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1. Introduction

Model selection is an important tool for statisticians and all those who process
data. This issue has received considerable attention in the recent literature.
There are several model selection procedures, the main ones are: cross validation
and penalized contrast based.

The cross validation ([50], [2]) consists in splitting the data into learning
sample, which will be used for computing estimators of the parameters and the
test sample which allows to assess these estimators by evaluate their risks.

The procedures using penalized objective function search for a model, mini-
mizing a trade-off between a sum of an empirical risk (for instance least squares,
—2xlog-likelihood), which indicates how well the model fits the data, and a mea-
sure of model’s complexity so-called a penalty.

The best The idea of penalizing dates back to the 1970s with the works of
[41] and [1]. Although it is likely that these ideas have already existed in other
contexts such as subset selection by [11], [24], and ridge regression by [25].

By using the ordinary least squares in regression framework, Mallows ob-
tained the C), criterion. Meanwhile, Akaike derived AIC for density estimation
using log-likelihood contrast. A few years later, following Akaike, [45] proposed
an alternative approach to density estimation and derived the Bayesian Infor-
mation Criteria (BIC). The penalty term of these criteria is proportional to the
dimension of the model. In the recent decades, different approaches of penaliza-
tion have emerged such as the IL? norm for the Ridge penalisation [25], the !
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norm used by [52] that provides the LASSO procedure and the elastic-net that
mixes the L' and L2 norms [57].

Model selection procedures can have two different objectives: consistency and
efficiency. A procedure is said to be consistent if given a family of models, includ-
ing the “true model”, the probability of choosing the correct model approaches
one as the sample size tends to infinity. On the other hand, a procedure is ef-
ficient when its risk is asymptotically equivalent to the risk of the oracle. In
this work, we are interested to construct a consistent procedure for the general
class of times series known as affine causal processes, which includes the most
common time series.

This class of affine causal time series can be defined as follows. Let R*® be
the space of sequences of real numbers with a finite number of non zero, if M,
f: R — R are two measurable functions, then an affine causal class is

Class AC(M, f) : A process X = (X¢)iez belongs to AC(M, f) if it satisfies:
Xy = M((Xi—i)ien+) & + f((Xi—i)ien+) for any t € Z; (1.1)

where (€)iecz is a sequence of zero-mean independent identically distributed
random vectors (i.i.d.r.v) satisfying E(|&|") < oo for some r > 2 and E[¢Z] = 1.
For instance,

o if M((Xi—i)ient) =0 and f((X¢—i)ien+) = 1 X¢—1 4 -+ + ¢pX¢—p, then
(X¢)tez is an AR(p) process;

o if M((Xi—i)ien+) = \/ao Far X+ apXE ), and f((Xi—i)ien:) =
0, then (X¢):ez is an ARCH(p) process.

Numerous classical time series models such as ARMA(p, q¢), GARCH(p, q),
ARMA (p, ¢)-GARCH(p, q) (see [16] and [40]) or APARCH(d, p, ¢) processes (see
[16]) belongs to AC(M, f). The existence of stationary and ergodic solutions of
this class has been studied in [17] and [9)].

We consider a trajectory (X7,...,X,) of a stationary affine causal process
AC(M*, f*), where M* and f* are unknown. We also consider a finite set M of
parametric models m, which are affine causal time series. We assume that the
“true” model m* corresponds to M* and f*. The aim is to obtain an estimator
m of m* and testing the goodness-of-fit of the chosen model.

There already exist several important contributions devoted to the model
selection for time series; we refer to the book of [42] and the references therein
for an overview on this topic. As we have pointed above, two properties are
often used to evaluate a quality of a model selection procedure: consistency and
efficiency. The consistency assumes that the true model exists and it is included
in the collection of candidate models; while the efficiency does not necessarily
require the existence of a true model. In many research in this framework, the
main goal is to develop a procedure that fulfills one of these properties. So, in
some classical linear time series models, the consistency of the BIC procedure
has been established, see for instance [23] or [53]; and the asymptotic efficiency
of the AIC has been proved, see, among others, [48], [27] for a corrected version
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of AIC for small samples, [30], [28], [29] for the case of infinite order autoregres-
sive model. [47] propose the (consistent) residual information criteria (RIC) for
regression model (including regression models with ARMA errors) selection. In
the framework of nonlinear threshold models, [32] proved consistency results of a
large class of information criteria, whereas [21] focused on cross-validation type
procedure for model selection in a class of semiparametric time series regression
model. Let us recall that, the time series model selection literature is very ex-
tensive and still growing; we refer to the monograph of [43], which provided an
excellent summary of existing model selection procedure, including the case of
time series models as well as the recent review paper of [15].

The adaptive lasso, introduced by [56] for variable selection in linear regres-
sion models has been extended by [44] to vector autoregressive models, [33]
carried out this procedure in stationary and nonstationary autoregressive mod-
els; the oracle efficient is established. [35] considers model selection for density
estimation under mixing conditions and derived oracle inequalities of the slope
heuristic procedure ([14] or [6]); whereas [3] develop oracle inequalities for model
selection for weakly dependent time series forecasting. Recently, [46] have con-
sidered the model selection for ARMA time series with trend, and proved the
consistency of BIC for the detrended residual sequence, while [4] developed ora-
cle inequalities of sequential model selection method for nonparametric autore-
gression. [26] pointed out that most existing model selection procedure cannot
simultaneously enjoy consistency and (asymptotic) efficiency. They propose a
misspecification-resistant information criterion that can achieve consistency and
asymptotic efficiency for prediction using model selection.

In this paper, we focus on the class of models (1.1), and addressed the fol-
lowing questions:

1. What regularity conditions are sufficient to build a consistent model selec-
tion procedure? Does the classic criterion such as BIC, still have consistent
property for choosing a model among the collection M?

2. How can we test the goodness-of-fit of the chosen model?

These questions have not yet been answered for the class of models and the
framework considered here, in particular in case of infinite memory processes.
This new contribution provides theoretical and numerical response of these is-
sues.

(i) The estimator m of m* is chosen by minimizing a penalized criterion
C(m) = —2L,(m) + |m| K, where L, (m) is a Gaussian quasi-log-likelihood of
the model m, |m| is the number of estimated parameters of the model m and
Kn is a non-decreasing sequence of real numbers (see more details in Section 2).
Note that, in the cases k, = 2 or k,, = logn we respectively consider the usual
AIC and BIC criteria. We provide sufficient conditions (essentially depending
on the decreasing of the Lipschitz coefficients of the functions f and M) for
obtaining consistency of the model selection procedure.

(ii) We provide an asymptotic goodness-of-fit test for the selected model that
is very simple to be used (with the usual Chi-square distribution limit), which
successively completes the model selection procedure. Numerical applications
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show the accuracy of this test under the null hypothesis as well as an efficient
test power under an alternative hypothesis. Note that, a similar test has been
proposed by [38] under the Gaussian assumption on the observations, whereas
[39] focused for multivariate time series with multivariate ARCH-type errors.
These papers are also based on exact likelihood estimators that do not make fea-
sible Portemanteau tests. [18] proposed an interesting Portmanteau test statistic
directly based on the autocorrelations of residuals (and not squared residuals)
computed from quasi-likelihood estimators for diagnostic checking in the class
of model (1.1). Unlike these authors, we apply the test to a model obtained from
a model selection procedure.

Monte-Carlo experiments and numerical applications on illustrative exam-
ples are also performed to highlight the obtained asymptotic results. We have
considered a data-driven choice of the penalty obtained from the slope heuristic
procedure (see for instance [6]) for avoiding an a priori choice of the penalty
sequence. The simulation study and real data applications show that the results
of the proposed model selection procedure and Portetemanteau test are overall
satisfactory.

The paper is organized as follows. Some definitions, notations and assump-
tions are described in Section 2. The consistency of the criteria and the asymp-
totic normality of the post-model-selection estimator are studied in Section
3. In Section 4, the examples of AR(c0), ARCH (), APARCH (,p,q) and
ARMA(p, ¢)-GARCH(p', ¢') processes are detailed. The goodness-of-fit test is
studied in Section 5. Finally, numerical results are presented in Section 6 and
Section 7 contains the proofs.

2. General Framework

In this section, we are going to present the model selection using Gaussian quasi-
maximum likelihood estimators (QMLE) and give some notations in order to
facilitate the presentation.

2.1. Quasi-mazximum likelihood estimation and model selection

In the sequel, for a model m € M, a family of models of AC(My, fp) with
6 € © C R, where § — My and § — f5 are two fixed functions, we are going
to consider QMLE of 6 for each specific model m.

This approach as semi-parametric estimation has been successively intro-
duced for GARCH(p, q) processes in [31] where its consistency is also proved,
and the asymptotic normality of this estimator has been established in [12] and
[19]. In [9], those results have been extended to affine causal processes, and an
extension to Laplacian QMLE has been also proposed in [7].

The Gaussian QMLE is derived from the conditional (with respect to the
filtration o {(X;)i<o }) log-likelihood of (X1, ..., X,) when (&) is supposed to be
a Gaussian standard white noise. Due to the linearity of a causal affine process,
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we deduce that this conditional log-likelihood (up to an additional constant) L,
is defined for all § € © by:

Lal6) = =5 > a®) . with a0) = IS gy 2

2
where ff = fo(Xi—1, X4—0,-+), M} := Mp(Xy—1,Xy—o,---) and H} = (Met) )
Since Ly, (6) depends on (X;)i<o that are unobserved, the idea of the quasi log-
likelihood is to replace ¢;(f) by an approximation ¢;(d) and to compute 6 as in
equation (2.3) even if the white noise is not Gaussian. Hence, the conditional

Gaussian quasi log-likelihood (up to an additional constant) is given for all § € ©
by

L,(0):= 3 3:(0) , with g;(0) := % +log(Hj)
t=1 Hy
:\5\ = f@(Xt—laXt—Qv'” 7X1’u)
where ¢ M} = My(X;_1,Xi—2, -+, X1,u) (2.2)
Hj = (Mg)?

for any deterministic sequence v = (u,) with finitely many non-zero values
(u = 0 is very often chosen without loss of generality).
Finally, for each specific model m € M, we define the Gaussian QMLE 60(m)
as
6(m) = argmax L, (). (2.3)
0cO(m)

To select the “best” model m € M, we chose a penalized contrast a(m)
ensuring a trade-off between —2 times the maximized quasi log-likelihood, which
decreases with the size of the model, and a penalty increasing with the size of

the model. Therefore, the choice of the “best” model m among the estimated
can be performed by minimizing the following criteria

i = argmin C(m) with C(m) = —2L, (a(m)) + |m| K, (2.4)
meM

where

e (kn)n an increasing sequence depending on the number of observations n.

e |m| denotes the dimension of the model m, i.e. the cardinal of m, subset
of {1,...,d}, which is also the number of estimated components of 6 (the
others are fixed to zero).

The consistency of the criterion C , B.e.

P(im =m*) — 1; (2.5)

n—oo

will be established after showing that both of following probabilities are zero:
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e the asymptotic probability of selecting a larger model containing the true
model (overfitting case);

e the asymptotic probability of selecting a false model that is a model not
containing m*.

2.2. The affine causal framework

In the introduction, to be more concise, we have presented the problem of time
series model selection in a very general form. In reality, we will limit our field
of study a little bit by considering a semi-parametric framework. Hence, let
(fo)oco and (Mp)pco be two families of known functions such as for any 6 € ©,
both fy, My with real values defined on R*°.

Before diving in details, let’s give some notations that will be useful through-
out the paper. We will consider a subset © of R? (d € N). We will use the
following norms:

e ||.|| denotes the usual Euclidean norm on R”, with v > 1;
e if X is R¥-random variable with » > 1 order moment, we set || X|, =

1/r
(B (LX) |
e for any set © C R? and for any g : © — R%, d’ > 1, denote |glle =

sup{|lg(0)|l}-
0cO

Let us start with an example to better understand the framework and the
approach of model selection we will follow.

Example: Assume that the observed trajectory (X1, ..., X,) is generated from
a model belonging to a collection M, for instance a set of ARMA(p,q) and
GARCH(p', ¢') processes for 0 < p < Pmaxy; 0 < ¢ < Gmax, 0 < 9 < plioses
0 < ¢ < ¢l (Where Prax, Gmaxs Prnaxs Imax @€ the upper bounds of orders).
Then, we would like to chose in this family a “best” model for fitting the data
(X1,...,Xp). For instance, if Pmax = @max = Phhax = Imax = 9, in the collection
above, there is 200 possible models and we expect to recognize the true process
(which is unknown to the analyst) as the selected model, at least when n is large
enough.

We begin with the following property that allow to enlarge the family of
models by extending the dimension d of the parameter 6:

Proposition 1. Letdy,dy € N, ©; C R and ©; C R%, and fori = 1,2, define

9(:), Méj) : R* — R and for0; € ©;. Then there exist max(dy,ds) < d < dy+da,
© C RY, and a family of functions fy : R® — R and My : R® — [0,00) with
0 € ©, such that for any 61 € ©1 and 02 € Og, there exists 0 € O satisfying

Ac(MP, Y JAC(MD, £2) < AC(M, fo).

The proof of this proposition, as well as the other proofs, can be found in
Section 7. This proposition says that it is always possible to embed two para-
metric causal affine models in a larger one. Hence, for instance, we can consider
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as well AR processes and ARCH processes in a unique representation, i.e.

AR M{gll)((Xt—i)ieN*) =0
fe(l)((Xt—i)ieN*) =1 X1+ P Xy

Me(f) ((Xt—i)ieN*) - \/aO taXP 4+ athZ—q

FE2(Xi—i)iens) =0
— { Ma((Xt—i)ieN*) = \/00 + 01 X2 4+ + eth?_q
fa((Xt*i)ieN*) =0g41Xt—1 4+ +044p X1y

ARCH {

From now and in all the sequel, we fix d € N*, and the family of functions
fo, Mg : R — R for § € © C O(r) C R%

Let (Xi,...,X,) be an observed trajectory of an affine causal process X
belonging to AC(Mp«, fo), where 6* is an unknown vector of ©, and therefore:

Xy = Mo ((Xi—i)ien+) & + for (Xe—i)ien+) for any t € Z. (2.6)

In the sequel, we will consider several models, which all are particular cases
of AC(May, fs) with § € © C R%. More precisely define:

e a model m as a subset of {1,...,d} and denote |m| = #(m);
(] @(m) = {(ei)lgigd S Rd, 0; =0if ¢ ¢ m} Nno;
e M as a finite family of models, i.e. M C P({1,...,d}).

Finally, for all m € M, m € AC(Mpy, fo) when 6 € ©(m) and denote m* the
“true” model. We could as well consider hierarchical or exhaustive families of
models.

Example: From the previous example, we can consider:

e a family M such as M = {{1}7 {1,2},...,{1,...,q+ 1}}: this family is the
hierarchical one of ARCH processes with orders varying from 0 to q.

e a family M5 such as My = ’P({l, .o, p+q+ 1}): this family is the exhaustive
one and contains as well the AR(2) process X; = ¢aX; o2 + 0y & as the process

Xt =1 Xeo1 + ¢3Xi—3 + & /0o + a2 X .

To establish the consistency of the selected model, we will need to assume
that the “true” model m* with the parameter 6*, is included in the model
family M.

2.3. The special case of NLARCH(oo) processes

As in [9], in the special case of NLARCH(o0) processes, including for instance
GARCH(p, q) or ARCH(co) processes, a particular treatment can be realized
for obtaining sharper results than using the previous framework. In such case,
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define the class:

Class ;va(I:Tg): A process X = (X})tez belongs to .;lVC(I;};) if it satisfies:

Xy =& \/Ho((X2,)ien-) for any t € Z. (2.7)

NTerlerefore, if Mg((Xt—i)ieN*) = Hg((Xti)iei\;*) Hg((Xt 'L)lEN*) then,
AC(Hy) = AC(Mjy,0). In case of the class AC(Hp), we will use the assumption

A(Hy,©). By this way, we will obtain a new set of stationary solutions. For
r > 2 define:

O(r) = {GER A(Hy, {6}) holds with (]|&]l,) Zak HQ,{e})<1} (2.8)

Then, for § € O(r), a process (X;)iez belonging to the class AC(Hy) is
stationary ergodic and satisfies || Xpl|,» < oo.

3. Asymptotic results
3.1. Assumptions required for the asymptotic study

We begin by giving a condition on fy and My which ensure the existence of a r-
order moment, stationary and ergodic time series belonging to AC(My, fo). This
condition, initially obtained in [17], is written in terms of Lipschitz coefficients
of both these functions. Hence, for Wy = fy or My, define:

Assumption A(¥y,0): Assume that || Vg (0)||le<oo and there exists a sequence
of non-negative real numbers (ox(Wg,©)), ., such that Y22 ax(¥p, ©) < 0o
satisfying: -

[Wo(z) — ¥o(y)lle <Zak Uy, 0)|zr — yi| for all z,y € R,

Now for r > 1, where ||&]|, < oo, define:
o(r) = {9 e RY, A(fy,{0}) and A(Mj, {0}) hold with

S anlfor 01) + ol Zak My, {0}) <1} (3.1)

k=1

Then, for any 8 € O(r), there exists a stationary and ergodic solution with
r-order moment belonging to AC(Mjy, fg). (see [17] and [9]).

Secondly, note that the definitions of the conditional log-likelihood (2.1) and
quasi log-likelihood (2.2) require that their denominators do not vanish. Hence,
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we will suppose in the sequel that the lower bound of Hy(-) = (M@(-))2 (which
is reached since © is compact) is strictly positive:

Assumption D(0): 3k > 0 such that gn(f)(Hg(x)) > h for all x € R*.
€6

The following classical assumption ensures the identifiability of the considered
model.

Assumption Id(0©): For all 6, 6’ € O, (fg = f3 and M§ = Mg,) a.s.
= (6=2¢).

Another required assumption concerns the differentiability of Wy = fy or
My on ©. This type of assumption has already been considered in order to
apply the QMLE procedure (see [9], [51], [55]). First, the following Assumption
Var(©) provides the invertibility of the “Fisher’s information matrix” of X and
is important to prove the asymptotic normality of the QMLE.

Assumption Var(©): For any 6 € O, (Z?Zl Bi gef(‘% =0 = Vi=

1,...,d, 51-:0(1.5) 0T(Z?=1ﬂigg_}{§:0 = Vi=1,...,d, ﬂi:Oa.s).

Moreover, one of the following technical assumption is required to establish
the consistency of the model selection procedure.

Assumption K(©): Assumptions A(fp,©), A(Mp,®), A(0pf9,0), A(OgMpy,O)
and B(©) hold and there exists v > 2 such that 8* € O(r). Moreover, with
s =min(1,7/3), assume that the sequence (Kn)nen satisfies

Z(n_lk)s(zaj(fo, ) + a;j (Mo, ©) + (09 fo, ©) + (89 Mo, 9))5 = o

E>1 >k

Assumption AK/(@): Assumptions A(Hg,©), A(8pHy,©) and B(©) hold and
there exists r > 2 such that 6* € ©(r). Moreover, with s = min(1,7/4), assume
that the sequence (kn)nen satisfies

Z(é)s(Z&j(g‘g,@) + Oéj(agflg,@))s < 00.

k>1 >k

Remark 1. These conditions on (ky)nen have been deduced from conditions
for strong law of large numbers obtained in [34] and are not too restrictive:
for instance, if the Lipschitz coefficients of fy, My (the case using Hy can be
treated similarly) and their derivatives are bounded by a geometric or Riemanian
decrease:

1. the geometric case: for 0 < a < 1
a;(fo,0) + a;j(My,0) + a;(9g f9, ©) + (89 My, ©) = O(a?).

Then any (k) such as 1/k, = o(1) can be chosen; for instance x,, = logn
or log(logn); this is the case for instance of ARMA, GARCH, APARCH
or ARMA-GARCH processes.
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2. the Riemanian case: for v > 1,
a;(fo,0) + a;(Mp, ©) + aj(0p fo,0) + j (g Mg, ©) = O(j 7).

e if r > 3 then

— if v > 2 then any (k,) such as 1/, = o(1) can be chosen;
—if 1 <y < 2, any (k,) such as x, = O(n?) with § > 2 — v can
be chosen.
e if1<r<3

— if y > 1+ 3/r then any (k) such as 1/k,, = o(1) can be chosen;
— if 1 <y <1+ 3/r then any (k,) such as &, = n® where
d > 14 3/r —~ can be chosen.

In the last case of these two conditions on r, we can see the usual BIC
choice, k,, = logn does not fulfill the assumption in general. Also,
Kn can be chosen from a data-driven procedure; see Section 6 where
the slope heuristic procedure is performed for the calibration of the
penalty term.

3.2. Asymptotic model selection

Using the above assumptions, we can establish the limit theorem below, which
provides sufficient conditions for the consistency of the model selection proce-
dure.

Theorem 3.1. Let (X1,...,X,) be an observed trajectory of an affine causal
process X belonging to AC(Mg~, fg~) (or :4\(/3(11:’9)) where 0% is an unknown vector
of © a compact set included in O(r) C R (or O(r) C RY) with r > 4. If
assumptions D(0), 1d(0), K(©) (or K(©)), A(0% f9,0) and A(02:My,0) (or
A(832ﬁg7®)) also hold, then

P =m*) — 1 and O(m) 25 6" (3.2)

n—oo n—oo

The following theorem shows the asymptotic normality of the QMLE of the
chosen model.

[e]
Theorem 3.2. Under the assumptions of Theorem 3.1 and if 0* € © and
Var(®) holds, then

\/ﬁ((a(m))i—w*)i) Ly N (0, F(07, m*) 2 G(0%, m™)F (0%, m*) 1) (3.3)

iEm*n—+00

where (F(9%,m")) = E[WQO(Q*)}

e ey [020(07) Og0(67)
; 90,00, and (G(6*,m")); ;= E{ }

00, 00,

fori, j € m*.
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Remark 2. In Remark 1, we detailed some situations where the assumption
K(O) (or K(0)) holds, which leads to the results of Theorem 3.1 and 3.2. In
particular, the log n penalty usually linked to BIC is consistent in the case of a
geometric decrease of the Lipschitz coefficients of the functions fy and My (and
their first order derivative). In the case of a Riemanian rate, the consistency of
BIC is not ensured; see also the next section.

4. Examples

In this section, some examples of time series satisfying the conditions of previous
results are considered. These examples include AR(c0), ARC H(00),
APARCH (6,p,q) and ARMA(p, q)-GARCH(p', ¢').

4.1. AR(co) models

For (¢(6))ren a sequence of real numbers depending on 6 € R?, let us consider
an AR(oco) process defined by:

X, = Zwk(Q*)Xt_k +0& foranyteZ, (4.1)
k>1

where (&;); admits 4-order moments, and 0* € © C ©O(4), the set of § € R?
such that 3, -, [[¥k(0)[le < 1 and o > 0. This process corresponds to (2.6)

with fo((2:)i>1) = Yo ¥k(0)zr and My = o for any § € ©. The Lipschitz
coefficients of fy are ai(fo) = ||[vk(0)|le. Moreover, Assumption D(O) holds
with h = 02 > 0.

Let us consider M a finite family of models. Of course, the main example
of such family of models is given by the one of ARMA(p,q) processes with
0 < p < Pmax and 0 < ¢ < Gmax, providing (Pmax + 1)(gmax + 1) models and
0 € RPmaxtqmax+1

Besides, assume that Id(0©), Var(©) hold and that the sequence (vy) is
twice differentiable (with respect to 6) on ©, with Y, [|03¢x(6)|le < oo and
1Y)l + [10s¢r(0)|le = O(k~7) with v > 1. From Remark 1,

e if v > 2/ the condition k, — oo (for instance, the BIC penalization
n—oo

with &, = log(n), or k, = /n) ensures the consistency of m and the

Theorem (3.2) holds if in addition 6* € ©;
e if 1 <v <2, Kk, =0(n°) with § > 2 —~ has to be chosen (and we cannot
insure the consistency of m in case of classical BIC penalization).

Finally, in the particular case of the family of ARMA processes, the station-

arity condition implies that any x, — oo can be chosen (for instance BIC
n—oo

penalization with k, = log(n), or k, = y/n), since the decreases of 15, and its
derivative are exponential.
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4.2. ARCH(o0) models

For (¢%(0))ren a sequence of nonnegative real numbers depending on 6 € R9,
with 19 > 0, let us consider an ARCH(o0) process defined by:

> 1/2
X, = (wo(a*) + ;W(a*)xf_k) ¢ foranyt € Z, (4.2)

where E[¢}] < oo, and 6* € © C ©(4), the set of # € RY such that
> k>1 1¥k(0)]le < 1. This process corresponds to (2.6) with fo((xi)i>1) = 0 and

Hy ((w:)i21) = vo(0)+ 3252 ¥r(0)2F, i-e- Ho ((y:)iz1) = o(0)+ 3252, ¥n(0)y,
for any 6 € ©. The Lipschitz coefficients of Hy are ay(Hy) = ||¢x(0)|lo. More-
over, Assumption D(©) holds if h = infgee o (0) > 0.

Let us consider M a finite family of models. The main example of such
family of models is given by the GARCH(p, q) processes with 0 < p < ppax and
0 < ¢ < Gumax, Providing (Pmax + 1)(¢max + 1) models and € RPmaxFdmax+1,

Moreover, assume that Id(©), Var(©) hold and that the sequence (¢y) is
twice differentiable (with respect to 6) on ©, with >, [|07¢x(6)||e < co and for
v > 1,

[¥r(@)lle + [06vk(0)lo = O(K™7).
From Remark 1,

e if v > 2 the condition x, — oo (for instance, the BIC penalization
n—oo

with k, = log(n), or kK, = y/n) ensures the consistency of m and the

o
Theorem (3.2) holds if in addition, 6* € ©;
e if 1 < <2 K, =0(n% with § > 2 —~ has to be chosen (and we cannot
insure the consistency of m in the case of the classical BIC penalization).

Finally, in the particular case of the family of GARCH processes, the station-
arity condition implies that any x, — oo can be chosen (BIC penalization
n—oo

with k,, = log(n), or k,, = /n), since the decreases of ¥, and its derivative are
exponential.

4.8. APARCH(J, p,q) models

For 6 > 1 and from [16], (X}):ez is an APARCH(4, p, q) process with p,q > 0 if:

{Xt =0¢& (4.3)

(00) =w+ 0 e[ Xomil =7 Xe—)® + X0, Bior—5)°

forany t € Z, where w > 0, =1 < v <1, 20, 3; > 0for 1 <i < p
and 1 < j < ¢ a >0, > 0and 35,8 < 1. From [7], with § =
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(W, 00, ., Qp, Y1, s Yps P15 - - -, Bp)’, the conditional variance o, can be rewrit-
ten as follows

o2 = bo(0) + 3 (b7 (O)(max(X,1,0))" — by, (0)(min(X, ,0))°);

k>1

with f5 = 0 and M} = oy, then ay (Mg, ©) = max(|[bf (0)[|&°, b5 (0)]1&°), and
from the assumption 23:1 B; < 1, the Lipschitz coefficients ay (Mg, ©) decrease
exponentially fast. Then, the stationarity set for r > 1 is

O(r) = {0 € R [ |lg ], > max (167 (0)1/2, 16 (0)]/°) < 1}.
j=1

Now, assume that (X;):ez is an APARCH(, p*, ¢*) where 0 < p* < prax
and 0 < ¢* < gmax are unknown orders as well as the other parameters: w* > 0,
1<y <lLiaf 20,8 >20for 1 <4 < pmax and 1 < j < gmax, ap > 0,
Bg+ > 0.

Let M be the family of APARCH(4, p, q) processes, with 0 < p < ppax and
0 < g < @max- As a consequence, we consider here d = 2pax + gmax + 1, and

0" ="(w*of,...,00,0,...,0,7],...,735-,0,...,0,57,...,35,0,...,0) € R

f2

With all the previous conditions, assumptions D(0), Id(0), Var(©) are satis-
fied. Moreover, since the Lipschitz coefficients decrease exponentially fast, K(O)
is satisfied when k, — oo. Therefore, the consistency Theorem (3.1) and the
Theorem (3.2) of the estimator of the chosen model are satisfied when r = 4
and k,, — oo (for instance with the typical BIC penalty &,, = logn).

4.4. ARMA(p,q)-GARCH(p',q’) models

From [16] and [40], we define (X¢)ez as an ARMA (p, ¢)-GARCH(p', ¢’) process
with p,q,p’, ¢ > 0 if:

Xe=>"P a; Xy, =i bicei
¢ =1 0i X & Zl/_l &t , for all t € Z,
er=0p&, Withof = co+300_  ciep; + 3, diop_;
where
eco>0,¢y >0,¢,>0fri=1,---,p—1and dy >0, d; >0 for

1217 7(1,_1;
e P(z)=1->"  a;z" and Q(z) =1—> 7 | b;a" are coprime polynomials.

Here we consider the case of a stationary invertible ARMA(p, ¢)-GARCH(p', ¢')
process such as || Xo|l4 < oo and then

’

q’ p
Opar'at = {(al, coydy) €RPFITPHIRC ST g gl S e < 1
j=1 j=1
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P q
and (1 — Zajzj) (1- ijzj) # 0 for all |z] < 1}.

j=1 j=1

Therefore, if (a1,...,dy) € Opqp.qs (€¢)¢ is a stationary GARCH(p', ¢')
process and (X;); is a stationary weak invertible ARMA(p, ¢) process.

Moreover, following Lemma 2.1. of [7], we know that a stationary ARMA(p, q)-
GARCH(p', ¢’) process is a stationary affine causal process with functions fp and
My satistying the Assumption A(fy, ©) and A(My,©) with Lipschitzian coeffi-
cients decreasing exponentially fast, as well as their derivatives. Finally, if © is
a bounded subset of ©, , /o, then assumptions D(O), Id(©) and Var(©) are
automatically satisfied.

Assume that (X;)iez is an ARMA (p*, ¢*)-GARCH(p'*, ¢'*) process with un-
known orders 0 < p* < Pmax, 0 < ¢* < Gumax, 0 < p* < oy and 0 < ¢ < gl

and unknown parameters: cj, . . .,c;,*,d’{, . ,d;,*,ai, ey Gy T by

Let M be the family of ARMA(p, q)—GARCH(p/,q/) processes with 0 < p <
Pmax, 0 < ¢ < @max, 0 < p' <pl.. and 0 < ¢’ < ¢l,.... Hence, we consider here
d = Pmax + Gmax + pinax + q;nax +1, and

* * * * *
0 = (CO,...,Cp/*,o,...,o,d17...,d /*,07...70

q

L@@, 0,...,0,b7, .. bge,0,...,0) € RE

» 'p*

With © a bounded subset of ©, . ¢...pr o all the previous assumptions
D(©), 1d(©), Var(0) are satisfied and K(O) is also satisfied as soon as x,, — 00.
As a consequence, in this framework the consistency Theorem (3.1) and the
Theorem (3.2) of the estimator of the chosen model are satisfied when r = 4
and k,, — oo (for instance with the typical BIC penalty &,, = logn).

5. Portmanteau test

From the above section, we are now able to asymptotically pick up a best model
in a family of models. We can also obtain asymptotic confident regions of the
estimated parameter of the chosen model. However, it is also important to check
whether the chosen model is appropriate. This section attempts to answer this
question by constructing a portmanteau test as a diagnostic tool based on the
squares of the residuals sequence of the chosen model.

This test has been widely considered in the time series literature, with pro-
cedures based on the squared residual correlogram (see for instance [38], [39])
and the absolute residual (or usual residuals) correlogram (see for instance [37],
[18], [36]), among others.

Since our goal is to provide an efficient test for the entire affine class that
contains weak white noise processes. We consider in this setting the autocorre-
lation of the squared residuals and follow the same scheme of procedure used
in ([38], [39]) while relying on some of their results. But three main differences
need to be pointed out:
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e the results of Li and Mak (1994) are based on the exact likelihood of the
data, which is then assumed to be known. But it is not at all the case even
for simple ARMA(1, 1) or GARCH(1, 1) processes. By working directly on
the quasi-likelihood, we really proposes a feasible Portemanteau test;

e we provide more detailed sufficient conditions to get the asymptotic results
of the Portmanteau test;

e our procedure is also applied to the selected model, which is not necessarily
the true model.

For m € M, for K a positive integer, denote the vector of adjusted correlo-
gram of squared residuals by:

n

Gelm) o=~ 3" (@ m) 1) (@ lm) ~ 1)
t=k+1

and é(m):= (Mg(m))il(Xt - f%(m))'

Finally, the following theorem provides central limit theorems for p(m*) and
p(m) as well as for a portmanteau test statistic.

Theorem 5.1. Under the assumptions of Theorem 3.2, with also

o B[] =0
N —1/4 1/2 - —1/4 ~ 1/2
. Zt (Zaj(fg,@)+aj(M9,@)><oo or Zt (Zaj(Hg,@))<oo.
t=1 >t =1 j>t
Then,
1. With V(0*,m*) defined in (7.38), it holds that
~ * L * *
Vnp(m*) e Nk (0, V(6*,m")). (5.1)
2. With Q(m*) :=n p(m*) (V(B(m*),m*)) ' p(m*), we have
Qu(m) = (K. (52)

8. The previous points 1. and 2. also hold when m* is replaced by m.

Using the Theorem 5.1, we can asymptotically test:

Hy : 3m* € M, such as (X3,...,X,,) is a trajectory of X € AC(My, fo+)

Hy: #m* € M, such as (X1,...,X,,) is a trajectory of X € AC(My, fo-)
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with 6* € ©(m*) in both cases.
Therefore, Qi (m) can be used as a portmanteau test statistic to decide
between Hy and H; and diagnose the goodness-of-fit of the selected model.

Remark 3. 1. In practice the constant s and the columns of the matrix
Jr(m*) (see (7.34)) involved in V(0*,m*) are estimated by the corre-
spondent sample average; they are respectively iy = £ 31" | (€,(m))* and
(T @) , = £ 2= (@) — 110y log (ML ).

2. For AR(o0) models (and then for causal invertible ARMA(p, q)), since
My = o as we have seen in Sub-section 4.1, we deduce from (7.38) that
V(0*,m*) = Ik as Jx(m*) = 0. Hence, in such a case, we simply obtained:

P a2 L

Qx(m) =nllpm)* £ ¥(K). (53)
Note that working with autocorrelations of squared residuals rather than
those of residuals, avoids the need to subtract the number of estimated

parameters in the asymptotic chi-square distribution. Hence our result is
valid for any K € N*.

6. Numerical results

This section features some simulation experiments that are performed to assess
the usefulness of the asymptotic results obtained in Section 3. Each model is gen-
erated independently 1000 times over a trajectory of length n. Different sample
sizes are considered to identify possible discrepancies between asymptotically
expected properties and those obtained at finite distance. We will consider n
belongs to {100, 500, 1000, 2000}. The process used to generate the trajectory is
indicated each time. Throughout this section, (§;) represents a Gaussian white
noise with variance unity.Various configurations studied are presented and we
compare the performance of the penalties logn and /n as well as a data-driven
procedure based on the slope heuristic. This procedure (developed in [13],[14]
and [6]) has been successfully applied to solve model selection questions in sev-
eral situations (see for instance [8], [5], [10], [35]). Let us give a brief description
of the calibration of k,, by the slope heuristic.

Slope Heuristic

Leaving aside the theoretical details, the slope procedure is based on the fact
that for “large” models, we expect that the quasi-log-likelihood L, (H(m)) lin-
early increases with the dimension |m| when the family of models is hierarchical.
Then, considering twice the slope of this linear part (say %, ) allows for adaptive

calibration of the penalty k,. This is done in two steps:

1. For each 0 < |m| < d, consider the two-dimensional sample points
(Im|, L,,(6(m))) where m is the best model (in term of maximum quasi-
likelihood) of dimension |m| and draw its graph;
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Slope estimation

PRI

2 x quasi-log likelihood
-1460 -1440 -1420 ~-1400 -1380 -1360

Dimension

F1c 1. The curve of quasi-log likelihood of an AR(2) versus the dimension; the oblique solid
line with a slope a = 0.86, represents the linear part of the curve.

2. Compute a least squares estimator a of the slope of the right-side linear
part of this curve, which can be selected from a change point detection
(see for instance Figure 1 where we have plotted the quasi-log likelihood of
Model 1 (defined in the subsection 6.1) with n = 500 and the candidates
models are the AR(p),0 < p < 15);

3. Use Ky, = 2@ in the selection procedure (2.4).

Let us point out that, the theoretical validity of this procedure from the
asymptotic point of view (efficiency) has not yet been widely studied. However,
a theoretical validity from the non-asymptotic point of view has been studied
in several setting. The classical measure used in this framework is the oracle
inequality. For 8 € O, define the Kullback-Leibler divergence between the con-
ditional density indexed by 6 and the true one by

Dy (6°116) = 5 Elao(6)] — 5 Elao(6*)] > 0,

where the expectation is taken indeed under the distribution indexed by 6*. The
“ideal” model m(6*) (the one whose is closest to m* according to the Kullback-
Leibler risk) satisfying:

m(6*) = argmin E[Dg . (Q*Hé\m)}
meM
The model m(6*), which depends on the true distribution of the observations
is called the oracle and cannot be computed in practice. The aim is to calibrate
the penalty term, such that the chosen model m provides a risk which is close
as possible to the risk of the oracle; that is for instance

E[DKL(G*Hé\ﬁL)] < C E[DKL(G*Hé\m(G*)” + Tn

where C' is a non-negative constant, expected to be close to 1 and (r,) a se-
quence satisfying nr, = o(1). Such property has been established for the slope



Consistent model selection criteria and goodness-of-fit test for common time series2027

heuristic procedure in the Gaussian model selection, the penalized procedure
for least-squares regression, the model selection for density estimation (see [14],
[6], [35]) among others. Nevertheless, the theoretical validity for the class of
models considered here has not yet been addressed either from asymptotic or
non-asymptotic point of view. This issue could be an interesting extension of
this work.

6.1. Monte-Carlo experiments for common time series selection

We first generate some classical models as “true” models m™*:

1. Model 1, AR(2) process: X; =0.4X;—1 + 0.4X;_2 + &;
2. Model 2, ARMA(1,1) process: X; =0.3X;_1 + & + 0.5&_1;

3. Model 3, ARCH(2) process: X; = & \/0.2 +0A4X2 | +0.2X7 ,;

. Xy = o0t
4. Model 4, GARCH(1, 1) process: { 62 — 02403XZ, 40502,

We considered as competitive models all those in the family M defined by:

M = {ARMA(p, q) or GARCH(p', ¢') processes
with 0 < p,q,p' <5,1<¢ <5}

As a consequence, there are 66 candidate models. Note also that in our sim-
ulations, since we have more than one model per dimension, slope estimation is
done after considering the “best model” (which maximizes quasi-log likelihood)
within each dimension.

The results of the model selection procedure are displayed in Table 1. More
precisely, for each penalty (logn, v/n and K,,) the frequency that the associated
criterion selects respectively a wrong model, the true model and an overfitted
model (here a model that contains the true model).

From these results, it is clear that the consistency of our model selection
procedure is numerically convincing, which is in accordance with Theorem 3.1,
where non adaptive penalties (logn,+/n) lead to consistent criteria for the four
models under consideration. Note also that the typical BIC logn penalty is
more interesting for retrieving the true model than the y/n-penalized likelihood
for a small sample size. But the larger the sample size, the more accurate the
\/n penalty is, compared to the logn penalty. One cannot also fail to mention
that the slope heuristic is relatively better than the logn and \/n penalties for
small samples but also asymptotically especially for GARCH type models. Let
us recall that the theoretical validity of slope heuristic for the class of models
considered here has not yet been established. These satisfactory results can be
a motivation for investigating this issue.

In addition, for each of the three models, we also applied the portmanteau
test statistic Qg (m), using the \/n penalty. Table 2 shows the empirical size
and empirical power of this test. We call by empirical size, the percentage of
falsely rejecting the null hypothesis Hy. On the other hand, the empirical power
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TABLE 1
Percentage of selected order based on 1000 independent replications depending on sample’s
length for the penalty logn, \/n and Kn; where M1,---, Mj refers to Model 1, 2, 3 and 4
respectively and W, T, O refers to wrong, true and overfitted selection.

n 100 500 1000 2000
logn +/n Rn |log n \/n  Rn |10g n \/n  Rn |10g n \/n Rn
W |21.4 32.3 18.4 (1.7 0.8 0.9 0.8 0.1 0.1 |0.2 0 0
M1 T |74.2 67.6 79.7 {97.2 99.2 99.1 [98.2 99.9 99.9 [{99.2 100 100
O |44 0.1 1.9 |1.1 0 0 (1.0 0 0 |0.6 0 0
W |30.4 57.7 28.0 (4.8 4.2 4.0 0.7 0.3 0.3 0.4 0 0
M2 T |64.1 42.1 67.3 [93.6 95.8 95.8 [98.2 99.7 99.6 [99.2 100 100
O |55 0.2 4.7 11.6 0 0.2 1.1 0 0.1 (04 0 0
W [76.1 90.8 53.5 [27.3 67.1 18.0 |14.0 41.5 13.3 |46 12.0 4.6
M3 T 123.8 9.2 39.8 [72.7 329 79.9 |8.9 585 86.7 954 88.0 95.4
O |0.1 0 6.7 |0 0 2.1 |0.1 0 0 0 0 0
W (83.8 94.3 73.4 |22.1 61.5 20.4 |5.8 31.3 5.7 |[1.8 6.2 0.7
M4 T |15.9 5.7 21.6 |77.5 385 759 [93.2 687 92.6 [98.0 93.8 99.3
O 0.3 0 5.0 {04 0 3.7 1.0 0 1.7 0.2 0 0

represents the percentage of rejection of Hy when we arbitrary chose a false
model, which is a AR(3) process X; = 0.2X;_1+0.2X;_24+0.4X;_1+¢& for Model

1 and 2, and a ARCH(3) process X; = & \/0.4 +0.2X2 | +0.2X72 , + 0.2X7 4

for Model 3 and 4.

It is important to note that choosing the maximum number of lags K is
sometimes tricky. To our knowledge, there is no real theoretical study to justify
the choice of one value or another. However, some Monte Carlo simulations have
suggested some ways to make a good choice. For instance [38] suggested that
the autocorrelations pg(m) with 1 < k < K have a better asymptotic behaviour
for small values of k. Therefore, the finite sample performance of the size and
power of the test may also vary with the choice of K and could be better for
small values of K. On the other hand, [54] suggested that K = p+ ¢+ 1 may
be an appropriate choice for the GARCH(p, ¢) family.

Thus, in our tests, we consider K = 3 and K = 6 so that the rejection is
based on the upper 5th percentile of the x?(3) distribution on the one hand
and x2(6) on the other hand. Once again, the results of Table 2 numerically
confirms the asymptotic results of Theorem 5.1. Remark that the test is more
powerful by using values of K not too large as mentioned above especially for
small samples.

6.2. Subset model selection

Now, we exhibit the performance of the previously considered criteria on a
particular case of dimension selection. The process generated data is considered
as follows:
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TABLE 2
The empirical size and empirical power of the portmanteau test statistic QK(ﬁl) based on
1000 independent replications (in %) with K =3 and K = 6.

n 100 500 1000 2000
size  power ‘ size  power ’ size  power ’ size  power

Model 1 | 3.3 109 | 6.2 52.2 | 3.5 84.8 | 5.0 98.2

K =3 Model2 | 3.3 7.0 | 4.8 23.3 | 6.2 424 | 4.9 70.4
Model 3 | 4.6 6.4 | 8.4 44.1 | 14.3 81.0 | 36.9 99.4
Model 4 | 9.5 23.2 | 21.3 38.5 | 33.6 57.2 | 394 88.3
Model 1 | 2.9 9.1 | 49 42.0 | 44 76.3 | 4.5 97.6
K =6 Model2 | 3.0 6.3 | 5.2 18.0 | 5.1 35.1 | 4.6 60.2

Model 3 | 4.5 12.6 | 11.1 64.4 | 14.7 92.5 | 27.9 99.9
Model 4 | 4.3 52.7 | 4.2 98.6 | 3.2 99.6 | 3.6 99.9

TABLE 3
Percentage of selected model based on 1000 replications depending on sample’s length for
Model 5
100 500 1000 2000

logn +/n  kn |10gn vn o Fn |logn Vn o kn |10gn Vn o kg

T |704 67.3 71.0 |90 100 100 |93.2 100 100 | 95.3 100 100
O |25.,0 1.6 288 |10 0 0 6.8 0 0 4.7 0 0
W |46 31.1 0.2 0 0 0 0 0 0 0 0 0

Model 5 : Xt = O.4Xt_3 + 0.4Xt_4 + ft.

Here, we will consider the case of a nonhierarchical but exhaustive family M
of AR(4) models, i.e.
M=P({1,2,---,10})

= Xy =Xy 1+ 60X o+ +010Xi—10+ &
and 0 = (01,0s,--+ ,010)" € O(m).

As a consequence, 1024 = 2'0 candidate models are considered and Table 3
presents the results of the selection procedure.

We deduce that the consistency of our model selection procedure is also
numerically convincing in this case of exhaustive model selection, which is in
accordance with Theorem 3.1.

6.3. Application to real data
6.3.1. Air quality analysis

Air quality, which can be defined as the level of cleanliness of the air, is probably
one of the first health and environmental concerns of this new century. With
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(a) Time plot of PM10 levels. (b) ACF for PMI10 with the bounds
£1.96//n.

F1G 2. The Marseille PM10 levels (January 1st, 2018 to November 30, 2019).

TABLE 4
Summary of the results of the model selection and goodness-of-fit analysis on PM10.

kn = log(n) Kn = /10 Kn = Rn
m ARMA(1,2) ARMA(1,1) ARMA(1,1)
Q1o(m) 11.09 18.02 18.02
p — value 0.35 0.055 0.055

the increasing number of human activities, the air is being degraded by a wide
variety of pollutants, including PM. PM stands for particulate matter [22]: the
term for a mixture of solid particles and liquid droplets found in the air. Some
particles, such as dust, dirt, soot, or smoke, are large or dark enough to be
seen with the naked eye. Let consider daily observations of PM10 (downloaded
from Air PACA) at Marseille Kaddouz station (France) from January 1, 2018
to November 30, 2019. This is a time series trajectory of length n = 698 (see
Figure 2a). We are going to use our model selection criteria to identify the
“best” model for this time series.

An inspection of the Figure 2 may suggest us a family of candidate models.
Fist, the slow decrease of the sample autocorrelation (up to lag 6), suggests
that there is a component trend in the variability of the PM10. Also, a close
inspection of the data shows that pollution is on average much lower on weekends
than on working days. So before identifying a plausible family of models, let
consider the detrended time series by differencing (see Figure 3). Therefore,
we use the same family M already considered in Subsection 6.1 that provides
us 66 candidate models. For each model, we compute the criterion (2.4) with
kn = log(n), k, = 4/n and also using an adaptive penalty K, obtained from the
slope heuristic procedure. The selection results and also the goodness-of-fit of
the selected model are featured in the Table 4.

This table shows that all p-values are greater than 0.05, and then none of the
test statistics leads us to reject the null hypothesis at this level even though the
case of the ARMA(1,1) is somehow limit. The chosen ARMA(1, 2) seems to be
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w ) ol

(a) PM10 residuals levels. (b) ACF for PMIO residuals with the
bounds +1.96/+/n.

Fic 3. Elimination of trend and seasonality in Marseille PM10 levels (January 1st, 2018 to
November 30, 2019).

TABLE 5
Summary of the results of the model selection and goodness-of-fit analysis on FTSE index.

kn = log(n) Kn =+/10 Kn = Rn
m GARCH(1,1) GARCH(1,1) GARCH(1,1)
Q10(m) 9.30 9.30 9.30
p — value 0.50 0.50 0.50

the more suitable model for PM10 time series.

6.3.2. Financial index analysis

We consider the returns of the daily closing prices of the FTSE 100 index and
also the SP 500. They are respectively 2273 and 2264 observations from January
4th, 2010 to December 31st, 2018 for FTSE 100 and SP500. The time plot
and the correlograms for the log-returns and squared log-returns are plotted
in Figure 4. Figures 4a and 4c exhibit the conditional heteroskedasticity in
the log-return time series. Moreover, Figure 4b shows that more than 5 per
cent of the autocorrelations are out of the confidence interval +£1.96/+/2273 and
specially the Figure 4d suggests that the strong white noise assumption cannot
be sustained for this log-returns sequence of FTSE index. We also have the same
conclusion for SP 500 (see Figure 5)

As in the previous illustrative example, the ARMA-GARCH is a plausible
family for modeling of the FTSE 100 and SP 500 index. The penalization logn,
v/n and %, have been applied to identify the best order and the goodness-of-fit
of the selected model has been tested by the Portmanteau test.

The GARCH(1, 1) is the “best” model based on the three criteria considered
and it is adequate (at level 0.95) to model the FTSE 100 index. Regarding
the SP 500 index, the GARCH(1,1) is still the best model based on all three

criteria and Q1o(7) = 15.2 associated with a p-value of 0.12. These results
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F1G 4. Daily closing FTSE 100 index (January 4th, 2010 to December 31 st, 2018).

are not surprising since the GARCH(1,1) is the reference model and the most
commonly used in empirical studies. In addition, [20] found the GARCH(1, 1)
to be adequate using a FTSE 100 trajectory from April 3, 1984 to April 3, 2007
and January 3, 1950 to July 24, 2009 for SP 500.

7. Proofs

We start with the proof of the Proposition 1.
Proof. For ease of writing, consider only the general case where féf) = gfj} and
MQ(:) = Ngi) where 0; = *(«a;,3;) for i = 1,2. Now, assume that there exist
a € R® where 0 < § < min(d;, dy) and a function h,, such as g((lll) = hy + Es,l),
D = by + 6;2,2) with a1 = *(a, ) and ay = (o, ab) and £ = 0.

Similarly, assume that there exist 8 € R, where 0 < §' < min(dy, d2) and
a function Rg such as Néi) = Rg+ m) N‘E? =Rz + mg? with 81 = (8, 8})

By’
and By = (B, 8}) and m{” = 0.
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(a) Time plot of log-returns . (b) ACF with the bounds +1.96/+/n.

F1G 5. Daily closing price of SP500 (January 4th, 2010 to December 31 st, 2018).

Consider now 6 = *(a, af, ab, 8,31, 85) € R? (and therefore max(dy,ds) <

d < di +do), fo = ha + 6% + 0@ and My = Rg + m® + m@. Then if
531 R B B B

X e AC(Mg,fg), for any t € Z,

Xi = (Ro(Xei)rz1) +m) (Xemi)iz1) + mi) (Xe—i)ez1)) &
+ (ha((Xi-i)iz1) + €05 (X)) + €0 (Xi-)iz1))-

Then, for of = 8 = 0, X € AC(M", i) and for of = 8 = 0, X €
2) (2
In the sequel, some lemmas are stated and theirs proofs are given.

Lemma 1. Let X € AC(My, fy) (or AC(Hy)) and © C O(r) (or © C o(r))
with r > 2. Assume that the assumptions D(©) and K(©) (or K(0)) hold.
Then:

1 T a.s,
L0 = @] 25 0. )

Proof. We have |L,,(0) — L, (0)| < 31, |G:(6) — :(6)]. Then,

1

R 1 n N
- | Ln(6) — Ln(e)H@ s = Z 12:(0) — q:(0)le-
By Corollary 1 of [34], with » < 3, (7.1) is established when:

Sy PE(a0) - a @) < o. 7o)
k>1

With r > 3, and under the assumptions, we first recall some results already
obtained in [9]: for any t € Z,

o E[X:|"+ /515 + IFsll6 + M55 + M55 + 1 Halle™ + | Hollg *] < oo(7.3)
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B - fille] < € (3,50 05(f0,0))
o { E[IM - Mjlp) <O (5,0 05(M0,0)) (7.4)
2 . r/2
B[ - B3%) < € (min{ 5, 05(M0,0) , ¥,5,05(Ha©)})

For any 0 € O, we have:

) )] = | K I rog 7 - Gk gt
0

(HHS) ™ [Hy(X, — f5)° — Hy( X, — f)°| + | log(H) — log(Hy)|
(H§Hy) ' |(H — Hy)(Xy — f3)° — Hy(Xo — f3)° + Ho(Xe — J§)?|
+ | log(H§) — log(H})|
< B + 21 £+ 1 £67) | M5 — M| + b (21X + 1 £5] + 1F8]) | £6 — Fo
+2|log (ME) — log(Mp)|
< BP0 + 21X x | folle + [1£5118) 1M§ — Mgle
+h7 @] + I fslle + Ifslle) 15 — follo +2h7"?(|M§ — Mjlle.

1/ If X ¢ AC(My, fo), we deduce

E[12(6) - a®)IZ*) < € (B[(1X + f4113 + 1) g - M7

+E[(21X + Ifdlle + 1fille) " 15 - FIE°]). (75)
Then, by Hoélder’s inequality and (7.3) we have:
E[ (1 + 78113 + 1) 125 — M1
< (Elx+ A1) (BL-3510)) 7 < € (B[I0 - T20])
(7.6)
Again with Holder’s inequality and (7.3),

1/3

E[(21X] + I fillo + 15 Ne)Ifs — Fille) ) < C (E[I£5 — Filla) (7.7)

Therefore, from (7.6), (7.7) and (7.4), there exists a constant C' such that
. - r/3
E[1@0) - a@lg®) < 0 (X as(fn.0) + 3 a;(M5,0)) . (78)
Jjzt jzt

Hence,

Z(n )"PE[||g (0)—q r/3 <CZ r/3(Za] (fo,0)+a;(My,© ))T/S,

r>1 vk E>1 P>k
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which is finite by assumption K(©), and this achieves the proof.

2/ If X C AC(Hyp) and using Corollary 1 of [34], with < 4, (7.1) is established
when:

> (130 - a6 < (7.9)

E>1

By proceeding as in the previous case, we deduce
1@(0) — a:(0)] < b2\ X.|* | Hf — Hfllo + h™" | H — Hllo-

In addition, we deduce that there exists a constant C such that

B[I@0) - a@lg"] < 0 (X ay0,0)) " 19
Lemma 2. Let X € AC(Mjy, fy) (or .:(C(ﬁg)) and © C O(r) (or © C O(r))

with v > 2. Assume that the assumptions D(©) and K(©) (or K(©)) hold.
Then:

1

a.s.,
Kn

OL.(0)  OL.(9) H
a0 a0

0. (7.11)

O n—+oco

Proof. We will go along similar lines as in the proof of Lemma 1. We have:

L5l -,

Using again Corollary 1 of [34], it is sufficient to prove for r < 3 that

g [[[2300) _ 0a0)
g(nk PE [H e (gﬁi

S

Rn

OL.(0) aL H
90

r/3
. | <o (7.12)

For any 6§ € ©, with Hy = MZ, the first partial derivatives of ¢;(0) are

dai(6) _ ~2(X,— f5)0f) (X, f)?0Hy 1 0H

0, HY 96,  (HLH)2 00, = HL 06
o , O(HL OH!
20 (%~ 98 1 - 2D (i O

00; "’
fori=1,---,d. Hence,

85 (0) 0 ofy  ~ af}

20L0) _ OO)) <y X~ SR () (X~ )
O(H})~ O(H})~ ~,_, OH! OH),

+ox - f@%—(&—f@?%h\w@)* ]
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Then, using |a1b101—a2b202\ S |a1—a2| |b2| ‘CQ|+|CL1| ‘bl—bg‘ |CQ|+|CL1| |b1| |01—
co| for any a1, as, by, be,c1,c2 in R; we obtain

d3:(0)  9q:(0) ’

00; 00;
§2(|(H5)71* 1’X|Xt f9|’6f0‘+‘He }X‘fe fs Bfe‘
x| G0 )+ B AR - ]
o I 5 o () | O |20y gy
Thus,
|52 - 22 =207 (1 s g, - Al H%—%\H
2| = () o % - Bl H%H +th A 2o _ AU
cox s - Bl g H%—%H
" e kR
Using again the results of [9], we know that:
[Hafe Hafe 8M9 6M9 6H9 i_‘ d(Hp) ™! T] < oo (7.13)
€]
E | (5)" H gc(z% Me,@)
j>t
[H%—% ] ¢ (L esosn0))
. [HaH"—aHG ] C(Z(a;(Me7@>+aj<aMe,e>>)”2 o
j>t
E[H aei - aei H@/Q]<C(;(“j(MG’G)‘LaJ'(aM"’@)))W

1. If X € AC(Mpy, fo), we deduce from the Holder’s Inequality that,

S R G I

+ (E[|| X: - foHQT/?’ 1/2( [Hafg_afg Dl/s

Bl - ) (el il ]| 22

)
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- Ae)) " (]| 2 A A
+ (e 25 (ﬂXt E[lf - f%H )"

(e - L ) e - ) )

Using (7.13) and (7.14), we deduce

H‘aqt 3qt d H } (Zag f0,0) + a;(Mpy, ©)

r/3
+0;(009.0) + ,(9Mp. ©)) .

Therefore,

oq; 8 r/3
> el - % L]
E>1

<O (3 0,(0.0) + 0,(15.0) + (05, 0) + s (0145, ) "

k>1 "fk >t

We conclude the proof of (7.12) from assumption K(O).

2.If X C .//46(?]9), we deduce

03:(0) BQt H <| t|
89 -

Ht)—l H

+ﬁfH5@“_EEM®+Mﬁ5 - )2,

As a consequence,

SR IE (nxtrE[H‘“’(ﬁé)‘l—“Hé)_l\f”]>”2
M“WFL%Wﬁ(W%‘ el )"
implying

r/4

03:(0)  9q:(0) H@} (Z% H,,© +aj(aH9,@))

EH 00; 06;

which achieves the proof, according to Corollary 1 of [34]. |
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Lemma 3. Under the assumptions of Theorem 3.1 and if a model m € M is
such that 6* € ©(m), then:

— L (B(m) = L (B(m") | = 0p(1). (7.15)
Proof. We have:
= 2a@m)) — Lo (@) | = = [La@m)) = Lo @) + Lo @m)) — L (Bm"))
+ La(B(m")) = Ln (0(m")|
< 2 Lal0) = La®)g + 7 |Ln(Bm)) — Lo (Bm))|
According to Lemma 1, é ||Zn(9) — Ln((‘))H9 i—} 0. The proof will be
achieved if we can show that
1 ~
Lo @m) ~ La(0%)] = 0p(1). (7.16)

~

Ly (0(m))—Ln (67)

~

L L@~ Lat6")|.

_|__
Kn

| (B La(Fm®)) | <

Kn

~

Applying a second order Taylor expansion of L,, around 8(m) for n sufficiently
large such that 6(m) € ©(m) which are between f(m) and 6*, yields:

L (La(m) — La(6%)) =
Yy Am ~ / 2 n 9 m ~
L @) - 07) 222D L @) — o) 2D G — ),

(7.17)

Let us deal first with the first term on the right hand side of last equality:

- (@m) — ) 20D L @) o)

o~

1 0Ly (0(m))
N

Since % = o(1) and from [9] then \/ﬁ(é\(m)—ﬁ*) = Op(1) and ﬁ %%(m)) =
op(1), it follows that:

On the other hand, for the second term of the right hand side of equality
(7.17), let us note that, we have from [9]:

= op(1). (7.18)

Kn
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o 1 (6(m)—67) £4 Ay a Gaussian random variable from Theorem 2

n—-+oo
of [9].
2 82Ln(§(m)) a.s. * . -~ a.s. *
. — (W)uem Nl F(0*,m) since 8(m) Nl 0* and us-

ing the assumption Var(©) insuring that the matrix F'(6*, m) exists and
is definite positive (see also [9]).

Hence,

(O(m) - 0*)' (%géjm» )m@n Gm) — %)
= %ﬁ(é\(m) - 9*)’ (F(6*,m) +op(1)) \/H(A(m) —07)
N

n—oo

-1
Al *,m F(6",m) Ao+ -
We deduce that

@) =) (TG0, ) =07 = 0510

1 1 (O%L, (0(m)) ~
- — o) (=2 -0 = 1). N
= (m) ") ( 56,60, )iJEm(eon) 6%) = op(l). (7.19)

Thus (7.16) follows from (7.17), (7.18) and (7.19) and this completes the
proof of Lemma 3. n

7.1. Misspecified model

When a model m is misspecified (0* ¢ O(m)), we will show that P(m* ¢
m) — 0 by following the key idea of similar proof in [49] by defining the

n—oo
“best” parameter §*(m) € ©(m) which will play the role of §* in cases of “true”
or overfitted model. For model m € M, let define

0*(m) := argmax L(0) with L(0):= —% Elqo(0)]. (7.20)
0cO(m)

Proposition 2. For any model m € M, there exists 0*(m) in ©(m). Moreover,
under the Identifiability assumption Id(©(m)), 0*(m) is unique.

Proof. Let recall from the Subsection 2.1 when deriving the Gaussian condi-
tional likelihood that ¢:(#) is none other than —2 times the conditional Gaus-
sian log-density (with mean f} and variance H}) at the observation X;. Next, let
define the Kullback Leiber divergence between the conditional density indexed
by € and the true one indexed by 6*,

exp (= 0.5 x g;(6%)) )] -

D (0°]16) = E o ( exp (=05 x a(0)

~ 3 Elao(°)] + 3 Elao(0)],
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where the expectation is taken indeed under the distribution indexed by 6*.
Moreover, since minimizing the Kullback discrepency over ©(m) is equivalent
to maximize L(6),

argmin Dk, (6*]|) = argmax L(6) = 6*(m),
6€0(m) 9€0(m)

it follows that 6*(m) is the Kullback Leiber projection of the true density dis-
tribution onto the set of distributions generated by ©(m), which ends the proof
of existence.

On the other hand the uniqueness is a consequence of Id(©(m)). Indeed,
since 6*(m) € O(m), there is no other parameter §, € ©(m) such that almost
surely, we have

(fg*(m) = fgo and Mg*(m) = Mgo> which implies L(H*(m)) =L(6y). N

It is worth noting, since L(#) has a unique maximum in 6* (see [9]), and along
with the fact that 6* € O(m), it follows that 8*(m) = #* when m is the true
model or an overfitted one.

Let us show that even in the presence of misspecification, the QMLE still
remains consistent but for 6*(m). This important result will allow us to show
that our model selection procedure can not choose a misspecified model.

Proposition 3. Let X € AC(My, f5) (or AC(Hyg)) and® C O(r) (or© C O(r))
with r > 2. Then, when the assumptions Id(©(m)), D(©(m)) and K (O(m))
hold for a compact set ©(m) C O, it holds

1 a.s.
HELn(G) —L(G)H@(m) E5 0 and (7.21)
Om) =% 0" (m). (7.22)

Proof. The proof of (7.21) follows from a consequence of uniform strong law of
large numbers for stationary ergodic sequence (see the proof of Theorem 1 in
[9]). The second result holds by applying (7.21) and Lemma 1. [ |

7.2. Proof of Theorem 3.1

Before diving into the proof, remark first that:
P(m=m")=1—-P(m* Ccm)—P(m" £ m). (7.23)

As we point out in Subsection 2.1, the proof is divided into two parts; the
first part shows that our selection criterion choses an overfitted model with
probability decreasing to zero while the second part shows a similar behavior
for the probability of selecting a misspecified model.



Consistent model selection criteria and goodness-of-fit test for common time series2041

Proof. 1. Since M is finite, let mg € M such as m = my and m* C my, (i.e
an overfitted model was selected, but let show that this cannot happen). Let
compute ]P’(CA'(mO) < é(m*)) for large n.

We have:

P(C(mo) < C(m*)) = ]P’(— 2L, (0(mo)) + |mol kin < =2 L (0(m*)) + |m”| /-;n)

~

= (= 2L0(0m0)) + 2L (6m*)) < ullm?| ~ mo)))
1

P G — T (G (jm*] — o))
= B (Lo (@m") ~ Lo (Bmo)) < ~=57)

)

— 0
n— oo
by vertue of Lemma 3 and because |mg| — |m*| > 1.
This shows, é(mo) > a(m*) with probability going to 1, i.e. é(m) > a(m*)
We get a contradiction along with definition of m (2.4), and then the selection
criteria can not choose m which stricly contains the true model, thus

2. Since M is finite, let mg € M such as m = mg and m* € m. Let compute
n~![C(mg) — C(m*)] for large n. First,

2 (Bn™) ~ Ta(@mo))| = [La(Bm")) ~ La(Bmo))| + 00.5(1) with Lemma 1

= L(é\(m*)) - L(é\(mo) + 0a.s(1) using Proposition 3

= [L(B(m")) = L(0")] — [L(B(m0)) — L(6" (m0))]
+ [L(07) — L(07 (mo0))] + 0a.s(1).

Since L is continuous over ©, using continuous mapping theorem and the
relation (7.22) of Proposition 3, it holds for n larg