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1. Introduction

The Ising model is a popular mathematical model inspired by ferromagnetism in
statistical mechanics. The model consists of discrete {—1,1} random variables
representing magnetic dipole moments of atomic spins. The spins are arranged
in a graph—originally a lattice, but other graphs have also been considered—
allowing each spin to interact with its graph neighbors. Sometimes, the spins
are also subject to an external magnetic field.

The Ising model is one of many possible mean field models for spin glasses. Its
probabilistic properties have caught the attention of many researchers—see, e.g.,
the monographs of Talagrand [36, 37, 38]. The analysis of social networks has
brought computer scientists into the fray, as precisely the same model appears
there in the context of community detection [8].

In this work we view an Ising model as a probability distribution on {—1,1}¢,
and consider the following statistical inference and learning problem, known as
density estimation or distribution learning: given i.i.d. samples from an unknown
Ising model I on a known graph G, can we create a probability distribution on
{—1,1}% that is close to I in total variation distance? If we have n samples, then
how small can we make the expected value of this distance? We prove that if G
has m edges, the answer to this question is bounded from above and below by
constant factors of y/(m + d)/n. In the case when there is no external magnetic
field, the answer is instead /m/n.

Our techniques carry over to the continuous case and allow us to prove a
similar minimax risk for learning the class of d-dimensional normal undirected
graphical models on G. It is surprising that the minimax rate for this class was
not known, even when G is the complete graph, corresponding to the class of
all d-dimensional normal distributions.

1.1. Main results

We start by stating our results for normal distributions. For formal definitions of
all terms mentioned below, see Section 2. We express minimax risks as functions
of the number of samples n.

Theorem 1.1 (Main result for learning normals). Let G be a given undi-
rected graph with vertex set {1,...,d} and m edges. Let Fg be the class of
d-dimensional multivariate normal undirected graphical models with respect to
G. Then, the minimaz rate for learning Fg in total variation distance is bounded

from above and below by constant factors of min{l, /(m +d)/n}.

The upper bound follows from standard techniques (see Section 3.1) and a
lower bound of min{1, \/d/n} is known (see Section 1.2); our main technical con-
tribution is to show a lower bound of min{1, \/m/n}, from which Theorem 1.1
follows. This theorem immediately implies a tight result on the minimax rate
for learning the class of all d-dimensional normals, if we take the graph G to
be complete. In this specific case, the upper bound is already known, so our
contribution is the matching lower bound.
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Corollary 1.2. The minimaz rate for learning the class of all d-dimensional
multivariate normal distributions in total variation distance is bounded from
above and below by constant factors of min{1,d//n}.

In fact, this result can be extended using the techniques of [2] to yield the
lower bound of Q(min{1, d\/k/n}) for the minimax learning rate of miztures of
k many d-dimensional multivariate normals, which was previously known only
up to logarithmic factors.

We remark that for the class of zero-mean normal undirected graphical mod-
els, we prove a lower bound of min{1, y/m/n} while the best known upper bound
is min{1, \/(m + d)/n}. In practice, the underlying graph is typically connected,
which means that m > d — 1, so these bounds match.

We prove similar rates as in Theorem 1.1 for the class of Ising models, which
resemble discrete versions of multivariate normal distributions. An Ising model
in dimension d is supported on {—1,1}¢ and comes with an undirected graph
G = (V, E) with vertex set V = {1,...,d}, edge set E C {{i,j}: 1 # j € V},
interactions w;; € R for each {7, j} € E, and external magnetic field h; € R for
1 <4 < d such that x € {-1, 1}d appears with probability proportional to

d
exp Z Wi T4 5 + Z hZSQ
1

{ijteE i=

Note that our definition has no temperature parameter; we have absorbed it
into the weights.

Theorem 1.3 (Main result for learning Ising models). Let G be a given undi-
rected graph with vertex set {1,...,d} and m edges. Let I be the class of
d-dimensional Ising models with underlying graph G.

(i) The minimax rate for learning I in total variation distance is bounded
from above and below by constant factors of min{1, \/(m + d)/n}.

(i1) Let I}, be the subclass I of Ising models with no external magnetic field.
The minimaz rate for learning Iy, in total variation distance is bounded
from above and below by constant factors of min{1, \/m/n}.

In all of the above cases, it is assumed that the full structure and labeling
of the underlying graph G is known in advance. We next consider the case in
which it is only known that the underlying graph has d vertices and m edges.

Theorem 1.4. Let Fq,, and Zg ., be the class of all normal and Ising undirected
graphical models with respect to some unknown graph with d vertices and m
edges. The minimaz learning rates for Fy . and Ly, are both bounded from
above by a constant factor of min{l,/(m + d)log(d)/n}, and bounded from

below by a constant factor of min{l,\/(m + d)/n}.

The lower bound in this theorem follows immediately from our lower bounds
for the case in which the graph is known.
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In the next section we review related work. In Section 2 we discuss prelim-
inaries. Theorem 1.1, Theorem 1.3, and Theorem 1.4 are proved in Section 3,
Section 4, and Section 5, respectively. We conclude with some open problems in
Section 6.

1.2. Related work

Density estimation is a central problem in statistics and has a long history [12,
13, 25, 39]. It has also been studied in the learning theory community under
the name distribution learning, starting from [27], whose focus is on the com-
putational complexity of the learning problem. Recently, it has gained a lot of
attention in the machine learning community, as one of the important tasks in
unsupervised learning is to understand the distribution of the data, which is
known to significantly improve the efficiency of learning algorithms (e.g., [20,
page 100]). See [16] for a recent survey from this perspective.

An upper bound on the order of d/+/n for estimating d-dimensional normals
can be obtained via empirical mean and covariance estimation (e.g., [2, Theo-
rem B.1]) or via Yatracos’ techniques based on VC-dimension (e.g., [4, Theo-
rem 13]). Regarding lower bounds, Acharya, Jafarpour, Orlitsky, and Suresh [1,
Theorem 2] proved a lower bound on the order of y/d/n for normals with iden-
tity covariance matrix, which implies the same lower bound for general normals.
The lower bound for general normals was recently improved to a constant factor
of ﬁﬁ)gn by Asthiani, Ben-David, Harvey, Liaw, Mehrabian, and Plan [2]. In
comparison, our result shaves off the logarithmic factor. Moreover, their result
is nonconstructive and relies on the probabilistic method, while our argument
is fully deterministic. (Recently, Ashtiani et al. [3] have also shaved off the loga-
rithmic factor and have shown that their probabilistic construction achieves the
optimal lower bound of % as well.)

For the Ising model, the main focus in the literature has been on learning the
structure of the underlying graph rather than learning the distribution itself,
i.e., how many samples are needed to reconstruct the underlying graph with high
probability? Bresler [10] and Vuffray, Misra, Lokhov, and Chertkov [43] provided
efficient algorithms for this task on bounded-degree graphs. For general graphs,
see [33, 35] for some lower bounds and [21, 28] for some upper bounds. Klivans
and Meka [28] also give an efficient algorithm for learning all of the parameters
of an Ising model up to an additive error given a natural parametric constraint.
Otherwise, the Ising model itself has been studied by physicists in other settings
for nearly a century. See the books of Talagrand for a comprehensive look at
the mathematics of the Ising model [36, 37, 38].

Daskalakis, Dikkala, and Kamath [11] were the first to study Ising models
from a statistical point of view. However, their goal is to test whether an Ising
model has certain properties, rather than estimating the model, which is our
goal. Moreover, their focus is on designing efficient testing algorithms. They
prove polynomial sample complexities and running times for testing various
properties of the model.
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An alternative goal would be to estimate the parameters of the underlying
model (see, e.g., [26]) rather than coming up with a model that is statistically
close, which is our focus. We remark that these two goals are quantitatively dif-
ferent, although similar techniques may be used for both. In general, estimating
the parameters of a model to within some accuracy does not necessarily result
in a distribution that is close to the original distribution in a statistical sense.
For instance, define

1 —0.99 < (1 -1
E<—0.99 1) and E<—1 1)’

and observe that ¥ and Y are entrywise very close. However, 3 is non-singular
and ¥ is singular, and thus two zero-mean normal distributions with covariance
matrices ¥ and ¥ are at total variation distance 1 from one another. Conversely,
if two distributions are close in total variation distance, their parameters are not
necessarily close to within the same accuracy (see, e.g., [2, Section 1.3.1]).

2. Preliminaries

The goal of density estimation is to design an estimator f for an unknown
function f which belongs to a known class of functions F. In the continuous
case, F is a class of probability density functions with sample space X = R? for
some d > 1; in the discrete case, F is a class of probability mass functions with
a countable sample space X. In either case, in order to create the estimator f ,
we have access to samples X1q,..., X, iid, f- Our measure of closeness is the
total variation (TV) distance: For functions f, g : X — R, their TV-distance is

defined as
TV(f,9) = lf —gll./2,

where for any function f, the L'-norm of f is defined as

I fll, = / |f(z)] da in the continuous case, and
X
£l = Z |f(z)] in the discrete case.
TEX

Further along, we will also need the Kullback-Leibler (KL) divergence or relative
entropy [29], which is another measure of closeness of distributions defined by

KL(f |l g) = /X f(x) log<%) dz in the continuous case, and
KL(f || 9)=>_ f(x) log<%) in the discrete case.

reX

Formally, in the continuous case, we can write f = % for a probability measure

F and p the Lebesgue measure on R?, and in the discrete case f = ‘é—f: for a
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probability measure F' and p the counting measure on countable X. In view of
this unified framework, we say that F is a class of densities and that f is a
density estimate, in both the continuous and the discrete settings.

The total variation distance has a natural probabilistic interpretation as
TV(f,g9) = supscy |F(A) — G(A)|, where F' and G are probability measures
corresponding to f and g, respectively. So, the TV-distance lies in [0, 1]. Also,
it is well-known that the KL-divergence is nonnegative, and is zero if and only
if the two densities are equal almost everywhere. However, it is not symmetric
in general, and can become +oc0.

For density estimation there are various possible measures of distance be-
tween distributions. Here we focus on the TV-distance since it has several ap-
pealing properties, such as being a metric and having a natural probabilistic
interpretation. For a detailed discussion on why TV is a natural choice, see [14,
Chapter 5]. If f is a density estimate, we define the risk of the estimator f with
respect to the class F as

Ra(f,F) = sup E{TV(f, f)},
feF
where the expectation is over the n i.i.d. samples from f, and possible random-
ization of the estimator. The minimaz risk or minimaz rate for learning F is
the smallest risk over all possible estimators,
Ro(F)= inf  Ru(f,F).
frxnosRrX
For a class of functions F defined on the same domain X, its Yatracos class
A, first defined in [44], is the class of sets defined by

A= {{xe X: f(z) > g(z)}: fyége]—'}.

The following powerful result relates the minimax risk of a class of densities
to a well-studied combinatorial quantity called the Vapnik-Chervonenkis (VC)
dimension [40], defined next. Let A C 2% be a family of subsets of X'. The
VC-dimension of A, denoted by VC(.A), is the size of the largest set X C X
such that for each Y C X there exists B € A such that X N B =Y. See, e.g.,
[14, Chapter 4] for examples and applications.

Theorem 2.1 ([14, Section 8.1]). There is a universal constant ¢ > 0 such that
for any class of densities F with Yatracos class A,

R (F) < ey/VC(A) /1.

On the other hand, there are several methods for obtaining lower bounds
on minimax risk; we emphasize, in particular, the methods of Assouad [5], Le
Cam [31, 32], and Fano [22]. Each of these involve picking a finite subclass
G C F, and developing a lower bound on the minimax risk of G using the fact
that R, (G) < Rp(F)—see [12, 14, 45] for examples. We will use the following
result, known as (generalized) Fano’s lemma, originally due to Has'minskii [22],
where log(+) denotes the natural logarithm function.



2344 Luc Devroye, Abbas Mehrabian, and Tommy Reddad

Lemma 2.2 (Fano’s Lemma [45, Lemma 3]). Let F be a finite class of densities
such that

inf — > a, sup KL <B.
i f =gl sw KL(f|g)< 5
Then,
e nB + log2
Ro(F)> —|1—- ———2-).
#25(1- )

In light of this lemma, to prove a minimax risk lower bound on a class of
densities F, we shall carefully pick a finite subclass of densities in F, such that
any two densities in this subclass are far apart in L'-distance but close in KL-
divergence.

Throughout this paper, we will be estimating densities from classes with
a given graphical dependence structure, known as undirected graphical mod-
els [30]. The underlying graph will always be undirected and without parallel
edges or self-loops, so we will omit these qualifiers henceforth. Let G = (V, E)
be a given graph with vertex set V' = {1,...,d} and edge set E. A set of ran-
dom variables {X71, ..., X4} with everywhere strictly positive densities forms a
graphical model, also called a Markov random field, with respect to G if, for
every {i,j} ¢ E, the variables X; and X are conditionally independent given

Often, the problem of density estimation is framed slightly differently than we
have presented it: given £ € (0, 1), one might be interested in finding the smallest
number of i.i.d. samples m () for which there exists a density estimate f based
on these samples satisfying sup ¢ » E{TV(f7 f)} <e. Or, given ¢ € (0,1), one
might want to find the minimum number of samples mx(e, d) for which there
is a density estimate f satisfying sup ¢ » TV( f , ) < e with probability at least
1 — 4. The quantities mr(e) and mz(e,d) are known as sample complezities of
the class F. Note that mz(g) and R,,(F) are related through the equation

mz(e) =min{n > 0: R, (F) <e},

so determining R, (F) also determines mx(-). Moreover, ¢ is often fixed to be
some small constant, say 1/3, when studying mz(e,d). Then, there are versions
of Theorem 2.1 and Lemma 2.2 for mz (e, 1/3), which introduce some extraneous
log(1/¢) factors. In order to avoid such extraneous logarithmic factors, we focus
on R, (F)—equivalently, mz(e)—rather than mx(e,1/3) or mx(e, 9).

We now recall some basic matrix analysis formulae that will be used through-
out (see Horn and Johnson [24] for the proofs). We denote the identity matrix
by I. For a matrix A = (4;;) € R¥? the spectral norm of A is defined as
| Al = sup,ega—1]|Az|5, where ST=1 = {z € R?: ||z|]s = 1} is the unit (d — 1)-
sphere. The trace and determinant of A are denoted by tr(A4) and det(A), re-
spectively. Recall also the Frobenius norm of A, also called the Hilbert-Schmidt

norm or the Schur norm, ||Allp = \/Zf’j:l A7 = \/tr(ATA). When A has

only real eigenvalues, we write \;(A) for the ith largest eigenvalue of A. In
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general, we write 0;(A) = /\;(ATA) for the ith largest singular value of A.
Then, det(A) = H?Zl A\i(A), and for any k > 1, tr(A*) = Z?Zl MF(A). Further-
more, ||A]| = 01(A), and ||Al|r = Z?:l 0:(A)2, so ||A|| < ||Al|lp. When A is

invertible, o;(A~1) = 04_;(A)~! for every 1 < i < d. Finally, for any matrix
B € R¥? we have (see, e.g., [23, Fact 7(c) in Section 24.4])

max{oq(A)[|Bl[r,0a(B)||Alr} < [AB|r < min{oi(A)||Bl|r, o1(B)[| Al r}-
1)
Throughout this paper, we let cg,c1,co,... € R denote positive absolute
constants. We liberally reuse these symbols, i.e., every ¢; may differ between
proofs and statements of different results. We denote the set {1,...,d} by [d].

3. Learning normal graphical models

Let d be a positive integer, P; C R%*? be the set of positive definite d x d
matrices over R, and A (i, ) denote the multivariate normal distribution with
mean g € R?, covariance matrix ¥ € Py, and corresponding probability density
function f, s, where for z € RY,

exp{—3(z —p)"S" o —p)}
(2m)d/2,/det (D)

fu,z(x) =

Let G = ([d], E) be a given graph with m edges. Let Pg C Py be the following
subset of all positive definite matrices,

Pe = {z € Pa: if {i,j} ¢ E with i # j € [d], then X, = 0}.
The main result of this section is a characterization of the minimax risk of
Fo={fus: peR:, T ePs}.
It is known that F¢ is precisely the class of d-dimensional multivariate normal

graphical models with respect to G [30, Proposition 5.2].

3.1. Proof of the upper bound in Theorem 1.1

We can already prove the upper bound in Theorem 1.1 without lifting a finger.
The proof is similar to that of [4, Theorem 13|, which gives the optimal upper
bound on the minimax risk of all multivariate normals, corresponding to the
special case in which G is complete. Let A be the Yatracos class of Fg,

A={{z € R fus(@) > fs@): (13) # (55 € R x o},

which, after taking logarithms and simplification, is easily seen to be contained
in the larger class

A = {{xeRd: eTAz 40"z +¢>0}: A7 € Pg, b e RY, ceR},
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and thus VC(A) < VC(A'). It remains to upper-bound VC(A’).

In general, let G be a vector space of real-valued functions, and define B :
= {{z: f(z) > 0}: f € G}. Dudley [17, Theorem 7.2] proved that VC(B) <
dim(G). (See [14, Lemma 4.2] for a historical discussion.) In our case, the vector
space G has a basis of monomials

{1} U {wia;: {i, 5} € B}y U {wi a7 0 € [d]},

so VC(A') < m + 2d + 1. By Theorem 2.1, there is a universal constant ¢ > 0

such that
/ 2 1
Rn(]:G) < c\/% < c\/%7

while the upper bound R, (F¢g) < 1 follows simply because the TV-distance is
bounded by 1. O

3.2. Proof of the lower bound in Theorem 1.1

Since a lower bound on the order of min{1,/d/n} for normals is proved in [1,
Theorem 2], the lower bound in Theorem 1.1 follows from subadditivity of the
square root after the following proposition.

Proposition 3.1. There exist co,c1 > 0 such that for any graph G = (|d], E)
with m edges, where n > cym,

Rn(Fa) = cor/m/n.

Note that if n < ¢;m, then R, (Fg) > Reym(Fa) > coy/1/c1, which im-
plies the lower bound in Theorem 1.1 for such n. We prove Proposition 3.1 via
Lemma 2.2. This involves choosing a finite subset of Fg. Our normal densi-
ties will be zero-mean, but the covariance matrices will be chosen carefully. To
make this choice, we use the next result which follows from an old theorem of
Gilbert [19] and independently Varshamov [41] from coding theory.

Theorem 3.2. There is a subset Q C {—1,1}™ of size at least 2™/5 such that
for any distinct 5,5 € QQ we have ||s — 5]|; > m/3.

Proof. We give an iterative algorithm to build @: choose a vertex from the hy-
percube, put it in @Q, remove the hypercube points in the corresponding L'-ball
of radius m/3, and repeat. Since the intersection of this ball and the hypercube
has size at most

m/6
m em
< m/6 _ 6 m/6 24m/5
;(z')—(mm) (6e)™ < 2%,

the size of the final set @ will be at least 2”%/5. Note that the sum goes up to
m/6 and not m/3 here, because we are working in the hypercube {—1,1}™,
hence two vertices with m/6 different coordinates have L! distance m/3. |
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Let S € {~1,1}™ be as in Theorem 3.2, so that |S| > 2™/% and for any
distinct 5,5 € S, ||s —5]|; > m/3. Let § > 0 be a real number to be specified
later. Enumerate the edges of G from 1 to m, and for s € S, set ¥(s)~! to be
the d x d matrix with entries

1 if i = j,
(B(s)™ )iy =9 0 if i # j and {i,j} ¢ E,
dsgigy ifi#jand {i,j} € E.

In other words, ¥(s) ™! is symmetric with all ones on its diagonal, 40 everywhere
along the nonzero entries of the adjacency matrix of G according to the signs
in s, and 0 elsewhere.

Lemma 3.3. Suppose that 6>m < 1/8. Then, for any s € S, the matriz X(s)~*
is positive definite and its eigenvalues lie in [1/2,3/2].

Proof. Since ¥(s)~! is symmetric and real, all its eigenvalues are real. Write
Y(s)t =T+ A, so that \;(X(s)™!) = 1+ \;(A). Observe that

Xi(A) < IA < [[A[lF < V262m < 1/2. ()
Then, 1/2 < \;(3(s)™1) < 3/2 for every 1 < i < d, and so X(s)~! is positive
definite. 0

We will assume from now on that §%m < 1/8. In light of Lemma 3.3, X(s) ™!
is positive definite, so it is invertible, and we let X(s) denote its inverse. Since
we will always take the mean to be 0, we will write fx for fo s from now on.
We define the set W = {(s): s € S} of covariance matrices, and let

F={fs:SeW}

In order to prove Proposition 3.1 via Lemma 2.2, it suffices to exhibit upper
bounds on the KL-divergence between any two densities in F, and lower bounds
on their L!-distances.

Lemma 3.4. For any ©,% € Py satisfying max{||[L~ — I||p, |[S~' = I||p} <
1/2,

KL(fs || f5) < 237" = 273
Proof. We consider a symmetrized KL-divergence, often called the Jeffreys di-
vergence [29)],

J(fe | f5) = KL(fs || f&) + KL(f5 || fo),
which clearly serves as an upper bound on the quantity of interest. It is known
that o

el f) =te(E-2)(E7 -271)/2,
e.g., by [29, Section 9.1]. Since ¥ — ¥ is symmetric, the inequality tr(ATB) <
Al F - || B|lF, which is the Cauchy-Schwarz inequality for the inner product
(A, B) = tr(ATB), gives

Ife |l f5) I =72 - 2| p/2.
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Notice now that © — ¥ = $(2~! — £71)%, so by (1),
12 = Zllp = IBET =2 < 212 127 =57,

so that
S S— 12
I | ) < IZ0- =0 =70 = 27 e /2.
Note that since ¥ is symmetric positive definite, we have || = A1 (X). Write

Y1 = I + A as in the proof of Lemma 3.3, so the eigenvalues of ! lie in
[1—||A]l,1 4+ ||A]]]. Therefore,

1 1 1 1

IZl =X = = < 7oA < 7oAl S 112

2,

and the same bound holds for |3, whence J(fs || f5) < 2Lt — A, O

To use Lemma 2.2 we need a lower bound on TV(fs, f5). We will use the
following bound, which is tight up to the constant factor.

Lemma 3.5 ([15, Theorem 1.1], see also [7, Corollary 2]). For any pair £,% €
P4, we have

TV(fs, f) > min{1,[|S/22715Y2 - 1]|p}/100.

Proof of Proposition 3.1. We will use Lemma 2.2. Set § = c3/y/n for a suffi-
ciently small constant co. Since n > c¢ym by assumption, by choosing cy <
¢1/2v/2 we can be sure that 6v/2m < 1/2.

Note that for any 3 € W we have |£~! — I||p = §v/2m < 1/2. On the one
hand, Lemma 3.4 gives that for any X, % € W we have

KL(fs || f5) <2[Z71 = 2712 < 8mé?,

where we have used the triangle inequality for the second inequality. On the
other hand, applying the left inequality in (1) twice,

||21/2§—121/2 _ IHF _ ”21/2('5:—1 _ 2—1)21/2”F > Ud(21/2)2||§—1 _ E_lHF-

Recall that o4(X'/?) denotes the smallest singular value of £'/2. By Lemma 3.3,
the eigenvalues of /2 lie in [m, v/2], and since /2 is symmetric and posi-
tive definite, its singular values coincide with its eigenvalues, hence ad(Zl/ 22 >
2/3. Also note that |~ — X!z > §y/m/3 since £~! and ! differ in at
least m/3 entries. Therefore, Lemma 3.5 gives

TV(fs, fs) > c3 min{1,dv/m} = c36v/m.

Thus, in the notation of Lemma 2.2, we have by Theorem 3.2 and the above
discussion that for some c3 > 0,

|F| >2m/% a>cdy/m, B <85m.
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Recall that § = ca/+/n for a sufficiently small constant cs. By choosing co small
enough, we can be sure that

_ nf+log?2

>
log|F|  —

1
5
Then, by Lemma 2.2, R, (Fg) > a/8 > (cac3/8)y/m/n, completing the proof.
d

4. Learning Ising graphical models

An Ising model describes a probability distribution on the binary hypercube
{—1,1}¢ for some d > 1, where any particular vector x € {—1,1}% is called a
configuration. One such distribution is parameterized by a graph G = ([d], E)
with a set of edge weights {wij}{iyj}eE called the interactions, and a set of
weights {h;},c(q called the external magnetic field. These parameters define the
Hamiltonian H: {—-1,1}¢ = R,

d

H($> = Z Wi TiT5 + Z h;x;.

{i.itekE i=1

Any configuration z € {—1,1}% then appears with probability proportional to
exp{H (z)}. In fact, we can write H(x) = Hy w(z) = 2" Wz + h'z for a vector
h € R% and a matrix W € M, where

Mg = {W e R if {i,j} ¢ E with i # j € [d], then W;; = 0},

and in particular,
W.. = 0 lf{l,j}QE,
E ’U)”/Q lf{l,]}GE
The probability mass function of the Ising model with interactions W and ex-
ternal magnetic field h is denoted by f5 w, where

eHnw ()
- 3
frw (2) Z(h, W)’ 3)
where the normalizing factor Z(h, W), called the partition function, is defined
by
Z(h,W)= > efnwin,
ze{—1,1}4

Probability distributions whose densities have the form (3) for general Hamil-
tonians are known as Gibbs distributions or Boltzmann distributions.
Given a graph G, let Zg be the class of all Ising models with interactions in
M, namely,
I ={faw: heRL W € Mg},



2350 Luc Devroye, Abbas Mehrabian, and Tommy Reddad

and let Z(, be the subclass with no external magnetic field, namely,
I/G = {fo’wi W e MG}

As in Section 3, Zg is the class of all d-dimensional Ising models whose compo-
nents form a graphical model with respect to G, and similarly for Z,.

We omit detailed proofs of the upper bounds in Theorem 1.3, since they are
virtually identical to that of Theorem 1.1 as given in Section 3.1. For Zg, the
corresponding vector space has the basis

{1} U{zz;: {i,5} € E}YU{x;: i € [d]},

with m + d + 1 elements, while for Z(,, the corresponding vector space does
not have the last d basis vectors, so it has dimension m + 1. In the case that
m = 0, the class Z(, contains only one distribution (the uniform distribution on
{-1,1}%), and thus R,,(Z;) = 0. Thus for any m > 0 and any G with m edges,
Rn(Zg) < ¢y/m/n for some constant ¢ > 0.

4.1. Proof of the lower bound in Theorem 1.3 (ii)

Since our Ising models in this section will have no external magnetic field, we
write fy for fow, Hw for How, and Z(W) for Z(0, W). As in Section 3.2, the
lower bound in Theorem 1.3 (ii) follows from the following proposition.

Proposition 4.1. There exist ¢1,co > 0 such that for any graph G = ([d], E)
with m edges, where n > cym,

Rn(Z) > can/m/n.

We appeal to Lemma 2.2 again. The construction and proof techniques are
very similar to the previous section. Indeed, let S C {—1,1}" be a set of sign
vectors as in Theorem 3.2, satisfying |S| > 2”/% and for any distinct s,5 € S,
|s —5]|; > m/3. Enumerate the edges of G from 1 to m, and for s € S, define
the zero-diagonal symmetric matrix W(s) € M with entries

_ )0 ifi=jor{ij}¢E,
Wis)y = { Ssiiyy i {i,j} € E.

Then let W = {W(s): s € S8} be a set of interactions, and Z = {fw: W € W}
be the finite class of Ising models with interactions from W.

Now, to control the L'-distances and the KL-divergences between distribu-
tions in Z, a few intermediate computations are necessary. First, we recall some
properties of sub-gaussian random variables. The sub-gaussian norm of a ran-
dom variable X is defined to be

X[l = int{ > 0: B < 2.
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A random variable X is called sub-gaussian if | X[y, < oo (see, e.g., [42,
Section 2.5]). Observe in particular that any bounded random variable is sub-
gaussian. Recall now the following concentration inequality for quadratic forms
of sub-gaussian random vectors.

Theorem 4.2 (Hanson-Wright inequality [42, Theorem 6.2.1], see also [9, Ex-
ample 2.12]). Let X = (X1,...,Xy4) be a random vector with independent zero-
mean components satisfying maxi<;<a || Xilly, < K, and let W € R™?. Then,
for every t > 0,

12 t
P XTWX —EX"WX| >t <Qexp{—Cmin{ , }}
{ >1]) KW K2W]

for some universal constant C' > 0.

A square matrix is called zero-diagonal if all its diagonal entries are zero.
The following moment inequalities will come in handy.

Lemma 4.3. Let X = (X3,...,X4) be a random vector with i.i.d. components
where E{X1} = 0, E{X{} =1, and || X1[|y, < K. Let W € R¥™? be symmetric
and zero-diagonal. Then,

(i) E{XTWX} =0.
(ii) B{(XTWX)?} = 2||W|]3.
(iii) There exists c3 > 0 such that for any integer k we have

E{(XTWX)F} < EK2 KW |}
(iv) There exist c1,c2 > 0 such that, for any t > 0, if c; K*t|W||r < 1 then
E{e™X WX} < 14 oo K42 |W 2.
Proof. Observation (i) follows simply by writing out the quadratic form,
d
EXTWX =) W, BE{X;X;} =Y WiB{X]} +> W, E{X;} E{X;} =0.
iJ i=1 i#j

To prove (ii), we expand the square, and notice that only the monomials of
the form E{X}'} or E{X7?X?} are nonzero after taking expectations, so

E{(XTWX)’} =ES [ Y W,XiX; |?
,J
WEB{X!} + Y (Wh + Wiy Wi + WaWj;) E{X7 X7}
i=1 i#j
=2y Wi =2[|W|}-
i#j

Il
M=
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For (iii), we integrate
o0
E{(XTWX)*} g/ P{XTWX|k >t}dt
0
o 1/ k x _a +2/k
SQ/ e~ ORI dt+2/ e KUWIE 4
0 0

(by Theorem 4.2)

ok + ”(%)’“ L an(kj24 1)(K4lg/||%>k/2

< KPR,

for some c3 > 0. Here, '(t) = [~ 2'~*¢™* dz is the gamma function, which is
increasing on [1, 00) and satisfies I'(¢41) = ¢tI'(¢) for any real ¢, and I'(k+1) = k!
for any positive integer k.

To prove (iv), we use the power series representation of the exponential, so

B{eX WXy = i E{(tXTWX)"}

> il
oo T k
-y B WX k‘!”X )"} (E{tXTWX} =0)

k=2
i (cs K2t||W || #)* k!

< I (part (iii))
k=2 ’
<25 K2 |W[5 (if cs K| W|r < 1/2),
completing the proof. O
For the rest of this section, let X = (X7,..., X4) denote a uniformly random

vector in {—1,1}4. All expectations will be with respect to this random variable.

Lemma 4.4. There exist ci,ce > 0 such that for any zero-diagonal symmetric
W e R with |W||r < c1,

1<279Z(W) <1+ co| W3
Proof. By the definition of Z(W),

o-dz(w)= Y 27der W = BleX WX
ze{—1,1}4

On the one hand, by Lemma 4.3 (i),
E{eX "X} >E{1+ XWX} =1,
and on the other hand, by Lemma 4.3 (iv),
BN} <14 e W

when ||W| r < ¢1 for some sufficiently small positive constant ¢;. O
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Lemma 4.5. There exist c1,co > 0 such that for any zero-diagonal symmetric
matrices W, W € R¥*4 satisfying max{|W||r, |[W|r} < c1,

KL(fw || f) < e2(IW 5 + W 13-

Proof. We prove the inequality for J(fw || fi7) = KL(fw || f5)+KL(f5 || fw)-
By definition,

KL(fw || f) = 2dE{fW<X”°g<?~$g;>}

Hy (X) Hw (X) 7 (W
=27E € log ¢ ZW) .
Z(W) eHw (X Z(W)

From Lemma 4.4 we have 0 < 2¢/Z(W) < 1, whence,

KL(fw | ) < B{ ) (Hy (X) ~ Hyp (X)) } +E{6HW<X> log<Z(W)> }

We next bound the second term. By Lemma 4.3 (iv) and since |[W|r < ¢,
E{efw()} < 1+ ¢3|W|% < 1+ ¢3¢, From Lemma 4.4 we have ZW) <

. Z(W)
Lt eal| W[, 5o log (447 ) < call W3, thus

E{eHW(X) log<%> } < (1+ escd)ea]|[ W3

It can be shown similarly that

KL(fip | fir) < B (Hy, (X) — Hiw (X))} + 3| W[3
hence,

3w | fig) < Bf (e 00 — e X0) (i (X) - Hyp (X)) }

+es (W1 + IWI7).
For bounding the first term, using the elementary inequality
1+t<e' <1+t+t*max{e’ 1}  for any t € R, (5)

we find that, for all ¢,s € R,

(e" —e*)(t —s) < (t—s)® + |t — s|(£* max{e’, 1} + s* max{e®, 1}).
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Using this, we get the following upper bound,

E{ (eHw(X) _ eHV‘V(X))(HW(X) — HW(X))}

< E{(Hw(X) — Hy(X))*} (6)
+ E{|HW(X) — Hyp (X)| Hy (X)2 max{e"w (X), 1}} (7)
+ E{|HW(X) — Hy (X)| Hyp (X)2 max{e"w (%), 1}}. 8)

The term (6) is 2|W — WH% < 2(||W||F + |[W]||r)? by Lemma 4.3 (i) and the
triangle inequality for the Frobenius norm. For bounding (7), we first observe
that, clearly, (max{efw(¥) 11)2 < ¢2#w(X) 4 1. Then, using the inequality

E{AB} < \/E{A2} E{B?}, 9)

which is the Cauchy-Schwarz inequality for the inner product (A, B) = E{AB},

E{|Hyw (X) — Hyp (X) | Hy (X)? masc{e™ (9, 1}}

< B{(Hw (X) — Hg (X)) Hw (X)) (B{e2Hw ()} + 1),

By Lemma 4.3 (iv) and since |W||r < ¢1 by assumption, /E{e2#w(X)} + 1 <
cg. For the other factor, we apply (9) again:

E{(Hw (X) — Hy(X))* Hw(X)"} < \/E{(Hw(X) — Hyp (X))} E{Hw (X)®}

< e/ IW = WILIWIS < 2e)2erl W,

where the second inequality follows from Lemma 4.3 (iii) applied to matrices
W — W and W, and the third one follows from the triangle inequality, ||W —
Wir <|[W|r+ [[W|r < 2c;. Putting everything together, we find that

E{ | Hyw (X) — Hyp (X)| Hw (X)? max{e™ ), 1} < /e 2er [W I3,
and a similar bound holds for (8), after which the result follows. O

Lemma 4.6. There exist c1, ¢z, c3 > 0 such that for any zero-diagonal symmet-
ric matrices W, W € R4 with max{||W ||z, |[W|r} < e1,

lfw = fiplly = e2lW = Wlp = es(IW[E + W)

Proof. By Lemma 4.4 we have

‘ 2 _1‘< oW

< ¢ol| W%,
zom = T = I lE
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so by the triangle inequality and Lemma 4.3 (iv), there is ¢4 > 0 for which
e

Z(W) Z(W)}
> B{[e ) — Hw X} e (|W[E+ IWIF).  (10)

Hw(X)  oHy(X)

Lfw — favlly =2dE{

By (5) and the triangle inequality again,
E{‘eHW(X) _ eHW(X)’} > E{|Hw(X) — Hy (X)|}
- E{HW(X)Qmax{eHW(X),l}}
- E{HW(X)Qmax{eHw(X),l}}.

We first bound the second term. By (9) and Lemma 4.3 (iii), (iv),

B{ Hyy (X)? max{e™ X), 11} < \[B{Hw (X)*}B{e2w (0} +1) < o5 [W]3,

and a similar analysis works for the third term. For the first term, by Holder’s
inequality and Lemma 4.3 (ii), (iii) (applied to the symmetric zero-diagonal
matrix W — W), there is a ¢g > 0 for which

E{(Hw(X) — Hy (X))?}3/2 N
E{(Hw(X) - H;(X))4}1/2 > c||W —-Wp. O

E{|Hyw (X) — Hyp (X)]} =
The proof of Proposition 4.1 is now identical to that of Proposition 3.1.

4.2. Proof of the lower bound in Theorem 1.3 (i)

Let Z; be the class of d-dimensional Ising models with no interactions. Note
that in this case the problem is density estimation for a product distribution.

The lower bound in Theorem 1.3 (i) will follow from the next proposition
along with Theorem 1.3 (ii) and subadditivity of the square root, just as in
Section 3.2.

Proposition 4.7. There exist c1,co > 0 such that if n > c1d,

Rin(Zyg) > con/d/n.

Proof sketch. As in the above arguments, we pick a subclass of 24/5 densities of
T4 and apply Lemma 2.2. The corresponding magnetic fields will have entries
+40, with the signs specified by Theorem 3.2, so that any two of them differ in at
least d/6 components. One can then show that the KL-divergence between any
two of these densities is at most a constant factor of 62d, while the L'-distances
are at least some constant factor of §v/d. The proofs are simpler than those in
the previous section; for example, in this case, the partition functions can be
computed exactly, and are equal for every density in the subclass. We omit the
details. O
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5. Proof of the upper bound in Theorem 1.4

We give the proof for Fy ,,,, and the proof for Z ., is identical. Let G4 ., denote
the set of all labeled graphs with vertex set [d] and m edges. Now, Fy ., has
Yatracos class

A= U Ac.m,

(G,H)eG3 .,

where
Aco = {{m eR¥: g(z) > h(z)}: g€ Fa, h e ]:H}.

Note that |G| < ((2)) < d?™, and VC(Ag i) < 2m + 2d + 1 for any G, H €
Gd,m, as in the proof of the upper bound in Theorem 1.1. By properties of the
VC-dimension of unions (see, e.g., [34, Exercise 6.11]),

veU) =vel |J Acn
(G,H)egy ,,
< c1(m + d) log(m + d) + ¢ log d*™
< c3(m+d)logd,

so by Theorem 2.1,
d)logd
Ro(Fam) < 4 %

6. Discussion

Our work raises several open problems.

1. Higher order forms. We have studied estimating densities that are pro-
portional to the exponential of some quadratic form. One can ask for the
minimax risk of the class of densities in which this form has a higher order.
Namely, let k,d > 1 be given integers, and suppose that F is a class of
densities supported on {—1,1}%, where each density f € F is parameter-
ized by weights w;, ;. € Rforeach 1 <i; < iy < -+ <14, < d, and
when z € {-1,1}¢,

f(.%‘) X 6Xp Z Wiy in,... inLig Lig " " Tiy,
1< << <d

Then, just as in the proof of the upper bound of Theorem 1.3 (ii), we have
that there is a universal constant ¢; > 0 for which

()
R (F) < crming 1,/ =2
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Can this be shown to be tight to within a constant factor? It is straightfor-
ward to see that the answer is yes for k = 1, and the results of this paper
show that the answer is yes for £ = 2. However, for k > 3, our techniques
seem to fail. Auffinger and Ben Arous [6] noted that when the weights are
Wiy, i id N(0,1), the random k-th order form g: S?~! — R defined by

stk

d
9(z) = E : Wiy yig,... i Tiy Lig - - - Liy,

i1, yin=1

blows up in complexity once k > 3. For example, they show that there is a
c3 > 0 for which ¢ has at least e*? local minima on S%~! in expectation,
as long as k > 3. On the other hand, when k < 2, deterministically g has
only a constant number of local minima on S?~!. This gap in complexity
may indicate that analyzing the case k > 3 for our purposes will require
more sophisticated techniques.

. Tightness of the VC-dimension bound. We proved that R,,(F) is bounded
from above and below by constant factors of \/VC(A)/n, where A is the
Yatracos class of F, for F € {Fg,Zq, I }. The upper bound here holds for
any class F by Theorem 2.1, and it can be easily seen that there are classes
of densities for which this is not tight. Can we characterize the classes of
densities F for which R, (F) is in fact on the order of \/VC(A)/n?

. The minimaz risk of unlabeled graphical models. In our setting, the given
graph G is labeled, so we are given the specific pairs of coordinates which
interact. What if only the structure of the graph G is known, but its
labeling is not? What if we know that G is a tree? If only the number of
edges of G is known, Theorem 1.4 provides some bound that is tight up
to a factor of v/logd. Can this gap be closed?

. The minimaz risk of Ising blockmodels. For a given S C [d] with |S| = d/2
and parameters a, § € R, a bipartite mean-field model [18], also called an
Ising blockmodel [8], has density

fs,0,8(x) = exp 2% Z$i$j + % inxj /Z(a,ﬂ)

i~ ity

for x € {—1,1}¢, where i ~ j means that either i,j € S or 4,5 & S,
and ¢ ¢ j means that one of ¢, j is in .S and one is not, and Z(a, §) is the
normalizing factor. Motivated by social network analysis and the notion of
communities in such networks, Berthet, Rigollet, and Srivastava [8] studied
this model in a learning context. Their work is mainly concerned with the
estimation or recovery of S from n independent samples of fg . 3, but one
can also ask for the minimax learning rate for this class of densities, if
some or all of o, 8 and S are unknown.

. Efficient algorithms for density estimation. Here, we focused on statistical
efficiency rather than computational efficiency. As the VC-based density
estimate in Theorem 2.1 cannot be efficiently computed, a natural open
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problem is to design efficient density estimators achieving the minimax
risks for normal and Ising distributions. As far as we know, only for the
class of multivariate normal distributions, which correspond to normal
graphical models with respect to the complete graph, such an efficient
algorithm exists. It is based on careful mean and covariance estimations
(see [2, Appendix B]).
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