple changes framework

We consider in the sequel the case of multiple change long-range dependent
linear processes. First we define a class L(d, β, c) of real sequences, where d ∈
(0, 1/2), β ∈ (0, 2] and c > 0:

Class L(d, β, c): A sequence (ai)i∈N ∈ RN belongs to the class L(d, β, c) if

• |an| = c nd−1 +O
(
nd−1−β

)
when n → ∞;

• ∂
∂λα(λ) = O

(∣∣λ−1 α(λ)
∣∣) when λ → 0+ with α(λ) =

∑∞
j=0 aje

ijλ.

Note that the class L(d, β, c) is included in �2(R), the Hilbert space of square-
summable sequences.

Now, for (ai)i∈N ∈ Rn a sequence of the class L(d, β, c), it is possible to define
a second order linear long-range dependent process. For this, consider (εt)t∈Z
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a sequence of independent and identically distributed random variables (iidrv)
with zero mean satisfying:

E(ε40) = μ4 < ∞ and E(ε20) = 1. (2.1)

Then we can define Y = (Yk)k∈Z such that

Yk =

∞∑
j=0

aj εk−j for k ∈ Z,

which is a consistent sum in L2(Ω,A,P) since its partial sums are Cauchy

sequences: E
(∣∣∑m

j=n aj εk−j

∣∣2) =
∑m

j=n a
2
j −→

n→∞
0 because |an| = c nd−1 +

O
(
nd−1−β

)
and 0 < d < 1/2. Then Y is a zero mean stationary process, with

autocovariance r(k) = E(Y0Yk) satisfying

r(n) = c2B(1− 2d, d)n2d−1 +O
(
n2d−1−β

)
when n → ∞, (2.2)

with B(u, v) the usual Beta function (see for instance Inoue, 1997). It is also
possible to define the spectral density f of Y in [−π, 0) ∪ (0, π] and it satisfies
for d ∈ (0, 1/2)

f(λ) =
c2

π
B(1− 2d, d) Γ(2d) sin

(π
2
− πd

) ∣∣λ∣∣−2d
+O

(
|λ|−2d+β

)
when λ → 0, (2.3)

using the Tauberian Theorem in Zygmund (1968) and with Γ(u) the usual
Gamma function. By the way, we can also write that there exists c′ > 0 such
that

f(λ) = c′
∣∣λ∣∣−2d

+O
(
|λ|−2d+β

)
when λ → 0, (2.4)

that is the classical assumption required for instance in Robinson (1995b).
Using these definitions, we are going to give the following assumption satisfied

by the trajectory (X1, . . . , Xn) of the process X from we study the changes:

Assumption A∗: Let (εt)t∈Z be a sequence of satisfying (2.1). Denote also:

• K∗ a given integer number in N, τ∗0 = 0 < τ∗1 < · · · < τ∗K∗ < 1 = τ∗K∗+1;
• for any 1 ≤ i ≤ K∗ + 1, d∗i ∈ (0, 1/2), c∗i > 0 and β∗

i ∈ (0, 2];

• for any 1 ≤ i ≤ K∗ + 1, (a
(i)
t )t∈N is a sequence belonging to the class

L(d∗i , β
∗
i , c

∗
i ).

Define the process X = (Xt)1≤t≤n with n large enough (n > K∗ + 1) such that

1. for i = 1, · · · ,K∗ + 1,

Xt =

∞∑
j=0

a
(i)
j εt−j when [nτ∗i−1] + 1 ≤ t ≤ [nτ∗i ]. (2.5)
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2. For i = 1, · · · ,K∗, d∗i+1 − d∗i �= 0 and denote

Δd = max
1≤i≤K∗

∣∣d∗i+1 − d∗i
∣∣ > 0. (2.6)

Remark that it should be more rigorous to writeX
(n)
t instead ofXt and therefore

to consider triangular arrays
(
X

(n)
t

)
1≤t≤n, n∈N∗ instead of time series (Xt)t∈N∗ .

But in order not to overload already very technical formulas, we will rather keep
the notation Xt.

Under Assumption A∗, there are K∗ changes in the dynamic of (Xt)1≤t≤n.
The first condition (2.5) is relative to the behavior (Xt) in each stage: it is
a stationary linear long-range process with a spectral density satisfying (2.4)
(where d = d∗i ). Moreover there also exists a dependence for (Xt) from one stage
to another one (see for instance the proof of Lemma 5.2 where the covariance
between two subtrajectories of X is computed in (5.12)), which makes the model
much more realistic than if the independence of successive regimes had been
assumed. The second condition (2.6) is the key condition insuring that the
framework is the one of multiple long-range dependence change.

2.2. Definition of the estimator

First we will add other notation:

For X satisfying Assumption A∗, denote:

• for any 1 ≤ i ≤ K∗ + 1, t∗i = [nτ∗i ], T
∗
i =

{
t∗i−1 + 1, t∗i−1 + 2, · · · , t∗i

}
and

n∗
i = t∗i − t∗i−1.

More generally, for K ∈ {0, . . . , n− 1}, t0 = 1 < t1 < · · · < tK < tK+1 = n and
for any i, j ∈ {1, . . . ,K + 1}, denote

• Ti =
{
ti−1 + 1, ti−1 + 2, · · · , ti

}
and ni = ti − ti−1.

• Tij =
{
ti−1+1, ti−1+2, · · ·, ti

}
∩
{
t∗j−1+1, t∗j−1+2, · · ·, t∗j

}
and nij =#{Tij}.

• d = (d1, · · · , dK+1) and d∗ = (d∗1, · · · , d∗K∗+1),
• t = (t1, · · · , tK), t∗ = (t∗1, · · · , t∗K∗) and τ∗ = (τ∗1 , . . . , τ

∗
K∗).

From Assumption A∗, denote by IT the periodogram of X on the set T where
T ⊂ {1, . . . , n}, and denote |T | = #{T}:

IT (λ) =
1

2π |T |

∣∣∣∑
k∈T

Xke
−i k λ

∣∣∣2. (2.7)

Using the seminal papers of Künsch (1987), Robinson (1995b) and Robinson
and Henry (2003), we define a local Whittle estimator of d. For this, define for
T ⊂ {1, · · · , n}, d ∈ R and m ∈ {1, · · · , n},

Wn(T, d,m) = log
(
Sn(T, d,m)

)
− 2 d

m

m∑
k=1

log(k/m) (2.8)
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with Sn(T, d,m) =
1

m

m∑
j=1

( j

m

)2d
IT (λ

(n)
j ) and λ

(n)
k = 2π

k

n
. (2.9)

The local Whittle objective function d → Wn(T, d,m) can be minimized for
estimating d on the set T providing the local Whittle estimator on T defined
by:

d̂(T ) = argmin
d∈[0,0.5)

Wn(T, d,m).

Remark 1. Note that we use Fourier frequencies λ
(n)
k = 2π k

n in the definition of
Wn(T, d,m), while its common definition (see for instance Robinson, 1995b) con-
sider the Fourier frequencies λk = 2π k

|T | . The explanation of this choice stems

from the fact that in the definition of the following contrast Ln(K, t,d,m) on
the whole trajectory (X1, . . . , Xn) we will sum the local contrastsWn(Tk, dk,m).
This choice is required for allowing some simplifications in the proofs. But, as
we assume that |T ∗

i | = n∗
i ∼ (τi − τ∗i−1)n, we asymptotically use almost the

usual frequencies.

Under Assumption A∗, we expect to estimate the distinct d∗i on the different
stages {t∗i +1, . . . , t∗i+1} by using several local Whittle contrasts. In addition we
will obtaining a M -estimator for estimating d∗i but also t∗i and even K∗. Hence,
for m ∈ {1, . . . , n}, we consider now a penalized local Whittle contrast defined
by:

Jn(K, t,d,m) =
1

n

K+1∑
k=1

nk Wn(Tk, dk,m) +K zn, (2.10)

where K ∈ N is a number of changes, d ∈ [0, 0.5)K+1, t ∈ TK(0) and (zn) is a
sequence of positive real numbers that will be specified in the sequel.

This contrast is therefore a sum of local Whittle objective functions on the
K + 1 different stages Tk, k = 1, . . . ,K + 1, and a penalty term that is a linear
function of the number of changes (and therefore of the number of estimated
parameters). Then, with Kmax ∈ N∗ a chosen integer number, we define for
a ≥ 0:

TK(a) =
{
(t1, . . . , tK) ∈ {2, . . . , n− 1}K,

ti+1 > ti and |ti − t∗i | ≥ a for all i = 1, . . . ,K
}
. (2.11)

Note that TK(0) =
{
(t1, . . . , tK), 2 ≤ t1 < t2 < · · · < tK ≤ n − 1

}
, which

is a convenient notation, and for a > 0, TK(a) requires the knowledge of the
unknown (t∗i )1≤i≤K but will be only used in the proofs. Then, define

(K̂n, t̂, d̂) = argmin
K∈{0,...,Kmax}, d∈[0,0.5)K+1, t∈TK(0)

Jn(K, t,d,m), (2.12)

with d̂ = (d̂1, · · · , d̂K̂n+1) and t̂ = (t̂1, · · · , t̂K̂n
).
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3. Asymptotic behaviors of the estimators

3.1. Case of a known number of changes

We study first the case of a known number K∗ of changes. In such a framework,
let us define two particular cases of the minimization of the function Jn. First
denote t̃ = (t̃1, · · · , t̃K∗) and d̃ = (d̃1, · · · , d̃K∗+1) obtained when the number of

changes is known and d̂∗ = (d̂∗i )1≤i≤K∗+1 obtained when the number of changes
and the change dates are known. They are defined by:

(t̃, d̃) = argmin
d∈[0,0.5)K∗+1,t∈TK∗ (0)

Jn(K
∗, t,d,m) and d̂∗ =argmin

d∈[0,0.5)K∗+1,

Jn(K
∗, t∗,d,m). (3.1)

Then, we can prove:

Theorem 3.1. For X satisfying Assumption A∗, with τ̃ = (τ̃1, . . . , τ̃K∗) where

τ̃i =
t̃i
n for i = 1, · · · ,K∗,

(τ̃ , d̃)
P−→

n,m, n/m→∞
(τ ∗,d∗).

This first theorem, whose proof as well as all other proofs can be found
in Section 5, can be improved for specifying the rate of convergence of the
estimators:

Theorem 3.2. For X satisfying Assumption A∗, if m = o
(
n2β∗/(1+2β∗)

)
where

β∗ = min1≤i≤K∗+1 β
∗
i , then for any δ > 0,

lim
δ→∞

lim
m,n→∞

P

(√m

n

∥∥t̃− t∗
∥∥ ≥ δ

)
= 0. (3.2)

This result provides a bound of the “best” convergence rate of t̃ that is
minimized by n(1+β∗)/(1+2β∗), i.e. the “best” convergence rate for τ̃ is minimized
by n−β∗/(1+2β∗).

Remark 2. This rate of convergence could be compared to the result obtained
in the parametric framework of Lavielle and Ludena (2000) where the respective
convergence rates (in probability) of t̃ and τ̃ are 1 and n−1. This is the price to
pay for going from the parametric to the semi-parametric framework: the defini-
tion of the local Whittle estimator does not allow some simplifications as in the
proof of Theorem 3.4 of Lavielle and Ludena (2000, p. 860). Indeed the random
term of their classical used definition of Whittle contrast is

∫ π

π
IT (λ)/f(λ)dλ

while our random term is log
(

1
m

∑m
j=1(j/m)2dIT (λ

(n)
j )

)
: the logarithm term

does not make possible their simplifications. However in the case of one change
K∗ = 1 it is possible to get a sharper result.

Corollary 1. Under the assumptions of Theorem 3.2 but in the case of one
change K∗ = 1, we obtain: for any δ > 0,

lim
δ→∞

lim
m,n→∞

P

( 1

nγ−
n

(
t∗1 − t̃1

)
≥ δ

)
+ P

( 1

nγ+
n

(
t̃1 − t∗1

)
≥ δ

)
= 0, (3.3)
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where

• for d∗1 > d∗2,

⎧⎨
⎩

γ+
n = 1√

m log(n/m)

γ−
n = 1√

m
min

{(
n
m

)2d∗
1−2d∗

2 ,
(
n
m

) 2d∗1−2d∗2
1+2d∗2 m

− d∗2
1+2d∗2

} ;

• for d∗2 > d∗1,

⎧⎨
⎩

γ−
n = 1√

m log(n/m)

γ+
n = 1√

m
min

{(
n
m

)2d∗
2−2d∗

1 ,
(
n
m

) 2d∗2−2d∗1
1+2d∗1 m

− d∗1
1+2d∗1

} .

Remark 3. In the case of a unique change of mean of short memory stationary
linear processes, Bai (1994) and Bai (1995) provided an explicit limit theorem
in distribution of t̃ (or τ̃ ) from a least squares and a least absolute deviation
estimators. But this is obtained in case where λn = μ∗

2 −μ∗
1 decreases to 0 with

n (μ∗
1 and μ∗

2 respectively denote the mean of the process before and after the
change date t∗). The limit theorem is then:

λ2
n

(
t̂n − t∗

) D−→
n→∞

C argmax
u∈R

{
W (u)− 1

2
|u|

}
where W is a two-sided Brownian motion and C is a constant depending on
the distribution of the process. It can be noted that in the parametric case of
estimation of change in parameters of the spectral density, Lavielle and Ludena
(2000) did not provide such asymptotic distribution of the change date. In Corol-
lary 1 we only provide the convergence rate of t̃1 − t∗1 and not an explicit limit
theorem. The corollary proof, however, suggests that one might even hope for
a limit theorem of t̃1. Indeed, if a Donsker-type theorem could be obtained on
the (Zs

n)n (see its definition in the proof) we could obtain

• if t̃1 − t∗1 ≥ 0 nγ+
n

(
t̃1 − t∗1

) D−→
n→∞

argmin
s≥0

(
c+ s+ Zs

)
• if t̃1 − t∗1 ≤ 0 nγ−

n

(
t∗1 − t̃1

) D−→
n→∞

argmin
s∈R

(
c− s+ Zs

)
where c+ and c− are real numbers depending on d∗1, d

∗
2, τ

∗
1 , c

∗
0,1 and c∗0,2.

Remark 4. An important thing to notice in the corollary result is that the
convergence rate of t̃1 to t∗1 is not symmetrical according to the values taken by
d∗1 and d∗2, which was for example not at all the case in the results of Bai (1994) or
Lavielle and Moulines (2000). This difference will induce a bias in the estimation
of the change date a bias that depends on d∗1, d

∗
2 and other parameters of the

process and this will be confirmed by Monte-Carlo simulations (see Section 4).

Remark 5. For β = 2 (typically the case of a FARIMA or a FGN processes),

for t̂n − t∗ ≥ 0, by choosing m = nκ with any κ < 2/3, we obtain a convergence
rate:

• if d∗1 > d∗2, nγ+
n = n1−κ/2/ log(n) = nκ′

/ log(n) with κ′ > 2/3;
• if d∗2 > d∗1, nγ−

n =nκ′
n(2d∗

1−2d∗
2)(1−κ)=n0.5+κ′′(0.5+2d∗

1−2d∗
2) with κ′′ > 1/3:

the converging rate depends on d∗1 − d∗2. For instance, taking the extreme
cases, when d∗1 
 0 and d∗2 
 0.5, the convergence rate is nδ with δ > 1/3,
while when d∗1 
 d∗2, it is n

δ with δ > 2/3.
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Another consequence of Theorem 3.2 is that there is asymptotically a small
loss on the convergence rates of the long memerory parameter local Whittle
estimators d̃i when the change dates are estimated instead of being known.
More formally, using the results of Robinson (1995b) improved by Dalla et al.

(2006), we know that under conditions of Theorem 3.2, d̂∗i satisfies

√
m
(
d̂∗i − d∗i

) D−→
n→∞

N
(
0 ,

1

4

)
. (3.4)

Unfortunately, the rate of convergence obtained for t̃i in Theorem 3.2 does not
allow to keep this limit theorem when d̂∗i is replaced by d̃i. We rather obtain:

Theorem 3.3. Under the assumptions of Theorem 3.2, for i = 1, . . . ,K∗ + 1,

lim
M→∞

lim
m,n→∞

P
(√

m
∣∣d̃i − d∗i

∣∣ ≤ M
)
= 1. (3.5)

Hence, the rate of convergence of each d̃i we established when multiple
changes occur is a little bit less sharp than the one without change. Note that
using the result of Corollary 1, this rate could be improved in case of one change.

3.2. Case of an unknown number of changes

Here we consider the case where K∗ is unknown. For estimating K∗, the penalty
term of penalized local Whittle contrast Jn defined in (2.10) is now essential.
Indeed, we obtain:

Theorem 3.4. Under the assumptions of Theorem 3.2, if Kmax ≥ K∗ and if
the sequence (zn)n defined in (2.10) is such that max

(
zn ,

1
zn

√
m

)
−→
n→∞

0, using

(K̂, t̂, d̂) defined in (2.12), then

(K̂, τ̂ , d̂)
P−→

n,m, n/m→∞
(K∗, τ ∗,d∗).

The conditions we obtained on m and zn imply that n−β∗/(1+2β∗) = o(zn),
depending on β∗ that is generally unknown. However, the choice zn = n−1/2 is a
possible choice solving this problem. The provided proof does not allow to estab-
lish the consistency of a typical BIC criterion, which should be zn = 2 logn/n
(and the forthcoming numerical results obtained using this BIC penalty are not
surprisingly a disaster).

Corollary 2. Under the conditions of Theorem 3.4, the bounds (3.3) and (3.5)
hold, i.e., for i = 1, . . . ,K∗ + 1,

lim
δ→∞

lim
m,n→∞

P

(√m

n

∥∥t̂− t∗
∥∥ ≥ δ

)
= 0

and lim
M→∞

lim
m,n→∞

P
(√

m
∣∣d̂i − d∗i

∣∣ ≤ M
)
= 1.

Then the convergence rates of the estimators obtained in the case where the
number of changes is unknown is the same as if the number of changes is known.
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4. Numerical experiments

In the sequel we first describe the concrete procedure for applying the new
multiple changes estimator, then we present the numerical results of Monte-
Carlo experiments.

4.1. Concrete procedure of estimation

Several details require to be specified to concretely apply the multiple changes
estimator. Indeed, we have done:

1. The choice of meta-parameters:

• as we mainly studied the cases of FARIMA processes for which β = 2,
we have chosen to set m = [n0.6] since 0.6 < 2β/(2β + 1) = 0.8;

• the number Kmax ≥ K∗ is crucial for the heuristic plot procedure
(see below) and was chosen such that Kmax = 2([log(n)]− 1), imply-
ing Kmax = 10, 12 and 14 respectively for n = 500, 2000 and 5000.
Those calibrations correspond to the results of numerous Monte Carlo
experiments that we have chosen not to show here.

2. As the choice of the sequence (zn) of the penalty term is not exactly speci-
fied but just has to satisfy max

(
zn ,

1
zn

√
m

)
−→
n→∞

0. After other numerical

simulations (not reported here), we have chosen to set zn = 2/
√
n that

offers the best results among our choices.
3. The dynamic programming procedure is implemented for allowing a sig-

nificant decrease of the time consuming. Such procedure is very common
in the offline multiple change context and has been described with details
in Kay (1998).

4. For improving the procedure of selection of the changes number K∗ for not
too large samples, we implemented a data-driven procedure so-called “the
slope heuristic procedure”. This procedure was introduced by
Arlot and Massart (2009) in the framework of least squares estimation
with fixed design, but that can be extended in many statistical fields
(see Baudry et al., 2012). Applications in the multiple changes detec-
tion problem was already successfully done in Baudry et al. (2012) in an
i.i.d. context and also for dependent time series in Bardet et al. (2012).

In a general framework, it consists in computing −2 log(L̂IK(K)) where

L̂IK(K) is the maximized likelihood for any K ∈ {0, 1, . . . ,Kmax}. Here
−2 log(L̂IK(K)) is replaced by 1

n

∑K+1
k=1 nk Wn(T̃k, d̃k,m). Then for K >

K∗, the decreasing of this contrast with respect to K is almost linear
with a slope s (see Figure 1 where the linearity can be observed when
K > K∗ = 4), which can be estimated for instance by a least-squares

estimator ŝ. Then K̂H is obtained by minimizing the penalized contrast
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Jn using ẑn = 2 ŝ, i.e.

K̂H= argmin
0≤K≤Kmax

{ 1

n

K+1∑
k=1

(t̃k+1 − t̃k)Wn({t̃k + 1, . . . , t̃k+1}, d̃k,m) + 2 ŝ K
}
.

By construction, the procedure is sensitive to the choice of Kmax since a
least squares regression is carried out for the “largest” values of K and we
preferred to choose the largest reasonable value of Kmax.

Fig 1. For n = 5000, K∗ = 4 and a FARIMA(0, d, 0) process, the graph of 2×Jn(K, t̂, d̂,m)

(in blue), and the one of 2× Jn(K, t̂, d̂,m) + 2× ŝ×K (in red).

A software was written with Octave software (also executable with Matlab

software) and is available on

http://samm.univ-paris1.fr/IMG/zip/detectchange.zip.

4.2. Monte-Carlo experiments in case of known number of changes

In the sequel we first exhibit the consistency of the multiple breaks estimator
when the number of changes is known. Monte-Carlo experiments are realized in
the following framework:

1. Three kinds of processes are considered: a FARIMA(0, d, 0) process, a
FARIMA(1, d, 1) process with a AR coefficient ψ = −0.7 and a MA co-
efficient θ = 0.3 (this refers to the familiar representation (1 − ψB)X =
(1−B)−d(1 + θ B)ε where B is the backward operator) and a linear sta-
tionary process called X(d,1) belonging to Class L(d, 1, 1), since we chose
a sequence (ak)k∈N satisfying

ak = (k + 1)d−1 + (k + 1)d−2 for all k ∈ N.

http://samm.univ-paris1.fr/IMG/zip/detectchange.zip
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Table 1

RMSE of the estimators from 500 independent replications of processes, when the number
K∗ of changes is known. For K∗ = 0 the first line is obtained with d∗1 = 0.4, the second one

with d∗1 = 0.1

FARIMA(0, d, 0) FARIMA(1, d, 1) X(d,1)

n 500 2000 5000 500 2000 5000 500 2000 5000

K∗=0 d̃1 0.070 0.047 0.034 0.098 0.090 0.066 0.077 0.048 0.035

d̃1 0.075 0.046 0.033 0.224 0.119 0.073 0.199 0.165 0.146
K∗=1 τ̃1 0.202 0.025 0.011 0.193 0.038 0.012 0.216 0.143 0.091

d̃1 0.178 0.055 0.043 0.099 0.096 0.082 0.189 0.130 0.092

d̃2 0.181 0.063 0.043 0.317 0.188 0.128 0.258 0.162 0.130
K∗=3 τ̃1 0.264 0.177 0.020 0.257 0.162 0.016 0.197 0.175 0.095

τ̃2 0.231 0.144 0.035 0.231 0.134 0.011 0.223 0.208 0.141
τ̃3 0.252 0.099 0.017 0.225 0.145 0.013 0.236 0.160 0.120

d̃1 0.182 0.075 0.047 0.117 0.095 0.087 0.283 0.200 0.103

d̃2 0.327 0.114 0.066 0.357 0.282 0.167 0.347 0.276 0.167

d̃3 0.414 0.206 0.055 0.165 0.097 0.088 0.470 0.257 0.105

d̃4 0.215 0.099 0.061 0.365 0.293 0.196 0.308 0.206 0.149

Note that both the FARIMA processes belongs to Class L(d, 2, c0).
2. For n = 500, 2000 and 5000, two cases are considered:

• Zero change, K∗ = 0 and d∗1 = 0.4, then d∗1 = 0.1, for obtaining a
benchmark of the accuracy of local Whittle estimator of the long-
range dependence parameter;

• One change, K∗ = 1 and (d∗1, d
∗
2) = (0.4, 0.1) and τ∗1 = 0.5;

• Three changes, K∗ = 3 and (d∗1, d
∗
2, d

∗
3, d

∗
4) = (0.4, 0.1, 0.4, 0.1) and

(τ∗1 , τ
∗
2 , τ

∗
3 ) = (0.25, 0.5, 0.75).

3. Each case is independently replicated 500 times and the RMSE, Root-
Mean-Square Error, is computed for each estimator of the parameter. For
a known parameter θ∗ and an estimator θ̂ that is computed 500 times, we
have:

RMSE(θ̂) =
( 1

500

500∑
i=1

(
θ̂i − θ∗

)2)1/2

.

The results of Monte-Carlo experiments are detailed in Table 1.

Conclusion: from Table 1, we conclude:

1. Even using the local Whittle estimator which is probably the most accu-
rate in this framework, it is easy to verify that if the behaviour of the
spectral density in 0 is not smooth, then even with a trajectory of size
5000, we keep a quadratic risk greater than 0.1 (see the case K∗ = 0 for a
FARIMA(1, d, 1) or for the X(d,1) process). We do not have to forget that
the parameter d is relative to the long-memory behaviour of the process,
in a semi-parametric setting.

2. If the number of changes is known, the estimators of τi and di are con-
sistent but their rates of convergence are significantly impacted by the
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Table 2

Bias, standard deviation and RMSE of t̃1 for several values of d∗1 and d∗2 from 500
independent replications of processes FARIMA(0, d, 0)

n 1000 2000 4000 8000 16000
d∗1 = 0.31 Bias 0.0 −11.2 −12.5 −15.9 -17.1

and Standard Deviation 78.2 61.4 53.4 52.7 51.0
d∗2 = 0.01 RMSE 78.2 62.4 54.9 54.9 53.8
d∗1 = 0.40 Bias 4.4 −9.1 −9.7 −11.4 −13.0

and Standard Deviation 66.3 58.7 55.8 49.4 48.6
d∗2 = 0.10 RMSE 66.4 59.4 56.6 50.7 50.0
d∗1 = 0.49 Bias 5.7 −0.6 −1.3 −6.0 −9.3

and Standard Deviation 72.8 61.4 53.9 47.1 49.4
d∗2 = 0.19 RMSE 73.0 61.4 54.0 47.5 50.3
d∗1 = 0.01 Bias 14.4 17.2 18.1 22.3 27.0

and Standard Deviation 72.6 71.3 65.4 57.2 61.6
d∗2 = 0.31 RMSE 74.0 73.3 67.8 61.4 67.3
d∗1 = 0.10 Bias 14.3 14.8 23.2 29.4 27.3

and Standard Deviation 70.4 56.0 58.1 59.2 61.0
d∗2 = 0.40 RMSE 66.4 71.9 57.9 66.1 66.8
d∗1 = 0.19 Bias 11.4 17.7 20.8 22.2 33.4

and Standard Deviation 83.2 61.4 70.3 66.1 71.0
d∗2 = 0.49 RMSE 84.0 63.9 73.3 74.0 78.5

number of changes: as we could imagine, the largest K∗ the largest the
RMSE of the estimators. But finally, the case n = 5000 provides extremely
convincing results in FARIMA framework concerning the estimation of
τi, while the convergence rates for the process X(d,1) are slow (since the
asymptotic behavior of the spectral density around 0 is clearly rougher
than in FARIMA framework).

4.3. Convergence rate of t̃1 in case of one change

In Theorem 3.2 an asymptotic bound is specified concerning the convergence
rates of (τ̃i) and therefore of (t̃i): roughly speaking we have

∣∣t̃i− t∗i
∣∣ = OP

(
n√
m

)
.

In the case of one change (K∗ = 1) and with β = 2, this rate has been improved

in Corollary 1 and is asymmetric. For instance, if d∗1 > d∗2, with m = [n0.6]

• if t̃i − t∗i ≥ 0, we have t̃1 − t∗1 = OP

(
n0.7

log n

)
;

• if t̃i − t∗i ≤ 0, we rather obtain t∗1 − t̃1 = OP

(
n0.7+0.8(d∗

1−d∗
2)
)
.

We deduce that the convergence rate is asymptotically faster for t̃i−t∗i ≤ 0 than
for t̃i−t∗i ≥ 0 and that there is a non symmetric asymptotic distribution of t̃i−t∗i .
We wanted to study numerically the convergence rate in several configurations:
with various values of n from 1000 to 16000, various values of d∗1 and d∗2, keeping
t∗1 = n/2 and FARIMA(0, d, 0) processes. The results are reported in Table 2.

Conclusion: from Table 2, we conclude:

1. There exists an estimation-bias of t̃1 that increases with n. The sign of
this bias is depending on the increasing (i.e. positive bias) or the decreas-
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ing (i.e. negative bias) of the long-memory parameter after the change
date, as it was established in Corollary 1 and Remarks 3, 4 and 5. This
can be explained by the following fact: the local Whittle estimator of the
long-memory parameter on a trajectory composed of long-memory pro-
cesses with various parameters always provides an estimate of the largest
parameter. Hence, following the sign of d∗2 − d∗1, the transition zone may
or may not be included in the break time estimation.

2. The standard deviation of t̃1 seems to wealy increase when n increases.
3. Even if we chose to keep a constant value |d∗2 − d∗1| = 0.3, we can see that

in terms of bias as well as standard deviation, the asymptotic behavior of
t̃1 also depends on the values of d∗1 and d∗2 (but also on c∗0,1 and c∗0,1) and
not only on the value of d∗2 − d∗1.

4. However it should be noted that the results of the simulations cannot be
very conclusive: with β = 2, m = n0.6 and |d∗1 − d∗2|, one obtains that
γ+
n /γ−

n = n0.24/ log(n) which increases from 0.76 to 1.05 when n increases
from 1000 to 16000.

Finally, these numerical experiments seem to show a fairly fast convergence
rate of τ̃1 but also the difficulty to obtain a precise or estimated asymptotic
distribution of t̃1.

4.4. Monte-Carlo experiments in case of unknown number of
changes

In this subsection, we consider the result of the model selection using the pe-
nalized contrast for estimating the number of changes K∗. We reply exactly the
same framework that in the previous subsection and notify the frequencies of
the event ‘K̂ = K∗’, for:

• K̂ = K̂n obtained directly by minimizing Jn with zn = 2/
√
n;

• K̂ = K̂BIC obtained directly by minimizing Jn with zn = 2 logn/n, fol-
lowing the usual BIC procedure;

• K̂ = K̂H obtained from the “slope heuristic” procedure described previ-
ously.

We obtained the results detailed in Table 3:

Table 3

Frequencies of recognition of the true number of changes with several criteria from 500
independent replications of processes

FARIMA(0, d, 0) FARIMA(1, d, 1) X(d,1)

n 500 2000 5000 500 2000 5000 500 2000 5000

K∗=1 K̂n 0.11 0.21 0.51 0.21 0.45 0.67 0.05 0.05 0.01

K̂BIC 0 0 0 0 0 0 0 0 0

K̂H 0.35 0.91 0.92 0.49 0.77 0.81 0.25 0.47 0.57

K∗=3 K̂n 0.13 0.12 0.32 0.12 0.21 0.52 0.16 0.07 0.02

K̂BIC 0 0 0 0 0 0 0 0 0

K̂H 0.02 0.16 0.85 0.03 0.21 0.80 0.07 0.16 0.32
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In the case n = 2000 and K∗ = 2, we also plotted the histogram (see Figure 2)

of the values taken by K̂H in the FARIMA(0, d, 0) case (after 500 independent

replications). Even if Kmax = 12 we see that the values of K̂H are essentially
concentrated from 0 to 3. It is however interesting to note that with the chosen
choice of evolution of the long memory parameter (d∗1 = 0.4, d∗2 = 0.1 and
d∗3 = 0.4), the estimation of the break number is much more often 0 than 1.
This can be explained by the fact that the local Whittle estimator of d on the
area with d∗2 = 0.1 and d∗3 = 0.4 is closer to 0.4 than to 0.1.

Fig 2. For n = 2000, K∗ = 2, histogram of the values taken by K̂H in the FARIMA(0, d, 0)
case.

Conclusion: from Table 3, we may conclude that:

1. The estimators of number of changes K̂n and K̂H have a satisfying behav-
ior, meaning that they seem to converge to K∗ when the sample length
increases in the FARIMA framework. Once again, the convergence rates
are significantly faster for small K∗ values than for large ones. The results
obtained with the “slope heuristic” procedure estimator K̂H are almost
the most accurate and provides very convincing results for n = 5000. Note
also that the usual BIC penalty is not at all consistent, which can be ex-
plained by the use of local Whittle contrast that is not an approximation
of the Gaussian likelihood as the usual Whittle contrast is. In case of pro-
cess X(d,1), only K̂H seems to be consistent while K̂n is not able to detect
the number of changes: this is due to the fact that the bandwidth param-
eter m can not be chosen as [n0.6] for obtaining consistent estimators of
long-memory parameters.

2. Finally we could underline that our detector based on a local Whittle
contrast added to a “slope heuristic” data-driven penalization provides
convincing results when n = 5000 and not too bad when n = 2000 (the
case n = 500 gives not significant estimation).
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5. Proofs

Following the expansion (2.3), we denote in the sequel for i = 1, . . . ,K∗ + 1,

c∗0,i =
c∗2i
π

B(1− 2d∗i , d
∗
i ) Γ(2d

∗
i ) sin

(π
2
− πd∗i

)
. (5.1)

We first provide the statements and the proofs of two useful lemmas:

Lemma 5.1. Under the assumptions of Theorem 3.1 and with Sn(T, d,m)
defined in (2.9), for any i ∈ {1, . . . ,K∗ + 1} and T ⊂ T ∗

i ,

sup
d∈(0,1/2)

min
(
T ,

n

m

)−2d∗
i
∣∣∣Sn(T, d,m)−min

(
T ,

n

m

)2d∗
i c∗0,i(2π)

−2d∗
i

1 + 2d− 2d∗i

∣∣∣
= OP

(
min

(
1 ,

n

m|T |
)1/2

+
(m
n

)β∗
i

+m−2d∗
i

)
. (5.2)

Proof. In the sequel, we will use intensively the notation and numerous proofs
of Dalla et al. (2006). However, the results obtained in this paper have to be

established again since, we consider λ
(n)
j = 2π j

n while they considered λj =

2π j
|T | .

We first define η∗j =
IT (λ

(n)
j )

c∗0,i (λ
(n)
j )−2d∗

i

and prove:

E

∣∣∣ 1
m

m∑
j=1

(
η∗j − 1

)∣∣∣ ≤ C
((m

n

)β∗
i

+
( n

|T |m
)1/2)

(5.3)

where C > 0 is a constant. For this we will go back to the proof of Proposition 5
in Dalla et al. (2006). Indeed, with the same notation, we have:

E

∣∣∣ 1
m

m∑
j=1

(
η∗j − E[η∗j ]

)∣∣∣ ≤ 1

m

(
p|T |,1(m) + p|T |,2(m) +R|T |(m)

)

where p|T |,1(m) = 2π

m∑
j=1

Iε(λ
(n)
j ), p|T |,2(m) =

m∑
j=1

(
ηj − 2πIε(λ

(n)
j )

)
, R|T |(m) =

m∑
j=1

(η∗j − ηj) with ηj =
IT (λ

(n)
j )

f(λ
(n)
j )

and Iε(λ
(n)
j ) =

1

2π|T |

∣∣∣ |T |∑
t=1

εte
itλ

(n)
j

∣∣∣2.
As in Proposition 5 of Dalla et al. (2006), we can write:

E|R|T |(m)| ≤
m∑
j=1

E
∣∣η∗j − ηj

∣∣
≤ C m

(m
n

)β∗
i

,
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and therefore

E
∣∣R|T |(m)− ER|T |(m)

∣∣ ≤ Cm
(m
n

)β∗
i

. (5.4)

Now, following also in Proposition 5 ofDalla et al. (2006), from Robinson (1995b,
Relation (3.17)), adapted with our problem, i.e. j ↔ jT/n we have:

E
∣∣ηj − 2πIε(λ

(n)
j )

∣∣ ≤ C
∣∣ log(1 + j|T |/n)

∣∣∣1/2 (j|T |/n)−1/2

=⇒ E
∣∣p|T |,2(m)| ≤ C

∣∣ log(1 + j|T |/n)
∣∣∣1/2 (m|T |/n

)−1/2
. (5.5)

Finally, we have to go back to the proof of (4.9) in Theorem 2 of Robinson
(1995b) for bounding p|T |,1(m). Indeed, in this proof and using its notation we
have

E
∣∣p|T |,1(m)− E(p|T |,1(m))

∣∣ = E

∣∣∣ m∑
j=1

2π Iε(λ
(n)
j )− 1

∣∣∣
≤

√
2
(
Var

( m

|T |
∑
t∈T

(ε2t − 1)
)
+Var

(∑
s<t

dt−sεtεs

))1/2

.

But ds =
2

|T |

m∑
j=1

cos
(
2πsj/n

)
and therefore we easily have |ds| ≤ 2m/|T |.

Using the usual expression of a sum of cosine functions, we also have |ds| ≤
2

|T |

∣∣∣ sin(π sm/n)

sin(π s/n)

∣∣∣ ≤ 2n

πs|T | . Therefore, using the variance expansion, we deduce

that:

Var
( m

|T |
∑
t∈T

(ε2t − 1)
)
≤ C

m2

|T | ,

while the variance of
∑

s<t dt−sεtεs is

O
(
|T |

|T |∑
s=1

d2s

)
= O

(
|T |

[n/m]∑
s=1

(2m
|T |

)2

+ |T |
∑

s≥[n/m]

( 2n

πs|T |
)2)

= O
(nm
|T | +

nm

|T |
)
.

As a consequence we deduce:

E
∣∣p|T |,1(m)− E(p|T |,1(m))

∣∣ ≤ C
( m

|T |1/2 +
(nm
|T |

)1/2)
≤ C

(nm
|T |

)1/2

. (5.6)

Finally, using (5.4), (5.5) and (5.6), we deduce:

E

∣∣∣ 1
m

m∑
j=1

(
η∗j − E[η∗j ]

)∣∣∣ ≤ C

m

(
m
(m
n

)β∗
i

+
log1/2

(m|T |
n

)
(m|T |

n

)1/2 +
(nm
|T |

)1/2)

and this implies that (5.3) is established.
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Now a straightforward application of Markov Inequality and Lemma 2 in
Dalla et al. (2006) implies that for any d ∈ (0, 1/2),

∣∣∣ 1
m

m∑
j=1

( j

m

)2d−2d∗
i

η∗j − 1

m

m∑
j=1

( j

m

)2d−2d∗
i
∣∣∣ = OP

((m
n

)β∗
i

+
( n

m|T |
)1/2)

=⇒
∣∣∣ 1
m

m∑
j=1

( j

m

)2d−2d∗
i

η∗j − 1

2d− 2d∗i + 1

∣∣∣
= OP

((m
n

)β∗
i

+
( n

m|T |
)1/2

+m2d−2d∗
i −1

)
.

Since we have

Sn(T, d,m) =
1

m

m∑
j=1

( j

m

)2d
IT (λ

(n)
j ) =

c∗0,i
(2π)2d

∗
i

( n

m

)2d∗
i 1

m

m∑
j=1

( j

m

)2d−2d∗
i

η∗j ,

we deduce that for any N ≥ 1,

sup
|T |≥N

∣∣∣Sn(T, d,m)−
( n

m

)2d∗
i c∗0,i(2π)

−2d∗
i

1 + 2d− 2d∗i

∣∣∣
=

( n

m

)2d∗
i

OP

((m
n

)β∗
i

+
( n

mN

)1/2

+m2d−2d∗
i −1

)
. (5.7)

For small N , for instance such that N = o(n/m), the random right side term

is not bounded. However, for any T ⊂ T ∗
i , we have E

(
IT (λ

(n)
j )

)
≤ σ2

i

(
1 +

2C
∑|T |

k=1 k
2d∗

i −1
)

≤ C |T |2d∗
i . Thus, there exists Ci > 0 such that for any

δ > 0,

P

(
sup

d∈(0,1/2)

∣∣∣Sn(T, d,m)−
c∗0,i(2π)

−2d∗
i

1 + 2d− 2d∗i
|T |2d∗

i

∣∣∣ ≥ δ
)
≤ Ci

δ
|T |2d∗

i . (5.8)

Thus we deduce (5.2) and this achieves the proof of Lemma 5.1.

In the sequel, we define:

Rn(T, T
′, d,m) =

1

2π

∑
t∈T

∑
t′∈T ′

Xt Xt′ bn(t
′ − t, d,m)

with bn(k, d,m) =
1

m

m∑
j=1

( j

m

)2d

e−2π i j k
n . (5.9)

Note that Sn(T, d,m), which is defined in (2.9) can also be written as:

Sn(T, d,m) =
1

m

m∑
j=1

( j

m

)2d
IT (λ

(n)
j ) =

1

2π |T |
∑
s∈T

∑
t∈T

Xs Xt bn(t− s, d,m).

(5.10)
The following lemma establish an asymptotic bound for Rn when T and T ′ are
included in distinct stages of the process:
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Lemma 5.2. Under the assumptions of Theorem 3.1, there exists C > 0 such
that for any j, j′ ∈ {1, · · · ,K∗+1} where j �= j′, any T ⊂ T ∗

j and T ′ ⊂ T ∗
j′ , and

any N ∈ N∗,

sup
d∈(0,1/2)

max
min(|T |,|T ′|)≥N

(
min

(
|T |, |T ′|, n

m

))−d∗
j−d∗

j′ 1

min(|T |, |T ′|)
∣∣Rn(T, T

′, d,m)
∣∣

= OP

((
min

(
1,

n

mN

))1−d∗
j−d∗

j′
)
.

(5.11)

Proof. First, we can bound the covariance Cov(Xt, X
′
t) with t ∈ T ⊂ T ∗

j and
t′ ∈ T ′ ⊂ T ∗

j′ , where j �= j′. Indeed, assuming t < t′, define

ΓT,T ′(|t′ − t|) = Cov(Xt, Xt′)

= E

( ∞∑
k=0

a
(j)
k εt−j

∞∑
k′=0

a
(j′)
k′ εt′−j′

)

=

∞∑
k=0

a
(j)
k a

(j′)
t′−t+k,

since (εi) is supposed to be white noise with unit variance. Therefore, since

a
(j)
k = c∗j k

d∗
j−1 + O

(
kd

∗
j−1−β∗

j
)
and a

(j′)
k = c∗j′ k

d∗
j′−1 + O

(
kd

∗
j′−1−β∗

j′
)
, there

exists C such that∣∣a(j)k a
(j′)
t′−t+k

∣∣ ≤ C kd
∗
j−1 (t′ − t+ k)d

∗
j′−1 for any k ∈ N∗.

As a consequence, there exist C ′ > 0 and C ′′ > 0 such that for t′ > t,

∣∣ΓT,T ′(|t′ − t|)
∣∣ ≤ C ′

∞∑
k=1

kd
∗
j−1 (t′ − t+ k)d

∗
j′−1

=
C ′

(t′ − t)
1−d∗

j−d∗
j′

× 1

t′ − t

∞∑
k=1

( k

t′ − t

)d∗
j−1 (

1 +
k

t′ − t

)d∗
j′−1

≤
(
C ′′

∫ ∞

0

1

x1−d∗
j

1

(1 + x)
1−d∗

j′
dx

) 1

(t′ − t)
1−d∗

j−d∗
j′
. (5.12)

Now, using (5.9) and (5.12), we have:

E
(
Rn(T, T

′, d,m)
)
=

1

2π

∑
t∈T

∑
t′∈T ′

ΓT,T ′(t′ − t) bn(t
′ − t, d,m).

The right side term of the previous equality is only depending on (t′ − t).
Therefore, using the notations δ = −1 + min{|t − t′|, (t, t′) ∈ T × T ′} ≥ 0,
μ = min{|T |, |T ′|} and ν = max{|T |, |T ′|}, it is possible to detail this term in
the following way:

E
(
Rn(T, T

′, d,m)
)
=

1

2π

( μ∑
k=1

k ΓT,T ′(δ + k) bn(δ + k, d,m)
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+ μ

ν∑
k=μ+1

ΓT,T ′(δ + k) bn(δ + k, d,m)

+

ν+μ∑
k=ν+1

(ν + μ− k) ΓT,T ′(δ + k) bn(δ + k, d,m)
)
.

But from usual calculations, for any d ∈ [−1/2, 1/2), there exists C(d) > 0 such
that we have

|bn(u, d,m)| ≤ C(d) min
{
1 ,

( n

m

)1+2d

|u|−1−2d
}

for u ∈ Z. (5.13)

As a consequence, if μ+ ν ≤ n/m, we obtain:

∣∣E(Rn(T, T
′, d,m)

)∣∣ ≤ C
( μ∑

k=1

kd
∗
j+d∗

j′ + 2μ

ν+μ∑
k=μ+1

k−1+d∗
j+d∗

j′
)

≤ C μνd
∗
j+d∗

j′ . (5.14)

And when μ ≥ n/m, we can write:

∣∣∣ μ∑
k=1

k ΓT,T ′(δ + k) bn(δ + k, d,m)
∣∣∣

≤ C

[n/m]∑
k=1

kd
∗
j+d∗

j′ + C
( n

m

)1+2d
μ∑

k=[n/m]

k
|δ + k|−1−2d

|δ + k|1−d∗
j−d∗

j′

≤ C
( n

m

)1+d∗
j+d∗

j′
+ C

( n

m

)1+2d
μ∑

k=[n/m]

k−1+d∗
j+d∗

j′−2d

≤ C
( n

m

)d∗
j+d∗

j′
μ
( n

mμ

)1+min(0 , 2d−d∗
j−d∗

j′ ) (
log(μ)

)12d=d∗
j
+d∗

j′ .

Finally, by performing the same type of calculations several times, we obtain:

∣∣E(Rn(T, T
′, d,m)

)∣∣ ≤ Cμ
(
min

( n
m

, ν
))d∗

j+d∗
j′

×
(
min

(
1,

n

mμ

))1+min(0,2d−d∗
j−d∗

j′ )(
log(μ)

)12d=d∗
j
+d∗

j′ .

Then we deduce

sup
d∈(0,1/2)

∣∣E(Rn(T, T
′, d,m)

)∣∣ ≤ Cμ
(
min

( n
m
, ν

))d∗
j+d∗

j′
(
min

(
1,

n

mμ

))1−d∗
j−d∗

j′
.

(5.15)
Now we are going to bound Var

(
Rn(T, T

′, d,m)
)
. We have:

Var
(
Rn(T, T

′, d,m)
)
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=
1

4π2

∑
t∈T

∑
t′∈T ′

∑
s∈T

∑
s′∈T ′

Cov
(
XtXt′ , XsXs′

)
bn(t

′ − t, d,m)bn(s
′ − s, d,m).

Without loss of generality, set t ≤ s < t′ ≤ s′. We have:

Cov
(
XtXt′ , XsXs′

)
=

∞∑
k=0

∞∑

=0

∞∑
k′=0

∞∑

′=0

a
(j)
k a

(j)

 a

(j′)
k′ a

(j′)

′ Cov

(
εt−kεt′−k′ , εs−
εs′−
′

)
.

Only two cases implies Cov
(
εt−kεt′−k′ , εs−
εs′−
′

)
�= 0 since (εi) is a white

noise. For the first one, it is equal to μ4 − σ4 and is obtained when t − k =
t′ − k′ = s − � = s′ − �′. For the second one, it is equal to σ4 and is obtained
when (t− k = s− �) �= (t′ − k′ = s′ − �′) or (t− k = s′ − �′) �= (t′ − k′ = s− �).
As a consequence,

Cov
(
XtXt′ , XsXs′

)
= (μ4 − σ4)

∞∑
k=0

a
(j)
k a

(j)
s−t+ka

(j′)
t′−t+ka

(j′)
s′−t+k

+ σ4
∞∑
k=0

∞∑
k′=0,k′ 
=k

a
(j)
k a

(j)
s−t+ka

(j′)
k′ a

(j′)
s′−t′+k′

+ σ4
∞∑
k=0

∞∑

=0,

=k

a
(j)
k a

(j′)
s′−t+ka

(j)

 a

(j′)
t′−s+


and this implies

∣∣Cov(XtXt′ , XsXs′
)∣∣ ≤ C

∞∑
k=1

(
k(s− t+ k)

)d∗
j−1(

(t′− t+ k)(s′− t+ k)
)d∗

j′−1

+ C
( ∞∑

k=1

(
k(s− t+ k)

)d∗
j−1

)( ∞∑
k′=1

(
k′(s′ − t′ + k′)

)d∗
j′−1

)

+ C
( ∞∑

k=1

kd
∗
j−1(s′ − t+ k)d

∗
j′−1

)( ∞∑

=1

�d
∗
j−1(t′ − s+ �)d

∗
j′−1

)
.

Using the Cauchy-Schwarz Inequality, we have

∞∑
k=1

(
k(s− t+ k)

)d∗
j−1(

(t′ − t+ k)(s′ − t+ k)
)d∗

j′−1

≤
( ∞∑

k=1

(
k(s− t+ k)

)2d∗
j−2

)1/2( ∞∑
k=1

(
(t′ − t+ k)(s′ − t+ k)

)2d∗
j′−2

)1/2

Now we apply the same trick as in (5.12) and obtain since s′ > t′,

∞∑
k=1

(
k(s− t+ k)

)d∗
j−1(

(t′ − t+ k)(s′ − t+ k)
)d∗

j′−1
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≤ C (s− t+ 1)2d
∗
j−3/2(t′ − t+ 1)2d

∗
j′−3/2,

and more generally,∣∣Cov(XtXt′ , XsXs′
)∣∣ ≤ C

(
(s− t+ 1)2d

∗
j−3/2(t′ − t+ 1)2d

∗
j′−3/2

+ (s− t+ 1)2d
∗
j−1(s′ − t′ + 1)2d

∗
j′−1 +

(
(s′ − t)(t′ − s)

)d∗
j+d∗

j′−1
)
. (5.16)

Therefore,

Var
(
Rn(T, T

′, d,m)
)

≤ C
∑
t∈T

∑
s∈T

∑
t′∈T ′

∑
s′∈T ′

∣∣Cov(XtXt′ , XsXs′
)
bn(t− t′, d,m)bn(s− s′, d,m)

∣∣
≤ C

(
J1 + J2 + J3

)
, (5.17)

with⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

J1 =
∑
t∈T

∑
s∈T

∑
t′∈T ′

∑
s′∈T ′

(|t− s|+ 1)2d
∗
j−3/2(|t′ − t|+ 1)2d

∗
j′−3/2

×
∣∣bn(t− t′, d,m)bn(s− s′, d,m)

∣∣
J2 =

∑
t∈T

∑
s∈T

∑
t′∈T ′

∑
s′∈T ′

(1 + |t− s|)2d∗
j−1(1 + |t′ − s′|)2d

∗
j′−1

×
∣∣bn(t− t′, d,m)bn(s− s′, d,m)

∣∣
J3 =

∑
t∈T

∑
s∈T

∑
t′∈T ′

∑
s′∈T ′

(
(s′ − t)(t′ − s)

)d∗
j+d∗

j′−1

×
∣∣bn(t− t′, d,m)bn(s− s′, d,m)

∣∣

.

As a consequence, we can easily see that J1 is negligible with respect to J2
since 2d − 3/2 < 2d − 1. Concerning J2 we use the same arguments than in
Lavielle and Ludena (2000). Then,

J2 ≤ C
∑
t∈T

∑
s∈T

(1 + |t− s|)2d∗
j−1

×
∑
t′∈T ′

∑
s′∈T ′

(1 + |t′ − s′|)2d
∗
j′−1

∣∣bn(t− t′, d,m)bn(s− s′, d,m)
∣∣

≤ C |T |2d∗
j+1

( |T |+|T ′|∑
u=0

|bn(u, d,m)|2

+2

|T |+|T ′|∑
u=0

|bn(u, d,m)|
|T |+|T ′|∑
v=u+1

|bn(v, d,m)| |v − u|2d
∗
j′−1

)
.

Using (5.13),

|T |+|T ′|∑
u=0

|bn(u, d,m)|2≤C
(min(|T |+|T ′|,n/m)∑

u=0

1 +

|T |+|T ′|∑
u=min(|T |+|T ′|,n/m)

(
n/m

)1+2d|u|−1−2d
)

≤ C(d) min
(
|T |+ |T ′|, n

m

)
. (5.18)
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Moreover,

|T |+|T ′|∑
u=0

|bn(u, d,m)|
|T |+|T ′|∑
v=u+1

|bn(v, d,m)| |u− v|2d
∗
j′−1

≤ C
{min(|T |+|T ′|,n/m)∑

u=0

(min(|T |+|T ′|,n/m)∑
v=u+1

(v − u)2d
∗
j′−1

+
( n
m

)1+2d
|T |+|T ′|∑

v=min(|T |+|T ′|,n/m)

v−1−2d(v − u)2d
∗
j′−1

)

+
( n
m

)2+4d
|T |+|T ′|∑

u=min(|T |+|T ′|,n/m)

|T |+|T ′|∑
v=u+1

(uv)−1−2d(v − u)2d
∗
j′−1

}

≤ C(d)
(
min

(
|T |+ |T ′|, n

m

))1+2d∗
j′

(5.19)

after classical computations. From (5.18) and (5.19), we obtain:

J2 ≤ C(d) |T |2d∗
j+1

(
min

(
|T |+ |T ′|, n

m

))1+2d∗
j′
. (5.20)

Using the same decomposition of J2 but beginning with s′, t′ ∈ T ′ instead of
s, t ∈ T , we can also replace T by T ′ in the previous bound. As a consequence,
we obtain:

J2 ≤ C(d) min
{
μ2d∗

j+1
(
min

(
ν,

n

m

))1+2d∗
j′
, μ2d∗

j′+1
(
min

(
ν,

n

m

))1+2d∗
j
}
. (5.21)

Finally using symmetry reasons we also have J3 =
(
E
(
Rn(T, T

′, d,m)
))2

and
therefore:

J3 ≤ C μ2
(
min

( n
m

, ν
))2d∗

j+2d∗
j′
(
min

(
1 ,

n

mμ

))2−2d∗
j−2d∗

j′
. (5.22)

As a consequence, using (5.31), (5.32), (5.34) and (5.21), (5.22), we obtain that
there exists C > 0 such that:

sup
d∈(0,1/2)

Var
(
Rn(T, T

′, d,m)
)

≤ C μ2
(
min

( n
m

, ν
))2d∗

j+2d∗
j′
(
min

(
1 ,

n

mμ

))2−2d∗
j−2d∗

j′
. (5.23)

Thus, with E
(
R2

n(T, T
′, d,m)

)
= Var

(
Rn(T, T

′, d,m)
)
+E2

(
Rn(T, T

′, d,m)
)
, we

have for any N ≤ n,

sup
d∈(0,1/2)

max
min(|T |,|T ′|)≥N

(
min

(
|T |, |T ′| , n

m

))−d∗
j−d∗

j′

min(|T |, |T ′|)2 E
(
R2

n(T, T
′, d,m)

)
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≤ C
(
min

(
1 ,

n

mN

))2−2d∗
j−2d∗

j′
(5.24)

with C > 0, and this achieves the proof of (5.11) using Lemma 2.2 and 2.4 in
Lavielle and Ludena (2000).

Now the proof of the consistency of τ̂ can be established:

Proof of Theorem 3.1. Mutatis mutandis, we follow here a similar proof than in
Lavielle and Ludena (2000). Denote

Un(t,d,m) = Jn(K
∗, t,d,m)− Jn(K

∗, t∗,d∗,m), (5.25)

where Jn is defined in (2.10). Then, using (5.10), we can write that for any d
and t,

Un(t,d,m) =
1

n

[K∗+1∑
k=1

(
nk log

(
Sn(Tk, dk,m)

)
− n∗

k log
(
Sn(T

∗
k , d

∗
k,m)

))]

− �m
n

K∗+1∑
k=1

2 (nkdk − n∗
kd

∗
k).

Now using a decomposition of each Sn on the ‘true’ periods, we can write:

Sn(Tk, dk,m) =

K∗+1∑
j=1

nkj

nk
Sn(Tkj , dk,m)

+
2

nk

K∗+1∑
j=1

K∗∑
j′=1, j 
=j

Rn(Tkj , Tkj′ , dk,m),

with Rn defined in (5.9). As a consequence,

Un(d, t,m)

=
1

n

K∗+1∑
k=1

[
nk log

(K∗+1∑
j=1

nkj

nk

(
Sn(Tkj , dk,m) +

K∗+1∑
j′=1, j 
=j

2

nkj
Rn(Tkj , Tkj′ , dk,m)

))

−n∗
k log

(
Sn(T

∗
k , d

∗
k,m)

)]
+

�(m)

n

K∗+1∑
k=1

2 (nkdk − n∗
kd

∗
k)

≥ 1

n

K∗+1∑
k=1

K∗+1∑
j=1

[
nkj log

(
Sn(Tkj , dk,m) +

K∗+1∑
j′=1, j 
=j

2

nkj
Rn(Tkj , Tkj′ , dk,m)

)

−n∗
k log

(
Sn(T

∗
k , d

∗
k,m)

)]
+

�(m)

n

K∗+1∑
k=1

2 (nkdk − n∗
kd

∗
k)

≥ 1

n

K∗+1∑
k=1

K∗+1∑
j=1

nkj

[
log

(
Sn(Tkj , dk,m)
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+

K∗+1∑
j′=1, j 
=j

2

nkj
Rn(Tkj , Tkj′ , dk,m)

)
+ 2 dk�(m)

]

− 1

n

K∗+1∑
k=1

n∗
k

(
log

(
Sn(T

∗
k , d

∗
k,m)

)
+ 2 d∗k�(m)

)
(5.26)

using the concavity of x �→ log(x) and with nk =
∑K∗+1

j=1 nkj . Now we are going
to use Lemma 5.1 and 5.2. Therefore:

( n

m

)−2d∗
j
(
Sn(Tkj , dk,m) +

K∗+1∑
j′=1, j 
=j

2

nkj
Rn(Tkj , Tkj′ , dk,m)

)

=
c∗0,j(2π)

−2d∗
j

1 + 2dk − 2d∗j
+ εkj ,

with εkj = OP(1) when nkj = O(n/m) and εkj = oP (1) for n = o(nkjm). As
a consequence, from (5.26), Lemma 5.1 and 5.2, we deduce that there exists a

random variable D(m,n) such that D(m,n)
P−→

n,m, n/m→∞
0 satisfying for any t

and d,

Un(t,d,m) ≥
K∗+1∑
k=1

K∗+1∑
j=1

nkj

n

(
s(d∗j , dk)− s(d∗j , d

∗
j )
)
− |D(m,n)|

where for d ∈ (0, 1/2),

s(d∗j , d) = 2d∗j log
(
n/m

)
+ log

(
c∗0,j(2π)

−2d∗
j
)
− log

(
1 + 2d− 2d∗j

)
− 2d. (5.27)

Now, simple computations also imply

Un(t,d,m) ≥
K∗+1∑
k=1

K∗+1∑
j=1

nkj

n

(
u(d∗j , dk)− u(d∗j , d

∗
j )
)
− |D(m,n)| (5.28)

with u(d∗j , d) = − log
(
1+2d−2d∗j

)
+2d. Remark that u(d∗j , dk)−u(d∗j , d

∗
j ) > 0 for

any d∗j �= dk and of course u(d∗j , d
∗
j )−u(d∗j , d

∗
j ) = 0. Now we could use Lemma 2.3

of Lavielle (1999, p. 88), adapted in Lemma 3.3 of Lavielle and Ludena (2000,
p. 858) and we obtain that there exists C∗ > 0 depending only on d∗ such that

K∗+1∑
k=1

K∗+1∑
j=1

nkj

n

(
u(d∗j , dk)− u(d∗j , d

∗
j )
)
≥ C

n
‖t− t∗‖∞, (5.29)

and ‖t− t∗‖∞ = max1≤k≤K∗
{
|tk − t∗k|

}
.

Therefore, it is also possible to write that for any δ > 0,

P
(
‖τ̂ − τ∗‖∞ > δ

)
≤ P

(
inf

d∈(0,1/2)K∗+1
min

t∈TK∗ (nδ)
Un(t,d,m) < 0

)
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≤ P

(
inf

d∈(0,1/2)K∗+1
min

t∈TK∗ (nδ)

K∗+1∑
k=1

K∗+1∑
j=1

nkj

n

(
u(d∗j , dk)− u(d∗j , d

∗
j )
)

−|D(m,n)| < 0
)

≤ P

(
C δ − |D(m,n)| < 0

)
−→

n,m, n/m→∞
0,

since D(m,n)
P−→

n,m, n/m→∞
0 and for t ∈ TK∗(nδ) we have ‖t − t∗‖∞ ≥ δ n.

This achieves the proof.

Proof of Theorem 3.2. Assume with no loss of generality that K∗ = 1. From
Theorem 3.1, there exists a sequence (un)n of real numbers satisfying

un

√
m/n −→

n→∞
∞, un/n −→

n→∞
0 and P

(
|t̃1 − t∗1| > un

)
−→
n→∞

0.

For δ > 0, as we have

P

(
|t̃1 − t∗1| > δ

n√
m

)
≤ P

(
δ

n√
m

< |t̃1 − t∗1| ≤ un

)
+ P

(
|t̃1 − t∗1| > un

)

As a consequence, it is sufficient to show that P
(
δ

n√
m

< |t̃1−t∗1| ≤ un

)
−→
n→∞

0.

Denote Vδ,n,m = { t ∈ Z/ δ n/
√
m < |t1 − t∗1| ≤ un }. Then,

P
(
δ

n√
m

< |t̃1 − t∗1| ≤ un

)
≤

P

(
min

t1∈Vδ,n,m

(
Jn(K

∗, t1, (d̃1, d̃2),m)− Jn(K
∗, t∗1, (d̂

∗
1, d̂

∗
2),m)

)
≤ 0

)
, (5.30)

where d̂∗i are defined in (3.1).
Let t1 ∈ Vδ,n,m and without losing generality, let’s choose t1 > t∗1.
Then n1 = t1, n2 = n− t1, n11 = t∗1, n12 = t1 − t∗1, n21 = 0 and n22 = n− t1,

T ∗
1 = {1, . . . , t∗1}, T ∗

2 = {t∗1 + 1 + 1, . . . , n}, T1 = {1, . . . , t1}, T11 = T ∗
1 =

{1, . . . , t∗1}, T12 = {t∗1 + 1, . . . , t1} and T2 = {t1 + 1, . . . , n} = T22.
On the one hand, using results of Lemma 5.1 and 5.2, since t1/n −→

n→∞
τ1

and (t1 − t∗1)/n −→
n→∞

0, we can write

1
t1−t∗1

Rn(T11, T12, d̃1,m)

Sn(T ∗
1 , d̃1,m)

=
( n

m

)1−2d∗
1

OP

( 1

(t1 − t∗1)
1−d∗

1−d∗
2

)
.

Therefore, using again the concavity of the logarithm function, we have:

Jn(K
∗, t1, (d̃1, d̃2),m)

=
1

n

{
t1 log

( t∗1
t1

Sn(T
∗
1 , d̃1,m) +

t1 − t∗1
t1

Sn(T12, d̃1,m) +
2

t1
Rn(T11, T12, d̃1,m)

)
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+(n− t1) log
(
Sn(T22, d̃2,m)

)
+ 2 �(m)

(
t1d̃1 + (n− t1)d̃2

)}
≥ 1

n

{
t∗1 log

(
Sn(T

∗
1 , d̃1,m)

)
+ (t1 − t∗1) log

(
Sn(T12, d̃1,m)

)
+(n− t1) log

(
Sn(T22, d̃2,m)

)
+ 2 �(m)

(
t1d̃1 + (n− t1)d̃2

)
+
( n

m

)1−2d∗
1

OP

( 1

(t1 − t∗1)
1−d∗

1−d∗
2

)}

≥ 1

n

{
t∗1 Wn(T

∗
1 , d̃1,m) + (t1 − t∗1)Wn(T12, d̃1,m) + (n− t1)Wn(T22, d̃2,m)

+
( n

m

)1−2d∗
1

OP

( 1

(t1 − t∗1)
1−d∗

1−d∗
2

)}
.

On the other hand, we also have:

Jn(K
∗, t∗1, (d̂

∗
1, d̂

∗
2),m) =

1

n

{
t∗1 Wn(T

∗
1 , d̂

∗
1,m) + (n− t∗1)Wn(T

∗
2 , d̂

∗
2,m)

}
.

First we remark that from the definition of d̂∗1,

Wn(T
∗
1 , d̂

∗
1,m) ≤ Wn(T

∗
1 , d̃1,m).

Therefore,

n

t1 − t∗1

{
Jn(K

∗, t1, (d̃1, d̃2),m)− Jn(K
∗, t∗1, (d̂

∗
1, d̂

∗
2),m)

}

≥ 1

t1 − t∗1

{
(t1 − t∗1)Wn(T12, d̃1,m) + (n− t1)Wn(T22, d̃2,m)

− (n− t∗1)Wn(T
∗
2 , d̂

∗
2,m) +

( n

m

)1−2d∗
1

OP

( 1

(t1 − t∗1)
1−d∗

1−d∗
2

)}
. (5.31)

Since t1 ∈ Vδ,n,m, we have

|T ∗
2 |
n

P−→
min(m, n

m )→∞
(1− τ∗1 ) and

|T22|
n

P−→
min(m, n

m )→∞
(1− τ∗1 ).

Then, Lemma 5.1 and more precisely inequality (5.7) can be applied. Therefore,

conditionally to d̃1, d̃2 and d̂∗2, we obtain:

Wn(T12, d̃1,m)=2d∗2 log
(
n/m

)
+ log

(
c∗0,2(2π)

−2d∗
2
)
− log

(
1 + 2d̃1 − 2d∗2

)
− 2d̃1

+OP

[(m
n

)β∗
2 +

( n

m(t1 − t∗1)

)1/2
+m2d̃1−2d∗

2−1
]

Wn(T22, d̃2,m)=2d∗2 log
(
n/m

)
+ log

(
c∗0,2(2π)

−2d∗
2
)
− log

(
1 + 2d̃2 − 2d∗2

)
− 2d̃2

+OP

[(m
n

)β∗
2 +m−1/2 +m2d̃2−2d∗

2−1
]

Wn(T
∗
2 , d̂

∗
2,m)=2d∗2 log

(
n/m

)
+ log

(
c∗0,2(2π)

−2d∗
2
)
− log

(
1 + 2d̂∗2 − 2d∗2

)
− 2d̂∗2

+OP

[(m
n

)β∗
2 +m−1/2 +m2d̂∗

2−2d∗
2−1

]
,
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since �(m) = 1
m

∑m
j=1 log(j/m) = −1 +O(m−1) that is negligible with respect

to OP

(
m−1/2

)
. Therefore, (5.31) becomes:

n

t1 − t∗1

{
Jn(K

∗, t1, (d̃1, d̃2),m)− Jn(K
∗, t∗1, (d̂

∗
1, d̂

∗
2),m)

}

≥ 1

t1 − t∗1

{
−(t1−t∗1)

(
log

(
1+2d̃1−2d∗2

)
−2d̃1

)
−(n−t1)

(
log

(
1+2d̃2−2d∗2

)
+2d̃2

)
+

n

m
OP

(mβ∗
2+1

nβ∗
2

+m1/2 +m2d̃2−2d∗
2 +m2d̂∗

2−2d∗
2

+
n

t1 − t∗1
m2d̂∗

1−2d∗
2 +

n−2d∗
1

m−2d∗
1 (t1 − t∗1)

1−d∗
1−d∗

2

)
+ (n− t∗1)

(
log

(
1 + 2d̂∗2 − 2d∗2

)
+ 2d̂∗2

)}
. (5.32)

But t1 is supposed to belong to Vδ,n,m and therefore t1 ≥ t∗1+δn/
√
m. Moreover,

from Dalla et al. (2006, p. 221), when m is such that m = o
(
n2β∗

2/(1+2β∗
2 )
)
, then:

d̃2 = d∗2 +OP

(
m−1/2

)
and d̂∗2 = d∗2 +OP

(
m−1/2

)
. (5.33)

Then, from (5.32), we obtain after computations,

n

t1 − t∗1

{
Jn(K

∗, t1, (d̃1, d̃2),m)− Jn(K
∗, t∗1, (d̂

∗
1, d̂

∗
2),m)

}

≥ 2(d∗1 − d∗2)− log
(
1 + 2(d∗1 − d∗2)

)
+

n

m(t1 − t∗)
OP

(m1+β∗
2

nβ∗
2

+
√
m
)

≥ 2(d∗1 − d∗2)− log
(
1 + 2(d∗1 − d∗2)

)
+OP

(1
δ
+

√
m

δ

(m
n

)β∗
2

)
.

As m = o
(
n2β∗

2/(1+2β∗
2 )
)
then

√
m
(
m
n

)β∗
2 = o(1). As a consequence, we finally

obtain:

n

t1 − t∗1

{
Jn(K

∗, t1, (d̃1, d̃2),m)− Jn(K
∗, t∗1, (d̂

∗
1, d̂

∗
2),m)

}

≥ 2(d∗1 − d∗2)− log
(
1 + 2(d∗1 − d∗2)

)
+OP

(1
δ

)
. (5.34)

As log(1 + x) < x for any x ∈ (−1, 0) ∪ (0, 1), and since d∗1 − d∗2 �= 0, we obtain
that

lim
δ→∞

P

( n

t1 − t∗1

{
Jn(K

∗, t1, (d̃1, d̃2),m)− Jn(K
∗, t∗1, (d̂

∗
1, d̂

∗
2),m)

}
< 0

)
= 0

and therefore from (5.30) we deduce (3.3) and therefore the proof of Theorem 3.2
is achieved.

Proof of Corollary 1. We will follow here the same reasoning than in Bai (1994)
or Lavielle and Moulines (2000) in the case K∗ = 1 (one change point). Let
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s ∈ [−M,M ] where M > 0 and a sequence (γn)n of positive real numbers such
as γn −→

n→∞
0. Then, consider

Δn(s) = Jn
(
1, t∗1 + [s nγn], (d̃1, d̃2),m

)
− Jn

(
1, t∗1, (d

∗
1, d

∗
2),m

)
. (5.35)

We will prove that for appropriate sequences (γn)n, there exist two sequences
(an)n∈N and (bn)n∈N not depending on s such that

an Δn(s) + bn
D−→

n→∞
Δ(s) for any s ∈ [−M,M ].

We have

Jn
(
1, t∗1 + [s nγn], (d̃1, d̃2),m

)
=

1

n

{(
[nτ∗1 ] + [s nγn]

)(
2 �(m)d̃1 + log

( [nτ∗1 ]

[nτ∗1 ] + [s nγn]
Sn(T

∗
1 , d̃1,m)

+
[s nγn]

[nτ∗1 ] + [s nγn]
Sn(T12, d̃1,m) +

2

[nτ∗1 ] + [s nγn]
Rn(T11, T12, d̃1,m)

))
+
(
n− [nτ∗1 ]− [s nγn]

)(
2 �(m)d̃2 + log

(
Sn(T22, d̃2,m)

)}
.

We will use the conditions m −→
n→∞

∞, γn −→
n→∞

0 and m = o
(
n2β∗

i /(1+2β∗
i )
)

implying
√
m
(
m
n

)β∗
i = o(1) for i = 1, 2 and asymptotic results of the proofs of

Lemma 5.1 and 5.2.

I. for 0 ≤ s ≤ M :

Jn
(
1, t∗1 + [s nγn], (d̃1, d̃2),m

)
=

(
τ∗1 + s γn(1 + o(1))

)(
2 d̃1(1 + o(m−1))

+ log
((

1− s

τ∗1
γn(1 + o(1))

) ( n

m

)2d∗
1 c∗0,1(2π)

−2d∗
1

1 + 2d̃1 − 2d∗1

(
1 +m−1/2Zs

1,n

)

+
s

τ∗1
γn

(
1 + o(1)

) (
min

{
nγn ,

n

m

})2d∗
2 c∗0,2(2π)

−2d∗
2

1 + 2d̃1 − 2d∗2

(
1 +m−1/2Zs

2,n

)

+OP

(
γn

(
min

{
nγn ,

n

m

})d∗
1+d∗

2
))

+
(
1− τ∗1 − s γn(1 + o(1))

)
×
(
2 d̃2(1 + o(m−1)) + log

(( n

m

)2d∗
2 c∗0,2(2π)

−2d∗
2

1 + 2d̃2 − 2d∗2

(
1 +m−1/2Zs

3,n

)))

where, for i = 1, 2, 3, (Zs
i,n)n is a sequence of random variables depending on s

satisfying Zs
i,n

D−→
n→∞

Zs
i with Zs

i a random variable.

• if d∗1 > d∗2 we have

Jn
(
1, t∗1 + [s nγn], (d̃1, d̃2),m

)
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=
(
τ∗1 + s γn

)(
2 d̃1 + 2 d∗1 log

( n
m

)
+ log

(
c∗0,1(2π)

−2d∗
1
)
− log

(
1 + 2d̃1 − 2d∗1

)
+
Zs
1,n√
m

− s
γn
τ∗1

(
1 + oP(1)

))
+

(
1− τ∗1 − s γn

) (
2 d̃2 + 2 d∗2 log

( n
m

)
+ log

(
c∗0,2(2π)

−2d∗
2
)
− log

(
1 + 2d̃2 − 2d∗2

)
+

Zs
3,n√
m

)
+ o(m−1).

We also have:

Jn
(
1, t∗1, (d

∗
1, d

∗
2),m

)
= τ∗1

(
2 d∗1+2 d∗1 log

( n
m

)
+log

(
c∗0,1(2π)

−2d∗
1
)
+
Z ′
1,n√
m

)

+
(
1−τ∗1

) (
2 d∗2+2 d∗2 log

( n
m

)
+log

(
c∗0,2(2π)

−2d∗
2
)
+

Z ′
3,n√
m

)
+O

( log(n)
m

)
.

(5.36)

As a consequence, with (5.35),

Δn(s) = τ∗1

(
2 d̃1 − 2 d∗1 − log

(
1 + 2d̃1 − 2d∗1

)
+

Zs
1,n − Z ′

1,n√
m

)

+ (1− τ∗1 )
(
2 d̃2 − 2 d∗2 − log

(
1 + 2d̃2 − 2d∗2

)
+

Zs
3,n − Z ′

3,n√
m

)

+ s γn log
( n
m

)(
2 d∗1 − 2 d∗2

)
+OP

(
γn +

log(n)

m

)
. (5.37)

Moreover, in such a framework, we have

d̃1 = argmin
d∈[0,0.5)

{
Wn({1, . . . , [n τ∗1 ] + [s n γn]}, d,m)

}
,

and therefore, for s ≥ 0 and d∗1 > d∗2, using the previous approximations,

d̃1 = argmin
d∈(0,0.5)

{
τ∗1

(
2 d− log

(
1 + 2 d− 2d∗1

)
+

Zs
1,n√
m

(
1 + oP(1)

))

+ s γn log
( n
m

)(
2 d∗1 − 2 d∗2

)(
1 + oP(1)

)}
,

where the consistency is uniform in probability for d ∈ (0, 0.5). Therefore, as
the minimum of 2 d − log

(
1 + 2 d − 2d∗1

)
is obtained for d = d∗1 and since

d ∈ (0, 1/2) �→ Wn(T, d,m) is a C1((0, 1/2)) function, we deduce that

d̃1 = d̂∗1 +OP

( 1√
m

+ s γn log
( n
m

))
. (5.38)

We also have d̃2 = d̂∗2 +OP

(
1√
m

)
from Abadir et al. (2007). As a consequence,

with x− log(1 + x) 
 1
2 x

2 for x → 0, (5.37) leads to

Δn(s) =
(
s γn log

( n
m

)(
2 d∗1 − 2 d∗2

)
+

1√
m

Zs
n

)(
1 + oP(1)

)
, (5.39)
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where (Zs
n) is a sequence of random variables such as Zs

n
D−→

n→∞
Zs. Hence, if

1√
m log(n/m)

= o(γn), then

argmin
s∈[0,M ]

Δn(s) = argmin
s∈[0,M ]

{
s γn log

( n
m

)(
2 d∗1 − 2 d∗2

)}
= 0

with a minimum obtained for s = 0: therefore,
1√

m log(n/m)
can not be negli-

gible with respect to γn. If γn =
1√

m log(n/m)
, then

√
mΔn(s)

D−→
n→∞

s
(
2 d∗1 − 2 d∗2

)
+ Zs. (5.40)

To prove that

argmin
s∈[0,M ]

{√
mΔn(s)

} D−→
n→∞

argmin
s∈[0,M ]

{
s
(
2 d∗1 − 2 d∗2

)
+ Zs

}
, (5.41)

we would need a Donsker-type theorem verified by Zs
n. However we can still

conclude that we necessarily have γn =
1√

m log(n/m)
and therefore the con-

vergence rate of t̃1 − t∗1 is
n√

m log(n/m)
when t̃1 − t∗1 > 0.

• if d∗2 > d∗1,
(
n
m

)2d∗
1 can be negligible with respect to γn

(
min

{
nγn ,

n
m

})2d∗
2

following the decreasing rate of (γn)n. If
(
n
m

)2d∗
1 = o

(
γn

(
min

{
nγn ,

n
m

})2d∗
2

)
then using the previous decomposition:

d̃1 = argmin
d∈(0,0.5)

{
τ∗1

(
2 d− log

(
1 + 2 d− 2d∗2

)
+

Zs
2,n√
m

)

+OP

( (
n
m

)2d∗
1

γn
(
min

{
nγn ,

n
m

})2d∗
2
+

1

m

)}
,

and therefore d̃1
P−→

n→∞
d∗2, implying

Δn(s) = τ∗1

((
2 d∗2 − 2 d∗1

)
+ log

(
γn

(
min

{
nγn ,

n

m

})2d∗
2

)
+ log

( s

τ∗1

)
+ log

(
c∗0,2(2π)

−2d∗
2
))(

1 + oP(1)
)
.

As a consequence the minimum in s of such Δn(s) is obtained for s = 0, this
indicates that (γn)n was chosen too large.
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Now consider that

⎧⎨
⎩

1√
m

(
n
m

)2d∗
1 = o

(
γn

(
min

{
nγn ,

n
m

})2d∗
2

)
o
((

n
m

)2d∗
1

)
= γn

(
min

{
nγn ,

n
m

})2d∗
2

. In such

a case, we obtain d̃1 = d∗1 +OP

(
γn

(
min

{
nγn ,

n
m

})2d∗
2
(
n
m

)−2d∗
1

)
and therefore

Δn(s) = s
c∗0,2(2π)

−2d∗
2

c∗0,1(2π)
−2d∗

1 (1 + 2d∗1 − 2d∗2)
γn

(
min

{
nγn ,

n

m

})2d∗
2
( n

m

)−2d∗
1

+OP

( 1√
m

+
(
γn

(
min

{
nγn ,

n

m

})2d∗
2
( n
m

)−2d∗
1

)2

+ γn log
( n
m

))
.

As a consequence, the minimum is once again obtain for s = 0 implying we have
to chose a “smaller” sequence (γn)n.

Case 1: Now, if β∗ > 2d∗2 − 2d∗1, we can chose m such as
√
m

(
n
m

)2d∗
1−2d∗

2 ≥ 1

and γn = 1√
m

(
n
m

)2d∗
1−2d∗

2 implying γn ≥ 1/m. Then for any s ∈ [0,M ],

√
mΔn(s)

D−→
n→∞

s
c∗0,2(2π)

2d∗
1−2d∗

2

c∗0,1(1 + 2d∗1 − 2d∗2)
+ Zs, (5.42)

with Zs = τ∗1
(
Zs
1−Z ′

1

)
+(1−τ∗1 )

(
Zs
3−Z ′

3

)
. Once again we cannot use a Donsker-

type theorem for obtaining the asymptotic behavior of argmins∈[0,M ] Δn(s) but

we can deduce that n√
m

(
n
m

)2d∗
1−2d∗

2 is the convergence rate of t̃1 − t∗1 when

t̃1 − t∗1 ≥ 0.

Case 2: If β∗ ≤ 2d∗2 − 2d∗1, we can chose m such as
√
m

(
n
m

)2d∗
1−2d∗

2 < 1, and

γn = 1√
m

(
n
m

) 2d∗1−2d∗2
1+2d∗2 m

− d∗2
1+2d∗2 implying γn < 1/m. Then we also have (5.42),

the same conclusion than in Case 1, except that the convergence rate of t̃1 − t∗1

when t̃1 − t∗1 ≥ 0 is n√
m

(
n
m

) 2d∗1−2d∗2
1+2d∗2 m

− d∗2
1+2d∗2 .

II. for −M ≤ s ≤ 0, the results can be deduced by symmetry and replacing
d∗1, d

∗
2 and τ∗1 respectively by d∗2, d

∗
1 and 1− τ∗1 .

Remark 6. If d∗1 > d∗2, consider the asymptotic behavior of P
(
t̃1 > t∗1

)
. We can

write:

P
(
t̃1 > t∗1

)
= P

(
min
u>0

Jn
(
1, [t∗1 + u], (d̃1, d̃2),m

)
< min

u<0
Jn

(
1, [t∗1 + u], (d̃1, d̃2),m

))
= P

(√
m

(
min
u>0

Jn
(
1, [t∗1 + u], (d̃1, d̃2),m

)
− Jn

(
1, t∗1, (d

∗
1, d

∗
2),m

))
<

√
m

(
min
u<0

Jn
(
1, [t∗1 + u], (d̃1, d̃2),m

)
− Jn

(
1, t∗1, (d

∗
1, d

∗
2),m

)))
.
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Using (5.40) and (5.42), we deduce that there exists 0 < p− < p+ < 1 depending
on d∗1, d

∗
2, τ

∗
1 , c

∗
0,1 and c∗0,2 such that for n large enough p− ≤ P

(
t̃1 > t∗1

)
≤ p+.

However, if limit theorem such as (5.41) could be proven, we can deduce the
precise limit to this probability when n → ∞.

Proof of Theorem 3.3. Using Theorem 3.2, we can establish that d̃i = d̂∗i +
OP

(
m−1/2

)
. Indeed, once again without lose of generality, we can consider the

case of one change. Using the notation and proof of Theorem 3.2, if we assume
t̃1 > t∗1, knowing t̃1 − t∗1 ≤ C n√

m
, then T2 ⊂ T ∗

2 and therefore we can again

write (5.33) and then |d̃2 − d̂∗2| = OP

(
m−1/2

)
.

Concerning d̃1 and with the knowledge that t̃1 is such that 0 ≤ t̃1−t∗1 ≤ C n√
m
,

we can write that
d̃1 = argmin

d∈[0,0.5)

Wn({1, . . . , t̃1}, d,m).

But using computations of Theorem 3.2, we have

Wn({1, . . . , t̃1}, d,m)

= log
( t∗1
t̃1

Sn

(
T ∗
1 , d,m

)
+

t̃1 − t∗1
t̃1

Sn

(
{t∗1 + 1, . . . , t̃1}, d,m

)
+

2

t̃1
Rn

(
{1, . . . , t∗1}, {t∗1 + 1, . . . , t̃1}, d,m

))
+ 2d �(m)

= log
(
Sn

(
T ∗
1 , d,m

))
+Dm,n,d

( t̃1 − t∗1
t∗1

)
+ 2d �(m) + log(t∗1/t̃1)

= Wn(T
∗
1 , d,m) +Dm,n,d

( t̃1 − t∗1
n

)
,

where supd∈(0,1/2) |Dm,n,d| = OP(1) using Lemmas 5.1 and 5.2 and because we
have t∗1 = [nτ∗1 ].

Now, since d̂∗1 = argmind∈[0,0.5) Wn(T
∗
1 , d,m) and d ∈ (0, 1/2) �→ Wn(T, d,m)

is a C1((0, 1/2)) function, we deduce that d̃1 = d̂∗1 + 1
n OP

(
|t̃1 − t∗1|

)
= d̂∗1 +

OP

(
m−1/2

)
. This achieves the proof of Theorem 3.3.

Proof of Theorem 3.4. The proof is established if for any K ∈
{
0, . . . ,K∗ −

1,K∗ + 1, . . . ,Kmax

}
the following consistency holds:

P

(
Jn(K, t,d,m)− Jn(K

∗, t∗,d∗,m) < 0
)

−→
n→∞

0, (5.43)

for any t and d, with Jn defined as in (2.10).

Indeed, as Jn(K
∗, t̂∗, d̂∗,m) ≤ Jn(K

∗, t∗,d∗,m) by definition, (5.43) is also

satisfied by replacing Jn(K
∗, t∗,d∗,m) by Jn(K

∗, t̂∗, d̂∗,m). We decompose the
proof in two parts, K < K∗ and K > K∗.

Assume K < K∗. Then, for any t and d, and using (5.26),

Jn(K, t,d,m)− Jn(K
∗, t∗,d∗,m)
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=
1

n

K+1∑
k=1

nk log
(K∗+1∑

j=1

nkj

nk
Sn(Tkj , dk,m)

+
2

nk

K∗+1∑
j=1

K∗+1∑
j′=1, j 
=j

Rn(Tkj , Tkj′ , dk,m)
)
− 1

n

K+1∑
j=1

n∗
j log

(
Sn(T

∗
j , d

∗
j ,m)

)

+2
�(m)

n

(K+1∑
k=1

nkdk −
K∗+1∑
j=1

n∗
jd

∗
j

)
+ (K −K∗)zn

≥
K+1∑
k=1

K∗+1∑
j=1

nkj

n

(
s(d∗j , dk)− s(d∗j , d

∗
j )
)
− |D(m,n)|+ (K −K∗)zn

≥
K+1∑
k=1

K∗+1∑
j=1

nkj

n

(
u(d∗j , dk)− u(d∗j , d

∗
j )
)
− |D(m,n)|+ (K −K∗)zn

using (5.27) with D(m,n)
P−→

n,m, n/m→∞
0 and since

K∗+1∑
j=1

nkj = nk,
K+1∑
k=1

nkj = n∗
j

and u(d∗j , d) = − log
(
1 + 2d− 2d∗j

)
+ 2d ≥ 2d∗j .

Now, we use again Lemma 2.3 of Lavielle (1999, p. 88). This Lemma was
obtained when K = K∗ and we obtain that there exists Cd > 0 such that

sup
d∈,t∈

K∗+1∑
k=1

K∗+1∑
j=1

nkj

n

(
u(d∗j , dk)− u(d∗j , d

∗
j )
)
≥ Cd

1

n
‖t− t∗‖∞

where ‖t− t∗‖∞ = max1≤j≤K∗ |tj − t∗j |. However, this result is still valide when
K∗ is replaced by K < K∗ in the first sum, since it is sufficient to add K∗ −K
fictive times and consider tK+1 = tK+2 = · · · = tK∗ = tK (and therefore nkj = 0
for k = K + 2, . . . ,K∗ + 1. Therefore we obtain:

Jn(K, t,d,m)−Jn(K
∗, t∗,d∗,m) ≥ 1

3
min

1≤i≤K∗
|τ∗i+1−τ∗i |−|D(m,n)|+(K−K∗)zn

(5.44)
since K < K∗ and therefore

‖t− t∗‖∞ ≥ 1

2
min

1≤i≤K∗
|t∗i+1 − t∗i | ≥

n

3
min

1≤i≤K∗
|τ∗i+1 − τ∗i |

when n is large enough. Then, if zn −→
n→∞

0 then (5.43) is satisfied and this

implies P
(
K̂ < K∗) −→

n→∞
0.

Assume K∗ < K ≤ Kmax. With t̂ = (t̂1, . . . , t̂K), there exists some subset

{kj , 1 ≤ j ≤ K∗} of {1, . . . ,K} such that for any j = 1, . . . ,K∗,
∣∣ t̂kj

n − τ∗j
∣∣ =

OP

(
1√
m

)
. To see this, consider the (t̂kj ) as the closest times among (t̂1, . . . , t̂K)
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to the (t∗1, . . . , t
∗
K∗). The other K−K∗ change dates t̂i could be consider exactly

as additional “false” changes (since the parameters d do not change at these
times) and therefore the t̂kj minimize Jn(K, t,d,m) conditionally to those t̂i
with i /∈ {k1, . . . , kK∗ as if the number of changes is known and is K∗. And
therefore Theorem 3.2 holds for those t̂kj .

Then using the previous expansions detailed in the previous proofs, we obtain

Jn(K, t̂, d̂,m)− Jn(K
∗, t∗,d∗,m)

=
1

n

K∗+1∑
j=1

( kj+1∑
k=kj+1

n̂k log
(
Sn(T̂k, d̂k,m)

)
− n∗

j log
(
Sn(T

∗
j , d

∗
j ,m)

))

+2
�(m)

n

(K+1∑
i=1

n̂id̂i −
K∗+1∑
j=1

n∗
jd

∗
j

)
+ (K −K∗)zn

≥ 1

n

K∗+1∑
j=1

( kj+1∑
k=kj+1

n̂k s(d
∗
j , d̂k)− n∗

j s(d
∗
j , d

∗
j )
)
− |D(m,n)|

+2
�(m)

n

(K+1∑
i=1

n̂id̂i −
K∗+1∑
j=1

n∗
jd

∗
j

)
+ (K −K∗)zn

≥ 1

n

K∗+1∑
j=1

( kj+1∑
k=kj+1

n̂k s(d
∗
j , d̂k)− n∗

j s(d
∗
j , d

∗
j )
)
− |D(m,n)|

+2
�(m)

n

(K+1∑
i=1

n̂id̂i −
K∗+1∑
j=1

n∗
jd

∗
j

)
+ (K −K∗)zn

with s defined in (5.27). Now, since T̂k ⊂
{
t̂kj+1, . . . , t̂kj+1

}
, we have from

Theorem 3.4, d̂k = d∗j + O
(

1√
m

)
. As a consequence, for k = kj + 1, . . . , kj+1

then s(d∗j , d̂k) = s(d∗j , d
∗
j ) +OP

(
1√
m

)
. Then,

Jn(K, t̂, d̂,m)− Jn(K
∗, t∗,d∗,m)

≥ 1

n

K∗+1∑
j=1

(
s(d∗j , d

∗
j ) + 2 d∗j

�(m)

n

)( kj+1∑
k=kj+1

n̂k − n∗
j

)

−|D(m,n)| − |E(m,n)|+ (K −K∗)zn

≥ −|D(m,n)| − |E′(m,n)|+ (K −K∗)zn,

with D(m,n) = OP

(
1√
m

)
under condition m = o

(
n2β∗/(1+2β∗)

from the proof

of Theorem 3.2, E(m,n) = OP

(
1√
m

)
and therefore E′(m,n) = OP

(
1√
m

)
since∣∣∣∑kj+1

k=kj+1 n̂k − n∗
j

∣∣∣ = OP

(
n√
m

)
.
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As a consequence if (zn) is such that zn
√
m −→

n→∞
∞ then for any K > K∗,

P

(
Jn(K, t̂, d̂,m)− Jn(K

∗, t∗,d∗,m) < 0
)

−→
n→∞

0.

This achieves the proof.

Proof of Corollary 2. We can write

P

(√m

n

∥∥t̂− t∗
∥∥ ≥ δ

)
=

Kmax∑
K=0

P

(√m

n

∥∥t̂− t∗
∥∥ ≥ δ

⋂
K̂ = K

)

=

Kmax∑
K=0

P

(√m

n

∥∥t̃− t∗
∥∥ ≥ δ

∣∣ K̂ = K
)
P
(
K̂ = K

)
.

For K = K∗ we have lim
δ→∞

lim
m,n→∞

P

(√m

n

∥∥t̃− t∗
∥∥ ≥ δ

)
= 0 and for K �= K∗,

lim
m,n→∞

P
(
K̂ = K

)
= 0. Then lim

δ→∞
lim

m,n→∞
P

(√m

n

∥∥t̂ − t∗
∥∥ ≥ δ

)
= 0 because

Kmax is a fixed constant.
Similarly, with M > 0 and for i = 1, . . . ,K∗ + 1,

P
(√

m
∣∣d̂i − d∗i

∣∣ ≤ M
)

=

Kmax∑
K=0

P

(√
m

∣∣d̂i − d∗i
∣∣ ≤ M

⋂
K̂ = K

)

=

Kmax∑
K=0

P

(√
m

∣∣d̃i − d∗i
∣∣ ≤ M

∣∣ K̂ = K
)
P
(
K̂ = K

)
.

But lim
m,n→∞

P
(
K̂ = K

)
= 1 and lim

M→∞
lim

m,n→∞
P

(√
m

∣∣d̃i − d∗i
∣∣ ≤ M

)
= 1 for

K = K∗, while for K �= K∗, lim
m,n→∞

P
(
K̂ = K

)
= 0. Since Kmax is a fixed

constant, this implies limM→∞ lim
m,n→∞

P

(√
m

∣∣d̂i − d∗i
∣∣ ≤ M

)
= 1.
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