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Abstract: A filament consists of local maximizers of a smooth function
f when moving in a certain direction. A filamentary structure is an im-
portant feature of the shape of an object and is also considered as an
important lower dimensional characterization of multivariate data. There
have been some recent theoretical studies of filaments in the nonparamet-
ric kernel density estimation context. This paper supplements the current
literature in two ways. First, we provide a Bayesian approach to the fila-
ment estimation in regression context and study the posterior contraction
rates using a finite random series of B-splines basis. Compared with the
kernel-estimation method, this has a theoretical advantage as the bias can
be better controlled when the function is smoother, which allows obtaining
better rates. Assuming that f : R2 �→ R belongs to an isotropic Hölder
class of order α ≥ 4, with the optimal choice of smoothing parameters, the
posterior contraction rates for the filament points on some appropriately de-
fined integral curves and for the Hausdorff distance of the filament are both
(n/ logn)(2−α)/(2(1+α)). Secondly, we provide a way to construct a credible
set with sufficient frequentist coverage for the filaments. We demonstrate
the success of our proposed method in simulations and one application to
earthquake data.
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1. Introduction

There is a large body of literature on the problem of estimating intrinsic lower
dimensional structure of multivariate data. A filament or a ridgeline is one
of such geometric objects that draws a lot of attention in the recent years.
Intuitively speaking, a filament consists of local maximizers of a smooth function
f (say a density or a regression function) when moving in a certain direction.
Roughly speaking these are generalized modes that reside on hyperplanes that
are normal to the steepest ascent direction.

The filamentary structure (ridges) together with the valleys (i.e. local mini-
mizers counterparts of ridges), critical points are the main features of the shapes
of objects. They are common in medical images, satellite images and many three
dimensional objects. One important example comes from the study of the cos-
mic web — a large scale web structure of galaxies (clusters) connected by long
threads composed of sparse hydrogen gas. These intergalactic connections are
believed to trace the filaments of dark matters. The discovery and study of the
dark matter is a key challenge of cosmology. For more references, see Novikov
et al. [28], Dietrich et al. [14] and Chen et al. [7].

The filament estimation falls into a broad category of data analytic methods
that are called topological data analysis which is used to find intrinsic struc-
ture in data (Wasserman [37]). In particular, it is closely related to manifold
learning problem. Manifold learning problem assumes that the data points are
generated from some a priori unknown lower dimensional structure with back-
ground noises. Arias-Castro et al. [1] developed a test to detect if a dataset
contains some small fraction of data points that are supported on a curve. Gen-
ovese et al. [17] and Genovese et al. [18] studied the problem of estimation of
the manifold. They showed that the ridge of a density function can serve as a
surrogate to the manifold and can be estimated with a better rate. Since the
filaments can be considered as generalized modes, relevant literature includes
those on mode (and maximum) estimation, for instance, Shoung and Zhang
[33], Facer and Müller [16] and a recent paper by Yoo and Ghosal [39] in the
Bayesian framework.

The statistical properties of the estimated filaments, like convergence rates
and limiting distribution, have been studied in a few recent papers. Genovese
et al. [18] established the convergence rates of the filament obtained from the
kernel density estimation. Chen, Genovese and Wasserman [6] provided Berry-
Esseen type results for the limiting distribution. With a different approach,
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Qiao and Polonik [30] also established the convergence rates and the extreme
value type results for limiting distribution. Constructing confidence bands in
nonparametric problems is also a very important topic in itself. Some recent
papers include Claeskens and Van Keilegom [12], Giné and Nickl [19] and Cher-
nozhukov et al. [8, 9]. But these works focus primarily on the standard functions,
e.g., regressions and density functions. It is worth to point out that in the prob-
lems of filaments, the estimation and inference is performed for a set, or more
broadly speaking for some geometric object (Molchanov [27]). A similar example
is the level set of a certain function Jankowski and Stanberry [21], Mason and
Polonik [26], Mammen and Polonik [25]. Some other examples arise in econo-
metrics literature where partially identified parameters (as a set) is the object
of interest; see Chernozhukov et al. [10, 11] and references therein. Very little
is known about how to make inference about a geometric target in general and
this remains a very important area of study. For the problems of filaments,
Chen, Genovese and Wasserman [6] developed a bootstrap-based method for
uncertainty quantification.

Frequentist properties of Bayesian procedure for an unknown function has
also been an area receiving much attention. In particular, posterior contraction
rates for functions in different Lr-metrics have been studied in Giné and Nickl
[20], Castillo [5] and Yoo and Ghosal [38]. There also have been many studies on
constructing credible regions which have the right frequentist coverage. Szabó
et al. [34] studied adaptive L2-credible regions in Gaussian white noise model.
Yoo and Ghosal [38] constructed L∞-credible regions in the multivariate non-
parametric regression setting with known smoothness condition. Knapik et al.
[23] studied the frequentist coverage of credible sets in nonparametric inverse
problems. Belitser [2] studied credible sets in mildly ill-posed inverse signal-in-
white-noise model. Belitser and Nurushev [4] studied uncertainty quantification
for the unknown, possibly sparse, signal in general signal with noise models.
van der Pas et al. [35] studied credible sets using the horseshoe prior in the
sparse multivariate normal means model in an adaptive setting. Ray [31] studied
Bernstein–von Mises theorems for adaptive nonparametric Bayesian procedures
in the Gaussian white noise model. Yoo and Ghosal [39] studied Bayesian mode
and maximum estimation and provided credible sets with good coverage. Be-
litser and Ghosal [3] studied uncertainty quantification for high dimensional
linear regression models and their results are also extended to high dimen-
sional additive nonparametric regression models. Using credible regions with
sufficiently frequentist coverage, one can obtain confidence regions for the truth
in the frequentist sense relatively easily from the posterior distribution. This is
especially appealing when the object to be studied is complicated.

So far in the literature, the study of filaments is limited only to densities
only using the kernel approach. This paper supplements the current literature
in two ways. First, we provide a Bayesian approach to the filament estimation in
regression context and study the contraction rates using a finite random series
of B-splines basis. This has theoretical advantages as the bias can be better
controlled when the function is more than “minimally smooth” (i.e. more than
four times differentiable). Specifically, better rates are obtained for the filament
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points on some appropriately defined integral curves and for the Hausdorff dis-
tance of the filament which are both (n/ log n)(2−α)/(2(1+α)) (see Remarks 5.3
and 5.4). Secondly, we provide a way to construct credible set with sufficient
frequentist coverage for the filaments (see Theorem 5.9). In contrast to the
bootstrap-based confidence region proposed by Chen, Genovese and Wasser-
man [6] which gives a band-shape region, our valid credible region consists of
filaments from posterior samples. Another difference is that the inferential target
in this paper is the true quantity itself, while in Chen, Genovese and Wasserman
[6] the inference is directed towards to the debiased quantity. Although relying
on some existing results in the literature, these additional results we obtain offer
a new perspective how a Bayesian approach can be applied to a complicated
nonparametric problem in a rather intuitive way.

Before we move on to the formal definition of the filament, it is worth to point
out that some other possible definitions of filaments have also been discussed
and studied in mathematics and computer sciences literature; see Eberly [15]
for more details. In this paper, we study the filament as introduced in Chen,
Genovese and Wasserman [6] and Qiao and Polonik [30].

This paper is organized as follows. Notation and background materials are
given in Section 2. The model is formally introduced in Section 3 along with the
descriptions of the prior distribution and the posterior distribution. Technical
assumptions are given in Section 4. The main results in posterior contraction and
credible region are presented in Section 5. Simulation results and an application
to an earthquake data are presented in Section 6 and 7 respectively. All proofs
are given in Section A.

2. Notations and preliminaries

Let N = {1, 2, .., }, N0 = {0, 1, 2, 3, . . .}. Given two real sequences an and bn,
an = O(bn) or an � bn means that an/bn is bounded, while an = o(bn) or
an � bn means that both an/bn → 0. Also an � bn means that an = O(bn) and
bn = O(an). For a sequence of random elements Zn, Zn = Op(an) means that
P(|Zn| ≤ Can) → 1 for some constant C > 0.

For a vector x ∈ R
d, we define ‖x‖p = (

∑d
k=1 |xk|p)1/p for 0 ≤ p < ∞,

‖x‖∞ = max1≤k≤d |xk| and write ‖x‖ for ‖x‖2. The scalar product of two
vectors x and y will be written as xT y or 〈x, y〉. For an m × m matrix A,
let ‖A‖(2,2) = (λmax(A

TA))1/2, where λmax denotes the largest eigenvalue;

‖A‖(∞,∞) = max1≤i≤m

∑m
j=1 |aij | and ‖A‖F =

√
tr(ATA) the Frobenius norm

of matrix A. Given anotherm×mmatrix B, B ≤ Ameans A−B is non-negative
definite. We also denote an n by n identity matrix by In.

For f : U �→ R on some bounded set U ⊂ Rd. Let ‖f‖p be the Lp norm
and ‖f‖∞ = supx∈U |f(x)|. For g : U �→ R on some bounded set U ⊂ R

d,
let ∇g be the gradient of g, which is a d × 1 vector of functions. For a d-
dimensional multindex r = (r1, . . . , rd) ∈ N

d
0, let Dr be the partial derivative

operator ∂|r|/∂xr1
1 · · · ∂xrd

d where |r| =
∑d

k=1 rk.
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The Hölder Space Hα([0, 1]d) of order α > 0 consists of functions f : [0, 1]d �→
R such that ‖f‖α,∞ < ∞, where ‖ · ‖α,∞ is the Hölder norm

‖f‖α,∞ = max
r:|r|≤�α�

sup
x

|Drf(x)|+ max
r:|r|=�α�

sup
x,y:x �=y

|Drf(x)−Drf(y)|
‖x− y‖α−�α� ,

where sup is taken over the support of f and �α� is the largest integer strictly
smaller than α.

The filament or the ridge line of a smooth function defined on R
2 is a collection

of points at which the gradient of the function is orthogonal to the eigenvector
of its Hessian that corresponds to the most negative eigenvalue (if exists). The
filament point (the point on the filament) is a generalization of mode of the
function. To see this connection, recall a well-known result that tests for local
maximum point (mode).

Let f : R2 �→ R be a smooth function, ∇f = (f (1,0), f (0,1))T be the gradient
and Hf be the Hessian. Recall a test for a local maximum point is the following

aT∇f(x) = 0, aTHf(x)a < 0,

for all nonzero vector a. Let V (x) be the eigenvector of Hf(x) that corresponds
to the smallest eigenvalues λ(x). A point x ∈ R

2 is called a filament point or
ridge point if

V T (x)∇f(x) = 0, V T (x)Hf(x)V (x) < 0. (2.1)

Therefore, a filament point is a point at which the function has a local maxi-
mum along the direction given by V . Note also that V T (x)Hf(x)V (x) < 0 is
equivalent to λ(x) < 0.

More generally, for f defined on R
d, 0 ≤ s ≤ d−1, the eigenvectors of Hf(x)

can be used to define two orthogonal spaces, namely, a (d− s)-dimensional nor-
mal space (corresponding to (d− s)-eigenvectors with smallest eigenvalues) and
an s-dimensional tangent space (corresponding to the remaining eigenvectors).
An s-dimensional filament point on R

d is a point where the gradient of f is
orthogonal to the normal space and the eigenvalues associated with the normal
space are all (strongly) negative. Alternatively, such a point x can be regarded
as a point where f attains the local maximum in the affine space spanned by the
normal space translated by x. The modes are then simply 0-dimensional fila-
ments. The 1-dimensional filament on R

2 is of primary interest in our discussion
here.

From now on, f is assumed to be some smooth bivariate regression function.
Suppose that the Hessian matrix Hf(x) of f at x has eigvenvector V (x) cor-
responding to the smaller eigenvalue λ(x). The filament L(f) of the regression
function f is formally defined as

L = L(f) := {x : 〈∇f(x), V (x)〉 = 0 and λ(x) < 0}. (2.2)

We also introduce an integral curve, which is the solution to the following
differential equation

dΥx0(t)

dt
= V (Υx0(t)), Υx0(0) = x0, (2.3)



1712 W. Li and S. Ghosal

where x0 is some starting point from a sufficiently rich set G to be described in
Section 4. We define the “hitting time” of the filament by traversing the integral
curve starting at a point x0,

tx0 = argmin
t

{|t| ≥ 0 : 〈∇f(Υx0(t)), V (Υx0(t))〉 = 0, λ(Υx0(t)) < 0}. (2.4)

The integral curves will be our intermediate object for the study of the filament
(as a collection of points on these curves). It is obvious that Υx0(tx0) ∈ L.
Taking a plug-in estimation’s point of view, Υx0 and tx0 can be estimated,
and therefore a filament point (on certain integral curve) can be estimated.
Through the pointwise comparison between the estimated filament point and
the true filament point over a large collection of starting points, one can assess
the performance of the estimation procedure. This idea is put forward in Qiao
and Polonik [30] and is useful for our study.

3. Model, prior and posterior

Throughout the paper, let d = 2, thus x = (x1, x2). We consider the nonpara-
metric regression model,

Yi = f(Xi) + εi,

where εi are independent and identically distributed (i.i.d) Gaussian random
variables with mean 0 and variance σ2 for i = 1, . . . , n. Without loss of general-
ity, we letXi takes values in [0, 1]2. Let Y = (Y1, . . . , Yn)

T ,X = (XT
1 , . . . , X

T
n )

T ,
F = (f(X1), . . . , f(Xn))

T and ε = (ε1, . . . , εn)
T , then we can write Y = F + ε.

To model f , we shall use B-spline function as our basis function. Given some
q ∈ N, N ∈ N, for a sequence of knots 0 = t−(q−1) = · · · = t0 < · · · <
tN+1 = · · · = tN+q = 1, denote the univariate B-spline function of order q by

Bi,q(x) = (ti−ti−q)[ti−q, · · · , ti](·−x)q−1
+ , i = 1, 2, . . . , N+q (De Boor [13]). Here

[ti−q, · · · , ti](· − x)q−1
+ is the divided difference of the function y �→ (y − x)q−1

+ ,

where (y − x)0+ = 1(y ≥ x), (y − x)q−1
+ = (y − x)q−11(y ≥ x). By construction,

Bi,q(x) > 0 on (ti−q, ti) and
∑N+q

i=1 Bi,q(x) = 1. Now to construct a basis on
R

2, for x = (x1, x2) ∈ R
2, define bJ1,J2,q1,q2(x) = (Bj1,q1(x1)Bj2,q2(x2) : 1 ≤

jk ≤ Jk, k = 1, 2)T to be a vector of tensor product of B-splines functions,
with possibly different orders qk and knot sequences in different directions, i.e,
0 = tk,−(qk−1) = · · · = tk,0 < tk,1 < . . . < tk,Nk

< tk,Nk+1 = · · · = tk,Nk+qk = 1
for k = 1, 2. Here Nk denotes the number of interior points and Jk = qk + Nk

denotes the number of basis functions on the k-th coordinate. The elements
of this vector is assumed to be in dictionary order according to their indices.
For each k = 1, 2, define δk,� = tk,�+1 − tk,� for � = 0, . . . , Nk and assume that
max1≤�≤Nk

δk,�/min1≤�≤Nk
δk,� ≤ C for some C > 0. This assumption is clearly

satisfied for the uniform partition. Whenever q1, q2 are considered fixed, we shall
suppress the subscripts q1, q2 in our notations of B-spline functions, for instance
we write bJ1,J2 for bJ1,J2,q1,q2 . Following a similar set-up in Yoo and Ghosal [38],
we first put a random tensor-product B series prior on f . Let q1, q2 fixed and
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Nk = Nk(n) and hence Jk = Jk(n). Letting f(Xi) = bTJ1,J2
(Xi)θ for some vector

θ ∈ R
J1J2 , our model becomes

Y |(X, θ, σ2) ∼ N(Bθ, σ2In),

where B = (bJ1,J2(X1), . . . , bJ1,J2(Xn))
T .

Throughout we will use superscript * to denote the true values. Even though
our model for Y is Gaussian, the true error terms are only required to be sub-
Gaussian. Specifically, we assume the data are i.i.d from some true distribution
P0 where Yi = f∗(Xi) + εi with i.i.d. sub-Gaussian εi whose mean is 0 and
variance σ2

0 for i = 1, . . . , n. Our study allows both fixed and random design
cases. If {Xi : i = 1, . . . , n} are considered fixed data points, we assume that for
some cumulative distribution function G with positive and continuous density

sup
x∈[0,1]2

|Gn(x)−G(x)| = o
( 1

J1J2

)
, (3.1)

where Gn is the empirical distribution of {Xi : i = 1, . . . , n}. If Xi
i.i.d.∼ G,

then the above condition is satisfied with probability tending to one as long as
J1 � J2 � o(n1/4) by Donsker’s theorem. In both cases, we shall use Dn to
denote all observations.

We assign θ|σ2 ∼ N(θ0, σ
2Λ0) for some θ0 ∈ R

J1J2 , assuming that for some
constants 0 < c1 ≤ c2 < ∞ it holds that

c1IJ1J2 ≤ Λ0 ≤ c2IJ1J2 ,

where IJ1J2 is a J1J2 by J1J2 identity matrix. It follows then

θ|Dn, σ
2 ∼ N

(
(Λ−1

0 +BTB)−1(BTY + Λ−1
0 θ0), σ

2(BTB + Λ−1
0 )−1

)
.

The posterior distribution for f(x) and its partial derivatives are then ob-
tained accordingly. Define the vector

b
(r)
J1,J2

(x) =

(
∂r1

∂xr1
1

Bj1,q1(x1)
∂r2

∂xr2
2

Bj2,q2(x2) : 1 ≤ jk ≤ Jk, k = 1, 2

)T

.

Therefore,

Π(Drf |Dn, σ
2) ∼ GP(ArY + Crθ0, σ

2Σr),

Ar(x) = b
(r)
J1,J2

(x)
T
(BTB + Λ−1

0 )−1BT ,

Cr(x) = b
(r)
J1,J2

(x)
T
(BTB + Λ−1

0 )−1Λ−1
0 ,

Σr(x, y) = b
(r)
J1,J2

(x)
T
(BTB + Λ−1

0 )−1b
(r)
J1,J2

(y),

where GP denotes a Gaussian process. Notice that under P0, Ar(x)ε/σ0 is a
mean-zero process with a sub-Gaussian tail.
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To handle σ2, we can either put a conjugate inverse-gamma prior σ2 ∼
IG(a/2, b/2) with shape parameter a/2 > 2 and rate parameter b/2 > 0 or
plug-in an estimate for σ2. Since the theory does not make much difference, for
ease of exposition, we shall use the second approach, to be called the empiri-
cal Bayes method. The empirical Bayes has the following posterior distribution
(Yoo and Ghosal [38])

Π(Drf |Dn) ∼ GP(ArY + Crθ0, σ̂
2Σr), (3.2)

where
σ̂2 = n−1(Y −Bθ0)

T (BΛ0B
T + In)

−1(Y −Bθ0). (3.3)

4. Assumptions

We follow the standard assumptions in Qiao and Polonik [30]. For convenience,
we let d2f(x) = (f (2,0)(x), f (1,1)(x), f (0,2)(x))T and sometimes write Drf =
f (r). We assume that the two eigenvalues of Hf(x) are distinct. Then V (x) and
λ(x) take the following forms V (x) = G(d2f(x)) and λ(x) = J(d2f(x)) for some
function G = (G1, G2)

T : R3 → R
2 and J : R3 → R given by

G(u, v, w) =

(
2u− 2w + 2v − 2

√
(w − u)2 + 4v2

w − u+ 4v −
√

(w − u)2 + 4v2,

)
, (4.1)

J(u, v, w) =
1

2

(
u+ w −

√
(u− w)2 + 4v2

)
. (4.2)

Throughout the proofs, we may take the normalized version of the eigenvector
V , that is, ‖V ‖ = 1. This is not necessary but it simplifies discussion.

For some a∗ > 0, define G = {Υ∗
x0
(t) : x0 ∈ L∗,−a∗ ≤ t ≤ a∗}. We choose

a∗ small so that G ⊂ [0, 1]2 and t∗x0
is unique for any x0 ∈ G. Define L∗ ⊕ δ =

∪x∈L∗B(x, δ), where B(x, δ) is an open ball around x of radius δ. The following
assumptions will be needed for the theory.

(A1) The truth f∗ belongs to a Hölder Space Hα([0, 1]2) with α ≥ 4.

(A2) There is some δ > 0 small, such that for all x ∈ (L∗ ⊕ δ) ∩ [0, 1]2,
Hf∗(x) has two distinct eigenvalues, with smaller eigenvalue λ∗(x) ≤ −η
for some small positive value η.

(A3) For the δ > 0 in (A2), for all x ∈ L∗⊕δ, |〈∇〈∇f∗(x), V ∗(x)〉, V ∗(x)〉| ≥
η for the same positive value η in (A2).

(A4) The filament L∗ is a compact set such that L∗ = {Υ∗
x0
(t∗x0

) : x0 ∈ G}.

(A5) Assume that there exits some CG > 0, for any x0 ∈ G,

inf
x0∈G

inf
t∗x0

−a∗≤s<u≤t∗x0
+a∗

∥∥∥∥Υ∗
x0
(u)−Υ∗

x0
(s)

u− s

∥∥∥∥ ≥ CG .
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Assumption (A2) is important for our analysis as it guarantees the smooth-
ness of V ∗ (ref. (3.1) of Qiao and Polonik [30]) and that the normal vector of
the filament ∇〈∇f∗(x), V ∗(x)〉 is well-defined. Similar assumptions are needed
in Genovese et al. [18] and Chen, Genovese and Wasserman [6].

Assumption (A3) says that the normal vector of the filament ∇〈∇f∗(x),
V ∗(x)〉 is not orthogonal to V ∗(x). In addition, it implies that ∇〈∇f∗(x),
V ∗(x)〉 �= 0, i.e, the set {x : 〈∇f∗(x), V ∗(x)〉 = 0} is not “thick”. This means
that a small change of x ∈ L∗ necessarily changes the sign of 〈∇f∗(x), V ∗(x)〉.
If one restricts attention to the locus defined by 〈∇f∗(x), V ∗(x)〉 = 0, noting
rank(∇〈∇f∗(x), V ∗(x)〉) = 1, the implicit function theorem says that L is a
one-dimensional manifold in R

2. If for x ∈ L∗, ∇f∗(x) = 0, Assumption (A3)
should be interpreted as |(V ∗(x))THf∗(x)V ∗(x)| ≥ η which is then implied by
Assumption (A2). To see this, notice that

〈∇〈∇f∗(x), V ∗(x)〉, V ∗(x)〉 = ∇f∗(x)T∇V ∗(x)V ∗(x) + V ∗(x)THf∗(x)V ∗(x),

but V ∗(x)THf∗(x)V ∗(x) = λ∗(x). Assumption (A3) parallels the assumption
(A2) in Genovese et al. [18], where they assumed some upper bounds on the
quantity related to the third derivative of the density function; see also the
assumption (P1) in Chen, Genovese and Wasserman [6]. Assumption (A5) is
common in the literature; see Koltchinskii et al. [24], Qiao and Polonik [30].
Several useful consequences of these assumptions are summarized in Remark
A.1. It is worth to point out that under these assumptions Hf∗(x) must admit
two distinct eigenvalues over some domain and V ∗(x) is Lipschitz continuous
over this domain.

5. Posterior contraction and credible sets for filaments

In this section, we provide the main theoretical results. With a suitable choice
of a series prior, the function f from the posterior can induce its own integral
curve, filaments and hitting time just as how they are defined previously. The
goal is to establish posterior contraction rates of these objects relative to some
metrics in a similar spirit of the current literature. Here is a brief outline of these
results. Theorem 5.1 provides posterior contraction rates for the integral curve.
Proposition 5.2 gives posterior contraction rates for the hitting time. Theorem
5.3 gives the posterior contraction rates for the filament along the integral curve.
Theorem 5.8 establishes the posterior contraction rates for the filament around
the truth, posterior rates for deviations between the posterior filament and the
filament induced by the posterior mean, together with the convergence rates for
the filament induced by posterior mean to that of the truth, all in terms of the
Hausdorff distance. Theorem 5.9 provides a valid credible set with sufficiently
high frequentist coverage.

To simply the presentation, we simply set J1 = J2 = J for some common
positive value J that grows with the sample size n. All results remain valid even
when J1 and J2 are not equal but grow at the same rate, which is still denoted
by the symbol J .
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The following result gives a Bayesian counterpart of Theorem 3.3 of Qiao and
Polonik [30]. Our proof is similar to theirs, but a few major technical details are
different.

Theorem 5.1. Under Assumptions (A1), (A2) and (A5), for J1 = J2 = J �
(n/ log n)1/(1+2α), we have the following posterior contraction rate, for εn =
(n/ log n)(2−α)/(1+2α) and any Mn → ∞,

Π( sup
x0∈G

sup
t∈[t∗x0

−a∗,t∗x0
+a∗]

‖Υx0(t)−Υ∗
x0
(t)‖ > Mnεn|Dn)

P0−−→ 0. (5.1)

Remark 5.1. According to Assumption (H1) and the Theorem 3.3 of Qiao
and Polonik [30], their rate is n−2/9

√
log n assuming that α = 4. Here with the

choice J � (n/ log n)1/(1+2α), we obtain a rate which has a better logarithmic
factor for the case α = 4, since then the rate reduces to (n/ logn)−2/9. Note that
if we choose J � (n/ log n)1/(2(1+α)) as it is the optimal choice for estimation
of the function f∗, it is easy to see from the proof that now supx ‖d2f(x) −
d2f∗(x)‖2 is of order (n/ log n)(2−α)/(1+α) and the term (A.1) in Section A has
posterior contraction rate of order (n/ log n)(2−α)/(1+α). Thus the contraction
rate will then be εn = (n/ log n)(2−α)/(2(1+α)), which is “suboptimal” in the
present context.

The following proposition is a Bayesian analog of Proposition A.1 and Propo-
sition 5.1 of Qiao and Polonik [30]. We can obtain better rates by using different
magnitude of the tuning parameter; see the remark after the proposition.

Proposition 5.2. Under Assumptions (A1)–(A5) and let J1 = J2 = J �
(n/ log n)1/(1+2α), we have the following posterior contraction rate: for εn =
(n/ log n)(5−2α)/(2(1+2α)) and any Mn → ∞,

Π( sup
x0∈G

|t∗x0
− tx0 | > Mnεn|Dn)

P0−−→ 0. (5.2)

If in addition, ∇f∗(x) = 0 for all x ∈ L∗, then the rates improve to εn =
(n/ log n)(2−α)/(1+2α).

Remark 5.2. A better rate can be obtained if we choose J � (n/ log n)1/(2(1+α)).
With this choice, by Lemma A.2, supx ‖∇f(x)−∇f∗(x)‖ has posterior contrac-
tion rate (n/ logn)(1−α)/(2(1+α)), while supx ‖V (x)− V ∗(x)‖ has posterior con-
traction rate (n/ log n)(2−α)/(2(1+α)). Recalling Remark 5.1, the posterior con-
traction rate will then be εn = (n/ log n)(2−α)/(2(1+α)). If in addition, ∇f∗(x) =
0 for all x ∈ L∗, the function then is a plateau without any rise or fall along the
direction of filament, where the rate improves to εn = (n/ log n)(1−α)/(2(1+α)).

Theorem 5.3 below is a Bayesian analog of the convergence of filaments points
on the integral curves starting from the same points; see Qiao and Polonik [30],
Section 3.4, for similar results. Again a better rate is possible; see the remark
following the theorem.
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Theorem 5.3. Under Assumptions (A1)–(A5) and suppose J1 = J2 = J �
(n/ log n)1/(1+2α), we have the following posterior contraction rates: for εn =
(n/ log n)(5−2α)/(2(1+2α)) and any Mn → ∞,

Π( sup
x0∈G

‖Υx0(tx0)−Υ∗
x0
(t∗x0

)‖ > Mnεn|Dn)
P0−−→ 0. (5.3)

Remark 5.3. A better rate can be obtained using J � (n/ logn)1/(2(1+α)),
giving εn = (n/ logn)(2−α)/(2(1+α)) in view of Remark 5.1 and Remark 5.2. In
particular, the degree of smoothness of the function f has been accounted for,
thanks to the series approximation. For α ≥ 4, this is an improvement over
the rate n−1/6

√
logn in Theorem 3.4 of Qiao and Polonik [30] (see also their

Proposition 5.1).

In the following, we shall consider the Hausdorff distance between two fila-
ments. Given two sets A and B under Euclidean metric, the Hausdorff distance
between A and B is defined as

Haus(A,B) = max{d(A|B), d(B|A)},

where d(A|B) := supx∈A infy∈B ‖x − y‖. In what follows, we provide an upper
bound for the Hausdorff distance and construct credible sets for the filaments.
In fact, Theorem 5.3 gives an upper bound for the Hausdorff distance. However,
for the purpose of constructing credible sets with sufficient frequentist coverage,
we need to have the upper bound in terms of more primitive quantities such
as the derivatives of underlying function. In view of Remark 5.3 and the fact
that integral curves are only intermediate objects, we henceforth restrict to the
choice J � (n/ log n)1/(2(1+α)).

Recall that f̃ = A(0,0)Y + C(0,0)θ0 is the posterior mean of f conditional

on Dn and that Ṽ , Υ̃x0 , L̃ are the corresponding eigenvector, integral curve
and filament induced by f̃ . In view of Lemma A.3 and Lemma A.4, follow-
ing the proofs of Theorem 5.1, Proposition 5.2, Theorem 5.3, it is straight-
forward to show that supx0∈G supt ‖Υx0(t) − Υ̃x0(t)‖, supx0∈G ‖tx0 − t̃x0‖ and

supx0∈G ‖Υx0(tx0) − Υ̃x0(t̃x0)‖ are all small with high posterior probability in

P0-probability. Likewise, it can be shown that the quantities induced by f̃ con-
verge to the corresponding true quantities induced by f∗. For instance Υ̃x0(t)
converges to Υ∗

x0
(t) uniformly in x0 ∈ G and t, t̃x0 converges to t∗x0

uniformly in

x0 ∈ G and Υ̃x0(t̃x0) converges to Υ
∗
x0
(t∗x0

) uniformly in x0 ∈ G in P0-probability.
The following two theorems summarize above observations. Theorem 5.4 is

on the convergence rates of the Bayesian estimates of filaments to the true
filaments. Theorem 5.5 is on the posterior contraction rates of filaments around
filaments induced by posterior mean.

Theorem 5.4. Under Assumptions (A1), (A2) and (A5), for J1 = J2 = J �
(n/ log n)1/(2(1+α)), we have the following convergence rates:

sup
x0∈G

sup
t∈[t∗x0

−a∗,t∗x0
+a∗]

‖Υ̃x0(t)−Υ∗
x0
(t)‖ = Op

((
n/ log n

) 2−α
2(1+α)

)
. (5.4)
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If in addition, (A3) and (A4) hold, then

sup
x0∈G

|t̃x0 − t∗x0
| = Op

((
n/ logn

) 2−α
2(1+α)

)
, (5.5)

and

sup
x0∈G

‖Υ̃x0(t̃x0)−Υ∗
x0
(t∗x0

)‖ = Op

((
n/ logn

) 2−α
2(1+α)

)
. (5.6)

Theorem 5.5. Under Assumptions (A1), (A2) and (A5), for J1 = J2 = J �
(n/ log n)1/(2(1+α)), we have the following posterior contraction rates: for any
Mn → ∞,

Π( sup
x0∈G

sup
t:|t−t∗x0

|≤a∗
‖Υx0(t)− Υ̃x0(t)‖ > Mn(n/ logn)

(3−2α)/(4(1+α))|Dn)
P0−−→ 0.

(5.7)
If in addition, (A3) and (A4) hold, then

Π( sup
x0∈G

|tx0 − t̃x0 | > Mn(n/ log n)
(2−α)/(2(1+α))|Dn)

P0−−→ 0, (5.8)

and

Π( sup
x0∈G

‖Υx0(tx0)− Υ̃x0(t̃x0)‖ > Mn(n/ logn)
(2−α)/(2(1+α))|Dn)

P0−−→ 0. (5.9)

The following proposition says that with high posterior probability the in-
duced filament from the posterior satisfies similar properties the true filament
has, so does the induced filament by f̃ , with P0-probability tending to one.

Proposition 5.6. Suppose that f has a tensor-product B-splines prior with or-
der q1 = q2 ≥ α and J � (n/ log n)1/(2(α+1)), then the following assertions hold.
(i) The filament L of f drawn from the posterior distribution satisfies assump-
tions (A2)–(A5) with posterior probability tending to 1 under P0-probability; (ii)
The induced filament L̃ of the posterior mean f̃ satisfies assumptions (A2)–(A5)
with P0-probability tending to 1.

The following lemma is inspired by Genovese et al. [18] Theorem 4, where
they relate the Hausdorff distance between filaments to the Euclidean distance
between V but under a different set of assumptions.

Lemma 5.7. Consider for two regression functions f and f̂ : [0, 1]2 �→ R that
are sufficiently close in supremum metric and both satisfy assumptions (A1)–
(A5), then the Hausdorff distance between the two induced filaments satisfies,
for some positive constant c1,

Haus(L, L̂) ≤ c1
η

(
‖f (2,0) − f̂ (2,0)‖∞ + ‖f (1,1) − f̂ (1,1)‖∞ + ‖f (0,2) − f̂ (0,2)‖∞

)
.

(5.10)

In view of above lemma, Theorems 5.4, 5.5 and Proposition 5.6, we have the
following result.
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Theorem 5.8. Under Assumptions (A1)–(A5), with the choice of J1 = J2 =
J � (n/ log n)1/(2(α+1)), for any Mn → ∞,

Π(Haus(L,L∗) > Mn(n/ log n)
2−α

2(α+1) |Dn)
P0−−→ 0, (5.11)

Π(Haus(L, L̃) > Mn(n/ log n)
2−α

2(α+1) |Dn)
P0−−→ 0, (5.12)

and
Haus(L̃,L∗) = Op

(
(n/ log n)

2−α
2(α+1)

)
. (5.13)

Remark 5.4. The third assertion of Theorem 5.8 for the convergence rate of
the filament induced by the posterior mean is an improvement over the rate
(log n/n)1/5 in Theorem 5 of Genovese et al. [18] when α > 4.

For the following result, we restrict multi-index r to the collection R :=
{(2, 0), (1, 1), (0, 2)}. Let f̃ (r) := ArY + Crθ0 be the posterior mean of f (r)

and L̃ be the induced filament. For some 0 < γ < 1/2, let Rn,r,γ denote the

1− γ quantile of the posterior distribution of ‖f (r) − f̃ (r)‖∞. Let Cρ
f,r,γ := {f :

‖f (r)− f̃ (r)‖∞ ≤ ρRn,r,γ} for some large ρ > 1. The following theorem provides
two valid credible sets with sufficiently high frequentist coverage as the sample
size increases. The choices of c1, η and ρ will be discussed in the next section.

Theorem 5.9. Assume (A1)–(A5), for J1 = J2 = J � (n/ log n)1/(2(α+1)) and
some sufficiently large constant ρ > 1, for the following two sets,

CL = {L(f) : f ∈ ∩r∈RCρ
f,r,γ}, (5.14)

C̄L = {L : Haus(L, L̃) ≤ c1
η
ρmax

r∈R
Rn,r,γ}, (5.15)

the credibility of CL and its coverage probability for L∗ tend to 1 and CL ⊂ C̄L
with high posterior probability with P0-probability tending to 1.

6. Simulation

Many algorithms have been proposed to find filaments. We here use an algorithm
that shares a similar spirit of the Subspace Constrained Mean Shift (SCMS)
algorithm proposed in Ozertem and Erdogmus [29]. SCMS algorithm was also
used in Genovese et al. [18], Chen, Genovese and Wasserman [6] and Chen et
al. [7]. The key of the algorithm is to project the gradient onto the direction
given by V . Even though in the literature the algorithm is primarily used with
kernel density estimator, our study suggests that nothing hinders the efficacy of
the algorithm when applied with a series based estimation in either regression
or density estimation setting. In the following, we give a description of the
algorithm.

Algorithm: (Subspace Constrained Gradient Ascent Algorithm)
Set ε > 0, τ > 0, ā > 0 and select a collection of points {x1, . . . , xn}, compute

f(xi) and keep only those points for which f(xi) > τ . For each xi, let x
(1)
i = xi.

Now iterate through the following steps starting from t = 1:
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(1) evaluate ∇f(x
(t)
i );

(2) evaluate the Hessian Hf(x
(t)
i ) and perform spectral decomposition to get

V (x
(t)
i ) the normalized eigenvector of Hf(x

(t)
i ) with the smallest eigen-

value;

(3) update x
(t+1)
i = āV (x

(t)
i )V T (x

(t)
i )∇f(x

(t)
i ) + x

(t)
i ;

(4) stop if ‖x(t+1)
i − x

(t)
i ‖ < ε or |V T (x

(t)
i )∇f(x

(t)
i )| < ε.

If stop at t = t∗, keep the point x
(t∗)
i that satisfies λ(x

(t∗)
i ) < 0.

In the simulation, we consider the following function

f(x1, x2) = 1 +

(
φ
(√

x2
1 + x2

2

))1+cos2(tan−1(x2/x1))

,

where φ(·) is the normal density function with mean 0.5 and standard deviation
0.3. We generate i.i.d. dataXi uniformly on [0, 1]×[0, 1] and i.i.d. εi from normal
with mean 0 and standard deviation 0.1 and then set Yi = f(Xi,1, Xi,2) + εi.
The sample size is 2000. The Figure 1 shows function f and its filament. The
smoothing parameter (J1, J2) plays an important role as in any nonparametric
estimation problem.

Fig 1. The function f and its filament.

We use fifth-order B-splines functions, that is q1 = q2 = 5. One can choose
the pair (J1, J2) by their posterior mode (in a logarithmic scale) by maximizing
the following

logΠ(J1, J2|Dn) = −2n log σ̂ − log(det(BΛ0B
T ) + In) + const.

We use τ = 2, ā = 0.02 and ε = 10−6. Some pilot simulation suggests that
(J1, J2) = (9, 9) is picked by its posterior mode throughout. Different choices
have been experimented as well. In general, “oversmoothing” may distort the
filaments, whereas “undersmoothing” seems to produce similar results as using
J1 = J2 = 9, as can be seen in Figure 2. We also provide uncertainty quantifica-
tion in Figure 3 with γ = 0.1, ρ = 1.2. Each graph shows 100 posterior filaments
drawn from CL. To evaluate Rn,r,γ for r ∈ R = {(2, 0), (1, 1), (0, 2)}, we first

draw 200 posterior samples of θ, compute their posterior mean θ̃. Next we com-

pute supx |b
(r)
J1,J2

(x)
T
(θ− θ̃)| by searching on a crude grid and pick the maximum
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point on the grid and then starting from this maximum point apply gradient
ascent or descent method to check if nearby points can achieve greater (abso-
lute) value. We keep the largest value as the supremum. The (1− γ)-empirical
quantile over all these suprema will then be our Rn,r,γ . The filaments from the
posterior samples that fall in the set CL can then be generated.

Fig 2. Effects of the smoothing parameter J1 and J2. The orange circle is the truth, blue curve
(consists of dots) is estimated filament induced by posterior mean. Top left: J1 = J2 = 7; top
right: J1 = J2 = 8; bottom left: J1 = J2 = 9; bottom right: J1 = J2 = 15.

Fig 3. Uncertainty Quantification. Left: J1 = J2 = 7. Right: J1 = J2 = 9.

To assess the performance over 100 iterations, we compute the Hausdorff dis-
tance between L∗ and L̃. The value of ρ should not be too large but gives a
reasonable high percentage of f from posterior that fall in Cρ

f,r,γ . In practice,
reasonable values of ρ can be calibrated by some pilot simulation using the pos-
terior samples. For instance, ρ = 1.2 is a reasonable choice in this simulation,
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giving 92.33% credibility averaging over all iterations. To evaluate the coverage
performance, we compute the Hausdorff distance between L∗ and L̃. From the
definition of C̄L, we set c1/η to different values. Simulation shows that L∗ be-
longs to C̄L for 91%, 94%, 98% time when c1/η takes value 7.3×10−4, 7.5×10−4

and 8× 10−4 respectively. In practice, c1 can be computed using supx ‖∇f̃(x)‖
and η as the smallest value of −λ along the filament induced by the posterior
mean. With this method, we obtain 100% coverage — high coverage as the
theory predicts.

7. Application

For application, we use an earthquake dataset for California and its vicinity from
January 1st of 2013 to December 31th of 2017 with magnitude 3.0 and above
on the Richter scale1. The dataset consists of 3772 observations, among which
3383 observations have magnitude between 3 and 4; 355 observations between 4
and 5; 34 observations above 5. The average magnitude is 3.439. The left panel
in Figure 4 shows the data scatter plot. The sizes of circles are proportional to
the magnitudes of the earthquakes.

In the algorithm, we use ā = 5 × 10−6 and τ = 3 and ε = 10−6. We use
q1 = q2 = 4 and J1 = J2 = 32. We draw 200 posterior samples to compute
the posterior mean. The filaments induced by the posterior mean is plotted as
the blue curve in Figure 4. The same filaments are overlayed on the magnitude
surface as given in Figure 5. To obtain uncertainty quantification using filaments
from posterior samples, we use γ = 0.1 (i.e., 90% credibility), ρ = 1.2. The
results showed that there are 91% of posterior realizations fall into CL, only
slightly higher than the nominal credibility level. We randomly pick 100 of
them to describe the uncertainty quantification as given in the right panel of
Figure 4.

Fig 4. Left: Earthquake data points (in red). Right: 100 filaments in the posterior constructed
with high frequentist coverage. The thick blue curves are the filaments induced by the posterior
mean.

1The data is publicly available from https://earthquake.usgs.gov/earthquakes/.

https://earthquake.usgs.gov/earthquakes/
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Fig 5. The magnitude surface and filaments induced by the posterior mean (traces on the
graph).

The filaments hence obtained provide useful characterization of the features
of earthquake magnitude. Geographically, these filaments pass through the most
populous coastal urban and suburban areas in California, for instance, Eureka
city, San Francisco and Los Angeles. Since this application has utilized very
small portion of earthquake data, we believe that a large scale study for different
periods of historical times will be useful for the study of the dynamics of the
earthquakes. Uncertainty quantification provides the statistical understanding of
what might be considered as reasonable shifts of these filaments through spatial
and temporal domain and are also helpful for discovering newly emerging crustal
activities.

Appendix A: Technical proofs

In this section, we will provide lemmas and formal proofs of the results stated
in the main text. To focus on discussion, we will draw on several useful results
directly given in the following remark.

Remark A.1. Under the assumptions (A1) to (A5), the following assertions
hold.

(1) Integral curves are dense and non-overlapping as starting points vary; the
set G is compact.

(2) x0 �→ t∗x0
is continuous.

(3) ‖Υ∗
x0
(t)−Υ∗

x′
0
(t)‖ ≤ C exp(t)‖x0 − x′

0‖ for some constant C > 0.

(4) G = (G1, G2)
T , ∇G are Lipschitz continuous and each element of Hessian

HG1, HG2 is bounded on some open set Qδ ⊂ R
3 such that {d2f∗(x) :

x ∈ [0, 1]2} ⊂ Qδ. Thus V ∗ is Lipschitz continuous.

There results can be proved using arguments similar to Qiao and Polonik
[30]. The original argument and proofs appear in that paper in various places.
To save space, we do not provide the details here, but point to these following
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specific places in their paper. Result (1) is given in the discussion in page 10,
result (2) and (3) are discussed in pages 22 and 48, and result (4) is discussed
in pages 53–55.

We shall also use the following result frequently in our proofs.

Remark A.2. If the Condition (3.1) holds, then we have

C1n

(
2∏

k=1

J−1
k

)
IJ1J2 ≤ BTB ≤ C2n

(
2∏

k=1

J−1
k

)
IJ1J2 ,

for some constants C1, C2 > 0. If in addition, for some constants 0 < c1 ≤ c2 <
∞ such that

c1IJ1J2 ≤ Λ ≤ c2IJ1J2 ,

we have(
C1n

2∏
k=1

J−1
k + c−1

2

)
IJ1J2 ≤ BTB + Λ−1 ≤

(
C2n

2∏
k=1

J−1
k + c−1

1

)
IJ1J2 .

Proof. See Yoo and Ghosal [38] Lemma A.9. and the discussion in p. 1075.

A.1. Some lemmas

Lemma A.1. For f ∈ Hα([0, 1]2) with α ≤ min(q1, q2). Then for J1, J2 suffi-
ciently large, there exists a function f∞ := bTJ1,J2

θ∞ for some θ∞ such that

‖f∞ − f‖∞ ≤ C

2∑
k=1

J−α
k , ‖Drf∞ −Drf‖∞ ≤ C

2∑
k=1

Jrk−α
k ,

for some positive constant C depending on α and q and for every integer vector
r satisfying |r| < α.

Proof. For proof, see Schumaker [32].

Lemma A.2 (Posterior contraction around truth). Under the above assump-
tions and J1 = J2 = J and J2 ≤ n, with J chosen such that δn,k,J vanishes to
zero, then for any Mn → ∞,

Π( sup
x∈[0,1]2

|Drf(x)−Drf∗(x)| > Mnδn,|r|,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖∇f(x)−∇f∗(x)‖ > Mnδn,1,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖d2f(x)− d2f∗(x)‖ > Mnδn,2,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖Hf(x)−Hf∗(x)‖F > Mnδn,2,J |Dn)
P0−−→ 0,
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Π( sup
x∈[0,1]2

‖∇d2f(x)−∇d2f∗(x)‖F > Mnδn,3,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖V (x)− V ∗(x)‖F > Mnδn,2,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖∇V (x)−∇V ∗(x)‖F > Mnδn,3,J |Dn)
P0−−→ 0.

where δn,k,J = Jk
(
(log n/n)J2 + J−2α

)1/2
.

Proof. These results can be directly adapted from Yoo and Ghosal [38] by noting
the highest degree of derivatives in each expression. We shall show the rates for
supx ‖Hf(x) − Hf∗(x)‖F , supx ‖∇d2f(x) − ∇d2f∗(x)‖F and supx ‖∇V (x) −
∇V ∗(x)‖F . Notice that ‖Hf(x)−Hf∗(x)‖F is equal to(

(f (2,0)(x)− f∗(2,0)(x))2 + 2(f (1,1)(x)− f∗(1,1)(x))2

+ (f (0,2)(x)− f∗(0,2)(x))2
)1/2

,

which can be bounded by

4−1/2
(
|f (2,0)(x)− f∗(2,0)(x)|+2|f (1,1)(x)− f∗(1,1)(x)|+ |f (0,2)(x)− f∗(0,2)(x)|

)
.

The rate for supx ‖Hf(x)−Hf∗(x)‖F then follows easily.
Also, the contraction rates for ‖∇d2f(x)−∇d2f∗(x)‖F follows from the in-

equality ‖∇d2f(x)−∇d2f∗(x)‖F ≤ 6−1/2
∑

r:|r|=3 |Drf(x)−Drf∗(x)|.
Lastly, since ∇V (x) − ∇V ∗(x) = ∇G(d2f(x))∇d2f(x) −

∇G(d2f∗(x))∇d2f∗(x), which is 2 by 2 matrix. Straightforward calculation gives
its (1, 1) element(

G
(1,0,0)
1 (d2f(x))f (3,0)(x)−G

(1,0,0)
1 (d2f∗(x))f∗(3,0)(x)

)
,

+
(
G

(0,1,0)
1 (d2f(x))f (2,1)(x)−G

(0,1,0)
1 (d2f∗(x))f∗(2,1)(x)

)
,

+
(
G

(0,0,1)
1 (d2f(x))f (1,2)(x)−G

(0,0,1)
1 (d2f∗(x))f∗(1,2)(x)

)
.

The absolute value of the first summand is bounded by the sum of∣∣∣G(1,0,0)
1 (d2f(x))f (3,0)(x)−G

(1,0,0)
1 (d2f(x))f∗(3,0)(x)

∣∣∣ ,
and ∣∣∣G(1,0,0)

1 (d2f(x))f∗(3,0)(x)−G
(1,0,0)
1 (d2f∗(x))f∗(3,0)(x)

∣∣∣ .
Noting that d2f(x) contracts to d2f∗(x) uniformly in x, hence {d2f(x) : x ∈
[0, 1]2} ⊂ Qδ with posterior probability tending to 1, the first term is bounded
by a constant multiple of |f (3,0)(x) − f∗(3,0)(x)|, in view of the result (4) of
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Remark A.1. By the same remark and assumption ‖f∗‖α,∞ < ∞, the second
term is bounded by ‖d2f(x)− d2f∗(x)‖|f∗(3,0)(x)|. Using similar arguments for
the second and third summand, one can see that the absolute value of the (1,1)th
element of ∇V (x)−∇V ∗(x) is bounded by |f (3,0)(x)− f∗(3,0)(x)|+ |f (2,1)(x)−
f∗(2,1)(x)|+ |f (1,2)(x)− f∗(1,2)(x)|. Dealing the remaining elements of ∇V (x)−
∇V ∗(x) similarly, we have that ‖∇V (x) − ∇V ∗(x)‖F �

∑
r:|r|=3 |Drf(x) −

Drf∗(x)|.
In above lemma, the optimal rates are obtained when J � (n/ log n)1/2(α+1),

which then yields

δn,k,J = εn � (logn/n)(α−k)/(2α+2).

In addition, we have the following two lemmas whose proofs closely follow
that of Lemma A.2 and thus are omitted. Denote the posterior mean of f by
f̃ := A(0,0)Y +C(0,0)θ0 and similarly define the quantities it induces, for instance,

Ṽ , Υ̃x0 and L̃. We then have the following lemma.

Lemma A.3 (Posterior contraction around the posterior mean). Under the
above assumptions and J1 = J2 = J and J2 ≤ n, with J chosen such that ηn,k,J
vanishes to zero, then for any Mn → ∞,

Π( sup
x∈[0,1]2

|Drf(x)−Drf̃(x)| > Mnηn,|r|,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖∇f(x)−∇f̃(x)‖ > Mnηn,1,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖d2f(x)− d2f̃(x)‖ > Mnηn,2,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖Hf(x)−Hf̃(x)‖F > Mnηn,2,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖∇d2f(x)−∇d2f̃(x)‖F > Mnηn,3,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖V (x)− Ṽ (x)‖F > Mnηn,2,J |Dn)
P0−−→ 0,

Π( sup
x∈[0,1]2

‖∇V (x)−∇Ṽ (x)‖F > Mnηn,3,J |Dn)
P0−−→ 0,

where ηn,k,J = Jk+1(logn/n)1/2.

One can also readily obtain the following convergence rates for the Bayesian
estimators induced by f̃ .

Lemma A.4 (Convergence of posterior mean). Under the above assumptions
and J1 = J2 = J and J2 ≤ n, with J chosen such that δn,k,J vanishes to zero,
then we have

sup
x∈[0,1]2

|Drf̃(x)−Drf∗(x)| = Op(δn,|r|,J ),
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sup
x∈[0,1]2

‖∇f̃(x)−∇f∗(x)‖ = Op(δn,1,J ),

sup
x∈[0,1]2

‖d2f̃(x)− d2f∗(x)‖ = Op(δn,2,J),

sup
x∈[0,1]2

‖Hf̃(x)−Hf∗(x)‖F = Op(δn,2,J ),

sup
x∈[0,1]2

‖∇d2f̃(x)−∇d2f∗(x)‖F = Op(δn,3,J ),

sup
x∈[0,1]2

‖Ṽ (x)− V ∗(x)‖F = Op(δn,2,J),

sup
x∈[0,1]2

‖∇Ṽ (x)−∇V ∗(x)‖F = Op(δn,3,J),

where δn,k,J = Jk
(
(log n/n)J2 + J−2α

)1/2
.

We will also need the following lemma in the proof of Theorem 5.1.

Lemma A.5. Let G̃(Υ∗
x0
(s)) = ∂G1

∂x1
(d2f∗(Υ∗

x0
(s))). For any x0, x̃0 ∈ G, let

T ∗
x0

= t∗x0
+ a∗, T ∗

x̃0
= t∗x̃0

+ a∗, t ∈ [0, T ∗
x0
] and t̃ ∈ [0, T ∗

x̃0
]. Define a(x0, t) :=∫ t

0
G̃(Υ∗

x0
(s))b

(r)
J1,J2

(Υ∗
x0
(s))ds for r = (2, 0), (1, 1) or (0, 2), where the integral is

taken elementwise. Under Assumption (A1), (A2) and (A5) and J1 = J2 = J ,
we have

‖a(x0, t)‖1 � J2, ‖a(x0, t)‖2 � J3,

‖a(x0, t)− a(x̃0, t̃)‖2 � J3|t− t̃|+ J5‖x0 − x̃0‖2.

A.2. Proofs of the main results

Since Υx0(−t) =
∫ t

0
(−V (Υx0(−s)))ds, with negative time it can be interpreted

as a curve tracing in the reverse direction, i.e, −V . Since the direction of V does
not play a role in the theoretical proof, without loss of generality, t is restricted
on the [0, T ∗

x0
] where T ∗

x0
= t∗x0

+ a∗ and we shall assume the hitting times are
nonnegative.

Proof of Theorem 5.1. We first sketch a proof for the following result as first
proved in Koltchinskii et al. [24]:

sup
x0∈G

sup
t∈[0,T∗

x0
]

∥∥Υx0(t)−Υ∗
x0
(t)

∥∥ � sup
x0∈G

sup
t∈[0,T∗

x0
]

∥∥∥∥
∫ t

0

(V − V ∗)(Υ∗
x0
(s))ds

∥∥∥∥ .

To see this, let

yx0(t) := Υx0(t)−Υ∗
x0
(t) =

∫ t

0

(
V (Υx0(s))− V ∗(Υ∗

x0
(s)

)
ds,

zx0(t) :=

∫ t

0

(V − V ∗)Υ∗
x0
(s)ds+

∫ t

0

∇V ∗(Υ∗
x0
(s))zx0(s)ds.



1728 W. Li and S. Ghosal

Note that δx0(t) := yx0(t) − zx0(t) =
∫ t

0
∇V ∗(Υ∗

x0
(s))δ(s)ds + Rx0(t) for some

reminder term Rx0(t). So ‖δx0(t)‖ ≤ ‖Rx0(t)‖+
∫ t

0
‖∇V ∗(Υ∗

x0
(s))‖F ‖δx0(s)‖ds,

by the Gronwall-Bellman inequality (Kim [22]),

‖δx0(t)‖ ≤ sup
t∈[0,T∗

x0
]

(
‖Rx0(t)‖ exp

( ∫ t

0

‖∇V ∗(Υ∗
x0
(s))‖F ds

))
.

Hence supt∈[0,T∗
x0

] ‖δx0(t)‖) � supt∈[0,T∗
x0

] ‖Rx0(t)‖. It holds also that with high

posterior probability supt∈[0,T∗
x0

] ‖Rx0(t)‖ �
∫ T∗

x0
0 ‖yx0(s)‖ds in P0-probability

tending to 1 following the argument in page 1586 of Koltchinskii et al. [24].

Therefore, supt∈[0,T∗
x0

] ‖δx0(t)‖ �
∫ T∗

x0
0 ‖yx0(s)‖ds. Since yx0(t) = δx0(t)+zx0(t),

it follows that supt∈[0,T∗
x0

] ‖δx0(t)‖ �
∫ T∗

x0
0 ‖zx0(s)‖ds � supt∈[0,T∗

x0
] ‖zx0(t)‖.

Then supt∈[0,T∗
x0

] ‖yx0(t)‖ = supt∈[0,T∗
x0

] ‖δx0(t)+ zx0(t)‖ � supt∈[0,T∗
x0

] ‖zx0(t)‖.
But

‖zx0(t)‖ ≤
∥∥∥∥
∫ t

0

(V − V ∗)Υ∗
x0
(s)ds

∥∥∥∥ +

∫ t

0

‖∇V ∗(Υ∗
x0
(s))‖F ‖zx0(s)‖ds.

One more application of the Gronwall-Bellman inequality and then taking the
supremum on the left hand side yields

sup
t

‖zx0(t)‖ ≤ sup
t

(∥∥∥∥
∫ t

0

(V − V ∗)Υ∗
x0
(s)ds

∥∥∥∥ exp
( ∫ t

0

‖∇V ∗(Υ∗
x0
(s))‖F ds

))

� sup
t

∥∥∥∥
∫ t

0

(V − V ∗)Υ∗
x0
(s)ds

∥∥∥∥ .

Taking another supremum over all x0 gives us the result.

Now coming back to the main proof, by an integral form Taylor expansion
of V (x)(= G(d2f(x))) around G(d2f∗(x)), by the uniform boundedness of each
element of second derivative G, one can get the following term bounded by
supx0

‖d2f(x)− d2f∗(x)‖2:

sup
x0∈G

t∈[0,T∗
x0

]

∥∥∥∥
∫ t

0

[
(V − V ∗)(Υ∗

x0
(s))−∇G(d2f∗(Υ∗

x0
(s)))d2(f − f∗)(Υ∗

x0
(s))

]
ds

∥∥∥∥ .

In view of Lemma A.2, with the choice of J in the assumption, supx ‖d2f(x)−
d2f∗(x)‖2 is of order (n/ logn)(5−α)/(1+2α). Now it suffices to prove that

sup
x0∈G

t∈[0,T∗
x0

]

∥∥∥∥
∫ t

0

∇G(d2f∗(Υ∗
x0
(s)))d2(f − f∗)(Υ∗

x0
(s))ds

∥∥∥∥
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has posterior contraction rate (n/ log n)(2−α)/(1+2α). To this end, we demon-
strate the following quantity has this posterior contraction rate

sup
x0∈G

t∈[0,T∗
x0

]

∣∣∣∣
∫ t

0

∂G1

∂x1
(d2f∗(Υ∗

x0
(s)))(f (2,0) − f (2,0)∗)(Υ∗

x0
(s))ds

∣∣∣∣ .
The rate for the other components can be derived similarly. Let Un be a shrinking
neighborhood of σ2

0 such that σ̂2
n ∈ Un and Π(σ2 ∈ Un|Dn) → 1 with probability

tending to 1.
Let G̃(Υ∗

x0
(s)) = ∂G1

∂x1
(d2f∗(Υ∗

x0
(s))). To derive the rate, it suffices to show

the rate for

E0

[
sup

σ2∈Un

E
(
sup
x0,t

∣∣∣∫ t

0

G̃(Υ∗
x0
(s))(f (2,0) − f (2,0)∗)(Υ∗

x0
(s))ds

∣∣∣2∣∣∣Dn, σ
2
)]

(A.1)

decays as (n/ logn)(4−2α)/(1+2α), which then by Markov’s inequality yields the
desired posterior contraction rate. Notice that the posterior variance of f (2,0)(x)
does not depend on Dn, while its posterior mean A(2,0)Y + C(2,0)θ0 does not
depend on σ2. Also, in the posterior distribution conditional on σ2, we have

f (2,0)(x)−A(2,0)(x)Y −C(2,0)(x)θ0 = σb
(2,0)
J1,J2

T
(x)(BTB +Λ−1

0 )−1/2Z, where Z
is a J1J2 × 1 vector of standard normal random variables. Thus we can upper
bound the following

E0

[
sup

σ2∈Un

E
(
sup
x0,t

∣∣∣∫ t

0

G̃(Υ∗
x0
(s))(f (2,0) − f (2,0)∗)(Υ∗

x0
(s))ds

∣∣∣2∣∣∣Dn, σ
2
)]

� E0

[
sup

σ2∈Un

E
(
sup
x0,t

∣∣∣∫ t

0

G̃(Υ∗
x0
(s))(f (2,0) −A(2,0)Y −C(2,0)θ0)(Υ

∗
x0
(s))ds

∣∣∣2∣∣∣σ2
)]

+E0

[
sup
x0,t

∣∣∣∫ t

0

G̃(Υ∗
x0
(s))(A(2,0)Y +C(2,0)θ0 − f (2,0)∗)(Υ∗

x0
(s))ds

∣∣∣2]

� sup
σ2∈Un

σ2E0

(
sup
x0,t

∣∣∣∫ t

0

G̃(Υ∗
x0
(s))b

(2,0)
J1,J2

T
(Υ∗

x0
(s))ds(BTB+Λ− 1

0 )− 1/2Z
∣∣∣2)

(A.2)

+ sup
x0,t

∣∣∣∣
∫ t

0

G̃(Υ∗
x0
(s))(A(2,0)(Υ

∗
x0
(s))F ∗ +C(2,0)(Υ

∗
x0
(s))θ0 − f (2,0)∗(Υ∗

x0
(s)))ds

∣∣∣∣
2

(A.3)

+E0

(
sup
x0,t

∣∣∣∫ t

0

G̃(Υ∗
x0
(s))A(2,0)(Υ

∗
x0
(s))εds

∣∣∣2) . (A.4)

We shall tackle each of above three terms one by one. We let a(x0, t) =∫ t

0
G̃(Υ∗

x0
(s))b

(2,0)
J1,J2

(Υ∗
x0
(s))ds, where the integral is taken elementwise. Now con-

sider the first term (A.2). Define U1,n(x0, t) = a(x0, t)(B
TB+Λ−1

0 )−1/2Z which
is Gaussian. For fixed x0, t,

E[U1,n(x0, t)]
2 = a(x0, t)

T (BTB + Λ−1
0 )a(x0, t) � J2

n
‖a(x0, t)‖2 � J5

n
,
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where last step follows from Lemma A.5. Consider the two points (x0, t) and
(x̃0, t̃), where the distance

d((x0, t), (x̃0, t̃)) :=
√

Var(U1,n(x0, t)− U1,n(x̃0, t̃))

�
(
(a(x0, t)− a(x̃0, t̃))

T (BTB + Λ−1
0 )(a(x0, t)− a(x̃0, t̃))

)1/2

�
(J2

n

)1/2

‖a(x0, t)− a(x̃0, t̃)‖

�
(J7

n
(|t− t̃|+ ‖x0 − x̃0‖2)

)1/2

;

here the last line follows from Lemma A.5. Let d̃((x0, t), (x̃0, t̃)) := (|t − t̃| +
‖x0 − x̃0‖2)1/2. Thus d((x0, t), (x̃0, t̃)) � ρnd̃((x0, t), (x̃0, t̃)) for ρn = J7/2/n1/2.
By Lemma A.11 of Yoo and Ghosal [38], setting δn � 1/J there, we ob-

tain E
(
supx0,t[U1,n(x0, t)]

2
)

= O(J5 log n/n). Therefore, (A.2) is of order

(logn)J5/n.
For the term (A.4), let

U2,n(x0, t) =

∫ t

0

G̃(Υ∗
x0
(s))A(2,0)(Υ

∗
x0
(s))εds = a(x0, t)(B

TB + Λ−1
0 )−1BT ε.

Observe that for fix x0, t,

E[U2,n(x0, t)]
2 = σ2

0a(x0, t)
T (BTB + Λ−1

0 )−1BTB(BTB + Λ−1
0 )−1a(x0, t)

� σ2
0

J2

n

n

J2

J2

n
a(x0, t)

T a(x0, t)

� σ2
0

J5

n
.

Since ε is sub-Gaussian, U2,n(x0, t) is sub-Gaussian with mean 0 and variance

E[U2,n(x0, t)]
2. By the same argument, E

(
supx0,t[U2,n(x0, t)]

2
)
=O(J5 logn/n).

Therefore, (A.4) is of order (logn)J5/n.
Finally, for the term (A.3), in view of Lemma A.1, the term∣∣∣∣
∫ t

0

G̃(Υ∗
x0
(s))

(
A(2,0)(Υ

∗
x0
(s))F ∗ + C(2,0)(Υ

∗
x0
(s))θ0 − f (2,0)∗(Υ∗

x0
(s))

)
ds

∣∣∣∣
can be bounded by∣∣∣a(x0, t)

T (BTB + Λ−1
0 )−1

(
BT (F ∗ −Bθ∞) + Λ−1

0 (θ0 − θ∞)
)∣∣∣

+

∣∣∣∣
∫ t

0

G̃(Υ∗
x0
(s))

(
b
(2,0)
J1,J2

T
(Υ∗

x0
(s))θ∞ − f (2,0)∗(Υ∗

x0
(s))

)
ds

∣∣∣∣ .
The first term of the above expression is bounded by

‖a(x0, t)‖1‖(BTB + Λ−1
0 )−1‖(∞,∞)

×
(
‖BT (F ∗ −Bθ∞)‖∞ + ‖Λ−1

0 ‖(∞,∞)(‖θ0‖∞ + ‖θ∞‖∞)
)
.
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Note that ‖a(x0, t)‖1 � J2 by Lemma A.5. Since ‖(BTB + Λ−1
0 )−1‖(∞,∞) =

O(J2/n) and ‖BT (F ∗ −Bθ∞)‖∞ = O(nJ−2−α), this term is of order (J4/n) +
J2−α. The second term of the right hand side of above equation can be bounded
by the supremum of approximate error which is of order J2−α. Therefore, (A.3)
is of order J4((J4/n2) + J−2α).

Putting all the above terms together, (A.1) is of the order
(log n/n)J5 + J4((J4/n2) + J−2α). For J � (n/ logn)1/(1+2α), it becomes
(n/ log n)(4−2α)/(1+2α), which then completes the proof.

Proof of Lemma A.5. We shall consider only two separate cases (i) r = (2, 0)
and (ii) r = (1, 1).

(i). For r = (2, 0) (similarly for r = (0, 2)),

‖a(x0, t)‖1 =

J1∑
j1=1

J2∑
j2=1

∣∣∣∫ t

0

G̃1(s)B
′′
j1(Υ

∗
1,x0

(s))Bj2(Υ
∗
2,x0

(s))ds
∣∣∣

�
J1∑

j1=1

J2∑
j2=1

∫ t

0

|B′′
j1(Υ

∗
1,x0

(s))|Bj2(Υ
∗
2,x0

(s))ds

≤
J1∑
j1

∫ t

0

|B′′
j1(Υ

∗
1,x0

(s))|ds,

the last line follows by
∑J2

j2=1 Bj2(x2) = 1 and using the fact that B′′
j1,q1

(x) can
be expressed as

(q1 − 1)(q1 − 2)Bj1,q1−2(x)

(tj1 − tj1−q1+2)(tj1 − tj1−q1+1)
+

(q1 − 1)(q1 − 2)Bj1−1,q1−2(x)

(tj1−1 − tj1−q1+1)(tj1 − tj1−q1+1)

− (q1 − 1)(q1 − 2)Bj1−1,q1−2(x)

(tj1−1 − tj1−1−q1+2)(tj1−1 − tj1−q1)
+

(q1 − 1)(q1 − 2)Bj1−2,q1−2(x)

(tj1−2 − tj1−1−q1+1)(tj1−1 − tj1−q1)
,

which implies
∑J1

j1=1 |B′′
j1
(Υ∗

1,x0
(s))| � 4J2. Therefore, ‖a(x0, t)‖1 � J2.

Next, let Sj1 = [t1,j1−(q1−2), t1,j1 ], Sj2 = [t2,j2−q2 , t2,j2 ] and 1j1,j2(s) := 1{s :
Υ∗

x0
(s) ∈ Sj1 × Sj2}. Turn to ‖a(x0, t)‖2, which is

J1∑
j1=1

J2∑
j2=1

(∫ t

0

G̃1(s)B
′′
j1(Υ

∗
1,x0

(s))Bj2(Υ
∗
2,x0

(s))ds
)2

=

∫∫
G̃1(s)G̃1(s

′)

×
∑
j1,j2

(
B′′

j1(Υ
∗
1,x0

(s))Bj2(Υ
∗
2,x0

(s))B′′
j1(Υ

∗
1,x0

(s′))Bj2(Υ
∗
2,x0

(s′))
)
dsds′

�
∫∫ ∑

j1,j2

(
|B′′

j1(Υ
∗
1,x0

(s))|Bj2(Υ
∗
2,x0

(s))|B′′
j1(Υ

∗
1,x0

(s′))|Bj2(Υ
∗
2,x0

(s′))
)
dsds′
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=

∫∫ ∑
j1,j2

1j1,j2(s)1j1,j2(s
′)

×
(
|B′′

j1(Υ
∗
1,x0

(s))|Bj2(Υ
∗
2,x0

(s))|B′′
j1(Υ

∗
1,x0

(s′))|Bj2(Υ
∗
2,x0

(s′))
)
dsds′.

The last equality is obtained as follows. Since for any fix j1, j2, B
′′
j1
(·) is sup-

ported on Sj1 and Bj2(·) is supported on Sj2 . So 1j1,j2(s)1j1,j2(s
′) = 1{(s, s′) :

Υ∗
x0
(s) ∈ Sj1 × Sj2 and Υ∗

x0
(s′) ∈ Sj1 × Sj2}. Notice that for n large, |Sj1 | �

|Sj2 | � J−1 and Υ∗
x0
(s) ∈ Sj1 × Sj2 and Υ∗

x0
(s′) ∈ Sj1 × Sj2 implies that

‖Υ∗
x0
(s)−Υ∗

x0
(s′)‖ � J−1. By Assumption (A5), CG |s− s′| ≤ |s− s′‖(Υ∗

x0
(s)−

Υ∗
x0
(s′))/(s−s′)‖ � J−1, and hence |s−s′| � J−1. Therefore, for n large enough,

above quantity can be further bounded by a constant multiple of∫∫ ∑
j1,j2

1{|s− s′| < CJ−1}

×
(
|B′′

j1(Υ
∗
1,x0

(s))|Bj2(Υ
∗
2,x0

(s))|B′′
j1(Υ

∗
1,x0

(s′))|Bj2(Υ
∗
2,x0

(s′))
)
dsds′.

Noting Bj2(x2) ≤ 1 and
∑J2

j2=1 Bj2 = 1, it can be further bounded by∫∫ ∑
j1,j2

1{|s− s′| < CJ−1}
(
|B′′

j1(Υ
∗
1,x0

(s))|Bj2(Υ
∗
2,x0

(s))|B′′
j1(Υ

∗
1,x0

(s′))|
)
dsds′

�
∫∫ J1∑

j1

1{|s− s′| < CJ−1}
(
|B′′

j1(Υ
∗
1,x0

(s))B′′
j1(Υ

∗
1,x0

(s′))|
)
dsds′

� J2J−1

∫ t

0

J1∑
j1=1

|B′′
j1(Υ

∗
1,x0

(s))|ds.

From argument used in bounding ‖a(x0, t)‖1, we have
∑J1

j1=1 |B′′
j1
(Υ∗

1,x0
(s))| �

J2. This completes the proof for ‖a(x0, t)‖2 � J3.
For the third result, we write

‖a(x0, t)− a(x̃0, t̃)‖2 � ‖a1(x0, t, t̃)‖2 + ‖a2(t̃, x0, x̃0)‖2,

where

a1(x0, t, t̃) :=

∫ t

0

G̃(Υ∗
x0
(s))b

(2,0)
J1,J2

(Υ∗
x0
(s))ds−

∫ t̃

0

G̃(Υ∗
x0
(s))b

(2,0)
J1,J2

(Υ∗
x0
(s))ds,

and

a2(t̃, x0, x̃0) :=

∫ t̃

0

G̃(Υ∗
x0
(s))b

(2,0)
J1,J2

(Υ∗
x0
(s))ds−

∫ t̃

0

G̃(Υ∗
x̃0
(s))b

(2,0)
J1,J2

(Υ∗
x̃0
(s))ds.

First, note that

‖a1(x0, t, t̃)‖2 =

J1∑
j1=1

J2∑
j2=1

(∫ t

t̃

G̃(Υ∗
x0
(s))B′′

j1(Υ
∗
1,x0

(s))Bj2(Υ
∗
2,x0

(s))ds

)2
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� J2J−1

∫ t̃

t

(4J2)ds

= J3|t− t̃|,

where the second line follows by a similar argument used to bound ‖a(x0, t)‖2.
Next, ‖a2(t̃, x0, x̃0)‖2 is given by

J1∑
j1=1

J2∑
j2=1

[∫ t̃

0

(
G̃(Υ∗

x0
(s))B′′

j1(Υ
∗
1,x0

(s))Bj2(Υ
∗
2,x0

(s))

− G̃(Υ∗
x̃0
(s))B′′

j1(Υ
∗
1,x̃0

(s))Bj2(Υ
∗
2,x̃0

(s))ds
)]2

,

which is bounded (up to a constant multiple) by

∑
j1,j2

(∫ t̃

0

G̃(Υ∗
x0
(s))

(
B′′

j1(Υ
∗
1,x0

(s))−B′′
j1(Υ

∗
1,x̃0

(s))
)
Bj2(Υ

∗
2,x0

(s))ds
)2

+
∑
j1,j2

(∫ t̃

0

G̃(Υ∗
x0
(s))

(
Bj2(Υ

∗
2,x0

(s))−Bj2(Υ
∗
2,x̃0

(s))
)
B′′

j1(Υ
∗
1,x̃0

(s))ds
)2

+
∑
j1,j2

(∫ t̃

0

(
G̃(Υ∗

x0
(s))− G̃(Υ∗

x̃0
(s))

)
B′′

j1(Υ
∗
1,x̃0

(s))Bj2(Υ
∗
2,x̃0

(s))ds
)2

.

Bound the first term in the right hand side of above expression as

∑
j1,j2

(∫ t̃

0

G̃(Υ∗
x0
(s))

(
B′′

j1(Υ
∗
1,x0

(s))−B′′
j1(Υ

∗
1,x̃0

(s))
)
Bj2(Υ

∗
2,x0

(s))ds
)2

�
∑
j1,j2

(∫ t̃

0

|G̃(Υ∗
x0
(s))||B′′′

j1 (Υ
∗
1,x0

(s))||Υ∗
1,x0

(s)−Υ∗
1,x̃0

(s)|Bj2(Υ
∗
2,x0

(s))ds
)2

�‖x0 − x̃0‖2
∑
j1,j2

(∫ t̃

0

|G̃(Υ∗
x0
(s))||B′′′

j1 (Υ
∗
1,x0

(s))|Bj2(Υ
∗
2,x0

(s))ds
)2

�‖x0 − x̃0‖2J2

∫ t̃

0

|B′′′
j1 (Υ

∗
1,x0

(s))|ds

�‖x0 − x̃0‖2J5.

The second term is bounded as

J1∑
j1=1

J2∑
j2=1

(∫ t̃

0

G̃(Υ∗
x0
(s))

(
Bj2(Υ

∗
2,x0

(s))−Bj2(Υ
∗
2,x̃0

(s))
)
B′′

j1(Υ
∗
1,x̃0

(s))ds
)2

�
∑
j1,j2

(∫ t̃

0

|G̃(Υ∗
x0
(s))||Υ∗

2,x0
(s)−Υ∗

2,x̃0
(s)||B′

j2(Υ
∗
2,x̃0

(s))||B′′
j1(Υ

∗
1,x̃0

(s))|
)2
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�‖x− x̃0‖2
∑
j1,j2

(∫ t̃

0

|G̃(Υ∗
x0
(s))||B′

j2(Υ
∗
2,x̃0

(s))||B′′
j1(Υ

∗
1,x̃0

(s))|
)2

�‖x− x̃0‖2
∫ t̃

0

1{|s− s′| ≤ CJ−1}

×
∑
j1,j2

|B′
j2(Υ

∗
2,x̃0

(s))||B′′
j1(Υ

∗
1,x̃0

(s))||B′
j2(Υ

∗
2,x̃0

(s′))||B′′
j1(Υ

∗
1,x̃0

(s′))|dsds′

�‖x− x̃0‖2
∫ t̃

0

1{|s− s′| ≤ CJ−1}J2
J1∑

j1=1

|B′′
j1(Υ

∗
1,x̃0

(s))||B′′
j1(Υ

∗
1,x̃0

(s′))|dsds′

�J5‖x0 − x̃0‖2,

where the second line follows from the mean value theorem, the third line from
the Lipschitz continuity of Υ∗

x0
in x0 (Remark A.1) whereas fourth line follows

by a similar argument used to bound ‖a(x, t)‖2. The third term

J1∑
j1=1

J2∑
j2=1

(∫ t̃

0

(
G̃(Υ∗

x0
(s))− G̃(Υ∗

x̃0
(s))

)
B′′

j1(Υ
∗
1,x̃0

(s))Bj2(Υ
∗
2,x̃0

(s))ds
)2

�
∑
j1,j2

∫ t̃

0

(
‖Υ∗

x0
(s)−Υ∗

x̃0
(s)‖B′′

j1(Υ
∗
1,x̃0

(s))Bj2(Υ
∗
2,x̃0

(s))ds
)2

�‖x0 − x̃0‖2
∑
j1,j2

(∫ t̃

0

|B′′
j1(Υ

∗
1,x̃0

(s))|Bj2(Υ
∗
2,x̃0

(s))ds
)2

�‖x0 − x̃0‖2J3,

where the second line holds by mean value theorem and the third line holds due
to Lipschitz continuity of Υ∗

x0
in x0 (Remark A.1) and last line holds by similar

argument for ‖a(x0, t)‖2.
In summary, we have that ‖a2(t̃, x0, x̃0)‖2 � J5‖x0−x̃0‖2 and ‖a1(x0, t, t̃)‖2 �

J3|t− t̃|.

(ii). Now turning to the case r = (1, 1). By similar argument we have

‖a(x0, t)‖1 =

J1∑
j1=1

J2∑
j2=1

∣∣∣∫ t

0

G̃1(s)B
′
j1(Υ

∗
1,x0

(s))B′
j2(Υ

∗
2,x0

(s))ds
∣∣∣

�
J1∑

j1=1

J2∑
j2=1

∫ t

0

|B′
j1(Υ

∗
1,x0

(s))‖B′
j2(Υ

∗
2,x0

(s))|ds

≤ J

J1∑
j1=1

∫ t

0

|B′
j1(Υ

∗
1,x0

(s))|ds � J2
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Likewise, ‖a(x0, t)‖2 =
∑J1

j1=1

∑J2

j2=1

(∫ t

0
G̃1(s)B

′
j1
(Υ∗

1,x0
(s))B′

j2
(Υ∗

2,x0
(s))ds

)2

can be bounded by

∫∫ J1∑
j1=1

J2∑
j2=1

1{|s− s′| < CJ−1}

×
(
|B′

j1(Υ
∗
1,x0

(s))B′
j2(Υ

∗
2,x0

(s))B′
j1(Υ

∗
1,x0

(s′))B′
j2(Υ

∗
2,x0

(s′))|
)
dsds′,

which can be further bounded as

J

∫∫ ∑
j1,j2

1{|s− s′| < CJ−1}

×
(
|B′

j1(Υ
∗
1,x0

(s))‖B′
j2(Υ

∗
2,x0

(s))‖B′
j1(Υ

∗
1,x0

(s′))|
)
dsds′

� J2

∫∫ J1∑
j1=1

1{|s− s′| < CJ−1}
(
|B′

j1(Υ
∗
1,x0

(s))B′
j1(Υ

∗
1,x0

(s′))|
)
dsds′

� J3

∫∫
1{|s− s′| < CJ−1}

J1∑
j1

(
|B′

j1(Υ
∗
1,x0

(s))|
)
dsds′

� J3J−1

∫ t

0

J1∑
j1=1

|B′
j1(Υ

∗
1,x0

(s))|ds

� J3.

The third result ‖a1(x0, t, t̃)‖2 � J3|t − t̃| and ‖a2(t̃, x, x̃0)‖2 � J5‖x0 − x̃0‖2
can be derived in a similar manner, since

‖a1(x0, t, t̃)‖2 =

J1∑
j1=1

J2∑
j2=1

(∫ t

t̃

G̃(Υ∗
x0
(s))B′

j1(Υ
∗
1,x0

(s))B′
j2(Υ

∗
2,x0

(s))ds

)2

� J2J−1

∫ t̃

t

(4J2)ds

= J3|t− t̃|,

where the second line follows by a similar argument used in bounding ‖a(x0, t)‖2.
Next, to bound ‖a2(t̃, x0, x̃0)‖2, we need to estimate the following three terms

J1∑
j1=1

J2∑
j2=1

(∫ t̃

0

G̃(Υ∗
x0
(s))

(
B′

j1(Υ
∗
1,x0

(s))−B′
j1(Υ

∗
1,x̃0

(s))
)
B′

j2(Υ
∗
2,x0

(s))ds
)2

,

J1∑
j1=1

J2∑
j2=1

(∫ t̃

0

G̃(Υ∗
x0
(s))

(
B′

j2(Υ
∗
2,x0

(s))−B′
j2(Υ

∗
2,x̃0

(s))
)
B′

j1(Υ
∗
1,x̃0

(s))ds
)2

,

J1∑
j1=1

J2∑
j2=1

(∫ t̃

0

(
G̃(Υ∗

x0
(s))− G̃(Υ∗

x̃0
(s))

)
B′

j1(Υ
∗
1,x̃0

(s))B′
j2(Υ

∗
2,x̃0

(s))ds
)2

.
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This can be done by similar argument used for the case r = (2, 0) and we omit
the details.

Proof of Proposition 5.2 . We will first sketch a proof for that for any ε > 0
sufficiently small,

Π( sup
x0∈G

|t∗x0
− tx0 | > ε|Dn)

P0−−→ 0.

Recall that t∗x0
= argmin{|t| ≥ 0 : 〈∇f∗(Υ∗

x0
(t)), V ∗(Υ∗

x0
(t))〉 = 0, λ∗(Υ∗

x0
(t)) <

0}. Without loss of generality, we assume t∗x0
is nonnegative. Let Cx0 = {t ∈

[0, t∗x0
− ε] : 〈∇f∗(Υ∗

x0
(t)), V ∗(Υ∗

x0
(t))〉 = 0}. Note that it suffices to show the

following set of assertions hold with posterior probabilities going to 1,

(1) infx0∈G,t∈Cx0
λ(Υx0(t)) > 0,

(2) infx0∈G,t∈[0,t∗x0
−ε]\Cx0

|∇f(Υx0(t)), V (Υx0(t))〉| > 0,

(3) supx0∈G,t∈[t∗x0
−ε,t∗x0

+ε] λ(Υx0(t)) < 0,

(4) For all x0 ∈ G, there exists t̃x0 ∈ [t∗x0
− ε, t∗x0

+ ε] such that

∇f(Υx0(t̃x0)), V (Υx0(t̃x0))〉 = 0.

When Cx0 is empty, we can omit condition (1). By invoking the arguments
similar to that in the proof of Proposition A.1 of Qiao and Polonik [30], with
P0-probability tending to one, the above assertions hold with high posterior
probability.

Now we are ready to establish the contraction rate. The proof of the bounds
needed to establish this one is similar to that of Proposition 5.1 of Qiao and
Polonik [30]. Let DΥx0 ,V

f(t) := ∇f(Υx0(t))
TV (Υx0(t)) and

D2
Υx0 ,V

f(t) := 〈∇〈∇f(Υx0(t)), V (Υx0(t))〉, V (Υx0(t))〉
= ∇f(Υx0(t))

T∇V (Υx0(t))V (Υx0(t)) + V (Υx0(t))
THf(Υx0(t))V (Υx0(t)).

We have for some t̃ between tx0 and t∗x0
,

0 = DΥx0 ,V
f(tx0) = DΥx0 ,V

f(t∗x0
) +D2

Υx0 ,V
f(t̃)(t̃− t∗x0

).

We claim that

Π( inf
x0∈G

|D2
Υx0 ,V

f(t̃)| > η|Dn)
P0−−→ 0.

Since

sup
x0∈G

∣∣∣D2
Υx0 ,V

f(t̃)−D2
Υ∗

x0
,V ∗f∗(t∗x0

)
∣∣∣≥ ∣∣∣ inf

x0∈G
|D2

Υx0 ,V
f(t̃)|− inf

x0∈G
|D2

Υ∗
x0

,V ∗f∗(t∗x0
)|

∣∣∣
and by Assumption (A3), infx0∈G |D2

Υ∗
x0

,V ∗f∗(t∗x0
)| ≥ η, it suffices to show that

with P0-probability tending to 1, supx∈G

∣∣∣D2
Υx0 ,V

f(t̃)−D2
Υ∗

x0
,V ∗f∗(t∗x0

)
∣∣∣ is small
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with high posterior probability. To see this, we write

sup
x0

∣∣∣D2
Υx0 ,V

f(t̃)−D2
Υ∗

x0
,V ∗f∗(t∗x0

)
∣∣∣ ≤ sup

x0

∣∣∣D2
Υx0 ,V

f(t̃)−D2
Υ∗

x0
,V ∗f∗(t̃)

∣∣∣
+sup

x0

∣∣∣D2
Υ∗

x0
,V ∗f∗(t̃)−D2

Υ∗
x0

,V ∗f∗(t∗x0
)
∣∣∣.

The first term contracts to zero, simply due to the uniform contraction results
for ∇f(x), V (x), ∇V (x), Hf(x) (Lemma A.2) and for Υx0 (Theorem 5.1). The
second term contracts to zero, since Υ∗

x0
(t) is continuous in t and∇f∗(x), V ∗(x),

∇V ∗(x), Hf∗(x) are uniform continuous.

Also, supx0
|DΥx0 ,V

f(t∗x0
)| = supx0

|DΥx0 ,V
f(t∗x0

) − DΥ∗
x0

,V ∗f(t∗x0
)| is given

by

sup
x0

∣∣〈∇f(Υx0(t
∗
x0
))−∇f∗(Υ∗

x0
(t∗x0

)), V (Υx0(t
∗
x0
))− V ∗(Υ∗

x0
(t∗x0

))〉
∣∣

+sup
x0

∣∣〈∇f(Υx0(t
∗
x0
))−∇f∗(Υ∗

x0
(t∗x0

)), V ∗(Υ∗
x0
(t∗x0

))〉
∣∣

+sup
x0

∣∣〈∇f∗(Υ∗
x0
(t∗x0

)), V (Υx0(t
∗
x0
))− V ∗(Υ∗

x0
(t∗x0

))〉
∣∣ .

Now since

sup
x0

|tx0 − t∗x0
| ≤ 1

infx0 D
2
Υx0 ,V

f(t̃)
sup
x0

|DΥx0 ,V
f(t∗x0

)|,

we have

sup
x0∈G

|t∗x0
− tx0 | � sup

x0∈G

(
‖∇f(Υx0(t

∗
x0
))−∇f∗(Υ∗

x0
(t∗x0

))‖
)
sup
x0∈G

‖V ∗(Υ∗
x0
(t∗x0

))‖

+ sup
x0∈G

(
‖V (Υx0(t

∗
x0
))− V ∗(Υ∗

x0
(t∗x0

))‖
)
sup
x0∈G

‖∇f∗(Υ∗
x0
(t∗x0

))‖.

It is easy to see that

sup
x0∈G

‖∇f(Υx0(t
∗
x0
))−∇f∗(Υ∗

x0
(t∗x0

))‖

� sup
x0∈G

‖∇f(x)−∇f∗(x)‖+ sup
x0∈G

sup
t∈[0,T∗

x0
]

‖Υx0(t)−Υ∗
x0
(t)‖,

sup
x0∈G

‖V (Υx0(t
∗
x0
))− V ∗(Υ∗

x0
(t∗x0

))‖

� sup
x0∈G

‖V (x)− V ∗(x)‖+ sup
x0∈G

sup
t∈[0,T∗

x0
]

‖Υx0(t)−Υ∗
x0
(t)‖.

With the choice of J � (n/ logn)1/(1+2α), by Lemma A.2, supx ‖∇f(x) −
∇f∗(x)‖ has posterior contraction rate of order (n/ log n)(3−2α)/(2(1+2α)), while
supx ‖V (x)−V ∗(x)‖ has that of order (n/ log n)(5−2α)/(2(1+2α)). Therefore, con-
sidering the rate from Theorem 5.1, we have the desired result.
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Proof of Theorem 5.3 . One can write

Υx0(tx0)−Υ∗
x0
(t∗x0

) = Υx0(tx0)−Υx0(t
∗
x0
) + Υx0(t

∗
x0
)−Υ∗

x0
(t∗x0

)

= V (Υx0(t̃x0))(tx0 − t∗x0
) + Υx0(t

∗
x0
)−Υ∗

x0
(t∗x0

)

= V ∗(Υ∗
x0
(t∗x0

))(tx0 − t∗x0
) + Υx0(t

∗
x0
)−Υ∗

x0
(t∗x0

)

+ (V (Υx0(t̃x0))− V ∗(Υ∗
x0
(t∗x0

)))(tx0 − t∗x0
),

for t̃x0 between tx0 and t∗x0
. Therefore,

sup
x0∈G

‖Υx0(tx0)−Υ∗
x0
(t∗x0

)‖ � sup
x0∈G

‖Υx0(t
∗
x0
)−Υ∗

x0
(t∗x0

)‖

+ sup
x0∈G

|tx0 − t∗x0
|
(
1 + sup

x0∈G
‖V (Υx0(t̃x0))− V ∗(Υ∗

x0
(t∗x0

))‖
)
.

In view of the posterior contraction of V (Lemma A.2), Theorem 5.1 and Propo-
sition 5.2, the posterior of supx0∈G ‖V (Υx0(t̃x0)) − V ∗(Υ∗

x0
(t∗x0

))‖ contracts to
zero.

Since

sup
x0∈G

‖Υx0(tx0)−Υ∗
x0
(t∗x0

)‖ � sup
x0∈G

|tx0 − t∗x0
|+ sup

x0∈G
‖Υx0(t

∗
x0
)−Υ∗

x0
(t∗x0

)‖,

by Theorem 5.1 and Proposition 5.2, we establish the posterior contraction rate
for supx0∈G ‖Υx0(tx0)−Υ∗

x0
(t∗x0

)‖.

Proof of Proposition 5.6. Consider (A2) for (i). Note that

λ(Υx0(tx0))− λ∗(Υ∗
x0
(t∗x0

))

= V (Υx0(tx0))
THf(Υx0(tx0))V (Υx0(tx0))

− V ∗(Υ∗
x0
(t∗x0

))THf∗(Υ∗
x0
(t∗x0

))V ∗(Υ∗
x0
(t∗x0

)).

Thus by the posterior uniform contraction and uniform continuity of V , Hf
(Lemma A.2) and the uniform contraction of Υx0(tx0) (Theorem 5.3) over x0,
with P0-probability tending to 1, clearly condition (A2) holds with high poste-
rior probability. Condition (A3) trivially holds by the same uniform contraction
results and noting that

〈∇〈∇f(Υx0(tx0)), V (Υx0(tx0))〉, V (Υx0(tx0))〉
= ∇f(Υx0(tx0))

T∇V (Υx0(tx0))V (Υx0(tx0))

+ V (Υx0(tx0))
THf(Υx0(tx0))V (Υx0(tx0)).

The compactness follows trivially by the continuity of λ(x) and 〈∇f(x), V (x)〉
and the fact that intersection of closed sets is closed and the boundedness of
[0, 1]2. Turning to Condition (A5): fix any x0 ∈ G and any u, s such that t∗x0

−
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a∗ ≤ s < u ≤ t∗x0
+ a∗, ‖Υx0(u)−Υx0(s)‖/(u− s) can be lower bounded as

1

u− s

∥∥∥(
Υx0(u)−Υ∗

x0
(u)

)
−

(
Υx0(s)−Υ∗

x0
(s)

)
+Υ∗

x0
(u)−Υ∗

x0
(s)

∥∥∥
≥ 1

u− s

∥∥∥Υ∗
x0
(u)−Υ∗

x0
(s)

∥∥∥ − 1

u− s

∥∥∥(
Υx0(u)−Υ∗

x0
(u)

)
−

(
Υx0(s)−Υ∗

x0
(s)

)∥∥∥,
≥ CG − ε,

for ε > 0 arbitrarily small, due to the contraction result in Theorem 5.1. Finally,
in view of Lemma A.4 and Theorem 5.4, (ii) holds by similar argument.

Proof of Lemma 5.7 . Let x0 be an arbitrary point on L̂. Thus Υx0(0) = x0 ∈
L̂. Suppose Υx0(tx0) ∈ L for some tx0 �= 0. Such tx0 exists in view of the
assumptions of the lemma and the Remark A.1 (1). If tx0 = 0, then the upper
bound holds trivially. Note that infy∈L ‖x0 − y‖ ≤ ‖Υx0(0)−Υx0(tx0)‖ ≤ |tx0 |
as ‖V (x)‖ = 1. Let DΥx0 ,V

f(t) := d
dtf(Υx0(t)) = ∇f(Υx0(t))

TV (Υx0(t)) and

D2
Υx0 ,V

f(t) := 〈∇〈∇f(Υx0(t)), V (Υx0(t))〉, V (Υx0(t))〉
= ∇f(Υx0(t))

T∇V (Υx0(t))V (Υx0(t))

+ V (Υx0(t))
THf(Υx0(t))V (Υx0(t)),

where the second equality is due to the chain rule. A Taylor expansion yields
that

DΥx0 ,V
f(t)−DΥx0 ,V

f(tx0) =
(
t− tx0

)
D2

Υx0 ,V
f(t̃)

for some t̃ between 0 and tx0 . In particular, since DΥx0 ,V
f(tx0) = 0, letting

t = 0, we obtain

DΥx0 ,V
f(0) = −tx0D

2
Υx0 ,V

f(t̃).

Furthermore,

|DΥx0 ,V
f(0)| = |DΥx0 ,V

f(0)−DΥx0 ,V̂
f̂(0)|

= |∇f(Υx0(0))
TV (Υx0(0))−∇f̂(Υx0(0))

T V̂ (Υx0(0))|
≤ sup

x
|∇f(x)TV (x)−∇f̂(x)T V̂ (x)|

≤ sup
x

|∇f(x)T (V (x)− V̂ (x))|+ sup
x

|(∇f(x)−∇f̂(x))T V̂ (x))|

≤ c0(sup
x

‖V (x)− V̂ (x)‖+ sup
x

‖∇f(x)−∇f̂(x)‖)

≤ c0 sup
x

‖V (x)− V̂ (x)‖,

where c0 = (supx ‖∇f(x)‖) ∨ 1 (recalling ‖V ‖ = 1). By the uniform continuity
of ∇f(x), ∇V (x), V (x) and Hf(x) and the continuity of Υx0(t) in t, without
loss of generality, we can make |tx0 | small enough (see comments in the end of
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the proof). Thus we have∣∣∣D2
Υx0 ,V

f(t̃)−D2
Υx0 ,V

f(tx0)
∣∣∣ < η/2.

By Assumption (A3),
∣∣∣D2

Υx0 ,V
f(tx0)

∣∣∣ > η, and hence∣∣∣D2
Υx0 ,V

f(t̃)
∣∣∣ ≥ ∣∣∣D2

Υx0 ,V
f(tx0)

∣∣∣ − ∣∣∣D2
Υx0 ,V

f(t̃)−D2
Υx0 ,V

f(tx0)
∣∣∣ > η/2.

Therefore, infy∈L ‖x0 − y‖ ≤ |tx0 | ≤ 2c0
η supx ‖V (x) − V̂ (x)‖. Thus d(L̂|L) ≤

2c0
η supx ‖V (x) − V̂ (x)‖. Similarly, d(L|L̂) ≤ 2c̃0

η supx ‖V (x) − V̂ (x)‖ for some

fixed constant c̃0 > 0. Therefore, Haus(L, L̂) ≤ c
η supx∈[0,1]2 ‖V (x) − V̂ (x)‖ for

some fixed constant c > 0. In principle, we can use different η in Assumption
(A3) for f and f̂ . For clarity, we use the same η. Allowing different constants
do not change the final conclusion. Recall that V (x) = G(df2(x)). Now since G
is a fixed Lipschitz continuous function, it is easy to get the upper bound for
supx∈[0,1]2 ‖V (x)− V̂ (x)‖ in terms of the supremum distance of the derivatives

of f(x)− f̂(x). Indeed, since√
(w1 − u1)2 + 4v21 −

√
(w2 − u2)2 + 4v22 ≤ |u1 − u2|+ |w1 − w2|+ 2|v1 − v2|,

applying cr-inequality, one can get

sup
x∈[0,1]2

‖V (x)− V̂ (x)‖ ≤
√
60 sup

x∈[0,1]2
|f (2,0)(x)− f̂ (2,0)(x)|

+
√
60 sup

x∈[0,1]2
|f (1,1)(x)− f̂ (1,1)(x)|

+
√
216 sup

x∈[0,1]2
|f (0,2)(x)− f̂ (0,2)(x)|.

At last, |tx0 | can be made arbitrarily small. To see this, if Assumption (A5) holds
for the f (or more precisely, Υx0), then ‖Υx0(tx0) − Υ̂x0(t̂x0)‖ = ‖Υx0(tx0) −
x0‖ = ‖Υx0(tx0)−Υx0(0)‖ > CG |tx0 |. Since ‖Υ̂x0(t̂x0)−Υx0(tx0)‖ can be made
arbitrarily small due to being close in supremum norm over x0 (see previous

theorems; for instance, Theorem 5.3, if here f̂ is taken as f from posterior
samples, f as the truth f∗), |tx0 | can be made arbitrarily small. This completes
the proof.

Proof of Theorem 5.9. For γ < 1/2, by argument in the proof of Theorem of 5.3
of Yoo and Ghosal [38], one can establish that, for r ∈ R = {(2, 0), (1, 1), (0, 2)},

Rn,r,γ � E
(
‖f (r) − f̃ (r)‖∞|Dn

)
,

R2
n,r,γ � (log n/n)J6 � (logn/n)(α−2)/(α+1).

Recall from (3.2), Π(f (r)|Dn) ∼ GP(f̃ (r), σ̂2Σr). By Borell’s inequality (see
Proposition A.2.1 of Van der Vaart and Wellner [36]),

Π(L /∈ CL|Dn) ≤ Π(L corresponds to f /∈ Cρ
f,r,γ for some r ∈ R|Dn)
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≤
∑
r∈R

Π(‖f (r) − f̃ (r)‖∞ > ρRn,r,γ |Dn)

≤ 3max
r∈R

exp[−c2R2
n,r,γ/cn,r],

for some constant c > 0 and cn,r = supx var(f
(r)(x) − f̃ (r)(x)|Dn), which is

bounded by a constant multiple of supx Σr(x, x). But then it can be further
bounded by

sup
x

‖b(r)J1,J2
(x)‖2‖(BTB + Λ−1

0 )−1‖(2,2) � (logn)−3/(α+1)n(2−α)/(α+1).

Therefore, the above posterior probability tends to zero. Finally, by Lemma
A.4 and noting that Rn,r,γ is at least as big as δn,2,J with high probability,

P0(L∗ ∈ CL) = P0(‖f∗(r) − f̃ (r)‖∞ ≤ ρRn,r,γ , ∀r ∈ R) → 1, establishing the
coverage of CL.

To see CL ⊂ C̄L, for any L ∈ CL, it is induced by some f such that ‖f (r) −
f̃ (r)‖∞ ≤ ρmaxr∈R Rn,r,γ . In view of the discussion in the beginning of this
section and Proposition 5.6, since Lemma 5.7 holds with P0-probability tending
to 1 with L being the filament in posterior and L̂ being the filament induced by
the posterior mean f̃ , the result immediately follows.
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[28] Novikov, D., Colombi, S. and Doré, O. (2006). Skeleton as a probe of the
cosmic web: the two-dimensional case, Monthly Notices of the Royal Astro-
nomical Society 366(4): 1201–1216.

[29] Ozertem, U. and Erdogmus, D. (2011). Locally defined principal curves
and surfaces, Journal of Machine Learning Research 12(4): 1249–1286.
MR2804600

[30] Qiao, W. and Polonik, W. (2016). Theoretical analysis of nonparametric fil-
ament estimation, The Annals of Statistics 44(3): 1269–1297. MR3485960

[31] Ray, K. (2017). Adaptive Bernstein–von Mises theorems in Gaussian white
noise, The Annals of Statistics 45(6): 2511–2536. MR3737900

[32] Schumaker, L. (2007). Spline Functions: Basic Theory, Cambridge Univer-
sity Press. MR2348176

[33] Shoung, J.-M. and Zhang, C.-H. (2001). Least squares estimators of the
mode of a unimodal regression function, Annals of Statistics 29: 648–665.
MR1865335
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