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Abstract: We study the asymptotic behavior of the least squares estima-
tors when the model is possibly misspecified. We consider the setting where
we wish to estimate an unknown function f∗ : (0, 1)d → R from observa-
tions (X,Y ), (X1, Y1), · · · , (Xn, Yn); our estimator ĝn is the minimizer of∑n

i=1(Yi − g(Xi))
2/n over g ∈ G for some set of functions G. We provide

sufficient conditions on the metric entropy of G, under which ĝn converges
to g∗ as n → ∞, where g∗ is the minimizer of ‖g−f∗‖ � E(g(X)−f∗(X))2

over g ∈ G. As corollaries of our theorem, we establish ‖ĝn − g∗‖ → 0 as
n → ∞ when G is the set of monotone functions or the set of convex func-
tions. We also make a connection between the convergence rate of ‖ĝn−g∗‖
and the metric entropy of G. As special cases of our finding, we compute
the convergence rate of ‖ĝn − g∗‖2 when G is the set of bounded monotone
functions or the set of bounded convex functions.
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1. Introduction

Given independent and identically distributed (iid) observations (X,Y ), (X1, Y1),
· · · , (Xn, Yn), we consider the least squares estimator ĝn, which is the solution
to the following problem:

minimize ϕn(f) �
1

n

n∑
i=1

(Yi − f(Xi))
2 subject to f ∈ G (1.1)

for a set G of functions, where

Yi = f∗(Xi) + εi, 1 ≤ i ≤ n,

for some unknown regression function f∗ : (0, 1)d → R satisfying Ef∗(X)2 < ∞,
and ((Xi, εi) : 1 ≤ i ≤ n) is a sequence of (0, 1)d × R–valued random vectors
satisfying E(ε1|X1) = 0 and E(ε21|X1) = σ2 < ∞. It should be emphasized that
f∗ does not need to belong to G, so it is possible that the model is misspecified.

When G is the set of monotone functions, i.e.,

G = Gm � {g : (0, 1)d → R : Eg(X)2 < ∞ and

g(x1, · · · , xd) ≤ g(y1, · · · , yd) if xj ≤ yj for 1 ≤ j ≤ d},

the estimator ĝn is known as the isotonic regression estimator. When G is the
set of convex functions, i.e.,

G = Gc � {g : (0, 1)d → R : Eg(X)2 < ∞ and g is convex},

the estimator ĝn is known as the convex regression estimator.
When studying the behavior of ĝn as n → ∞, the first question one needs to

answer is, “What is the limit point of (ĝn : n ≥ 1)?” To answer this question,
we consider the space

L2 = {f : (0, 1)d → R : Ef(X)2 < ∞}.

We restrict our attention to the functions f satisfying Ef(X)2 < ∞ since we
expect ϕn(f) to converge to E(Y − f(X))2 as n → ∞. One such condition
guaranteeing this is Ef(X)2 < ∞ together with E(Y 2) < ∞; see pages 198–199
of [53] for details. L2 turns out to be a semi–Hilbert space equipped with the
semi-inner product

(f1, f2) = E(f1(X)f2(X))

and the associated seminorm

‖f‖ =
√

(f, f)

for f, f1, f2 ∈ L2. A semi-Hilbert space is a generalization of a Hilbert space
where the inner product is required only to be a semi-inner product. A semi-
inner product 〈·, ·〉 is a generalization of an inner product where 〈f, f〉 = 0 does
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not necessarily imply f = 0. The fact that L2 is a semi-Hilbert space plays
an important role in the following discussion since it ensures the existence of a
solution to (1.2).

Empirical L2 seminorms ‖ · ‖n and ‖ · ‖n,δ can be defined by

‖f‖n =

{
1

n

n∑
i=1

f(Xi)
2

}1/2

, ‖f‖n,δ =

{
1

n

n∑
i=1

f(Xi)
2I(Xi ∈ [δ, 1− δ]d)

}1/2

for f ∈ L2 and δ > 0.
A natural candidate for the limit point of (ĝn : n ≥ 1) in L2 is the projection

g∗ of f∗ onto G, which is the solution to the following problem:

minimize ‖g − f∗‖2 subject to g ∈ G. (1.2)

Since L2 is a semi-Hilbert space, under the assumption that G is a closed convex
subset of L2, a solution to (1.2) exists by the projection theorem and we will
denote the set of solutions to (1.2) by G∗. Of course, when f∗ ∈ G, we have f∗ ∈
G∗. In Theorem 3.1 of this paper, we will provide a set of sufficient conditions
under which ‖ĝn − g∗‖ → 0 as n → ∞, thereby justifying g∗ ∈ G∗ as a limit
point of (ĝn : n ≥ 1) in L2.

When the model is well–specified, i.e., f∗ ∈ G, it is well-known that the metric
entropy of G gives certain information about the consistency or convergence rate.
(For definitions, see Section 2.) For example, in her unique work, [70] proved
‖ĝn− g∗‖ → 0 under the conditions f∗ ∈ G, E sup{g(X)2 : g ∈ G} < ∞, and the
ε-metric entropy of G in the ‖ · ‖n norm being op(n). Furthermore, the metric
entropy of G in the ‖ · ‖ or ‖ · ‖n norm provides explicit convergence rates for
‖ĝn−g∗‖; see, for example, Theorem 4.1 of [71], Theorem 1 of [10], and Theorem
3.4.1 of [74].

However, when the model is misspecified, little is known about the relation-
ship between the metric entropy of G and the behavior of (ĝn : n ≥ 1). The
main objective of this paper is to establish a framework under which the metric
entropy explains how (ĝn : n ≥ 1) behaves. The main contributions of this paper
can be summarized as follows.

1. Our main theorem (Theorem 3.1) states that if the ε–metric entropy (with-
out bracketing) of G in the ‖ · ‖ and ‖ · ‖n,δ norm is finite almost surely
(a.s.) for any ε > 0, then

‖ĝn − g∗‖ → 0 (1.3)

as n → ∞ under the assumption that G is a closed convex subset of L2.
As corollaries of our theorem, we establish (1.3) when G = Gm or G = Gc.
So far, the results of type (1.3) have not been established when the model is
misspecified; thus, (1.3) is one of the new contributions of this paper when
f∗ /∈ G. When the model is well–specified, the results of type (1.3) have
been established by [70] under conditions such as the uniform boundedness
of g ∈ G and the growth of the metric entropy of G in the ‖·‖n norm being
of order op(n). Our result can be viewed as an extension of some of the
results in [70].
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2. Our next finding on the rates of convergence (Theorem 4.1) states that
when G is a closed convex subset of L2, the ε-metric entropy with brack-
eting provides explicit convergence rates on ‖ĝn − g∗‖2. As corollaries of
our finding, we obtain ‖ĝn − g∗‖2 = Op(an), where

an =

⎧⎨
⎩

n−2/3, if d = 1
n−1/2(logn)2, if d = 2

n− 1
2(d−1) , if d > 2,

(1.4)

when
G = Gm,B � {g ∈ Gm : |g(x)| ≤ B for x ∈ (0, 1)d}

for some constant B.
We also obtain ‖ĝn − g∗‖2 = Op(bn), where

bn =

⎧⎨
⎩

n− 4
4+d , if d < 4

(logn)n−1/2, if d = 4
n−2/d, if d > 4,

(1.5)

when
G = Gc,B � {g ∈ Gc : |g(x)| ≤ B for x ∈ (0, 1)d}

for some constant B. We are not aware of any existing results in the
literature on the rates of convergence when d ≥ 2 and f∗ /∈ G. Thus, the
above results when d ≥ 2 will shed light on the study of (ĝn : n ≥ 1) in
the presence of model misspecification.

3. One of the implications of identifying the limit point of (ĝn : n ≥ 1) is
that we are able to analyze the Type I error of a hypothesis test whose
null and alternative hypotheses are given by

H0 : f∗ /∈ G
Ha : f∗ ∈ G. (1.6)

We will consider one of the popular test procedures, in which we observe
((Xi, Yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ m), where Yij = f∗(Xi) + εij . We then
compute the test statistic as

m

n

n∑
i=1

(Ỹi − g̃n(Xi))
2, (1.7)

where Ỹi =
∑m

j=1 Yij/m, and g̃n is the solution to (1.1) with the Yi’s

replaced by the Ỹi’s. The finite sample behavior of this test statistic is
well-known under the normality assumption on the εi’s. The finite sample
distribution of the test statistic is known as the chi-bar squared distri-
bution; see, for example, (3.3) on page 51 of [68] and Section 2.1 of [66].
However, not much is known about the behavior of the test statistic when
n and m are large. In this paper, we consider a very simple test procedure,
which is based on the test statistic in (1.7), and we prove that its Type I
error converges to 0 as n → ∞ for m sufficiently large.
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Shape constrained estimators have received considerable interest in the con-
text of isotonic and convex regression estimators;

1. when f∗ ∈ G and d = 1, some theoretical works on consistency and con-
vergence rates can be found in [12], [6], [75], [59], [21], [71, 72], [58], [77],
[26, 27], [14], [16], and [8] for isotonic regression, and [46], [44], [59], [35],
[37], [9], [16], [15], and [8] for convex regression,

2. whenf∗ ∈ G and d ≥ 2, consistency and convergence rates are studied by
[43], [55], [17], [62], [10], and [41] for isotonic regression, and by [65] and
[40] for convex regression,

3. when f∗ /∈ G and d = 1, some interesting results can be found in [16] and
[8] for isotonic regression and in [37] and [8] for convex regression, and

4. when f∗ /∈ G and d ≥ 2, we could not find any theoretical results concern-
ing consistency or convergence rates. To the best of our knowledge, this
paper is the first to establish consistency and compute the convergence
rates when f∗ /∈ G and d ≥ 2.

It should be noticed that our results are consistent with existing results when
f∗ ∈ G or d = 1. For example, let us consider the case where G = Gm,B . When
f∗ ∈ Gm,B and d = 1, the convergence rate in (1.4) agrees with the previous
result given by [58] and [77]. When f∗ /∈ Gm,B and d = 1, the convergence
rate in (1.4) is a slight improvement of the previous result established by [16],
who computed the rate of n−2/3 up to a logarithmic multiplicative factor in
n; see Theorem 6.1 of [16]. When f∗ ∈ Gm,B and d = 2, the convergence rate
in (1.4) is a slight improvement of the previous result established by [17], who
computed the rate of n−1/2(log n)4; see Theorem 2.1 of [17]. When f∗ ∈ Gm,B

and d ≥ 3, the convergence rate in (1.4) is slower than the previous result
established by [41], who computed the rate of n−1/d(log n)4; see Theorem 1 of
[41]. Next, let us consider the case where G = Gc,B . When f∗ ∈ Gc,B and d = 1,
the convergence rate in (1.5) agrees with the previous results obtained by [35],
[15], and [40]. When f∗ /∈ Gc,B and d = 1, the convergence rate in (1.5) is a
slight improvement of the result obtained by [37], who achieved the convergence
rate of n−4/5(logn)5/4. When f∗ ∈ Gc,B and d ≥ 2, the convergence rate in (1.5)
agrees with the previous result obtained by [40]; see Theorem 3.6 of [40].

Related works can be found in [6], [28], [63], [29], [50], [52], [42], [51], and
[69] for computational algorithms used to compute isotonic or convex regression
estimators; in [34], [61], [39], [60], [22], [2], [67], [49], [64], [19], [20], [13], [24],
[3], [23], [25], and [48] for the density estimation under shape restriction; in [1],
[45], [56], [57], and [18] for additive models; and in [7], [68], [76], [38], [32], [4],
[66], and [5] for hypothesis tests to detect monotonicity and convexity.

This paper is organized as follows. In Section 2, we introduce some notations
and definitions. Section 3 presents Theorem 3.1, our main theorem on consis-
tency, and proves (1.3) for the cases of G = Gm and G = Gc as corollaries. In
Section 4, we describe Theorem 4.1, our main finding on the convergence rate,
and obtain (1.4) and (1.5) for the cases of G = Gm,B and G = Gc,B as corollaries.
Section 5 considers a test procedure for testing f∗ ∈ G, analyzes its Type 1 error,
and examine its numerical behavior.
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2. Notation and Definitions

For x ∈ R
d, we write its jth component as xj . Thus, x = (x1, · · · , xd) and its

norm is given by |x| = {
∑n

j=1 x
2
j}1/2. The transpose of x is denoted by xT .

For a, b ∈ R
d, we write a ≤ b if ai ≤ bj for 1 ≤ j ≤ d. For a, b ∈ R

d, the
hyperrectangle [a, b] is the set {x ∈ R

d : a ≤ x ≤ b}. For x ∈ R, 
x� is the
smallest integer that is greater than or equal to x. [x]+ equals x if x ≥ 0, and
0 otherwise. [x]− equals −x if x ≤ 0, and 0 otherwise. For x, y ∈ R, x ∧ y = x
if x ≤ y and y otherwise. For sequences of real numbers (αn : n ≥ 1) and
(βn : n ≥ 1), we write αn � βn if αn ≤ Cβn for some constant C and all n ≥ 1.
For a sequence of random variables (Zn : n ≥ 1) and a sequence of positive real
numbers (αn : n ≥ 1), we say Zn = Op(αn) as n → ∞ if, for any ε > 0, there
exist constants C and N such that P(|Zn/αn| > C) < ε for n ≥ N . We also say
Zn = op(αn) as n → ∞ if Zn/αn converges to zero in probability as n → ∞.

Covering and Bracketing Numbers

Let d be a pseudo-metric on a set A of functions. A set B ⊂ A is called an ε-net
for (A, d) if for each f ∈ A, there exists h ∈ B such that d(f, h) ≤ ε. For ε > 0,
the covering number N(ε,A, d) is defined as the minimal number of elements in
an ε–net for (A, d). In other words,

N(ε,A, d) � inf{J : There exist h1, · · · , hJ ∈ A
such that {h1, · · · , hJ} is an ε–net for (A, d)}.

We set N(ε,A, d) = ∞ if no ε–net exists. The ε–metric entropy for (A, d) is
log(1 +N(ε,A, d)).

Given l, u ∈ A, the bracket [l, u] is the set of functions f satisfying l ≤ f ≤ u.
An ε-bracket is a bracket [l, u] satisfying d(l, u) ≤ ε. For ε > 0, the bracketing
number N[ ](ε,A, d) is the minimum number of ε–brackets needed to cover A.
In other words,

N[ ](ε,A, d) � inf{J : There exist l1, · · · , lJ , u1, · · · , uJ ∈ A

such that d(lj , uj) ≤ ε for 1 ≤ j ≤ J and A ⊂
J⋃

j=1

[lj , uj ]}.

The ε–metric entropy with bracketing for (A, d) is log(1 +N[ ](ε,A, d)).

Metrics

Let A be a set of functions defined on (0, 1)d. We define a metric d2 on A as
follows:

d1(f1, f2) =

∫
(0,1)d

|f1(x)− f2(x)|dx
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d2(f1, f2) =

{∫
(0,1)d

(f1(x)− f2(x))
2dx

}1/2

For δ > 0, let A(δ) be a set of functions defined on [δ, 1 − δ]d. We define a
pseudo-metric dδn and metrics dδ2 and dδ∞ on A(δ) as follows:

dδn(f1, f2) =

{
1

n

n∑
i=1

(f1(Xi)− f2(Xi))
2I(Xi ∈ [δ, 1− δ]d)

}1/2

dδ2(f1, f2) =

{∫
[δ,1−δ]d

(f1(x)− f2(x))
2dx

}1/2

dδ∞(f1, f2) = sup
x∈[δ,1−δ]d

|f1(x)− f2(x)| .

It should be noted that N(ε,A(δ), dδn) depends on X1, · · · , Xn, so it is a
random variable.

3. Main Theorem on Consistency

In this section, we precisely describe our main theorem on consistency, Theorem
3.1. Let us consider the following problem:

minimize ϕn(f) �
1

n

n∑
i=1

(Yi − f(Xi))
2 subject to f ∈ G. (3.1)

In general, there may not exist a solution to (3.1). However, in some specific
cases such as the case of G = Gm or G = Gc, a solution to (3.1) exists. We will
first develop a general theory under the assumption that there exists a solution
to (3.1). We will then consider the cases of G = Gm and G = Gc, and establish
corollaries.

In order to analyze the behavior of the solution to (3.1), we need the following
assumptions:

A1. (X,Y ), (X1, Y1), (X2, Y2), · · · is a sequence of iid (0, 1)d×R–valued random
vectors satisfying

Y = f∗(X) + ε and Yi = f∗(Xi) + εi for i ≥ 1.

A2. X,X1, X2, · · · have a common positive density function τ : (0, 1)d → R.
A3. There exists a positive constant τ∗ such that τ(x) ≤ τ∗ for x ∈ (0, 1)d.
A4. (i) E(ε|X) = E(εi|Xi) = 0 and (ii) E(ε2|X) = E(ε2i |X2

i ) = σ2 < ∞ for
i ≥ 1.

A5. Ef∗(X)2 < ∞.

Under A1–A5, several properties are satisfied when G = Gm or G = Gc. One
of such properties is presented next.
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P1. G is a closed convex subset of L2.

With A5 and P1 in force, the projection theorem guarantees the existence of
a solution to the following problem:

minimize ‖f − f∗‖ subject to f ∈ G. (3.2)

A solution g∗ to (3.2) exists and is unique up to a set of measure zero under
A2. Furthermore, g∗ is characterized by the following relationship:

(f∗ − g∗, g − g∗) ≤ 0 (3.3)

for g ∈ G; see, for example, Theorem 1 on page 69 of [54]. We will denote the
set of the solutions to (3.2) by G∗.

We next present other properties that are satisfied when G = Gm or G = Gc.
In P3, we focus on a subset of G, to which the solution to (3.1) belongs for
n sufficiently large. P3 states that when one restricts the functions in such a
subset on [δ, 1 − δ] for δ > 0, there exist ε-nets for such restricted functions in
the dδ2 and dδn pseudo-metrics, respectively, and the ε-net in the dδn metric is
independent of n for n sufficiently large. P4 states that for any δ > 0, g∗ and
the solution to (3.1) are uniformly Lipschitz over [δ, 1− δ] and for n sufficiently
large.

P2. For n ≥ 1, there exists a solution ĝn to (3.1). We will denote the set of
the solutions to (3.1) by Ĝn.

P3. For each δ > 0, there exists a subset H(δ) ⊂ G such that

P(Ĝn ⊂ H(δ) for all but finitely many n) = 1. (3.4)

Let H̃(δ) be the set of functions in H(δ) restricted to [δ, 1− δ]d, i.e.,

H̃(δ) � {h̃ : [δ, 1− δ]d → R : There exists h ∈ H(δ) such that

h̃(x) = h(x) for x ∈ [δ, 1− δ]d}.

(i) For any ε > 0 and δ > 0, N(ε, H̃(δ), dδ2) < ∞.
(ii) For any ε > 0 and δ > 0, there exist a constant r � r(ε, δ) and
{h1, · · · , hr} ⊂ H̃(δ) such that

P(lim sup
n→∞

sup
g∈H̃(δ)

min
1≤j≤r

dδn(g, hj) ≤ ε) = 1. (3.5)

P4. For any δ > 0, there exists a constant β(δ) such that

P

(
sup

g∗∈G∗,x,y∈[δ,1−δ]d,x �=y

|g∗(x)− g∗(y)|/|x− y| ≤ β(δ) and

sup
ĝn∈Ĝn,x,y∈[δ,1−δ]d,x �=y

|ĝn(x)− ĝn(y)|/|x− y| ≤ β(δ)

for all but finitely many n

)
= 1.
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Remark 3.1. The requirement described in P3(ii) is satisfied if, for any δ, we
have N(ε, H̃(δ), dδn) < ∞ a.s. for n sufficiently large and there exists an ε-net
for (H̃(δ), dδn) that does not depend on n for n sufficiently large.

Remark 3.2. The requirement described in P3(ii) is satisfied if, for any δ, we
have N(ε, H̃(δ), dδ∞) < ∞ a.s. for n sufficiently large.

We are ready to present our main result regarding consistency, whose proof
is provided in Appendix A.

Theorem 3.1. Assume A1–A5 and P1–P3. Then, for any g∗ ∈ G∗ and ĝn ∈ Ĝn,

1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))
2 → 0 a.s. as n → ∞ and (3.6)

‖ĝn − g∗‖ → 0 as n → ∞. (3.7)

If, in addition, P4 holds, then for any δ > 0, g∗ ∈ G∗, and ĝn ∈ Ĝn

sup
x∈[δ,1−δ]d

|ĝn(x)− g∗(x)| → 0 (3.8)

a.s. as n → ∞.

Corollary 3.1. Let G = Gm � {g ∈ L2 : g(x1, · · · , xd) ≤ g(y1, · · · , yd) if xj ≤
yj for 1 ≤ j ≤ d}. Under A1–A5, P1–P3 are satisfied, and (3.6) and (3.7) hold.
If, in addition, d = 1 and f∗ is continuous, then the solution to (3.2) exists
uniquely and (3.8) holds.

Corollary 3.2. Let G = Gc � {g ∈ L2 : g is convex.}. Under A1–A5, P1–P4
are satisfied, the solution to (3.2) exists uniquely, and (3.6), (3.7), and (3.8)
hold.

Remark 3.3. Results similar to (3.7) have been established by [8], [16], and
[37]. Also, an analysis of type (3.8) exists when the model is well-specified; see,
for example, [62] for the case of isotonic regression and [65] and [53] for the
case of convex regression. However, when the model is misspecified, the only
work in the form of (3.8) is done by [53], who established (3.8) when G is the
set of convex functions bounded by some known function k∗ ∈ L2. In Corollary
3.2, we are able to drop the requirement that |g| ≤ k∗ for g ∈ G.

Corollary 3.3. Let G = Gm,B � {g ∈ Gm : |g(x)| ≤ B for x ∈ (0, 1)d} for some
constant B > 0. Under A1–A5, P1–P3 are satisfied, and (3.6) and (3.7) hold.
If, in addition, d = 1 and f∗ is continuous, then the solution to (3.2) exists
uniquely and (3.8) holds.

Corollary 3.4. Let G = Gc,B � {g ∈ Gc : |g(x)| ≤ B for x, y ∈ (0, 1)d} for
some constant B > 0. Under A1–A5, P1–P4 are satisfied, the solution to (3.2)
exists uniquely, and (3.6), (3.7), and (3.8) hold.

The proofs of Corollaries 3.1–3.4 are given in Appendix A.
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In P3, we focus on the set of functions g ∈ G restricted on [δ, 1 − δ]d, and
impose some conditions on the ε-metric entropy of such a set. We consider the
functions restricted on [δ, 1 − δ]d because whether ĝn ∈ Ĝn is stochastically
bounded near the boundary of (0, 1)d is not fully answered. For isotonic regres-
sion with Gaussian errors, this boundary issue is tackled in [41]. [41] establishes
convergence rates in the setting of isotonic regression without assuming any uni-
form bound on functions g ∈ G. However, whether or not the convex regression
estimator without a uniform bound has stochastically bounded behavior near
the boundary of (0, 1)d is still an open question.

We close this section by introducing a set of conditions that can greatly
simplify the problem. To establish consistency, we use the following inequality

1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))
2 ≤ 2

n

n∑
i=1

(Yi − g∗(Xi))(ĝn(Xi)− g∗(Xi))

=
2

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))

+
2

n

n∑
i=1

εi(ĝn(Xi)− g∗(Xi)) (3.9)

as in [73]. In the presence of the following Glivenko–Cantelli type conditions,
(3.6) and (3.7) can be easily established.

P5. (i)

sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

(f∗(Xi)− g∗(Xi))g(Xi)− E(f∗(X)− g∗(X))g(X)

∣∣∣∣∣ → 0

a.s. as n → ∞.
(ii)

sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

εig(Xi)− E(εg(X))

∣∣∣∣∣ → 0 a.s. as n → ∞.

P6.

sup
g∈G

∣∣∣∣∣ 1n
n∑

i=1

(g(Xi)− g∗(Xi))
2 − E(g(X)− g∗(X))2

∣∣∣∣∣ → 0 a.s. as n → ∞.

The following theorem establishes (3.6) and (3.7) under P5 and P6.

Theorem 3.2. Assume A1, A4, A5, P1, P2, and P5. Then, for any g∗ ∈ G∗
and ĝn ∈ Ĝn, (3.6) holds. If, in addition, P6 is satisfied, then (3.7) holds.

Proof of Theorem 3.2. Combine (3.3), (3.9), and the strong law of large num-
bers.
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One of the important implications of Theorem 3.2 is that, in the presence
of A1–A5 and P1–P2, P3 in Theorem 3.1 can be replaced by the following
conditions on the bracketing number and the uniform boundedness of f∗, g ∈ G,
and ε:

P7.
(i) N[ ](ε,G, d1) < ∞ for every ε > 0.
(ii) There exists M∗ ≥ 0 such that

|f∗(x)| ≤ M∗ for all x ∈ (0, 1)d

|g(x)| ≤ M∗ for all x ∈ (0, 1)d and g ∈ G
|ε| ≤ M∗ a.s.

To see why P7 can replace P5 and P6, let F = {(f∗ − g∗)g : g ∈ G)}. For any
g1, g2 ∈ G, we have

d1((f∗ − g∗)g1, (f∗ − g∗)g2) =

∫
(0,1)d

|f∗(x)− g∗(x)||g1(x)− g2(x)|dx

≤ 2M∗d1(g1, g2). (3.10)

Hence, P7(i) and (3.10) imply N[ ](ε,F , d1) < ∞ for every ε > 0, and Theorem
2.4.1 on page 122 of [74] establishes P5(i). Similar arguments can be applied to
establish P5(ii) and P6.

The above arguments prove the following theorem.

Theorem 3.3. Assume A1–A5 and P1–P2. Furthermore, assume P7. Then,
for any g∗ ∈ G∗ and ĝn ∈ Ĝn, (3.6) and (3.7) hold.

The following corollaries establish consistency of ĝn for the case when G =
Gm,B and G = Gc,B under P7.

Corollary 3.5. Let G = Gm,B be defined as in Corollary 3.3. Assume A1–
A5. Furthermore, assume that f∗ is uniformly bounded and ε is bounded, i.e.,
there exist constants M1 and M2 such that |f∗(x)| ≤ M1 for all x ∈ (0, 1)d and
|ε| ≤ M2 a.s. Then, P1, P2, and P7 are satisfied, and hence, (3.6) and (3.7)
hold for any g∗ ∈ G∗ and ĝn ∈ Ĝn.

Proof of Corollary 3.5. P1 and P2 can be established using the arguments
similar to those in Steps 1 and 2 in the Proof of Corollary 3.1. P7(i) is established
by Theorem 1.1 of [30]. Theorem 3.3 then implies the desired conclusions.

Corollary 3.6. Let G = Gc,B be defined as in Corollary 3.4. Assume A1–A5.
Furthermore, assume that f∗ is uniformly bounded and ε is bounded, i.e., there
exist constants M1 and M2 such that |f∗(x)| ≤ M1 for all x ∈ (0, 1)d and
|ε| ≤ M2 a.s. Then, P1, P2, and P7 are satisfied, and hence, (3.6) and (3.7)
hold for any g∗ ∈ G∗ and ĝn ∈ Ĝn.

Proof of Corollary 3.6. P1 and P2 can be established using the arguments
similar to those in Steps 1 and 2 in the Proof of Corollary 3.2. P7(i) is established
by Theorem 1.1(ii) on page 567 of [31]. Theorem 3.3 then implies the desired
conclusions.
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4. Convergence Rates

By identifying the limit point of (ĝn : n ≥ 1) as g∗, we are now able to obtain
the rate at which E(ĝn(X)− g∗(X))2 converges to 0. We start by rewriting

Y = f∗(X) + ε

= g∗(X) + (f∗(X)− g∗(X) + ε)

and treating f∗(X) − g∗(X) + ε as an error term around g∗. The problem is
now converted into the question of how to find an unknown function g∗ (rather
than f∗) when the observations come with errors in the form f∗(X)−g∗(X)+ε,
whose mean is not zero. Our estimator ĝn minimizes

1

n

n∑
i=1

(Yi − g(Xi))
2 =

1

n

n∑
i=1

((f∗(Xi)− g∗(Xi) + εi) + (g∗(Xi)− g(Xi)))
2

=
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi) + εi)
2

− 2

n

n∑
i=1

(f∗(Xi)− g∗(Xi) + εi)(g(Xi)− g∗(Xi)) +
1

n

n∑
i=1

(g(Xi)− g∗(Xi))
2

over g ∈ G, so it maximizes

Mn(g) �
2

n

n∑
i=1

(f∗(Xi)− g∗(Xi)+ εi)(g(Xi)− g∗(Xi))−
1

n

n∑
i=1

(g(Xi)− g∗(Xi))
2

over g ∈ G. Many existing theories on the convergence rates of least squares
estimators do not require mean zero errors. Instead, they require EMn(g) −
EMn(g∗) to have a negative drift. In our case, this is satisfied because

EMn(g)− EMn(g∗)

= 2E(f∗(X)− g∗(X))(g(X)− g∗(X))− E(g(X)− g∗(X))2

≤ −E(g(X)− g∗(X))2 (4.1)

due to the fact that G is a closed convex subset of L2, and hence, (3.3) is
satisfied. (4.1) enables us to utilize existing theories on the convergence rates
without having mean zero errors around g∗.

We start with some additional assumptions.

A6. f∗ is uniformly bounded, i.e., there exists a constant A∗ such that |f∗(x)| ≤
A∗ for x ∈ (0, 1)d.

A7. The functions in G are uniformly bounded, i.e., there exists a constant B∗
such that |g(x)| ≤ B∗ for x ∈ (0, 1)d and g ∈ G.

A8. The εi’s satisfy E(εi|Xi) = 0 for i ≥ 1 and they are subexponential, i.e.,
there exist constants γ and Γ satisfying E exp(Γ|ε|) ≤ γ.
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The following theorem is our main tool for computing convergence rates and
is a modification of Theorem 3.4.1 of [74].

Theorem 4.1. Assume A1–A3, A6–A8, and P1–P2. For each n ≥ 1, define
φn : (0,∞) → [0,∞] by

φn(t) = J̃[ ](t,G, d2)(1 + J̃[ ](t,G, d2)/(t2
√
n))

for t ≥ 0, where

J̃[ ](t,G, d2) �
∫ t

(t2/64)∧(t/24)

√
1 + logN[ ](u,G, d2)du.

Suppose δ �→ φn(δ)/δ
α is decreasing on (0,∞), for some α < 2. Let rn satisfy

r2nφn(1/rn) �
√
n for every n. Then

‖ĝn − g∗‖2 = Op(1/r
2
n)

as n → ∞.

The proof of Theorem 4.1 is deferred to Appendix A. As corollaries of The-
orem 4.1, we obtain the convergence rates when G = Gm,B and G = Gc,B ,
respectively. The proofs of Corollaries 4.1 and 4.2 are provided in Appendix A.

Corollary 4.1. Let G = Gm,B be defined as in Corollary 3.3. Under A1–A7,

‖ĝn − g∗‖2 = Op(an) as n → ∞,

where

an =

⎧⎨
⎩

n−2/3, if d = 1
n−1/2(logn)2, if d = 2

n− 1
2(d−1) , if d > 2.

(4.2)

Remark 4.1 (Comparison with Existing Works When d = 1). When the model
is well-specified, i.e., f∗ ∈ G, the convergence rate obtained in Corollary 4.1 when
d = 1 agrees with the previous result given by [58] and [77], who established the
rate of n−2/3 for the univariate isotonic regression estimators; see Theorem 2.2
of [77]. On the other hand, when the model is misspecified, i.e., f∗ /∈ G, the
convergence rate obtained in Corollary 4.1 when d = 1 is a slight improvement
of the previous result established by [16], who computed the rate of n−2/3 up to
a logarithmic multiplicative factor in n; see Theorem 6.1 of [16].

Remark 4.2 (Comparison with Existing Works When d = 2). When the model
is well–specified, i.e., f∗ ∈ G, then the convergence rate obtained in Corollary
4.1 when d = 2 is a slight improvement of the previous result established by
[17], who computed the rate of n−1/2(log n)4; see Theorem 2.1 of [17]. When
the model is misspecified and d = 2, we could not find any existing theoretical
work on the convergence rates.
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Remark 4.3 (Comparison with Existing Works When d ≥ 3). When the model
is well–specified, i.e., f∗ ∈ G, then the convergence rate obtained in Corollary
4.1 when d ≥ 3 is slower than the previous result established by [41], who com-
puted the rate of n−1/d(log n)4; see Theorem 1 of [41]. Corollary 4.1 computes
suboptimal rates compared with those obtained in [41] since the entropy integral,

defined by
∫ t

0

√
1 + logN[ ](u,G, d2)du for t > 0, is divergent when d ≥ 3. When

the model is misspecified and d ≥ 3, we could not find any existing theoretical
work on the convergence rates.

Corollary 4.2. Let G = Gc,B be defined as in Corollary 3.4. Under A1–A7,

‖ĝn − g∗‖2 = Op(bn) as n → ∞,

where

bn =

⎧⎨
⎩

n− 4
4+d , if d < 4

(log n)n−1/2, if d = 4
n−2/d, if d > 4.

(4.3)

Remark 4.4 (Comparison with Existing Works When d = 1). When the model
is well-specified, the convergence rate obtained in Corollary 4.2 when d = 1
agrees with the previous results obtained by [35], [15], and [40]. On the other
hand, when the model is misspecified, the rate in Corollary 4.2 when d = 1 is a
slight improvement of the result obtained by [37], who achieved the convergence
rate of n−4/5(logn)5/4; see Theorem 6.1 of [37].

Remark 4.5 (Comparison with Existing Works When d ≥ 2). When the model
is well–specified, the convergence rate obtained in Corollary 4.2 when d ≥ 2
agrees with the previous result obtained by [40]; see Theorem 3.6 of [40]. When
the model is misspecified and d ≥ 2, we could not find any existing theoretical
work on the convergence rates.

5. A Test for Misspecification

The case of model misspecification is of particular interest to practitioners be-
cause even though ĝn is a nice estimator of f∗ when f∗ ∈ G, it is typically
not known a priori whether the function f∗ truly belongs to G or not. Thus, a
modeler must conduct a hypothesis test in order to be confident about f∗ ∈ G
before he or she suggests ĝn as an estimator of f∗. In this section, we introduce
a test procedure for detecting whether f∗ belongs to G or not. We consider the
following null and alternative hypotheses:

H0 : f∗ /∈ G
Ha : f∗ ∈ G.

In our test procedure, we assume that f∗ can be observed multiple times at
any given design points (Xi : 1 ≤ i ≤ n), and hence, the observed data can be
expressed as ((Xi, Yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ m), where

Yij = f∗(Xi) + εij .
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In Section 5.1, we precisely describe the test procedure under consideration.
In Proposition 5.1, we establish that the Type I error of the test procedure con-
verges to 0 as n → ∞ for m sufficiently large. Section 5.2 is devoted to extensive
simulation studies, which demonstrate that the test procedure successfully de-
tects the non–monotonicity or non–convexity of test functions as n → ∞.

5.1. Test Procedure under Consideration

The key idea of the test procedure is to observe that Ỹi =
∑m

j=1 Yij/m converges
to f∗(Xi) as m → ∞ for each i ∈ {1, · · · , n} and fixed n. We define g̃n by the
solution to (3.1) with the Yi’s replaced by the Ỹi’s. Let n be fixed and m → ∞.
In such a situation, we can expect Ỹi to converge to f∗(Xi) for 1 ≤ i ≤ n. We
also expect g̃n(Xi) to converge to g∗(Xi) for 1 ≤ i ≤ n. Therefore, if f∗ ∈ G,
we expect

∑n
i=1(Ỹi − g̃n(Xi))

2/n to converge to 0, whereas if f∗ /∈ G, we expect∑n
i=1(Ỹi − g̃n(Xi))

2/n to converge to
∑n

i=1(f∗(Xi) − g∗(Xi))
2/n, which is a

positive number. Inspired by this observation, we consider the following test
statistic:

TS =
m

n

n∑
i=1

(Ỹi − g̃n(Xi))
2. (5.1)

To understand the limiting behavior of the test statistic, we will use the following
heuristic arguments. Let us fix n and assume that f∗ ∈ G. Since g̃n minimizes∑n

i=1(Ỹi − f∗(Xi))
2 over f ∈ G, it follows that

1

n

n∑
i=1

(Ỹi − g̃n(Xi))
2 ≤ 1

n

n∑
i=1

(Ỹi − f∗(Xi))
2,

or equivalently,

TS =
m

n

n∑
i=1

(Ỹi − g̃n(Xi))
2 ≤ m

n

n∑
i=1

(Ỹi − f∗(Xi))
2. (5.2)

Using the fact that Ỹi =
∑m

j=1(f∗(Xi) + εij)/m for 1 ≤ i ≤ n, (5.2) can be
rewritten as

TS ≤ m

n

n∑
i=1

(Ỹi − f∗(Xi))
2 =

m

n

n∑
i=1

⎛
⎝ m∑

j=1

εij/m

⎞
⎠

2

. (5.3)

For each i ∈ {1, · · · , n}, the weak law of large numbers ensures

1√
m

m∑
j=1

εij ⇒ N(0, σ2) (5.4)

as m → ∞, where N(0, σ2) is the normal random variable with a mean of 0 and
a variance of σ2. By the continuous mapping theorem together with (5.3) and
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(5.4), we obtain

TS ≤ m

n

n∑
i=1

⎛
⎝ m∑

j=1

εij/m

⎞
⎠

2

⇒ 1

n

(
N1(0, σ

2) + · · ·+Nn(0, σ
2)
) D
= (σ2/n)χ2

n,

where the Ni(0, σ
2)’s are independent normal random variables with a mean

of 0 and a variance of σ2, ⇒ denotes convergence in distribution, and A
D
= B

means that A and B have the same distribution.
On the other hand, let us fix n and assume that f∗ /∈ G. Then,

∑n
i=1(Ỹi −

g̃n(Xi))
2/n is expected to converge to

∑n
i=1(f∗(Xi) − g∗(Xi))

2/n as m → ∞,

which is a positive number. Hence, TS = (m/n)
∑n

i=1(Ỹi− g̃n(Xi))
2 is expected

to go to infinity as m → ∞.
From the above arguments, it is intuitively acceptable to conclude that f∗ ∈ G

with a confidence level of at least 1 − γ if the test statistic is less than the
100(1− γ)–th percentile of (σ2/n)χ2

n.
For a test procedure to be meaningful, it should fail to reject H0 when f∗ /∈ G.

As our next proposition suggests, our test procedure has the desired property.
Proposition 5.1 states that the Type I error of the test procedure converges to
0 as n → ∞ for m sufficiently large.

To describe the behavior of the test procedure, we need some assumptions.

B1. ((Xi, Yij) : 1 ≤ i ≤ n, 1 ≤ j ≤ m) is a sequence of iid (0, 1)d × R–valued
random vectors satisfying

Yij = f∗(Xi) + εij for i ≥ 1 and j ≥ 1.

B2. X1, X2, · · · have a common positive density function τ : (0, 1)d → R.
B3. There exists a positive constant τ∗ such that τ(x) ≤ τ∗ for x ∈ (0, 1)d.
B4. (i) E(εi|Xi) = 0 and (ii) E(ε2i |X2

i ) = σ2 < ∞ for i ≥ 1.
B5. Ef∗(X1)

2 < ∞.
B6. There exists a solution to (3.2) that is continuous. Also, f∗ is continuous.

Proposition 5.1. Under B1–B6, P1–P3, there exists a constant M such that
m ≥ M implies

P(Fail to reject H0 for all but finitely many n | f∗ /∈ G) = 1. (5.5)

If G = Gm or G = Gc, (5.5) holds under B1–B6.

The proof of Proposition 5.1 is provided in Appendix A.

5.2. Simulation Studies

In this section, we examine the performance of the test procedure through sim-
ulations. We compute the proportion of times H0 is rejected with nine different
regression functions, f1, f2, f3, f4, f5, f6, f7, f8 and f9, for different n values.
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We define f1 : (0, 1) → R, f2 : (0, 1) → R, f3 : (0, 1) → R, f4 : (0, 1) → R,
f5 : (0, 1)2 → R, f6 : (0, 1)2 → R, f7 : (0, 1)2 → R, f8 : (0, 1)2 → R, and
f9 : (0, 1)2 → R by

f1(x) = − exp(−x)

f2(x) = −1.5(x− 0.7)2

f3(x) = 5(x− 0.2)2

f4(x) = 3(x− 0.2)(x− 0.5)(x− 0.7)

f5(x(1), x(2)) = x(1)2 + x(2)2

f6(x(1), x(2)) = x(1)2 − x(2)2

f7(x(1), x(2)) = 1− exp(−(x(1)− 0.5)2 − (x(2)− 0.5)2)

f8(x(1), x(2)) = (x(1) + x(2)− 0.5)3

− exp(−50(x(1)− 0.25)2 + (x(2)− 0.25)2)

for x ∈ (0, 1) and (x(1), x(2)) ∈ (0, 1)2. On the other hand, f9(x) is the price
of a European call option on a non–dividend–paying stock when x ∈ (0, 1) is
the volatility of the underlying stock price. It is assumed that the strike price
of this stock option is 1.3, the risk-free annual interest rate is 0.03, the current
price of the underlying stock is 1, and the time to maturity is 1 year.

It should be noted that f1 is monotone, f2, f3, and f4 are not monotone, f5 is
convex, and f6, f7, and f8 are not convex. The non-convexity of f9 can be easily
checked; see, for example, page 295 in [47]. Thus, we applied the test procedure
with G = Gm to the cases where f∗ = f1, f2, f3, and f4, respectively. We also
applied the test procedure with G = Gc to the cases where f∗ = f5, f6, f7, f8,
and f9, respectively.

When f∗ = f1, f2, f3 or f4, we chose Xi = i/n − 1/(2n) for 1 ≤ i ≤ n and
generated Yij = f2(Xi)+Nij(0, 0.1

2) for 1 ≤ i ≤ n and 1 ≤ j ≤ m with m = 20,
where the Nij(0, 0.1

2)’s are iid normal random variables with a mean of 0 and

a variance of 0.12. We next computed Ỹi =
∑m

j=1 Yij/m for 1 ≤ i ≤ n, g̃n as the

solution to (3.1) with G = Gm and the Yi’s replaced by the Ỹi’s, and the test
statistic in (5.1). When computing g̃n, the quadratic programming formulation
of (3.1) is solved through CVX, which is a software package designed to solve
convex programs; see [33] for details. The test procedure is conducted with
γ = 0.05, reaching the conclusion of whether H0 should be rejected or not.
We repeated this procedure 100 times independently. Using these 100 trials, we
computed the 95% confidence intervals of the proportion of times H0 is rejected.
Table 1 reports these confidence intervals for a variety of n values.

When f∗ = f5, f6, f7 or f8, we chose {X1, · · · , Xn} as {(v/√n − 1/(2
√
n),

w/
√
n − 1/(2

√
n)) : 1 ≤ v, w ≤ √

n} and generated Yij = f2(Xi) +Nij(0, 0.2
2)

for 1 ≤ i ≤ n and 1 ≤ j ≤ m with m = 10, where the Nij(0, 0.2
2)’s are iid

normal random variables with a mean of 0 and a variance of 0.22. We next
computed Ỹi =

∑m
j=1 Yij/m for 1 ≤ i ≤ n, g̃n as the solution to (3.1) with

G = Gc and the Yi’s replaced by the Ỹi’s, and the test statistic in (5.1). When
computing g̃n, the quadratic programming formulation of (3.1) is solved through
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Table 1

The 95% confidence interval of the proportion of times rejecting H0 when f∗ is f1, f2, f3,
and f4, respectively.

n f∗ = f1 f∗ = f2 f∗ = f3 f∗ = f4

10 1.00± 0.00 0.72± 0.09 0.75± 0.08 0.92± 0.05
20 1.00± 0.00 0.50± 0.10 0.36± 0.09 0.82± 0.08
30 1.00± 0.00 0.23± 0.08 0.07± 0.05 0.57± 0.10

100 1.00± 0.00 0.00± 0.00 0.00± 0.00 0.19± 0.08
200 1.00± 0.00 0.00± 0.00 0.00± 0.00 0.02± 0.03

Table 2

The 95% confidence interval of the proportion of times rejecting H0 when f∗ is f5, f6, f7,
and f8, respectively.

n f∗ = f5 f∗ = f6 f∗ = f7 f∗ = f8

4 1.00± 0.00 1.00± 0.00 1.00± 0.00 1.00± 0.00
16 1.00± 0.00 0.56± 0.10 0.57± 0.10 1.00± 0.00
36 1.00± 0.00 0.07± 0.05 0.03± 0.03 0.00± 0.00
64 1.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

100 1.00± 0.00 0.00± 0.00 0.00± 0.00 0.00± 0.00

CVX. The test procedure is conducted with γ = 0.05. We repeated this pro-
cedure 100 times independently. Using these 100 trials, we computed the 95%
confidence intervals of the proportion of times H0 is rejected. Table 2 reports
these confidence intervals for a variety of n values.

When f∗ = f9, we chose Xi = i/n − 1/(2n) for 1 ≤ i ≤ n. For each fixed
i, we simulated the underlying stock price up to one year from now using the
geometric Brownian motion with a drift of 0.03 and a volatility of Xi. (The
underlying stock price at the current time is assumed to be 1.) From the jth
replication of this simulation (1 ≤ j ≤ m with m = 10), we obtained Sij , the
price of the underlying stock one year from the current time. The price of the
call option, Yij , is then obtained from exp(−0.03)max(0, Sij − 1.3). We then

computed Ỹi =
∑m

j=1 Yij/m for 1 ≤ i ≤ n, g̃n as the solution to (3.1) with

G = Gc and the Yi’s replaced by the Ỹi’s, and the test statistic in (5.1). The test
procedure is conducted with γ = 0.05. We repeated this procedure 100 times
independently. Using these 100 trials, we computed the 95% confidence inter-
vals of the proportion of times H0 is rejected. Table 3 reports these confidence
intervals for a variety of n values.

Tables 1, 2, and 3 show that the proportion of times H0 is rejected gets
closer to 0 as n increases for non-monotone or non-convex test functions, i.e.
f2, f3, f4, f6, f7, f8, and f9. This illustrates that the test procedure successfully
detects the non–monotonicity or non-convexity of the test functions for large n,
as Proposition 5.1 suggests. Furthermore, Tables 1 and 2 indicate that the test
procedure also detects monotonicity of f1 and convexity of f5 for a variety of n
values.
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Table 3

The 95% confidence interval of the proportion of times rejecting H0 when f∗ = f9.

n f∗ = f9

10 0.62± 0.10
20 0.44± 0.10
30 0.14± 0.07
40 0.05± 0.04
50 0.03± 0.03

Appendix A: Proofs

This Appendix contains the proofs of Theorem 3.1, Corollaries 3.1–3.4, Theorem
4.1, Corollaries 4.1–4.2, and Proposition 5.1.

For notational convenience, Eψ(ĝn(X)) for any measurable function ψ : R →
R will denote, in the rest of this paper,

∫
ψ(ĝn(x))dH(x), where H is the dis-

tribution function of X.

Proof of Theorem 3.1. The proof of Theorem 3.1 consists of 10 steps.
Step 1: We use the fact that ĝn is a minimizer of ϕn and that g∗ ∈ G to

obtain
1

n

n∑
i=1

(Yi − ĝn(Xi))
2 ≤ 1

n

n∑
i=1

(Yi − g∗)
2,

or equivalently,

1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))
2 ≤ 2

n

n∑
i=1

(Yi − g∗(Xi))(ĝn(Xi)− g∗(Xi)). (A.1)

Step 2: We will use A1, A4, and A5 to show that there exists a constant β
such that

1

n

n∑
i=1

ĝn(Xi)
2 ≤ β a.s. for n sufficiently large. (A.2)

To fill in the details, we apply the Cauchy-Schwarz inequality to the right-hand
side of (A.1) to get

1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))
2

≤ 2

√√√√ 1

n

n∑
i=1

(Yi − g∗(Xi))2

√√√√ 1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))2

and
1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))
2 ≤ 4

n

n∑
i=1

(Yi − g∗(Xi))
2. (A.3)
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We then apply (a+ b)2 ≤ 2a2 + 2b2 for a, b ∈ R to get

1

n

n∑
i=1

ĝn(Xi)
2 ≤ 2

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))
2 +

2

n

n∑
i=1

g∗(Xi)
2

≤ 8

n

n∑
i=1

(Yi − g∗(Xi))
2 +

2

n

n∑
i=1

g∗(Xi)
2 by (A.3)

≤ 8E(Y − g∗(X))2 + E(g∗(X)2) + 1 � β

a.s. for n sufficiently large by the strong law of large numbers.
Step 3: We will use Step 2, A2, A3, and P3 to show

E(ĝn(X)2) ≤ β + 1 a.s. for n sufficiently lage. (A.4)

To fill in the details, we define the truncated value as follows: For any c ≥ 0 and
x ≥ 0, the truncated value of x, denoted by Tc(x), is defined by

Tc(x) =

{
x, if x ≥ c
0, otherwize.

(A.5)

Note that Tc(x
2) = {T√

c(x)}2 for x ≥ 0, Tc(x) ≤ Tc(y) for 0 ≤ x ≤ y, and
T (x+y) ≤ T (x)+T (y) for x, y ≥ 0. Together with the fact that |x+y| ≤ |x|+|y|
for x, y ∈ R, we obtain

Tc(x+ y)2 ≤ Tc(x)
2 + Tc(y

2) + 2T√
c|x| · T√

c|y| (A.6)

−Tc(x+ y)2 ≤ −Tc(x)
2 − Tc(y

2) + 2T√
c|x| · T√

c|y|. (A.7)

We will show that for any c > 0,

E(Tc(ĝn(X)2)) ≤ β + 1 (A.8)

for n sufficiently large. If (A.8) is proven, letting c ↑ ∞ for each n and applying
the monotone convergence theorem will yield (A.4). It remains to show (A.8).
Let c > 0 and ε > 0 be given. We take δ > 0 small enough so that

cP(X ∈ Aδ) ≤ ε, (A.9)

where Aδ = (0, 1)d − [δ, 1 − δ]d. By P3, there exist a constant r � r(ε, δ) and
{h1, · · · , hr} ⊂ H̃(δ) such that (3.3) holds. Without loss of generality, we may
assume that {h1, · · · , hr} is also an ε-net of (H̃(δ), dδ2).

First, we note

ETc(ĝn(X)2) = ETc(ĝn(X)2)I(X ∈ Aδ) + ETc(ĝn(X)2)I(X ∈ [δ, 1− δ]d)

≤ c2P(X ∈ Aδ) + ETc(ĝn(X)2)I(X ∈ [δ, 1− δ]d)

≤ ε+ ETc(ĝn(X)2)I(X ∈ [δ, 1− δ]d) by (A.9). (A.10)
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Next, let Bδ = [δ, 1− δ]d and note that for each j ∈ {1, · · · , r},

ETc(ĝn(X)2)I(X ∈ Bδ)−
1

n

n∑
i=1

Tc(ĝn(Xi)
2)I(Xi ∈ Bδ)

= ETc(ĝn(X)− hj(X) + hj(X))2I(X ∈ Bδ)

− 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi) + hj(Xi))
2I(Xi ∈ Bδ)

≤ ETc(ĝn(X)− hj(X))2I(X ∈ Bδ) + ETchj(X)2I(X ∈ Bδ)

+ 2ET√
c|ĝn(X)− hj(X)| · T√

c|hj(X)|I(X ∈ Bδ)

− 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))
2I(Xi ∈ Bδ)−

1

n

n∑
i=1

Tchj(Xi)
2I(Xi ∈ Bδ)

+
2

n

n∑
i=1

T√
c|ĝn(Xi)− hj(Xi)| · T√

c|hj(Xi)|I(Xi ∈ Bδ) by (A.6) and (A.7)

≤ ETc(ĝn(X)− hj(X))2I(X ∈ Bδ) + ETchj(X)2I(X ∈ Bδ)

+ 2
√
ETc(ĝn(X)− hj(X))2I(X ∈ Bδ) ·

√
ETc(hj(X)2)I(X ∈ Bδ)

− 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))
2I(Xi ∈ Bδ)−

1

n

n∑
i=1

Tchj(Xi)
2I(Xi ∈ Bδ)

+ 2

√√√√ 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))2I(Xi ∈ Bδ)

·

√√√√ 1

n

n∑
i=1

Tc(hj(Xi)2)I(Xi ∈ Bδ) by the Cauchy-Schwarz inequality

≤ max
1≤j≤r

{
ETchj(X)2I(X ∈ Bδ)−

1

n

n∑
i=1

Tchj(Xi)
2I(Xi ∈ Bδ)

}

+ ETc(ĝn(X)− hj(X))2I(X ∈ Bδ)

+ 2
√
ETc(ĝn(X)− hj(X))2I(X ∈ Bδ) ·

√
ETc(hj(X)2)I(X ∈ Bδ)

− 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))
2I(Xi ∈ Bδ)

+ 2

√√√√ 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))2I(Xi ∈ Bδ)

√√√√ 1

n

n∑
i=1

Tc(hj(Xi)2)I(Xi ∈ Bδ),

so,

ETc(ĝn(X)2)I(X ∈ Bδ)−
1

n

n∑
i=1

Tc(ĝn(Xi)
2)I(Xi ∈ Bδ)
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≤ max
1≤j≤r

{
ETchj(X)2I(X ∈ Bδ)−

1

n

n∑
i=1

Tchj(Xi)
2I(Xi ∈ Bδ)

}

+ min
1≤j≤r

ETc(ĝn(X)− hj(X))2I(X ∈ Bδ)

+ 2 min
1≤j≤r

√
ETc(ĝn(X)− hj(X))2I(X ∈ Bδ) ·

√
ETc(hj(X)2)I(X ∈ Bδ)

+ 2 min
1≤j≤r

√√√√ 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))2I(Xi ∈ Bδ)

·

√√√√ 1

n

n∑
i=1

Tc(hj(Xi)2)I(Xi ∈ Bδ)

≤ ε (A.11)

a.s. for n sufficiently large by the strong law of large numbers and P3. So,
combining (A.10), (A.11), and the fact that

1

n

n∑
i=1

Tc(ĝn(Xi)
2)I(Xi ∈ Bδ) ≤

1

n

n∑
i=1

ĝn(Xi)
2

yields

ETc(ĝn(X)2) ≤ 2ε+
1

n

n∑
i=1

ĝn(Xi)
2

a.s. for n sufficiently large. Using (A.2), we can conclude

lim sup
n→∞

ETc(ĝn(X)2) ≤ 2ε+ β a.s.,

which implies (A.8).
Step 4: For δ > 0, let Aδ = (0, 1)d \ [δ, 1 − δ]d. We will show that for each

ε > 0, there exists δ > 0 small enough so that

1

n

n∑
i=1

(Yi − g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Aδ) ≤ ε and (A.12)

1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Aδ) ≤ ε (A.13)

a.s. for n sufficiently large.
To fill in the details, let ε > 0 be given. We apply the Cauchy-Schwarz

inequality to obtain

1

n

n∑
i=1

(Yi − g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Aδ)
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≤

√√√√ 1

n

n∑
i=1

(Yi − g∗(Xi))2I(Xi ∈ Aδ)

√√√√ 1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))2

≤

√√√√ 1

n

n∑
i=1

(Yi − g∗(Xi))2I(Xi ∈ Aδ)

√√√√ 2

n

n∑
i=1

(Yi − g∗(Xi))2 by (A.3)

≤
√
E(Y − g∗(X))2I(X ∈ Aδ) + ε

√
2E(Y − g∗(X))2 + ε

a.s. for n sufficiently large. We then take δ small enough so that E((Y −
g∗(X))2I(X ∈ Aδ)) < ε, completing the proof of (A.12). Similarly, (A.13) fol-
lows.

Step 5: For δ > 0, let Bδ = [δ, 1 − δ]d. We will use P3 to prove that for any
δ > 0,

1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Bδ)

− E(f∗(X)− g∗(X))(ĝn(X)− g∗(X))I(X ∈ Bδ) → 0 (A.14)

a.s. as n → ∞.
To fill in the details, let ε > 0 and δ > 0 be given. By P3, there exist a

constant r � r(ε, δ) and {h1, · · · , hr} ⊂ H̃(δ) satisfying (3.5). Without loss of
generality, we may assume that {h1, · · · , hr} is also an ε-net of (H̃(δ), dδ2). Then,
for each j ∈ {1, · · · , r},

1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Bδ)

− E(f∗(X)− g∗(X))(ĝn(X)− g∗(X))I(X ∈ Bδ)

=
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− hj(Xi))I(Xi ∈ Bδ)

+
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(hj(Xi)− g∗(Xi))I(Xi ∈ Bδ)

− E(f∗(X)− g∗(X))(ĝn(X)− hj(X))I(X ∈ Bδ)

− E(f∗(X)− g∗(X))(hj(X)− g∗(X))I(X ∈ Bδ),

≤ max
1≤j≤r

{
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(hj(Xi)− g∗(Xi))I(Xi ∈ Bδ)

− E(f∗(X)− g∗(X))(hj(X)− g∗(X))I(X ∈ Bδ)

}

+

√√√√ 1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))2

√√√√ 1

n

n∑
i=1

(ĝn(Xi)− hj(Xi))2I(Xi ∈ Bδ)

+
√

E(f∗(X)− g∗(X))2
√
E(ĝn(X)− hj(X))2I(X ∈ Bδ)
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by the Cauchy-Schwarz inequality, so

1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Bδ)

− E(f∗(X)− g∗(X))(ĝn(X)− g∗(X))I(X ∈ Bδ)

≤ max
1≤j≤r

{
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(hj(Xi)− g∗(Xi))I(Xi ∈ Bδ)

− E(f∗(X)− g∗(X))(hj(X)− g∗(X))I(X ∈ Bδ)

}

+ min
1≤j≤r

√√√√ 1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))2

√√√√ 1

n

n∑
i=1

(ĝn(Xi)− hj(Xi))2I(Xi ∈ Bδ)

+ min
1≤j≤r

√
E(f∗(X)− g∗(X))2

√
E(ĝn(X)− hj(X))2I(X ∈ Bδ)

≤ ε+ 2ε(
√
E(f∗(X)− g∗(X))2 + ε)

a.s. for n sufficiently large due to (3.5) and the strong law of large numbers,
proving (A.14).

Step 6: We will use Step 5 to prove

lim sup
n→∞

1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi)) ≤ 0 a.s. (A.15)

To fill in the details, let ε > 0 be given. We then take δ > 0 small enough so
that (A.13) holds and

√
E(f∗(X)− g∗(X))2I(X ∈ Aδ)

√
2β + 3 + 2Eg∗(X)2 ≤ ε, (A.16)

where Aδ = (0, 1)d \ [δ, 1− δ]d. Let Bδ = [δ, 1− δ]d and observe that

1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))− E(f∗(X)− g∗(X))(ĝn(X)− g∗(X))

=
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Aδ)

+
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Bδ)

− E(f∗(X)− g∗(X))(ĝn(X)− g∗(X))I(X ∈ Aδ)

− E(f∗(X)− g∗(X))(ĝn(X)− g∗(X))I(X ∈ Bδ)

≤ 1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Aδ)
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+
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))(ĝn(Xi)− g∗(Xi))I(Xi ∈ Bδ)

− E(f∗(X)− g∗(X))(ĝn(X)− g∗(X))I(X ∈ Bδ)

+
√

E(f∗(X)− g∗(X))2I(X ∈ Aδ)
√

E(ĝn(X)− g∗(X))2 ≤ ε

a.s. for n sufficiently large by (A.13), (A.14), (A.4), and (A.16). Since

E(f∗(X)− g∗(X))(ĝn(X)− g∗(X)) ≤ 0

by (3.2), (A.15) follows.
Step 7: We will use Step 3 and P3 to prove that

1

n

n∑
i=1

εi(ĝn(Xi)− g∗(Xi)) → 0 as n → ∞ a.s. (A.17)

Let ε > 0 be given. We then take δ > 0 small enough so that√
2Eε2I(X ∈ Aδ)

√
2β + 3 + 2Eg∗(X)2 ≤ ε, (A.18)

where Aδ = (0, 1)2 \ [δ, 1− δ]d.
First, note that,∣∣∣∣∣ 1n

n∑
i=1

εi(ĝn(Xi)− g∗(Xi))I(Xi ∈ Aδ)

∣∣∣∣∣
≤

√√√√ 1

n

n∑
i=1

ε2i I(Xi ∈ Aδ)

√√√√ 1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))2

≤

√√√√ 1

n

n∑
i=1

ε2i I(Xi ∈ Aδ)

√√√√ 2

n

n∑
i=1

ĝn(Xi)2 +
2

n

n∑
i=1

g∗(Xi)2

≤
√
2Eε2I(X ∈ Aδ)

√
2β + 3 + 2Eg∗(X)2 ≤ ε

a.s. for n sufficiently large by Step 3, (A.18), and the strong law of large numbers.
So, it follows that

1

n

n∑
i=1

εi(ĝn(Xi)− g∗(Xi))I(Xi ∈ Aδ) → 0 as n → ∞ a.s. (A.19)

Next, let Bδ = [δ, 1 − δ]d. By P3, there exist a constant r � r(ε, δ) and
{h1, · · · , hr} ⊂ H̃(δ) satisfying (3.5). Observe that for each j ∈ {1, · · · , r},∣∣∣∣∣ 1n

n∑
i=1

εi(ĝn(Xi)− g∗(Xi))I(Xi ∈ Bδ)

∣∣∣∣∣≤
∣∣∣∣∣ 1n

n∑
i=1

εi(ĝn(Xi)− hj(Xi))I(Xi ∈ Bδ)

∣∣∣∣∣
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+

∣∣∣∣∣ 1n
n∑

i=1

εi(hj(Xi)− g∗(Xi))I(Xi ∈ Bδ)

∣∣∣∣∣
≤

√√√√ 1

n

n∑
i=1

ε2i

√√√√ 1

n

n∑
i=1

(ĝn(Xi)− hj(Xi))2I(Xi ∈ Bδ)

+ max
1≤j≤r

∣∣∣∣∣ 1n
n∑

i=1

εi(hj(Xi)− g∗(Xi))I(Xi ∈ Bδ)

∣∣∣∣∣
by the Cauchy-Schwarz inequality, so∣∣∣∣∣ 1n

n∑
i=1

εi(ĝn(Xi)− g∗(Xi))I(Xi ∈ Bδ)

∣∣∣∣∣
≤ min

1≤j≤r

√√√√ 1

n

n∑
i=1

ε2i

√√√√ 1

n

n∑
i=1

(ĝn(Xi)− hj(Xi))2I(Xi ∈ Bδ)

+ max
1≤j≤r

∣∣∣∣∣ 1n
n∑

i=1

εi(hj(Xi)− g∗(Xi))I(Xi ∈ Bδ)

∣∣∣∣∣
≤ ε

√
E(ε2) + 1 + ε

a.s. for n sufficiently large by (3.5) and the strong law of large numbers. Hence,

1

n

n∑
i=1

εi(ĝn(Xi)− g∗(Xi))I(Xi ∈ Bδ) → 0 as n → ∞ a.s. (A.20)

Combining (A.19) and (A.20) yields (A.17).
Step 8: We combine Steps 6 and 7 to establish (3.6). First, note that the

combination of Steps 6 and 7 yields

lim sup
n→∞

1

n

n∑
i=1

(Yi − g∗(Xi))(ĝn(Xi)− g∗(Xi)) ≤ 0 a.s.

Using (A.1), we conclude that

1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))
2 → 0 as n → ∞ a.s.

Step 9: We will use Step 8 and P3 to establish (3.7). To fill in the details, we
will first prove that

ETc(ĝn(X)− g∗(X))2 → 0 as n → ∞ (A.21)

for each c > 0, where Tc(·) is defined as in (A.5). Once (A.21) is proven, letting
c ↑ ∞ for each n will prove (3.7). It remains to show (A.21). Let ε > 0 and c > 0
be given. We then take δ > 0 small enough so that

cP(X ∈ Aδ) ≤ ε,
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where Aδ = (0, 1)d \ [δ, 1− δ]d. It follows that

ETc(ĝn(X)− g∗(X))2I(X ∈ Aδ) ≤ ε (A.22)

Let Bδ = [δ, 1− δ]. By P3, there exist a constant r � r(ε, δ) and {h1, · · · , hr} ⊂
H̃(δ) satisfying (3.5). Without loss of generality, we may assume {h1, · · · , hr} ⊂
H̃(δ) is an ε-net of (H̃(δ), dδ2). Then, for each j ∈ {1, · · · , r},

ETc(ĝn(X)− g∗(X))2I(X ∈ Bδ)−
1

n

n∑
i=1

Tc(ĝn(Xi)− g∗(Xi))
2I(Xi ∈ Bδ)

= ETc(ĝn(X)− hj(Xi) + hj(Xi)− g∗(X))2I(X ∈ Bδ)

− 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi) + hj(Xi)− g∗(Xi))
2I(Xi ∈ Bδ)

≤ ETc(ĝn(X)− hj(X))2I(X ∈ Bδ) + ETc(hj(X)− g∗(X))2I(X ∈ Bδ)

+ 2ET√
c|ĝn(X)− hj(X)| · T√

c|hj(X)− g∗(X)|I(X ∈ Bδ)

− 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))
2I(Xi ∈ Bδ)

− 1

n

n∑
i=1

Tc(hj(Xi)− g∗(Xi))
2I(Xi ∈ Bδ)

+
2

n

n∑
i=1

T√
c|ĝn(Xi)− hj(Xi)| · T√

c|hj(Xi)− g∗(Xi)|I(Xi ∈ Bδ)

by (A.6) and (A.7)

≤ max
1≤j≤r

{
ETc(hj(X)− g∗(X))2I(X ∈ Bδ)

− 1

n

n∑
i=1

Tc(hj(Xi)− g∗(Xi))
2I(Xi ∈ Bδ)

}

+ ETc(ĝn(X)− hj(Xi))
2I(X ∈ Bδ)

− 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))
2I(Xi ∈ Bδ)

+ 2
√
ETc(ĝn(X)− hj(X))2I(X ∈ Bδ) ·

√
ETc(hj(X)− g∗(X))2I(X ∈ Bδ)

+ 2

√√√√ 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))2I(Xi ∈ Bδ)

·

√√√√ 1

n

n∑
i=1

Tc(hj(Xi)− g∗(Xi))2I(Xi ∈ Bδ)
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by the Cauchy-Schwarz inequality, so

ETc(ĝn(X)− g∗(X))2I(X ∈ Bδ)−
1

n

n∑
i=1

Tc(ĝn(Xi)− g∗(Xi))
2I(Xi ∈ Bδ)

≤ max
1≤j≤r

{
ETc(hj(X)− g∗(X))2I(X ∈ Bδ)

− 1

n

n∑
i=1

Tc(hj(Xi)− g∗(Xi))
2I(Xi ∈ Bδ)

}

+ min
1≤j≤r

ETc(ĝn(X)− hj(Xi))
2I(X ∈ Bδ)

+ 2 min
1≤j≤r

√
ETc(ĝn(X)− hj(X))2I(X ∈ Bδ)

·
√

ETc(hj(X)− g∗(X))2I(X ∈ Bδ)

+ 2 min
1≤j≤r

√√√√ 1

n

n∑
i=1

Tc(ĝn(Xi)− hj(Xi))2I(Xi ∈ Bδ)

·

√√√√ 1

n

n∑
i=1

Tc(hj(Xi)− g∗(Xi))2I(Xi ∈ Bδ)

≤ ε (A.23)

a.s. for n sufficiently large by (3.5) and the strong law of large numbers. The
combination of (A.22), (A.23), and Step 8 proves (A.21), and hence, (3.7) is
established.

Step 10: We will use Step 8 and P4 to establish (3.8). Let δ > 0 be given. By
P4, there exists a constant β(δ) such that

sup
ĝn∈Ĝn

|ĝn(x)− ĝn(y)| ≤ β(δ)‖x− y‖ and

sup
g∗∈G∗

|g∗(x)− g∗(y)| ≤ β(δ)‖x− y‖

a.s. for x ∈ [δ, 1 − δ]d and n sufficiently large. We next find a finite number of
hyperrectangles S1, · · · , Sl with non-empty interior, satisfying ∪l

j=1Sj = [δ, 1−
δ]d and ‖x− y‖ ≤ ε for x, y ∈ Sj and 1 ≤ j ≤ l.

For each x ∈ Sj and Xi ∈ Sj ,

|ĝn(x)− g∗(x)| ≤ |ĝn(x)− ĝn(Xi)|+ |ĝn(Xi)− g∗(Xi)|+ |g∗(Xi)− g∗(x)|
≤ β(δ)ε+ |ĝn(Xi)− g∗(Xi)|+ β(δ)ε,

so

sup
x∈Sj

|ĝn(x)− g∗(x)|
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≤ 2β(δ)ε+

∑n
i=1 |ĝn(Xi)− g∗(Xi)|I(Xi ∈ Sj)∑n

i=1 I(Xi ∈ Sj)

≤ 2β(δ)ε+
1

n

n∑
i=1

|ĝn(Xi)− g∗(Xi)|I(Xi ∈ Sj) ·
n∑n

i=1 I(Xi ∈ Sj)

≤ 2β(δ)ε+

√√√√ 1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))2 ·
n∑n

i=1 I(Xi ∈ Sj)

by the Cauchy-Schwarz inequality

≤ 2β(δ)ε+ ε

a.s. for n sufficiently large by Step 8 and A2. Since there are finitely many Sj ’s,

sup
x∈[δ,1−δ]d

|ĝn(x)− g∗(x)| ≤ 2β(δ)ε+ ε

a.s. for n sufficiently large, establishing (3.8).

Proof of Corollary 3.1. The proof of Corollary 3.1 consists of six steps. In
Steps 1–5, we will prove that A1–A3 imply P1–P3. In Step 6, we will consider
the case where d = 1 and f∗ is continuous and will prove that g∗ exists uniquely
and (3.8) holds.

Step 1: We establish P1. The only non-trivial part is that Gm is closed in L2.

Suppose that (hl : l ≥ 1) is a Cauchy sequence in Gm. Since L2 is complete, there
exists h∞ ∈ L2 satisfying ‖hl−h∞‖2 → 0 as l → ∞. Furthermore, there exists a
subsequence (lk : k ≥ 1) and Ω ⊂ (0, 1)d such that limk→∞ hlk(x) = h∞(x) < ∞
for x ∈ Ω and Ω is a set of Lebesgue measure 1. We define h̃∞ : (0, 1)d → R by

h̃∞(x) = sup{h∞(z) : z ≤ x, x ∈ Ω}

for x ∈ (0, 1)d. Then, h̃∞ is well–defined, monotone, and coincides with h∞ on
Ω. Therefore, ‖h̃∞ − hl‖2 → 0 as l → ∞. So, Gm is closed.

Step 2: We establish P2. Let Sn = {(g(X1), · · · g(Xn)) : g ∈ Gm}. Then Sn is
a nonempty and convex subset of Rn. To see why Sn is closed, let {gl : l ≥ 1}
be a subset of Gm satisfying |gl(Xi)− gi| → 0 as l → ∞ for 1 ≤ i ≤ n and some
(g1, · · · , gn) ∈ R

n. Next, we define g̃∞ : (0, 1)d → R by

g̃∞(x) =

{
sup{gi : Xi ≤ x, 1 ≤ i ≤ n}, if there is Xi satisfying Xi ≤ x
min{gi : 1 ≤ i ≤ n}, otherwise

for x ∈ (0, 1)d. Then g̃∞ ∈ Gm and

‖(gl(X1), · · · , gl(Xn))− (g̃∞(X1), · · · , g̃∞(Xn))‖ → 0

as l → ∞.
Since ϕn is a strictly convex function on Sn, and Sn is nonempty, closed, con-

vex, there exists a minimizer (g̃1, · · · , g̃n) of ϕn over Sn. We define g̃ : (0, 1)d →
R by

g̃(x) =

{
sup{g̃i : Xi ≤ x, 1 ≤ i ≤ n}, if there is Xi satisfying Xi ≤ x
min{g̃i : 1 ≤ i ≤ n}, otherwise
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for x ∈ (0, 1)d. Then g̃ minimizes ϕn(g) over g ∈ G.
Step 3: We will prove that for any subset A of (0, 1)d with nonempty interior,

there exists a constant cA such that

inf
Xi∈A

|ĝn(Xi)− g∗(Xi)| ≤ cA (A.24)

a.s. for n sufficiently large.
To fill in the details, note

inf
Xi∈A

|ĝn(Xi)− g∗(Xi)|

≤
∑n

i=1 |ĝn(Xi)− g∗(Xi)|I(Xi ∈ A)∑n
i=1 I(Xi ∈ A)

≤ n∑n
i=1 I(Xi ∈ A)

·
∑n

i=1 |ĝn(Xi)− g∗(Xi)|I(Xi ∈ A)

n

≤ n∑n
i=1 I(Xi ∈ A)

√√√√ 1

n

n∑
i=1

(ĝn(Xi)− g∗(Xi))2

by the Cauchy-Schwarz inequality

≤ n∑n
i=1 I(Xi ∈ A)

√√√√ 2

n

n∑
i=1

ĝn(Xi)2 +
2

n

n∑
i=1

g∗(Xi)2

≤ 2

P(X ∈ A)

√
2β + 3 + 2E(g∗(X)2) � cA

by (A.2) a.s. for n sufficiently large, proving (A.24).
Step 4: We will use Step 3 and the fact that g∗ and ĝn are monotone to prove

that for any δ > 0, there exists a constant β0(δ) such that

sup
x∈[δ,1−δ]d

|ĝn(x)| ≤ β0(δ) (A.25)

a.s. for n sufficiently large.
To fill in the details, let δ > 0 be given. (A.24) implies that there exists a

constant cδ, (Xik : k ≥ 1), and (Xjk : j ≥ 1) such that

Xik ∈ (3δ/4, δ)d, Xjk ∈ (1− δ, 1− 3δ/4)d,

g∗(Xik)− cδ ≤ ĝn(Xik), and ĝn(Xjk) ≤ g∗(Xjk) + cδ

for k ≥ 1. So, for any x ∈ [δ, 1− δ]d, the monotonicity of ĝn implies

g∗(Xik)− cδ ≤ ĝn(Xik) ≤ ĝn(x) ≤ ĝn(xjk) ≤ g∗(Xjk) + cδ,

and

g∗(Xik)− cδ ≤ ĝn(x) ≤ g∗(Xik) + cδ.
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For any Xi ∈ (δ/2, 3δ/4)d and Xj ∈ (1 − 3δ/4, 1 − δ/2)d, the monotonicity of
g∗ implies

g∗(Xi)− cδ ≤ ĝn(x) ≤ g∗(Xj) + cδ.

Therefore,

max
Xi∈(δ/2,3δ/4)d

g∗(Xi)− cδ ≤ ĝn(x) ≤ min
Xj∈(1−3δ/4,1−δ/2)d

g∗(Xj) + cδ. (A.26)

The first inequality of (A.26) implies

ĝn(x) (A.27)

≥
∑n

i=1 g∗(Xi)I(Xi ∈ (δ/2, 3δ/4)d)∑n
i=1 I(Xi ∈ (δ/2, 3δ/4)d)

− cδ

≥ n∑n
i=1 I(Xi ∈ (δ/2, 3δ/4)d)

1

n

n∑
i=1

g∗(Xi)I(Xi ∈ (δ/2, 3δ/4)d)− cδ

≥ − n∑n
i=1 I(Xi ∈ (δ/2, 3δ/4)d)

√√√√ 1

n

n∑
i=1

g∗(Xi)2I(Xi ∈ (δ/2, 3δ/4)d)− cδ

by the Cauchy-Schwarz inequality

≥ − 4

P(X ∈ (δ/2, 3δ/4)d)
Eg∗(X)2I(X ∈ (δ/2, 3δ/4)d)− cδ (A.28)

a.s. for n sufficiently large by the strong law of large numbers. Similarly, the
second inequality of (A.26) implies

ĝn(x) ≤
4

P(X ∈ (1− 3δ/4, 1− δ/2)d)

· Eg∗(X)2I(X ∈ (1− 3δ/4, 1− δ/2)d) + cδ (A.29)

a.s. for n sufficiently large. The combination of (A.28) and (A.29) proves (A.25).
Step 5: We will use Step 4 to establish P3. Let δ > 0 be given and define

H(δ) and H̃(δ) by

H(δ) = {h ∈ Gm : |h(x)| ≤ β0(δ) for x ∈ [δ, 1− δ]d}
H̃(δ) = {h̃ : [δ, 1− δ]d → R : There exists h ∈ H(δ) such that

h̃(x) = h(x) for x ∈ [δ, 1− δ]d}.

We first note that N(ε, H̃(δ), dδ2) < ∞ for any ε > 0; see, for example, The-
orem 1.1 on page 1752 of [30]. To establish P3(ii), let ε > 0 be given. Without
loss of generality, we may assume that h(x) ≥ 0 for any h ∈ H̃(δ). We divide
[0, 1]d into hyperrectangles [ak, bk], 1 ≤ k ≤ K, with the side length 1/l, where
l = 
(1− 2δ)/ε2�. The volume of each hyperrectangle is less than ε2d/(1− 2δ)d.
Note that K is of the order 1/ε2d. Let us consider the number of hyperrectangles
that intersect with a face of [δ, 1− δ]d, i.e., a set of the form

{(x1, · · · , xd) ∈ [δ, 1− δ]d : xj = δ} or {(x1, · · · , xd) ∈ [δ, 1− δ]d : xj = 1− δ}
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for some j ∈ {1, · · · , d}. Then, the number of such hyperrectangles is of the
order 1/ε2(d−1).

For 1 ≤ k ≤ K, we define

Hk =
1

n

n∑
i=1

I(Xi ∈ [ak, bk]).

By the strong law of large numbers and A3,

Hk ≤ EI(X ∈ [ak, bk]) + ε2d ≤ τ∗ε
2d/(1− 2δ)d + ε2d

a.s. for n sufficiently large. Note that n only depends on ak and bk, 1 ≤ k ≤ K.
For each h ∈ H̃(δ) and k ∈ {1, · · · ,K}, we define

gk =

{ ∑n
i=1 g(Xi)I(Xi∈[ak,bk])∑n

i=1 I(Xi∈[ak,bk])
, if

∑n
i=1 I(Xi ∈ [ak, bk]) > 0,

0, otherwise

and let gk = �gk/ε�. Then, for g ∈ H̃(δ),

1

n

n∑
i=1

(g(Xi)− εgkI(Xi ∈ [ak, bk]))2 ≤ ε2Hk + (g(bk)2 − g(ak)2)Hk

≤ ε2Hk + (g(bk)2 − g(ak)2)(1 + τ∗/(1− 2δ)d)ε2d

a.s. for n sufficiently large, and hence,

dδn

(
g,

K∑
k=1

εgkI(x ∈ [ak, bk])

)2

≤ c(δ)ε2

for some constant c(δ) a.s. for n sufficiently large. Since gk, 1 ≤ k ≤ K, is an
integer between 0 and 
β0(δ)� and K is an integer that is of the order 1/ε2d,

there are finitely many functions of the form
∑K

k=1 εgkI(x ∈ [ak, bk]), proving
(3.5).

Step 6: Since P1–P3 are established, (3.6) and (3.7) hold. We next suppose
that d = 1 and f∗ is continuous. Then g∗ is continuous (see Lemma 1 on page
252 of [36]), and hence, exists uniquely. We will use (3.6), the fact that g∗ is
continuous, the fact that ĝn is monotone in order to establish (3.8).

Let δ > 0 and ε > 0 be given. Without loss of generality, we may assume
δ < ε. Since g∗ is continuous over [δ/2, 1− δ/2]d, there exists λ(δ) such that

|g∗(x)− g∗(y)| ≤ λ(δ)‖x− y‖d

for x, y ∈ [δ/2, 1 − δ/2]d. We next divide [δ/2, 1 − δ/2]d into hyperrectangles
[ak, bk], 1 ≤ k ≤ K, with side-length less than ε satisfying ∪l

k=1[a
k, bk] = [δ, 1−

δ]d for some l ≤ K. Note that for any x ∈ [ai, bi] ⊂ [δ, 1 − δ]d, there are
hyperrectangles [ai, bi] and [ak, bk] so that they share vertices with [ai, bi], any
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point in [aj , bj ] is less than or equal to any point in [ai, bi], and any point in
[ak, bk] is greater than or equal to any point in [ai, bi]. In other words, there
exist j � j(i) and k � k(i) such that

Xs ≤ x ≤ Xt for Xs ∈ [aj , bj ] and Xt ∈ [ak, bk]

‖x−Xs‖ ≤ 2
√
dε for Xs ∈ [aj , bj ] or Xs ∈ [ak, bk].

Then, for x ∈ [ai, bi] ⊂ [δ, 1− δ]d, Xs ∈ [aj , bj ], and Xt ∈ [ak, bk],

ĝn(Xs)− g∗(x) ≤ ĝn(x)− g∗(x) ≤ ĝn(Xt)− g∗(x),

and hence,

ĝn(Xs)− g∗(Xs) + g∗(Xs)− g∗(x)

≤ ĝn(x)− g∗(x) ≤ ĝn(Xt)− g∗(Xt) + g∗(Xt)− g∗(x)

so,

|ĝn(x)− g∗(x)| ≤ max{|ĝn(Xs)− g∗(Xs)|+ |g∗(Xs)− g∗(x)|
|ĝn(Xt)− g∗(Xt)|+ |g∗(Xt)− g∗(x)|}.

Therefore, for each Xs ∈ [aj , bj ], and Xt ∈ [ak, bk],

|ĝn(x)− g∗(x)|
≤ max{|ĝn(Xs)− g∗(Xs)|+ max

y∈[aj ,bj ]
|g∗(y)− g∗(x)|,

|ĝn(Xt)− g∗(Xt)|+ max
y∈[ak,bk]

|g∗(y)− g∗(x)|}

≤ |ĝn(Xs)− g∗(Xs)|+ |ĝn(Xt)− g∗(Xt)|+ 2
√
dλ(δ)ε,

so

|ĝn(x)− g∗(x)| ≤ min
Xs∈[aj ,bj ]

|ĝn(Xs)− g∗(Xs)|

+ min
Xt∈[ak,bk]

|ĝn(Xt)− g∗(Xt)|+ 2
√
dλ(δ)ε,

and

sup
x∈[ai,bi]

|ĝn(x)− g∗(x)| ≤ min
Xs∈[aj ,bj ]

|ĝn(Xs)− g∗(Xs)|

+ min
Xt∈[ak,bk]

|ĝn(Xt)− g∗(Xt)|+ 2
√
dλ(δ)ε

≤
∑n

l=1 |ĝn(Xl)− g∗(Xl)|I(Xl ∈ [aj , bj ])∑n
l=1 I(Xl ∈ [aj , bj ])

+

∑n
l=1 |ĝn(Xl)− g∗(Xl)|I(Xl ∈ [ak, bk])∑n

l=1 I(Xl ∈ [ak, bk])
+ 2

√
dλ(δ)ε
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≤ n∑n
l=1 I(Xl ∈ [aj , bj ])

· 1
n

n∑
l=1

|ĝn(Xl)− g∗(Xl)|I(Xl ∈ [aj , bj ])

+
n∑n

l=1 I(Xl ∈ [ak, bk])
· 1
n

n∑
l=1

|ĝn(Xl)− g∗(Xl)|I(Xl ∈ [ak, bk])

+2
√
dλ(δ)ε

≤ n∑n
l=1 I(Xl ∈ [aj , bj ])

√√√√ 1

n

n∑
l=1

(ĝn(Xl)− g∗(Xl))2I(Xl ∈ [aj , bj ])

+
n∑n

l=1 I(Xl ∈ [ak, bk])

√√√√ 1

n

n∑
l=1

(ĝn(Xl)− g∗(Xl))2I(Xl ∈ [ak, bk])

+2
√
dλ(δ)ε

≤ ε+ 2
√
dλ(δ)ε (A.30)

a.s. for n sufficiently large by (3.6).
Since there are finitely many hyperrectangles [ai, bi], we conclude

sup
x∈[δ,1−δ]d

|ĝn(x)− g∗(x)| → 0

as n → ∞ a.s.

Proof of Corollary 3.2. We will prove that A1–A3 imply P1–P4.
Step 1: We establish P1 and the uniqueness of the solution to (3.2). When

proving P1, the only non-trivial part is that Gc is closed in L2. Suppose (hl :
l ≥ 1) is a Cauchy sequence in Gc. Since L2 is complete, there exists h∞ ∈ L2

satisfying ‖hl − h∞‖2 → 0 as l → ∞. Furthermore, there exists a subsequence
(lk : k ≥ 1) and Ω ⊂ (0, 1)d such that limk→∞ hlk(x) = h∞(x) for x ∈ Ω and Ω
is a set of Lebesgue measure one. We next define h̃∞ : (0, 1)d → R by

h̃∞(x) = sup{h∞(z) + ηTz (x− z) : z ∈ Ω, ηz ∈ ∂h∞(z)},

where ∂h∞(z) is the set of the subgradients of h∞ at z ∈ Ω. Then h̃∞ is convex,
coincides with h∞ on Ω, and hence, ‖hl − h̃∞‖2 → 0 as l → ∞. So, Gc is closed.

Now, we turn to the uniqueness of the solution to (3.2). Since Gc is a nonempty,
closed convex subset of L2, the projection theorem implies that there exists a
solution g∗ to (3.2) and the solution is unique up to a set of measure zero. In
other words, if g∗ and g̃∗ are two solutions to (3.2), then g∗(x) = g̃∗(x) almost
everywhere. But, both g∗ and g̃∗ are convex over (0, 1)d, and hence, continuous,
so they must agree at x ∈ (0, 1)d.

Step 2: We establish P2. To fill in the details, let Sn = {(g(X1), · · · , g(Xn)) :
g ∈ Gc}. Then, Sn is a non-empty, closed, and convex subset of Rn; see, for
example, Lemma 2.3 on page 1638 of [65]. Since ϕn(z1, · · · , zn) =

∑n
i=1(Yi −

zi)
2/n is a strictly convex function over (z1, · · · , zn) ∈ Sn, there exists a unique
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minimizer (z̃1, · · · , z̃n) of ϕn over Sn. Since (z̃1, · · · , z̃n) ∈ Sn, there exists g̃n ∈
Gc such that g̃n(Xi) = z̃i for 1 ≤ i ≤ n. Then, g̃n becomes a solution to (3.1).

Step 3: We establish P3 and P4. To fill in the details, we notice that for any
δ > 0, there exist constants β0(δ) and β1(δ) such that

sup
x∈[δ,1−δ]d

|ĝn(x)| ≤ β0(δ) and

|ĝn(x)− ĝn(y)| ≤ β1(δ)‖x− y‖ (A.31)

for x, y ∈ [δ, 1− δ]d and n sufficiently large a.s.; see, for example, Steps 4 and 5
on pages 201 and 202 of [53]. So, if we let

H(δ) = {h ∈ Gc : |h(x)| ≤ β0(δ), |h(x)− h(y)| ≤ β1(δ)‖x− y‖
for x ∈ [δ, 1− δ]d}

and

H̃(δ) = {h̃ : [δ, 1− δ]d → R : There exists h ∈ H(δ) such that

h̃(x) = h(x) for x ∈ [δ, 1− δ]d},

then (3.4) is established. To establish P3(i) and P3(ii), note that H̃(δ) is a subset
of A, where

A = {h : [δ, 1− δ]d → R : h is convex, |h(x)| ≤ β0(δ)

|h(x)− h(y)| ≤ β1(δ)‖x− y‖ for x, y ∈ [δ, 1− δ]d},

and hence,

N(ε, H̃(δ), dδ2) ≤ N(ε,A, dδ∞) < ∞
N(ε, H̃(δ), dδn) ≤ N(ε,A, dδ∞) < ∞

by Theorem 6 of [11].
We can establish P4 by using (A.31) and the fact that g∗ is unique and

continuous over (0, 1)d.

Proof of Corollary 3.3. The proof is similar to the proof of Corollary 3.1.

Proof of Corollary 3.4. The proof is similar to the proof of Corollary 3.2.

Proof of Theorem 4.1. We will use (4.1), the fact that f∗, g∗, g ∈ G are
bounded uniformly, and that fact that the εi’s are subexponential to apply
Theorem 3.4.1 of [74]. We start by observing that ĝn minimizes

1

n

n∑
i=1

(Yi − g(Xi))
2 =

1

n

n∑
i=1

((f∗(Xi)− g∗(Xi) + εi) + (g∗(Xi)− g(Xi)))
2



2088 E. Lim

=
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi) + εi)
2

− 2

n

n∑
i=1

(f∗(Xi)− g∗(Xi) + εi)(g(Xi)− g∗(Xi)) +
1

n

n∑
i=1

(g(Xi)− g∗(Xi))
2

over g ∈ G, so it maximizes

Mn(g) �
2

n

n∑
i=1

(f∗(Xi)−g∗(Xi)+εi)(g(Xi)−g∗(Xi))−
1

n

n∑
i=1

(g(Xi)−g∗(Xi))
2.

For g ∈ G, define Mn(g) and d(g, g∗) by

Mn(x) � 2E(f∗(X)− g∗(X))(g(X)− g∗(X))− E(g(X)− g∗(X))2

and
d(g, g∗) �

{
E(g(X)− g∗(X))2

}1/2
.

Let

F = {2(f∗(X)− g∗(X) + ε)(g(X)− g∗(X))− (g(X)− g∗(X))2 :

g ∈ G, δ/2 < d(g, g∗) ≤ δ}.

For any f ∈ F , define the Bernstein norm ‖ · ‖B by

‖f‖B � {2E(exp |f(X)| − 1− |f(X)|)}1/2.

We next notice that Theorem 3.4.1 on pages 322 and 323 and Problem 3.4.2
on page 337 of [74] can be rewritten as follows:

Theorem A.1 (Due to Theorem 3.4.1 and Problem 3.4.2 of [74]). Suppose that,
for every n and δ ∈ (0,∞),

sup{Mn(g)−Mn(g∗) : δ/2 < d(g, g∗) ≤ δ, g ∈ G} ≤ −δ2/4 (A.32)

and

E sup{
√
n[Mn(g)−Mn(g)− δ2/8]+ :

δ/2 < d(g, g∗) ≤ δ, g ∈ G} � φn(δ) (A.33)

for functions φn such that δ �→ φn(δ)/δ
α is decreasing on (0,∞), for some

α < 2. Let rn satisfy r2nφn(1/rn) �
√
n for every n. If Mn(ĝn) ≥ Mn(g∗), then

rnd(g, g∗) = Op(1)

as n → ∞.

Also, Lemma 3.4.3 on page 324 and Problem 3.4.3 on page 337 of [74] can be
rewritten as follows:
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Lemma A.1 (Due to Lemma 3.4.3 and Problem 3.4.3 of [74]). If F satisfies
‖f‖B ≤ δ for every f ∈ F , then

E sup{[ 1√
n

n∑
i=1

(f(Xi)− Ef(X))−
√
n(δ2/8 ∧ δ/3)]+ : f ∈ F}

≤ J̃[ ](δ,F , ‖ · ‖B)(1 + J̃[ ](δ,F , ‖ · ‖B)/(δ2
√
n)), (A.34)

where

J̃[ ](δ,F , ‖ · ‖B) =
∫ δ

(δ2/64)∧(δ/24)∧δ

√
1 + logN[ ](u,G, d2)du.

We next verify the two non-trivial conditions of Theorem A.1, which are
(A.32) and (A.33). (A.32) is easily verified because

Mn(x)−Mn(g∗)

= 2E(f∗(X)− g∗(X))(g(X)− g∗(X))− E(g(X)− g∗(X))2

≤ −E(g(X)− g∗(X))2 by (4.1)

< −δ2/4

for g satisfying d(g, g∗) > δ/2.
To verify (A.33) with φn specified in Theorem 4.1, we will use Lemma A.1.

First, we will show that the Bernstein norm of an element of F is bounded by
c1δ for some constant c1. To see why this is true, note that the squared Bernstein
norm of a element of F is

2E(exp |2(f∗(X)− g∗(X) + ε)(g(X)− g∗(X))− (g(X)− g∗(X))2|
−1− |2(f∗(X)− g∗(X) + ε)(g(X)− g∗(X))− g(X)− g∗(X))2|)

= 2
∑
i≥2

1

i!
E|2(f∗(X)− g∗(X) + ε)(g(X)− g∗(X))− (g(X)− g∗(X))2|i

by Taylor’s Theorem

= 2E|2(f∗(X)− g∗(X) + ε)(g(X)− g∗(X))− (g(X)− g∗(X))2|2

· exp |2(f∗(X)− g∗(X) + ε)(g(X)− g∗(X))− (g(X)− g∗(X))2|.(A.35)

Since

E|2(f∗(X)− g∗(X) + ε)(g(X)− g∗(X))− (g(X)− g∗(X))2|
= E(2f∗(X) + 2g∗(X) + 2ε− 4g(X))2(g(X)− g∗(X))2

≤ 128(A2
∗ +B2

∗ + σ2)E(g(X)− g∗(X))2,

f∗, g∗, and g ∈ G are uniformly bounded, and the εi’s are subexponential, the
squared Bernstein norm of an element in F in the left-hand side of (A.35) is
bounded by c21E(g(X)− g∗(X))2 for some constant c1. So, the Bernstein norm
of an element of F is bounded by

c1d(g, g∗) ≤ c1δ. (A.36)
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We will next show that

N[ ](ε,F , ‖ · ‖B) � N[ ](ε,G, d2). (A.37)

To establish (A.37), let [l1, u1], · · · , [lr, ur] be ε–brackets that cover G, i.e., G ⊂⋃r
i=1[lj , uj ]. Note that if g ∈ G satisfies lj ≤ g ≤ uj for some j ∈ {1, · · · , r}, its

counterpart in F is

fg(X) � 2(f∗(X)− g∗(X) + ε)(g(X)− g∗(X))− (g(X)− g∗(X))2

= (2f∗(X)− g∗(X) + 2ε− g(X))(g(X)− g∗(X))

� v(X)w(X),

where v(X) = 2f∗(X) − g∗(X) + 2ε − g(X) and w(X) = g(X) − g∗(X). v(X)
and w(X) satisfy

vm(X) � 2f∗(X)− g∗(X) + 2ε− uj(X) ≤ v(X)

≤ 2f∗(X)− g∗(X) + 2ε− lj(X) � vM (X)

and
wm(X) � lj(X)− g∗(X) ≤ w(X) ≤ uj(X)− g∗(X) � wM (X).

Also, for any v1(X), w1(X), v2(X), and w2(X) satisfying

vm(X) ≤ vi(X) ≤ vM (X) i = 1, 2

wm(X) ≤ mi(X) ≤ wM (X) i = 1, 2,

we have

|v1(X)w1(X)− v2(X)w2(X)|
≤ |v1(X)||w1(X)− w2(X)|+ |w1(X)||v1(X)− v2(X)|

+|v1(X)− v2(X)||w1(X)− w2(X)|
≤ 4(A∗ +B∗ + |ε|)|uj(X)− vj(X)|+ (uj(X)− lj(X))2.

Therefore, if we define l̃j and ũj be

ũj(X) = max{vw : vm(X) ≤ v ≤ vM (X), wm(X) ≤ w ≤ wM (X)}
l̃j(X) = ũj(X)− 4(A∗ +B∗ + |ε|)|uj(X)− lj(X)| − (uj(X)− lj(X))2,

then l̃j(X) ≤ fg(X) ≤ ũj(X) and

‖l̃j(X)− ũj(X)‖2B
= ‖(lj(X)− uj(X))2 + 4(A∗ +B∗ + |ε|)|uj(X)− li(X)|‖2B
= ‖|uj(X)− lj(X)|(|uj(X)− lj(X)|+ 4(A∗ +B∗ + |ε|))‖2B
≤ 2E(uj(X)− lj(X))2(uj(X)− lj(X) + 4(A∗ +B∗ + |ε|))2

· exp |uj(X)− lj(X)|(|uj(X)− lj(X)|+ 4(A∗ +B∗ + |ε|))
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≤ c2E(uj(X)− lj(X))2

for some constant c2 since uj and lj are bounded by B∗ and |ε| is subexponential,
proving (A.37). The combination of Theorem A.1, Lemma A.1, (A.36), and
(A.37) proves Theorem 4.1.

Proof of Corollary 4.1. We apply Theorem 4.1 to the case where G = Gm,B .
By Theorem 1.1 of [30],

logN[ ](ε,Gm,B , d2) �

⎧⎨
⎩

ε−1, if d = 1
ε−2(log(1/ε))2, if d = 2
ε−2(d−1), if d > 2.

Thus, we obtain

φn(δ) =

⎧⎨
⎩

δ1/2(1 + δ1/2/(δ2
√
n)), if d = 1

(log 1/δ)2(1 + (log 1/δ)2/(δ2
√
n)), if d = 2

δ−2(d−2)(1 + δ−2(d−2)/(δ2
√
n)), if d > 2,

and it can be verified that φn(
√
an) �

√
nan, where an is given by (4.2). There-

fore, Corollary 4.1 follows.

Proof of Corollary 4.2. We apply Theorem 4.1 to the case where G = Gc,B .
By Theorem 1.1 (ii) on page 567 of [31],

logN[ ](ε,Gc,B , d2) � ε−d/2.

Thus, we obtain

φn(δ) =

⎧⎨
⎩

δ1−d/4(1 + δ1−d/4/(δ2
√
n)), if d < 4

− log δ(1− log δ/(δ2
√
n)), if d = 4

δ2−d/2(1 + δ2−d/2/(δ2
√
n)), if d > 4,

and it can be verified that φn(
√
bn) �

√
nbn, where bn is given by (4.3). There-

fore, Corollary 4.2 follows.

Proof of Proposition 5.1. Throughout this proof, we will assume f∗ /∈ G.
The proof consists of four steps.

Step 1: We notice that B6 implies E(f∗(X1) − g∗(X1))
2 > 0 when f /∈ G.

Let g∗ be a solution to (3.2) that is continuous. Suppose, on the contrary, that
E(f∗(X1) − g∗(X1))

2 = 0. Since both f∗ and g∗ are continuous, f∗(x) = g∗(x)
for x ∈ (0, 1)d, which contradicts f∗ /∈ G. Let g̃∗ be any solution to (3.2). Since
E(g∗(X1)−g̃∗(X1))

2 = 0, we have E(f∗(X1)−g̃∗(X1))
2 = E(f∗(X1)−g∗(X1))

2 >
0.

Step 2: We next observe that B1–B5, P2, and P3 imply that

lim sup
n→∞

1

n

n∑
i=1

(g̃n(Xi)− g∗(Xi))(f∗(Xi)− g∗(Xi)) ≤ 0
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a.s. for each m ≥ 1 by Step 6 in the Proof of Theorem 3.1.
Step 3: We will prove that there exists a positive constant c̃ such that

1

n

n∑
i=1

(Ỹi − g̃n(Xi))
2 ≥ c̃ (A.38)

for n sufficiently large and each m ≥ 1. To see why this is true, we note that

1

n

n∑
i=1

(Ỹi − g̃n(Xi))
2

=
1

n

n∑
i=1

((f∗(Xi)− g∗(Xi)) + (g∗(Xi) + εi − g̃n(Xi)))
2,

where εi =

m∑
j=1

εij/m

=
1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))
2 +

1

n

n∑
i=1

(g∗(Xi) + εi − g̃n(Xi))
2

+
2

n

n∑
i=1

εi(f∗(Xi)− g∗(Xi))

− 2

n

n∑
i=1

(g̃n(Xi)− g∗(Xi))(f∗(Xi)− g∗(Xi))

≥ 1

n

n∑
i=1

(f∗(Xi)− g∗(Xi))
2 +

2

n

n∑
i=1

εi(f∗(Xi)− g∗(Xi))

− 2

n

n∑
i=1

(g̃n(Xi)− g∗(Xi))(f∗(Xi)− g∗(Xi))

≥ (1/2)E(f∗(X1)− g∗(X1))
2 � c̃

a.s. for n sufficiently large.
Step 4: We will next prove Proposition 5.1. We note that for each n,

z1−γ < σ/
√
1− γ

because the Markov inequality states that for any a > 0,

P(σ2χ2
n/n > a) ≤ E(σ2χ2

n/n)/a
2 = σ2/a2,

so taking a = σ/
√
1− γ confirms that P(σ2χ2

n/n > a) ≤ 1− γ and z1−γ < a. If
we take m large enough so that mc > σ/

√
1− γ, then for n sufficiently large,

(A.38) implies

TS =
m

n

n∑
i=1

(Ỹi − g̃n(Xi))
2 ≥ mc > σ/

√
1− γ > z1−γ
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a.s. for n sufficiently large, and hence,

P(Fail to reject H0 for n sufficiently large | f∗ /∈ G)

= P

(
m

n

n∑
i=1

(Ỹn − g̃n(Xi))
2 > z1−γ for n sufficiently large | f∗ /∈ G

)
= 1,

proving Proposition 5.1.
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