
Electronic Journal of Statistics
Vol. 14 (2020) 1611–1647
ISSN: 1935-7524
https://doi.org/10.1214/20-EJS1697

Random distributions via Sequential

Quantile Array

Annalisa Fabretti and Samantha Leorato

Department of Economics and Finance
University of Rome Tor Vergata

e-mail: annalisa.fabretti@uniroma2.it

Department of Economics, Management, and Quantitative Methods
University of Milan

e-mail: samantha.leorato@unimi.it

Abstract: We propose a method to generate random distributions with
known quantile distribution, or, more generally, with known distribution
for some form of generalized quantile. The method takes inspiration from
the random Sequential Barycenter Array distributions (SBA) proposed by
Hill and Monticino (1998) which generates a Random Probability Measure
(RPM) with known expected value. We define the Sequential Quantile Ar-
ray (SQA) and show how to generate a random SQA from which we can
derive RPMs. The distribution of the generated SQA-RPM can have full
support and the RPMs can be both discrete, continuous and differentiable.
We face also the problem of the efficient implementation of the procedure
that ensures that the approximation of the SQA-RPM by a finite number of
steps stays close to the SQA-RPM obtained theoretically by the procedure.
Finally, we compare SQA-RPMs with similar approaches as Polya Tree.
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1. Introduction

Random probability measures (RPM) find their applications in several different
fields, such as statistics, mathematical finance, stochastic processes.

In nonparametric Bayesian statistics, for example, the construction of ran-
dom probability distributions permits to draw a prior at random from the space
of probability measures. In this context, the Dirichlet process (DP) model repre-
sents a rather common choice despite being only able to generate discrete distri-
butions with probability one (see [12] and [13] for a review on the topic). Several
generalizations of the Dirichlet processes have been proposed, among which we
can mention the wider class of the Stick-breaking priors ([19]). Methods that
permit to generate continuous prior distributions have also been studied: for
example the Polya Tree models (including DP as particular cases) and Bern-
stein processes (see [26] for a more detailed review on RPM used in Bayesian
data analysis). A method to produce RPM with given mean is proposed by [17],
while [4] studied a method to construct RPM with given mean and variance.

RPM also occur in some stochastic processes describing mass in space ([25]
and references therein) or in random dynamical systems ([9]). In particular,
random dynamical systems are defined through a random measurable map
ϕ : T × Ω×X �→ T × Ω×X that, for all (t, ω) ∈ T × Ω maps Borel measures
on X into a random Borel measure on X. RPM can be used to generate scenar-
ios on which taking decisions under uncertainty or ambiguity. For example, [25]
suggests that RPM may be used to solve a random optimal stopping problem.

Inspired by the Sequential Barycenter Array distributions (SBA) of [17], in
this paper we propose an alternative to the SBA procedure, which we denote
as the Sequential Quantile Array (SQA), that allows to construct random dis-
tribution functions with the τ -quantile following a given distribution (for some
τ ∈ (0, 1)). For example in finance, this method can be used to generate random
probability measures whose associated Value at Risk (VaR), that is a risk mea-
sure largely used, follows a specified distribution. Moreover, by exploiting their
link with the quantiles, it is possible to generate RPMs with specified distribu-
tion for alternative risk measures based on the general notion of M -quantiles
defined by [5]. The expectiles belong to the family of M -quantiles, and might be
seen as a generalization of the expectation, because in particular the expectile
of level τ = 1/2 coincides with the mean. In this sense, our method can be seen
as a possible way to broaden the principle behind the work of [17]. We note that
[6] simulate RPMs with a specified value of a certain risk measure (they focus
in particular on the VaR and the expected shortfall (ES)). However, except for
a common interest in controlling for quantiles of RPMs, our work is different
from [6] in all respects. In fact, we construct a new procedure for the genera-
tion of RPMs, that allows for the chosen quantile to have a given distribution
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λ1, which needs not be concentrated on a constant as in [6]. Further, we study
the properties of the random distributions generated through our procedure,
by assessing conditions allowing for continuity, full support and differentiability
of the RPMs. Conversely, their approach to the problem is purely algorithmic
and is based on an ad-hoc transformation of a realized RPM obtained from the
implementation of either [11], [15] or [17] procedures.

The paper is organized as follows: in Section 2, we present the notion of Se-
quential Quantile Array and we show that it shares most of the properties of the
SBA. Section 2.2 focuses in particular on the case when the base measure gen-
erating the SQA sequence is discrete. In Section 3 we describe how to construct
SQA-RPM and study their properties, namely we study conditions for conti-
nuity, differentiability and full support. Moreover, we show that the SQA-RPM
behaves differently from the SBA-RPM, because it can produce families of dis-
tributions that include both discrete and continuous distributions with positive
probability. In Section 3 we also present a stopping rule and a truncation al-
gorithm for computational issues relative to the efficient implementation of the
procedure. In this regard, we prove that the approximated probability measure
obtained by truncation is in a γ-neighborhood relative to strong topologies of
the true SQA-RPM with probability arbitrarily close to one. Section 4 discusses
how the SQA-RPM can be used to obtain a distribution with prescribed gen-
eralized forms of quantiles and we describe how to generalize the procedure for
two quantiles and to generate random distributions with unbounded support.
Section 5 presents some simulations of RPM and we consider also the compar-
ison of SQA-RPM to other methods proposed in the literature, such as Polya
trees and quantile pyramids. The latter, proposed by [18], is based on the sim-
ilar idea of generating dyadic quantiles. Finally Section 6 concludes with few
possible applications.

2. Sequential Quantile Array (SQA)

Let τ ∈ (0, 1) and G an arbitrary distribution function. We denote by qτ (G)
the τ -th level quantile of G, namely qτ (G) = G−1(τ), where G−1 is replaced by
the generalized inverse function, that is qτ (G) = inf{y : G(y) ≥ τ}, if G is not
invertible everywhere in its support.

Definition 1. We call quantile of G in (a, c] of level τ the following function:

Bτ
G((a, c]) =

{
qτ (G | X ∈ (a, c]) if G(c) > G(a)
a if G(c) = G(a)

(2.1)

where qτ (G | X ∈ (a, c]) is the generalized inverse of G(· | X ∈ (a, c]) that is the
distribution of X ∼ G conditional to {X ∈ (a, c]}.

In what follows, we shall write G(· | (a, c]) = G(· | X ∈ (a, c]) to shorten the
notation.
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2.1. SQA of continuous distributions

We first focus on the case of a continuous distribution G, with a density g, we
will consider the definition of the SQA in the case of a discrete distribution later
in this section.

Lemma 2.1. Let τ ∈ (0, 1) and G a continuous distribution function and b =
Bτ

G(a, c], with a ≤ c then: (i) G(c) > G(a) if and only if b > a; (ii) G(b) =
τ(G(c) − G(a)) + G(a); (iii) Bτ

G(a, b] = b if and only if Bτ
G(b, c] = b; (iv) for

every x ∈ (a, c], b ≥ Bτ
G(a, x] for all τ .

Proof. (i) If G(c) > G(a) then the implication b > a comes directly from the
definition and the continuity of G. To prove the backward implication, let b = a,
then G(b) = G(a). If we assume by contradiction that G(c) > G(a) we have,
by the definition of b, that τ = G(b | (a, c]), but if G(b) = G(a), it comes that

G(b | (a, c]) = G(b)−G(a)
G(c)−G(a) = 0.

(ii) Follows from τ = G(b)−G(a)
G(c)−G(a) , if G(c) > G(a), and G(b) = G(a), if G(c) =

G(a).

(iii) Because of the continuity of G, Bτ
G(a, b] = b only if a = b (G(a) = G(b)).

From part (i), this also implies that G(a) = G(c), thus also G(b) = G(c) and
Bτ

G(b, c] = b too.

(iv) For every x < c, G(c) − G(a) > G(x) − G(a), then, from the definition
of Bτ

G(a, x] and Bτ
G(a, c], it comes

τ =
G(b)−G(a)

G(c)−G(a)
=

G(Bτ
G(a, x])−G(a)

G(x)−G(a)
>

G(Bτ
G(a, x])−G(a)

G(c)−G(a)
.

Because of G(Bτ
G(a, x] | (a, c]) < G(b | (a, c]), and by monotonicity and conti-

nuity of G, we must have that b > Bτ
G(a, x].

The above lemma is analogous to Lemma 2.2. in Hill and Monticino (1998)
[17] and it is useful to study the properties of the sequential quantile arrays
defined below.

Definition 2. The Sequential Quantile Array (SQA) of level τ of the distribu-
tion function G is the triangular array Q(G, τ) := {qn,k(G, τ)} = {qn,k}n≥1,k≤2n

defined by induction:

q1,1 = Bτ
G(−∞,∞) = qτ (G)

qn,2j = qn−1,j , n ≥ 1, j = 1, . . . , 2n−1 − 1 (2.2)

and

qn,2j−1 = Bτ
G(qn−1,j−1, qn−1,j ], n ≥ 1, j = 1, . . . , 2n−1 (2.3)

with qn,0 = −∞ and qn,2n = ∞ for all n.

Let us define the intervals In,k = (qn,k−1, qn,k].
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Lemma 2.2. Let {qn,k(G, τ)} be the SQA of G of level τ . Then: (i) If G(c) >
G(a), there exist j and n such that qn,j ∈ [a, c]; (ii) {qn,k(G, τ)} is dense in the
support of G; (iii) for every n ≥ 1, {In,k}k defines a partition of R. {In+1,k}k
is a refinement of {In,k}k; (iv) Pr (cl(In,k)) > 0 for all n ≥ 1, k = 1, . . . , 2n,
where cl(I) is the closure of the interval I.

Proof. Points (i) to (iii) are straightforward from the Definition 1.
Let’s prove (iv) by induction. Let n = 1. Then, Pr([q1,0, q1,1]) = G(q1,1) =

τ > 0 and Pr([q1,1, q1,2]) = 1−τ > 0. Now, assume that Pr([qn−1,k−1, qn−1,k]) >
0 holds true for all k ≤ 2n−1. We show that this implies Pr([qn,k−1, qn,k]) > 0
for all k ≤ 2n. In fact, let k = 2j, j = 1, . . . , 2n−1, then, Pr([qn,2j−1, qn,2j ]) =
Pr([qn,2j−1, qn−1,j ]). Since qn,2j−1 = Bτ

G(qn−1,j−1, qn−1,j ] > qn−1,j−1, because
of the induction assumption and of Lemma 2.1-(i) and (ii), we get

Pr([qn,2j−1, qn,2j ]) ≥ τ Pr((qn−1,j−1, qn−1,j ]) > 0.

Similarly, if k = 2j − 1, j = 1, . . . , 2n−1, we have Pr([qn,2(j−1), qn,2j−1]) =
Pr([qn−1,j−1, qn,2j−1]) > 0 because qn,2j−1 = Bτ

G(qn−1,j−1, qn−1,j ] > qn−1,j−1

and from Lemma 2.1-(i).

The following theorem is a straightforward consequence of Lemma 2.1 and of
Definition 2.

Theorem 2.1. The distribution G is completely determined by {qn,k(G)}. In
particular, G is given inductively by G(qn,0) = 0 = 1−G(qn,2n) and

G(qn,2k−1) = τG(qn−1,k) + (1− τ)G(qn−1,k−1)

while
G(qn,2k) = G(qn−1,k).

Theorem 2.2. A sequence Q = {qn,k} is a SQA for some continuous distribu-
tion function G if and only if qn,2k = qn−1,k and qn,k−1 < qn,k, for all n ≥ 1,
k = 1, . . . , 2n.

Proof. Let us assume that Q is a SQA sequence for a continuous d.f. G. Then,
from the definition of SQA, we have that qn,2k = qn−1,k, for all n and k. More-
over, if we assume by contradiction that qn,k = qn,k−1 for some 1 < n < ∞,
then G(qn+1,2k−1) = G(qn,k) = G(qn,k−1) and the distribution G could not be
continuous because it would have a probability mass in qn,k greater than or
equal to min(τn, (1− τ)n).

Let us now assume the triangular array Q satisfies the two conditions of the
theorem. Then, we can define a function G, by the recursive relation:

G(qn,0) = 0

G(qn,2n) = 1

G(qn,2k−1) = τG(qn−1,k) + (1− τ)G(qn−1,k−1).

We immediately get that G is a distribution function satisfying G(qn,2k−2) =
G(qn−1,k−1) < G(qn,2k−1) < G(qn−1,k) = G(qn,2k), for all n ≥ 1 and k ≤ 2n−1

and is, therefore, continuous.
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2.2. SQA of discrete distributions

In this section, we consider the case of a discrete distribution G, with jumps {αj}
at points {xj}, j ∈ J . We prove that, although the SQA is able to reconstruct
the support of G, it is not necessarily able to find the masses αj in general, and
thus there is not a one-to-one correspondence between G and its SQA of level τ .

The definition of Bτ
G((a, c]) in the case of a discrete G is the same as (2.1),

but here qτ (G | (a, c]) = inf{y ∈ (a, c] : G(y) ≥ τ(G(c)−G(a)) +G(a)}. Then,
for given τ , a, c, we have that G(Bτ

G((a, c])) ≥ τ(G(c) − G(a)) + G(a), where
the identity always holds if G(a) = G(c), but not in general.

Lemma 2.3. Let G be a discrete distribution with support X = {xj} and mass
probabilities {αj}, j ∈ J . Let moreover b = Bτ

G(a, c], with a ≤ c. Let Q =
{qn,k(G, τ)} be a SQA of G of level τ and let In,k = (qn,k−1, qn,k], n ≥ 1,
k ≤ 2n.
(i) For all n, k, there exists a j ∈ J such that qn,k = xj .
(ii) G(c) = G(a) if and only if b = a.
(iii) G(b) = τ(G(c) −G(a)) +G(a) if and only if either G(a) = G(c) or there

exists J2 ⊂ J1 ⊂ J such that τ =
∑

i∈J2
αi∑

i∈J1
αi
, where

∑
i∈J1

αi = G(c)−G(a)

and
∑

i∈J2
αi = G(b)−G(a).

(iv) For every x ∈ (a, c], b ≥ Bτ
G(a, x] for all τ .

(v) Q = {qn,k(G, τ)}∞n=1,k = X if and only if τ ≤ minj αj/(αj + αj+1).
(vi) For every n ≥ 1, {In,k}k defines a partition of R. {In+1,k}k is a refinement

of {In,k}k
(vii) Pr (cl(In,k)) > 0 for all n ≥ 1, k = 1, . . . , 2n, where cl(I) is the closure of

the interval I.

Proof. Points (iii) and (vi) are straightforward, while (vii) is a direct conse-
quence of (i).

We prove (i) by induction. Given τ ∈ (0, 1), q1,1 satisfies G(q1,1) ≥ τ and
G(q′) < τ for all q′ < q1,1. Then q1,1 must coincide with a discontinuity
point of G. For n > 1, given that all qn−1,k are discontinuity points of G,
we have that qn,2k = qn−1,k is a discontinuity point of G and qn,2k−1 sat-
isfies G(qn,2k−1) ≥ τ(G(qn−1,k) − G(qn−1,k−1)) + G(qn−1,k−1), but G(q′) <
τ(G(qn−1,k) − G(qn−1,k−1)) + G(qn−1,k−1), for all q′ < qn,2k−1, which implies
that in qn,2k−1 there must be a jump of the distribution.

(ii) If G(c) = G(a), then b = a by definition. If b = a, then G(b) = G(a)
can satisfy the inequality G(b) = G(a) ≥ τ(G(c) − G(a)) + G(a) if and only if
G(c) = G(a).

(iv) If b = a, then (point (ii)) G(c) = G(a) and consequently also G(x) =
G(a) and the equality holds. Let then b > a. From the definition of b and from
monotonicity of G, G(b) ≥ τ(G(c)−G(a))+G(a) ≥ τ(G(x)−G(a))+G(a). Since
Bτ ((a, x]) = inf{y ∈ (a, x] : G(y) ≥ τ(G(x) − G(a)) + G(a)}, if Bτ ((a, x]) > b,
then necessarily a < b < x and thus Bτ ((a, x]) would not be the smallest point
in (a, x] to satisfy G(Bτ ((a, x])) ≥ τ(G(x) − G(a)) + G(a), thus contradicting
the definition of Bτ ((a, x]).
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(v) We prove that for every (a, c] ∩ X �= ∅, there exists a n, k such that
qn,k ∈ [a, c] ∩ X , if and only if τ ≤ minj αj/(αj + αj+1). Using then (i) yields
immediately (v). If either a or c belong to X the claim is proved, then let us
assume that neither of them is in X . Since we assume that (a, c]∩X = {xj , j ∈
J1} �= ∅, we also have that G(c) > G(a). Note that, minj αj/(αj + αj+1) ≥ τ
implies

∑
j≤h αj/

∑
j≤h+1 αj ≥ τ . Then, by writing J1 = {ja, ja+1, . . . , jc}, we

have

G(xjc−1)−G(a)

G(c)−G(a)
=

G(xjc−1)−G(xja−1)

G(xjc)−G(xja−1)
=

∑jc−1
j=ja

αj∑jc
j=ja

αj

≥ τ

and b = Bτ ((a, c]) is equal to xjc−1 if further
G(xjc−2)−G(xja−1)
G(xjc )−G(xja−a) < τ . In general,

we have that

b = min

{
xj , j ∈ J1 :

G(xj)−G(xja − 1)

G(xjc)−G(xja − a)
≥ τ

}
.

To prove the only if part, it is enough to show that if τ > αj∗/(αj∗ + αj∗+1)
for some j∗ ∈ J , then there is a xj �∈ Q. Let in fact qn,k = xj∗+1 and qn,k−1 =
xj∗−1 (if no such n, k exist, then either xj∗+1 �∈ Q or xj∗−1 �∈ Q). Then, by

definition, we have that qn+1,2k−1 satisfies τ ≤ G(qn+1,2k−1)−G(qn,k−1)
G(qn,k)−G(qn,k−1)

. Since

however
G(xj∗ )−G(qn,k−1)

G(qn,k)−G(qn,k−1)
= αj∗/(αj∗ + αj∗+1) < τ , qn+1,2k−1 must be equal to

qn,k = xj∗+1. Therefore, there is no way xj∗ can be in Q.

Part (iii) of Lemma 2.3 prevents the SQA sequence to completely define an
arbitrary discrete distribution G.

Example 1. As a simple counterexample, let us consider the distribution G,
with finite support X = {x1, x2, x3, x4, x5} and probability masses p = {0.1, 0.2,
0.4, 0.2, 0.1}. Let τ = 0.1. Then, we easily find that the SQA is Q = {x1, x2,
x3, x4, x5}. However, knowing τ = 0.1 and Q does not allow to define univocally
the probabilities p. In fact, any distribution satisfying the condition in Lem-
ma 2.3-(v) would produce the same SQA (try for example {0.1, 0.3, 0.2, 0.3, 0.1}).
Note also that in this example, if τ > 0.34, then Q = {x2, x3, x4, x5} ⊂ X .

Example 2. Let G be a uniform discrete distribution over X = {x1, . . . , xn}.
Then Q = X holds if and only if τ ≤ 0.5.

The following theorem is a generalization of Theorem 2.2 and includes the
case of discrete distributions G.

Theorem 2.3. A sequence Q = {qn,k} is a SQA for some distribution function
G if and only if: (i) qn,2k = qn−1,k; (ii) qn,k−1 ≤ qn,k, for all n ≥ 1, k =
1, . . . , 2n; (iii) qn,2k−1 = qn,2k if and only if qn−1,k−1 = qn−1,k.

Proof. The necessity of (i)–(iii) follows from the definition of a SQA of a dis-
tribution function G and from Lemma 2.2. For the sufficiency, let {qn,k} satisfy
(i)–(iii). Let us define a sequence of discrete random variables:Xn, such thatXn

has support {qn,1, . . . , qn,2n}, and probabilities defined recursively. For n = 1,
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X1 = q1,1 with probability τ and X1 = q1,2 with probability 1 − τ . For n > 1
and k ≤ 2n−1, if qn,2k−1 �= qn,2k:

Pr (Xn ∈ (qn,2k−2, qn,2k−1]) = τ Pr (Xn−1 ∈ (qn−1,k−1, qn−1,k]) ,

Pr (Xn ∈ (qn,2k−1, qn,2k]) = (1− τ) Pr (Xn−1 ∈ (qn−1,k−1, qn−1,k]) .
(2.4)

If qn,2k−1 = qn,2k:

Pr (Xn ∈ (qn,2k−2, qn,2k−1]) = Pr (Xn−1 ∈ (qn−1,k−1, qn−1,k]) . (2.5)

Note that, by construction, if Gn is the cumulative distribution function (cdf)
of Xn, we have that, for all N ≤ n, k = 1, . . . , 2N−1

Bτ
Gn

((qN,k, qN,k+1]) = qN+1,2k+1.

It remains to prove that Xn converges to a r.v. X that has the correct
quantiles. This follows because, by construction, for all N ≥ 1 and for all
k = 1, . . . 2N , we clearly have that

GN (qN,k) = Pr {XN ≤ qN,k} = GN+1(qN,k) = . . . = Gn(qN,k)

for every n ≥ N . Thus, the sequence of distribution functions {Gn}n≥1, admits
a limit G that, for every q ∈ Q, assigns a probability G(q) = limn Gn(q) and X
is the associated random variable.

The simple counterexample in Example 1 is sufficient to show that the def-
inition of G is not necessarily unique for a given discrete set Q. And in fact,
if Q is generated by an arbitrary discrete distribution G0, we might have that
G �= G0. The construction of G given by (2.4) and (2.5) is however the unique
G with support in Q that guarantees the following recursive property: for every
n, k such that qn,2k−1 �= qn−1,k: G(qn,2k−1) = τG(qn−1,k) + (1− τ)G(qn−1,k−1).

Example 3. Let us consider the SQA generated in Example 1 by the distri-
bution, with support X = {x1, x2, x3, x4, x5} and respective probability masses
p = {0.1, 0.2, 0.4, 0.2, 0.1}, and with τ = 0.1. Using Theorem 2.3 we have

X1 has support {x1, x5} with probability mass p1 = {τ, 1− τ}
X2 ∈ {x1, x2, x5} with probability mass p2 = {τ, τ(1− τ), (1− τ)2}
X3 ∈ {x1, x2, x3, x5} with probability mass p3 = {τ, τ(1− τ), τ(1− τ)2, (1− τ)3}
X4 ∈ {x1, x2, x3, x4, x5} with probability mass p4 = {τ, τ(1 − τ), τ(1 − τ)2,
τ(1− τ)3, (1− τ)4}
Xn is equal to X4 for n ≥ 5

Indeed for n ≥ 5 it holds always qn,2k−1 = qn,2k hence, from (2.5), we have

Pr (Xn ∈ (qn,2k−2, qn,2k−1]) = Pr (Xn−1 ∈ (qn−1,k−1, qn−1,k]) .

Thus, Xn has a limiting distribution X,

p∞ = p4 = {τ, τ(1− τ), τ(1− τ)2, τ(1− τ)3, (1− τ)4},

that is different from p = {0.1, 0.2, 0.4, 0.2, 0.1}, used to generate the SQA.
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3. SQA random probability measures

In this section, we define the random SQA distributions and derive some of
their properties. First we introduce a random SQA, to be used to generate an
RPM. To construct a random SQA distribution, we select two distributions λ1

and λ. Under this definition we show in Section 3.1 some properties including
full support under the weak topology. Then in Section 3.2 we generalize random
SQA with λ changing with n, denoted λn, n ≥ 1, and under specific hypotheses
we show that, in this case, SQA-RPM has full support under the Kullback-Lieber
topology and it is differentiable.

The procedure follows closely the ideas in [17] and consists of the following
steps: (i) choose distributions λ1 and λ; (ii) generate the first quantile of level
τ according to λ1 and proceed with the other terms of the SQA sequence by
extracting from λ; (iii) use Theorem 2.1 to obtain the distribution G.

Without loss of generality, we consider the generation of random distributions
with support in [0, 1]. The extension to distributions with unbounded support
will be considered in Section 4.1. Let λ1 and λ be two probability measures with
support [0, 1] and [0, 1) respectively.

Let {Xn,2k−1}n,k, n ≥ 1, k = 1, . . . , 2n−1 be a triangular array of independent
random variables, with X1,1 ∼ λ1 and Xn,2k−1 ∼ λ, for all n ≥ 2. We build a
random SQA(τ), denoted by Q = {qn,k}, by the following recursive procedure:

q1,1 = X1,1

qn,2k = qn−1,k, n ≥ 1, k = 1, . . . , 2n−1

qn,2k−1 =

⎧⎨
⎩ qn−1,k−1 +Xn,2k−1(qn−1,k − qn−1,k−1) if

{
k odd and (3.2) holds
k even and (3.3) holds

qn−1,k−1 otherwise

qn,0 = 0 for all n ≥ 1

qn,2n = 1 for all n ≥ 1
(3.1)

where

qn−1,k−1 < qn−1,k < qn−1,k+1 and min(Xn,2k−1, Xn,2k+1) > 0 (3.2)

qn−1,k−2 < qn−1,k−1 < qn−1,k and min(Xn,2k−3, Xn,2k−1) > 0. (3.3)

Let us introduce some notation. We endow the space of triangular arrays A =
[0, 1] × [0, 1]3 × · · · × [0, 1]2

n−1 × · · · with the product topology and let A be
the subset of A satisfying the conditions (i)–(iii) in Theorem 2.3. Let Pλ1,λ

be the probability distribution of Q on A and let T be the mapping described
in Theorem 2.3, that transforms Q into a probability distribution on [0, 1].
Then, T is Borel-measurable, given the weak topology, and T : (A, Pλ1,λ) �→
(P([0, 1]), Bλ1,λ), where we define Bλ1,λ := Pλ1,λ ◦ T−1.

Theorem 3.1. The distribution of the τ -quantile of the random probability
measure generated from the SQA sequence of level τ is λ1:

Bλ1,λ

{
G : G−1(τ) ≤ z

}
= λ1([0, z]).
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Proof. The proof follows from the fact that, by construction, conditional on a
given Q = q, G = T (q) (where G is the limit of the sequence of probabilities
Gn described in Theorem 2.3) satisfies G(q1,1) = τ , and thus G−1(τ) = q1,1.
Since q1,1 ∼ λ1, we immediately have

Bλ1,λ

{
G : G−1(τ) ≤ z

}
= Pλ1,λ {Q ∈ A : q1,1 ≤ z} = Pr (q1,1 ≤ z) = λ1([0, z]).

Example 4. It is straightforward to see that, if λ1 = λ and assigns probability 1
to {τ}, then the SQA, SBA and Dubins and Freedman’s RPMs ([11]) coincide,
since they all assign probability 1 to the uniform distribution U(0, 1).

3.1. Properties of SQA random distributions: λ fixed

In this section we study some properties of the SQA random probability mea-
sures described in the previous subsection.

Theorem 3.2. Bλ1,λ-almost all SQA-RPMs distributions are continuous if and
only if λ1({0, 1}) = λ({0}) = 0.

Proof. Suppose that λ1({0, 1}) = η > 0. Then, in view of Theorem 3.1,

Pr {G has at least one jump} ≥ Bλ1,λ {G : (G({0})= τ) ∪ (G({1})= 1− τ)}
= Pr {ω : (q1,1(ω)= 0) ∪ (q1,1(ω)= q1,2(ω)= 1)}
= Pλ1,λ {(q1,1 =0) ∪ (q1,1 = q1,2 =1)}
= Pr (X1,1 =0) + Pr (X1,1 =1) =λ1({0, 1})= η.

Now suppose that λ({0}) = η > 0. Then, each Xn,k = 0 (n > 1) with
probability η. Let ω ∈ Ω be such that X2,2k−1(ω) = 0 for some k = 1, 2 (without
loss of generality, let us set k = 1), while X1,1 > 0. Then, from (3.1), we have
that q2,1(ω) = q1,1(ω) = q2,2(ω) and consequently, also q3,2 = q3,3 = q3,4 = q1,1.
In general, qn,2n−2 = · · · = qn,2n−1 = q1,1 and

Gn

(
(qn,2n−2−1, qn,2n−1 ]

)
= G1(q1,1)−Gn(qn,2n−2−1) ≥ τ − τ2 + τ2(1− τ)n−2 n→∞−→ τ(1− τ).

Thus, the distribution G has at least one point with mass probability greater
than or equal to τ(1− τ) at q1,1

1.

Following the same argument for arbitrary n, k, with n < ∞, it comes that,
if Xn,2k−1(ω) = 0, then the sequence Q generated by (3.1) has a tie at qn,2k−1

1In fact, Gn(qn,2n−2−1) = τ2− τ2(1− τ)n−2 if all Xm,k > 0 for m ≤ n and k ≤ 2n−2 −1.
This is an immediate consequence of the fact that, when there are no ties, Gn(qn,2n−2−1) =

Gn(qn,2n−2 )−Gn((qn,2n−2−1, qn,2n−2 ]) = G(q2,1)−Gn((qn,2n−2−1, qn,2n−2 ]) = τ2−τ2(1−
τ)n−2. This last identity can be found in Section 3.3 for arbitrary values of n and k.
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and the distribution G = limGn has (at least) a jump in that point. Since
Pr(ω : Xn,2k−1(ω) = 0) = λ({0}) = η, this implies that Pr {G is discrete} ≥ η.

To prove the inverse implication, we show that

∫ {∫
{x,y:x=y}

d(G×G)(x, y)

}
dBλ1,λ(G) = 0.

This immediately implies the continuity of G because the probability that two
independent r.v. with the same distribution G coincide is zero only if G is
continuous (see [24]). We prove the above identity by considering the inte-
gral

En =

∫ (
2n∑
k=1

(Gn(qn,k)−Gn(qn,k−1))
2

)
dBλ1,λ(Gn),

where {Gn} is the sequence of probability distribution functions (pdf’s) of the
sequence of random variables {Xn} defined in the proof of Theorem 2.3 and
showing that En → 0.

For all ω such that qn,2k−1(ω) �= qn,k−1(ω) for all n, k, we have (see Theorem
2.3):

∑
k

(Gn(qn,k)−Gn(qn,k−1))
2

=

2n−1∑
k=1

(Gn(qn,2k)−Gn(qn,2k−1))
2 +

2n−1∑
k=1

(Gn(qn,2k−1)−Gn(qn,2k−2))
2

=

2n−1∑
k=1

[
(1− τ)2(Gn(qn−1,k)−Gn(qn−1,k−1))

2

+τ2(Gn(qn−1,k)−Gn(qn−1,k−1))
2
]

=
∑
k

[τ2 + (1− τ)2](Gn(qn−1,k)−Gn(qn−1,k−1))
2

· · · =
2∑

k=1

[τ2 + (1− τ)2]n−1(Gn(q1,k)−Gn(q1,k−1))
2

= [τ2 + (1− τ)2]n

where we omitted the ω for convenience. Moreover, since λ({0}) = λ1({0, 1}) = 0
for all n, k, we have Xn,2k−1 ∈ (0, 1), where Xn,2k−1 is from (3.1) and thus, for
all n ≥ 1,

Pλ1,λ (Q : qn,2k−1 = qn,k−1, for some k ≤ 2n)

= Pr {ω : qn,2k−1(ω) = qn,k−1(ω), for some k ≤ 2n}
= Pr {Xn,2k−1 = 0 for some k ≤ 2n} = 0.
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Thus,

En =

∫
{Q:qn,2k−1 	=qn,k−1, k≤2n}

(
2n∑
k=1

(Gn(qn,k)−Gn(qn,k−1))
2

)
dPλ1,λ(Gn)

+

∫
{

Q : qn,2k−1 = qn,k−1,
for some k ≤ 2n

}
(

2n∑
k=1

(Gn(qn,k)−Gn(qn,k−1))
2

)
dPλ1,λ(Gn)

≤ [τ2 + (1− τ)2]n Pr {ω : qn,2k−1(ω) �= qn,k−1(ω), ∀ k ≤ 2n}
+ Pλ1,λ (Q : qn,2k−1 = qn,k−1, for some k ≤ 2n)

= [τ2 + (1− τ)2]n →n 0.

Theorem 3.3. Bλ1,λ-almost all SQA-RPM are discrete if and only if λ({0}) =
1 or λ1({0, 1}) = 1.

Proof. Let us define the mean sum of jumps generated by the SQA-RPMs:

J =

∫
P(0,1)

Δ(G)dB(λ1,λ)(G) =

∫ 1

0

J(m)dλ1(m)

where

J(m) =

∫
P(0,1)

Δ(G)dB(δm,λ)(G)

and Δ(G) denotes the sum of the jumps of a distribution function G. It is easy
to see that, ifm = 0 orm = 1, then J(m) = 1. We prove that, unless λ({0}) = 1,
J(m) < 1 for all m ∈ (0, 1).

For every n, k, let us define the random variable Zn,k = min{Xn,4k−3,
Xn,4k−1}. Let p = λ({0}) and let R = p + p(1 − p) = Pr{Zn,k = 0}. Then,
for all n ≥ 2, we define the sequences

En,j = {exactly j new ties occur at stage n of the extraction of the quantiles}
= {∃ k1, .., kj < 2n−2 s.t. Zn,ki = 0}

and
Ln,j = {total length of the j jumps at step n}.

In particular

En,0 = {no ties at stage n} =

{
min

k≤2n−2
Zn,k > 0

}
=

{
min

k≤2n−1
Xn,2k−1 > 0

}
,

has probability P (En,0) = (1−R)2
n−2

= (1− p)2
n−1

.
Given these definitions, we can clearly decompose the mean jumps, for all m,

to the following

J(m) =

∞∑
h=2

2h−2∑
j=1

Pr (Eh,j ∩ {El,0, l < h})Lh,j .

Note that Ln,j is a random variable that depends wholly on which of the
2n−1 possible variables Zn,k is equal to 0. Since all {Xn,2k−1}k≤2k−1 are i.i.d.,
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also the Zn,k are i.i.d. and therefore exchangeable. This also implies that in
computing J(m) we can replace Ln,j to its average value.

We know (Lemma 3.1) that the mean value of Ln,j , n ≥ 2, is equal to j/2n−2.
Then, we can write

J(m) =

∞∑
h=2

2h−2∑
j=1

Pr(Eh,j) Pr{El,0, l < h} j

2h−2

=

∞∑
h=2

2h−2∑
j=1

Pr(Eh,j)

h−1∏
l=2

(1− p)2
l−1 j

2h−2

=

∞∑
h=2

(1− p)2
h−1−2

2h−2∑
j=1

Pr(Eh,j)
j

2h−2

For the term Pr(Eh,j), we note that

Pr(Eh,j) =

(
2h−2

j

)
P (Z = 0)j [1− P (Z = 0)]2

h−2−j

where Z ∼ Zh,k, k ≤ 2h−2. Thus,

2h−2∑
j=1

Pr(Eh,j)
j

2h−2
=

2h−2∑
j=1

j

2h−2

(
2h−2

j

)
Rj(1−R)2

h−2−j

= R

2h−2∑
j=1

(
2h−2 − 1

j − 1

)
Rj−1(1−R)2

h−2−j = R.

Noting that 1−R = (1− p)2, we can write, for any m ∈ (0, 1),

J(m) =

∞∑
n=2

R(1−R)2
n−2−1 = R+R(1−R) +R(1−R)3 +R(1−R)7 + · · · .

The above equation implies that J(m) ≤
∑∞

n=0 R(1−R)n = 1 and the identity
occurs only if R = 1, that is, when p = 1.

Thus, given λ1({0, 1}) < 1, the SQA-RPM are Bλ1,λ-a.s. discrete if and only
if λ({0}) = 1. If instead λ({0}) < 1 there is a set of SQA-RPM with strictly
positive Bλ1,λ-measure that is not discrete.

Note that Theorem 3.3 differs from the analogous result in [17] (Theorem
3.6), because in our case by choosing a distribution λ s.t. λ({0}) > 0, we can
eventually obtain both continuous and discrete random probability measures,
with positive Bλ1,λ-probability.

Lemma 3.1. For all n ≥ 2,

ELn,k =

∑
Ln,k(

2n−2

k

) =
k

2n−2
,
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where the sum in the above equation is over all possible (not distinct)
(
2n−2

k

)
values that can occur for Ln,k.

Proof. Let n = 2, L2,1 = 1, because in this case there can be only one tie at
q2,1 = q2,3 = m, and the total length of the jumps is τ+(1−τ) = 1. If n = 3, and
there is only one tie, it can be in q3,1 = q3,2 = q3,3 (if X3,1 = 0 or X3,3 = 0) or in
q3,5 = q3,6 = q3,7 (ifX3,5 = 0 orX3,7 = 0): the sum of the jumps before and after
the tie will be τ2+τ(1−τ) = τ , in the first case, and τ(1−τ)+(1−τ)2 = 1−τ in
the second case. Because of all Xn,j are identically distributed, these two values
have the same weight, and the average value of L3,1 is therefore EL3,1 = 1/2. If
at stage 3 there are two new ties, then allX3,1 = X3,3 = X3,5 = X3,7 = 0. In this
case, the total jumps L3,2 = 1. In general, it is straightforward that Ln,2n−1 = 1
for all n, and, using a binary tree representation of Ln,1 (see Figure 1), it is easy
to see that there are 2n−2 possible elementary values for Ln,1, among which we
can distinguish the n− 1 distinct values τ i(1− τ)n−2−i, occurring

(
n−2
i

)
times

each. Therefore, ELn,1 =
∑

i

(
n−2
i

)
τ i(1− τ)n−2−i/2n−2 = 1/2n−2.

The lengths of Ln,2 are obtained by summing the jumps corresponding to
the two ties that have occurred. Therefore, since the weighted sum of possible
values of Ln,1 is one, we have that, ELn,2 is obtained by considering the sum of
all possible values Ln,1 + L′

n,1, where, given Ln,1, L
′
n,1 is constrained to be one

of the possible 2n−2 − 1 values left (some of which might coincide numerically
with Ln,1). Since the sum of all possible values of L′

n,1 satisfying the constraint
is 1− Ln,1, we get

2ELn,2 =
∑
Ln,1

1

#{choices for values of Ln,2}
(Ln,1(2

n−2 − 1) + 1− Ln,1)

=
2(2n−2 − 1)(

2n−2

2

) =
4

2n−2

and thus ELn,2 = 2
2n−2 .

2

Now we assume that ELn,j =
∑

Ln,j

Ln,j

(2
n−2

j )
= j

2n−2 and prove by induction

that Ln,j+1 = j+1
2n−2 . By generalizing the argument used for Ln,2, we can write

(j +1)
∑

Ln,j+1
Ln,j+1 =

∑
Ln,j

∑
L′

n,1 	=Ln,j
(Ln,j +L′

n,1), where the second sum

is over all possible values of Ln,1 that are not included in Ln,j . Thus, we clearly
have that:

(j + 1)ELn,j+1 =

∑
Ln,j

Ln,j(2
n−2 − j) + 1− Ln,j(
2n−2

j+1

)
= (after some computation) =

(j + 1)2

2n−2
.

2Note that the above formula counts couples (Ln,1, L′
n,1) twice, therefore we need to

correct to obtain the mean by dividing by 2. A similar correction is used for the computation
of ELn,j+1
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Fig 1. Set of possible total heights of the jumps Ln,k, when there is a single (k = 1) new
tie occurring at the nth step of the construction of the sequence of the quantiles, n ≥ 2. The
values of Ln,1 are given by the sum of the probabilities in each ellipse.

Theorem 3.4. If λ1 and λ have full support on [0, 1) then Bλ1,λ has full support
on P([0, 1]) with respect to the weak topology in P([0, 1]).

Proof. Bλ1,λ has full support if any non empty set of P([0, 1]) has a positive
Bλ1,λ-measure. This holds if each set of the base of the weak topology of P([0, 1])
has positive Bλ1,λ-measure. According to Billingsley (1968) [3] a basis consists
of sets of the form

{σ ∈ P([0, 1]) : σ(Oi) > σ0(Oi)− εi i = 1, ..,m},

where Oi is an open set of [0, 1], εi > 0 and σ0 is a given measure in P([0, 1]).
Since each open set in [0, 1] can be written as a disjoint union of r open sets
Oi,j , we can write

E = {σ ∈ P([0, 1]) : σ(∪r
jOi,j) > σ0(∪r

jOi,j)− εi i = 1, ..,m}.

We define the following subset of E:

C = ∩j{σ ∈ P([0, 1]) : σ(Oi,j) > σ0(Oi,j)−
ε

r
i = 1, ..,m},

with ε = mini εi. If we prove that Bλ1,λ(C) > 0, since C ⊂ E it follows that
Bλ1,λ(E) > 0.

Let Gσ and qσn,k denote the distribution function of σ and the SQA of Gσ,
respectively. Let Gσ0 and qσ0

n,k the analogous for σ0. Since qσ0

n,k is dense in the
support of σ0, let q

σ0

nij ,kij
and qσ0

nij ,lij
be such that (qσ0

nij ,kij
, qσ0

nij ,lij
] ⊂ Oij and

σ0

(
(qσ0

nij ,kij
, qσ0

nij ,lij
]
)
> σ0(Oij)−

2ε

r
.

Note that, from the definition of qσ0

n,k and qσn,k, we have Gσ0(q
σ0

n,k) = Gσ(q
σ
n,k),

for all n, k.
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Let N = maxij nij and consider the set

Dδ = {σ ∈ P([0, 1]) : |qσN,k − qσ0

N,k| < δ, for all k = 1, ...2N − 1},

if σ ∈ Dδ then, for all i, j we have that∣∣∣qσnij ,lij − qσ0

nij ,lij

∣∣∣ < δ and
∣∣∣qσnij ,kij

− qσ0

nij ,kij

∣∣∣ < δ.

This implies

qσnij ,lij < δ + qσ0

nij ,lij
and qσnij ,kij

> qσ0

nij ,kij
− δ for all i, j;

thus, we have, for all i, j,

Gσ(q
σ
nij ,lij ) < Gσ(q

σ0

nij ,lij
+ δ) and Gσ(q

σ
nij ,kij

) > Gσ(q
σ0

nij ,kij
− δ),

that is, for all i, j,

σ
(
(qσ0

nij ,kij
− δ, qσ0

nij ,lij
+ δ]

)
> σ

(
(qσnij ,kij

, qσnij ,lij ]
)

= σ0

(
(qσ0

nij ,kij
, qσ0

nij ,lij
]
)
> σ(Oij)−

2ε

r
.

(3.4)

The set (qσ0

nij ,kij
− δ, qσ0

nij ,lij
+ δ] is larger than (qσ0

nij ,kij
, qσ0

nij ,lij
]. We can find a

δ small enough such that the left hand side of (3.4) is bounded by:

σ
(
(qσ0

nij ,kij
− δ, qσ0

nij ,lij
+ δ]

)
< σ(Oij)−

ε

r
.

For this δ, we have that, if σ ∈ Dδ, then also

σ(Oij)−
ε

r
> σ0(Oij)−

2ε

r
, ∀i, j,

that is equivalent to σ ∈ C.
Given that λ1 and λ have full support on [0, 1), Bλ1,λ(Dδ) > 0 and since we

showed that Dδ ⊂ C it follows Bλ1,λ(C) > 0, this ends the proof.

3.2. Properties of SQA-RPM when λn changes with n

In this section we consider the more general definition of SQA-RPM obtained
when each Xn,2k−1 in equation (3.1) is generated independently from a distri-
bution λn that is allowed to change with n. We point out that all the results of
the previous subsection are still valid, with little adjustment, if the SQA-RPM
is generated by the sequence λn, n ≥ 1. For example, if λ1({0, 1}) = 0 and all
measures λn assign mass 0 to {0}, then according to Theorem 3.2, almost all
SQA-RPMs are continuous.

We further show that when the measures λn are allowed to change with n
the SQA-RPM can have stronger properties, such as differentiability and full
support in stronger topologies.
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We assume that λ1({0, 1}) = 0 and that the SQA sequence is defined through
a sequence of generating measures {λn, n ≥ 1}, such that Xn,2k−1 ∼ λn for all
k and n with λn({0}) = 0. The probability measure in the space of SQA-RPM
is now denoted by Bλn,n≥1, and, repeating the arguments of Theorem 3.2, it can
be seen that it contains only continuous distribution functions and, because of
Lemma 2.2(ii), the set {qn,k} is dense in (0, 1). Under this condition, the main
equations in (3.1) simplify to

qn,2k−1 = qn−1,k−1 +Xn,2k−1(qn−1,k − qn−1,k−1).

Let us denote by 1{A} the indicator function, 1{A} = 1 if A is true and
is 1{A} = 0 otherwise. For all u ∈ [0, 1] and n > 1, we have the following
representation of Gn.

Gn(u) =
∑2n

k=1[Gn(qn,k)−Gn(qn,k−1)]1{u ≥ qn,k} =
∑2n

k=1 τ
zn,k(1− τ)n−zn,k1{u ≥ qn,k},

where zn,k is the number of zeros in the n-cyphers binary representation of k−1.
Hence we have G(u) = limn→∞ Gn(u).

Every Gn depends in a complex way on the distributions λn, through each
qn,k. Indeed, it is possible to see that all qn,k can be written as a sum of products
of Xm,2j−1:

qn,k =

k∑
h=1

n∏
m=1

X
1−dm,h

m,2jm,h−1(1−Xm,2jm,h−1)
dm,h (3.5)

where dm,h and jm,h both depend on m and h.
Specifically, dm,h = 1 if the m-th cypher (from the right) of the binary rep-

resentation of the number h−1 (h ≤ 2m) is a 1 (and dm,h = 0 otherwise), while
jm,h is defined recursively by:

jm,h = 2jm−1,h − 1 + 2dm−1,h, m ≥ 1.

Thus, each summand in qn,k depends on products of independent variables
Xm,2j−1, but summands are not independent because they can have terms in
common.

Theorem 3.5. Assume the SQA follows (3.1) and all the variables Xn,2k−1 ∼
λn are independent for all k ≤ 2n and n ≥ 1, with mean τn and variance σ2

n.
Let infn τn > t > 0, and for some δ > 0, τn = τ + O(n−1−δ). If moreover∑

n σ
2
n < ∞, then Bλ1,λ-almost all SQA-RPMs are differentiable in u ∈ (0, 1).

Proof. Let us define

gn(u) =
∑
k

1{u ∈ (qn,k−1, qn,k)}
Gn(qn,k)−Gn(qn,k−1)

qn,k − qn,k−1
.

Using (3.5), we have:

gn(u) = gn−1(u)
∑
k

1{u ∈ (qn,k−1, qn,k)}
τ1−dn,k(1− τ)dn,k

X
1−dn,k

n,2jn,k−1(1−Xn,2jn,k−1)dn,k

.
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We have that the RPM G is differentiable if the limit limn gn(u) exists for all
u. Now, let us define g̃n(u) as

g̃n(u) = g̃n−1(u)
∑
k

1{u ∈ (qn,k−1, qn,k)}
1

Z
1−dn,k
n W

dn,k
n

,

where Zn = Xn,2jn,k−1/τn and Wn = (1−Xn,2jn,k−1)/(1− τn). Clearly, Zn and
Wn are independent on g̃n−1 and both have mean 1.

Further, if all τn = τ , then g̃n = gn for all n, while

gn(u) = g̃n(u)×
∏
m≤n

τ1−dm,k(1− τ)dm,k

τ
1−dm,k
n (1− τn)dm,k

,

otherwise.
We define the process s̃n(u) = 1/g̃n(u) and show that it is a martingale; in

fact,

E (s̃n(u) | s̃n−1) = s̃n−1(u)E(Z
1−dn,k
n W

dn,k
n ) = s̃n−1(u).

We can apply the martingale convergence theorem if Es̃1(u) < ∞. This is
an immediate consequence of s̃1(u) = Z11{u ∈ (0, X11]} +W11{u ∈ (X11, 1]},
which implies E(s̃1(u)) ≤ 2 for all n and u. Thus, the limit, s̃(u) = limn s̃n(u)
exists for all u.

In order to be able to define g̃(u) = limn 1/s̃n(u), we need s(u) > 0 for
all u ∈ (0, 1). Then, by writing Z̄n = Zn − 1 and W̄n = Wn − 1, we have
limn s̃n(u) > 0 if and only if

∞ > | lim
n

log(s̃n(u))| = | lim
n

∑
m≥n

(1− dn,m) log(1 + Z̄m) + dn,m log(1 + W̄m)|.

It is then enough to show that
∑

m≤∞ log(1 + |Z̄m|) < ∞ and
∑

m≤∞ log(1 +

|W̄m|) < ∞, and we can limit ourselves to do it for the term in Z, because for
W it is the same.

We invoke the two–series theorem (see [33], IV.2.2): the series
∑

m≤∞ log(1+

|Z̄m|) <
∑

m |Z̄m| converges if
∑

n E|Z̄n| < ∞ and
∑

n V ar|Z̄n| < ∞. Both
conditions are satisfied if

∑∞
n=1 σ

2
n/τ

2
n < t−2

∑∞
n=1 σ

2
n < ∞.

Finally, to prove that

g(u) = lim
n

g̃n(u)×
∏
m

τ1−dm,k(1− τ)dm,k

τ
1−dm,k
n (1− τn)dm,k

exists, we now need to show the convergence of the series

lim
n

log(gn(u)) = lim
n

log(g̃n(u)) +
∑
m≤n

log

(
τ1−dm,k(1− τ)dm,k

τ
1−dm,k
n (1− τn)dm,k

)
.

Provided that each τn is bounded below by a positive constant t > 0, we have
that the series in the above equation converges if

∑
n |1 − τ

τn
| < ∞. Since
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τn > t > 0 for all t, we must have |τn − τ | = O(1/n1+δ), for δ > 0. Finally,
the summability of the sequence of variances also permits to apply Corollary in
[21], implying that G(x) =

∫ x

0
g(u)du.

From the above theorem, the only differentiable distribution generated by a
SQA sequence, when λn = λ is constant with n, is the uniform distribution,
obtained for λ = δτ .

For arbitrary measures {λn, n ≥ 1}, the characterization of G and of its
density can’t be easily used to derive a closed form expression for G and, through
this, of the expected random measure Ḡ. However, as [18] pointed out, with
the recent advent of simulation based inference the need for clear-cut conjugacy
and analytically tractable posteriors is no longer critical, since it deflates the
importance of analytical tractability.

Theorem 3.4 proves the large support of the SQA-RPM in the weak topology;
while, in applications, it is often desirable that the random probability measures
have full support in a stronger sense.

As in [22] and [18], we consider the extension of Theorem 3.4 to Kullback-
Leibler topology, i.e. the topology induced by relative entropy neighborhoods.
We recall the definition of relative entropy (also called KL-divergence): given
two probability distributions G0, G with densities g0, g, we have KL(G0, G) =∫
g0(x) log

g0(x)
g(x) dx. Note thatKL(G0, G) = ∞ if G0 is not absolutely continuous

w.r.t. (the probability measure associated to) G.
In this topology, neighborhoods of an arbitrary probability distribution func-

tion G0 have the form {G : KL(G0, G) < ε}.
Theorem 3.6. Let all the assumptions of Theorem 3.5 be satisfied and assume
that each λn, n ≥ 2 is such that

∑
n σn < ∞. Let the probability distribution G0

have a density g0 and a finite entropy, namely∣∣∣∣
∫

g0(x) log(g0(x))dx

∣∣∣∣ < ∞.

Then, for all ε,
Bλn,n≥1 (G : KL(G0, G) < ε) > 0

Proof. We follow the same reasoning in [22]. We first write∫
g0(x) log

g0(x)

g(x)
dx =

∫
g0(x) log g0(x)dx−

∫
g0(x) log g(x)dx. (3.6)

The first integral is the entropy of g0 and is finite in absolute value by assump-
tion. The second term can be written as:

−
∫

g0(x) log g(x)dx =

∫
log

(
lim
n→∞

ν(In,k(x))

G(In,k(x))

)
g0(x)dx

=

∫
log

(
lim
n

(
n∏

m=1

ν(Im,km(x) | Im−1,km−1(x))

G(Im,km(x) | Im−1,km−1(x))

))
g0(x)dx,
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where the indices kn(x) of the sequence In,kn(x) = (qn,kn(x)−1, qn,kn(x)] satisfy
x ∈ In,kn(x) for all n and ν is the Lebesgue measure 3. Then, we can write

−
∫

g0(x) log g(x)dx =

∫ ∞∑
m=1

log

(
ν(Im,km(x) | Im,km−1(x))

G(Im,km(x) | Im−1,km−1(x))

)
g0(x)dx

=
∞∑

n=1

2n−1∑
k=1

[
log

(
ν(In,2k|In−1,k)
G(In,2k|In−1,k)

)
G0(In,2k) + log

(
ν(In,2k−1|In−1,k)
G(In,2k−1|In−1,k)

)
G0(In,2k−1)

]

≤
∞∑

n=1

2n−1∑
k=1

max
{
log

(
ν(In,2k|In−1,k)
G(In,2k|In−1,k)

)
, log

(
ν(In,2k−1|In−1,k)
G(In,2k−1|In−1,k)

)}
G0(In−1,k)

=

∞∑
n=1

2n−1∑
k=1

max

{
log

(
1−Xn,2k−1

1− τ

)
, log

(
Xn,2k−1

τ

)}
G0(In−1,k).

In the last equality we used the fact that ν(In,2k | In−1,k) =
qn,2k−qn,2k−1

qn−1,k−qn−1,k−1
=

1−Xn,2k−1.

We consider that

max

{
log

(
1− x

1− τ

)
, log

(x
τ

)}
= log

(
1− x

1− τ

)
1{x ≤ τ}+ log

(x
τ

)
1{x > τ}

and we take the expectations, since if its expectation converges we obtain that
the second term of (3.6) is bounded:

E

⎡
⎣E

⎛
⎝ ∞∑

n=1

2n−1∑
k=1

max

{
log

(
1−Xn,2k−1

1− τ

)
, log

(
Xn,2k−1

τ

)}
|{qn−1}

⎞
⎠G0(In−1,k)

⎤
⎦

= E

⎧⎨
⎩

∞∑
n=1

2n−1∑
k=1

[
E

(
log

(
1−Xn,2k−1

1− τ

)
1{Xn,2k−1 ≤ τ} | {qn−1}

)

+E

(
log

(
Xn,2k−1

τ

)
1{Xn,2k−1 > τ} | {qn−1}

)]
G0(In−1,k)

}

= E

⎧⎨
⎩

∞∑
n=1

2n−1∑
k=1

λn((0, τ ])

[
E

(
log

(
1−Xn,2k−1

1− τ

)∣∣∣∣ {qn−1}, Xn,2k−1 ≤ τ

)

+λn((τ, 1])E

(
log

(
Xn,2k−1

τ

)∣∣∣∣ {qn−1}, Xn,2k−1 > τ

)]
G0(In−1,k)

}
.

3Here and in the following whenever this causes no ambiguity in the interpretation, G and
G0 denote either the cdf’s and the associated probability measure.
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We apply the conditional Jensen’s inequality to the concave function log(x)

E

⎧⎨
⎩

∞∑
n=1

2n−1∑
k=1

λn((0, τ ])

[
E

(
log

(
1−Xn,2k−1

1− τ

)∣∣∣∣ {qn−1}, Xn,2k−1 ≤ τ

)

+λn((τ, 1])E

(
log

(
Xn,2k−1

τ

)∣∣∣∣ {qn−1}, Xn,2k−1 > τ

)]
G0(In−1,k)

}

≤ E

∞∑
n=1

2n−1∑
k=1

{
λn((0, τ ]) logE

(
1−Xn,2k−1

1− τ

∣∣∣∣ {qn−1}, Xn,2k−1 ≤ τ

)

+(1− λn((0, τ ])) logE

(
Xn,2k−1

τ

∣∣∣∣ {qn−1}, Xn,2k−1 > τ

)}
G0(In−1,k).

Applying the inequality log(1 + x) ≤ x to log
(

Xn,2k−1

τ

)
= log

(
1 +

Xn,2k−1−τ
τ

)
and log

(
1−Xn,2k−1

1−τ

)
= log

(
1 +

τ−Xn,2k−1

(1−τ)

)
, we have

E

∞∑
n=1

2n−1∑
k=1

{
λn((0, τ ]) logE

(
1−Xn,2k−1

1− τ

∣∣∣∣ {qn−1}, Xn,2k−1 ≤ τ

)

+(1− λn((0, τ ])) logE

(
Xn,2k−1

τ

∣∣∣∣ {qn−1}, Xn,2k−1 > τ

)}
G0(In−1,k)

≤ E

∞∑
n=1

2n−1∑
k=1

{
λn((0, τ ])E

(
τ −Xn,2k−1

1− τ

∣∣∣∣ {qn−1}, Xn,2k−1 ≤ τ

)

+(1− λn((0, τ ]))E

(
Xn,2k−1 − τ

τ

∣∣∣∣ {qn−1}, Xn,2k−1 > τ

)}
G0(In−1,k).

The identity E(X) = Pr(X ∈ A)E(X | A) + Pr(X ∈ Ā)E(X | Ā) implies
E(X) ≥ Pr(X ∈ A)E(X | A) for any X ≥ 0:

E

∞∑
n=1

2n−1∑
k=1

{
λn((0, τ ])E

(
τ −Xn,2k−1

1− τ

∣∣∣∣ {qn−1}, Xn,2k−1 ≤ τ

)

+(1− λn((0, τ ]))E

(
Xn,2k−1 − τ

τ

∣∣∣∣ {qn−1}, Xn,2k−1 > τ

)}
G0(In−1,k)

≤ E

∞∑
n=1

2n−1∑
k=1

{
E

(∣∣∣ τ−Xn,2k−1

1−τ

∣∣∣ ∣∣∣ {qn−1}
)
+ E

(∣∣∣Xn,2k−1−τ
τ

∣∣∣ ∣∣∣ {qn−1}
)}

G0(In−1,k)

= E

∞∑
n=1

2n−1∑
k=1

E(|τ −Xn,2k−1| | {qn−1})
τ(1− τ)

G0(In−1,k)

≤
∞∑

n=1

√
σ2
n + |τn − τ |2
τ(1− τ)

< ∞,

under the assumptions of the theorem.
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Since it converges in expected value, the term
∫
log g(x)g0(x)dx is bounded

with a positive probability. Finally, similarly to [22], we can say that, because
of the assumption that all λn have full support in (0, 1), then

∫
g0(x) log g(x)dx

can be found to be at most different by a constant δ from
∫
g0(x) log g0(x)dx

with a positive probability.

3.3. Stopping rule

In building a random probability measure the problem of repeating (3.1) in-
finitely many times occurs. This is a common feature of most of the procedures
based on dyadic expansions or similar ideas (including Polya trees, quantile
pyramids, SBA-RPMs among the others). However, the SQA presents also the
drawback that with a small τ the random distribution generated after a rela-
tively small number of steps is extremely dense in the left tail and still sparse
in the right and the lower is τ the higher the number of steps necessary to
obtain a random distribution that is dense everywhere. This clearly causes the
algorithm to become very slow for small values of τ , because a large number n
of levels is necessary to cover in a reasonably dense way the whole support of
the distribution and, for each n, qn,2k−1 should be computed (from Xn,2k−1) for
k ≤ 2n−1. However, similar as in [22] it is not necessary to compute any n but
just as far as a certain level h and also not every qn,k for all n = 1, ..., h.

The SQA procedure can be implemented efficiently by fixing a threshold ε >
0, and by simulating only those values of {qn,2k−1} such that G((qn,k−1, qn,k]) >
ε. This reduces drastically the number of iterations. As example, Fig. 2 plots
for n = 1, ..., 12 the intervals for which qn,k must be computed according to the
truncation procedure with ε = 10−3 and τ = 0.01. In this case the procedure
stops after 134 levels but in the figure we report only the first 12 levels.

Fig 2. Graphical representation of the intervals in which qn,k are simulated with ε = 10−3,
τ = 0.01. The figure shows only 12 levels, while to cover in a reasonably dense way (according
to ε) the whole intervals, 134 levels are needed.
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In practice, it is easy to implement the truncation procedure. Note that, given
n, the probability of each interval (qn,k−1, qn,k] is given by G((qn,k−1, qn,k]) =
τzn,k(1− τ)n−zn,k where we recall that zn,k is the number of zeros in the binary
representation of k − 1 (adding zeros to the left if necessary in order to have
exactly n cyphers). So, for example, the interval (q6,k−1, q6,k] for k = 13 has
probability G((qn,k−1, qn,k]) = τ4(1− τ)2, because the binary representation of
12 is 001100. Let us assume, without loss of generality, that τ < 1/2 and fix a
threshold ε. Then if we set nε = minn{τn < ε}, we can limit to the simulation
of the Xn,k corresponding to the indices

Kn,nε = {k ≤ 2n : zn,k < nε} ⊇ {k ≤ 2n : G((qn,k−1, qn,k]) > τnε}.

Let moreover Nε = minn{(1 − τ)n < ε}. Because of the truncation mecha-
nism, whenever Gn(In,k) < ε, no other quantiles inside In,k are generated. Then,
the numbers nε and Nε are, respectively, the number of iterations before the
first truncation and the last iteration before the procedure stops4. Once we have
all qn,kj , n ≤ Nε, kj ∈ Kn,nε , the truncating measure is Gε(qn,k) = Gn(qn,kj )
and it is extended to (0, 1) through linear interpolation.

Summing up this procedure is both a stopping rule because it provides the
largest Nε level to compute and a truncation procedure because for any level n
provides the intervals needing to be still partitioned.

When defining a stopping rule, it is important to ascertain that the ap-
proximated random measure obtained by truncation, that we denote by Gε to
stress its dependence on the threshold ε, can be arbitrarily close to the random
probability measure G generated by the procedure. Because of the definition
of the stopping rule, it is easy to see that, under very mild assumptions, Gε

can be arbitrarily close to G with respect to the Kolmogorov-Smirnov distance:
dKS(Gε, G) = supx |Gε(x) − G(x)|. If the generating measures are allowed to
vary with the level n, then it is also possible to prove that ε can be chosen such
that G lies in an arbitrarily small KL-neighborhood of Gε.

After applying the stopping rule, we therefore have a subsequence of quantiles
{qNε,kj} (j = 1, . . . ,M , with M depending on τ, ε and n) that satisfy k1 = 1
and kM−1 = 2nε − 1.

Theorem 3.7. Let G be a SQA-RPM and Gε its truncated version. (i) For
every γ > 0 there is a ε > 0 such that Bλn,n≥1 (G : dKS(G,Gε) < γ) = 1. (ii)
Let G be a SQA-RPM obtained under the assumptions of Theorem 3.5 and the
additional assumption that each λn have support [ln, 1 − ln], with ln → 0 and
|τn − τ | log(1/ln) = O(n−1−ζ) for some ζ > 0, then for all γ > 0, η > 0 there
exists a ε > 0, such that

Bλn,n≥1 (G : KL(G,Gε) < γ) > 1− η.

Proof. (i) The Kolmogorov-Smirnov distance is given by:

dKS(Gε, G) = supx |Gε(x)−G(x)| ≤ supx |Gε(x)−Gn(x)|+ supx |Gn(x)−G(x)| , (3.7)

4If τ > 1/2 the definitions of Nε and nε are inverted.
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where n > Nε. For the last term of (3.7) we have

sup
x

|Gn(x)−G(x)|

= sup
x

∣∣∣∣∣
2n∑
k=1

(Gn(In,k)1{x ≥ qn,k} −G(In,k)1{x ≥ qn,k})−G((qn,k(x), x])

∣∣∣∣∣
where qn,k(x) is the largest quantile (of level n) smaller than x. Then, because
of Gn(qn,k) = G(qn,k),

sup
x

|Gn(x)−G(x)| = sup
k

sup
x∈In,k

|G((qn,k, x])| ≤ sup
k

G(In,k) = (1− τ)n < ε.

The first term of (3.7) is equal to

sup
j

sup
x∈(qNε,kj−1

,qNε,kj
]

∣∣GNε((qNε,kj , x])−Gn((qNε,kj , x])
∣∣

< sup
j

sup
x∈(qNε,kj−1

,qNε,kj
]

∣∣∣∣ x− qNε,kj−1

qNε,kj − qNε,kj−1

Gn((qNε,kj−1 , Gn((qNε,kj , x])])

∣∣∣∣ < ε

by construction.
(ii) To prove the second part, we write,

KL(G,Gε)=

∫
g(x) log

g(x)

gε(x)
dx=

∫
g(x) log

(
lim
n

G(In,k(x))/ν(In,k(x))

Gε(In,k(x))/ν(In,k(x))

)
dx

=

∫ ∞∑
m=1

g(x) log

(
G(Im,k(x) | Im−1,k(x))/ν(Im,k(x) | Im−1,k(x))

Gε(Im,k(x) | Im−1,k(x))/ν(Im,k(x) | Im−1,k(x))

)
dx

=

∞∑
n=1

2n−1∑
k=1

[
log τ

Gε(In,2k−1|In−1,k)
G(In,2k−1)+ log 1−τ

Gε(In,2k|In−1,k)
G(In,2k)

]
.

Note that, for n < nε, Gε(In,k) = Gn(In,k), for all k, then Gε(In,2k−1 | In−1,k) =
τ and Gε(In,2k | In−1,k) = 1− τ , implies

nε∑
n=1

2n−1∑
k=1

[
log

τ

Gε(In,2k−1 | In−1,k)
G(In,2k−1) + log

1− τ

Gε(In,2k | In−1,k)
G(In,2k)

]
= 0.

Then,

KL(G,Gε) =

∞∑
n=nε+1

2n−1∑
k=1

[
log

τ

Gε(In,2k−1 | In−1,k)
G(In,2k−1) + log

1− τ

Gε(In,2k | In−1,k)
G(In,2k)

]
.

For n > Nε+1, the partition {In,k}k≤2n is finer than the partition {INε,kj}j . For
nε+1 < n ≤ Nε, some of the intervals In,k coincide with INε,kj for some j ≤ M ,
while for the others we can find j such that In,k ⊆ INε,kj . In the first case, we
have, by construction Gε(In,2k−1 | In−1,k) = τ , while in the second case, since
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Gε(x) is defined by linear interpolation, we have Gε(In,2k−1 | In−1,k) = Xn,2k−1

Then, we have the upper bound

KL(G,Gε) ≤
∞∑

n=nε+1

2n−1∑
k=1

[
log

τ

Xn,2k−1
G(In,2k−1) + log

1− τ

1−Xn,2k−1
G(In,2k)

]
.

We now prove that the series

∞∑
n=1

2n−1∑
k=1

[
log

τ

Xn,2k−1
G(In,2k−1) + log

1− τ

1−Xn,2k−1
G(In,2k)

]
(3.8)

is convergent in mean (and therefore in probability). Note that in the follow-
ing we exploit the fact that, although In,k is random, G(In,k) is a nonrandom
function of τ , n and k:

E

⎛
⎝ ∞∑

n=1

2n−1∑
k=1

[
log

τ

Xn,2k−1
G(In,2k−1) + log

1− τ

1−Xn,2k−1
G(In,2k)

]⎞⎠

=

∞∑
n=1

2n−1∑
k=1

[
G(In,2k−1)E log

τ

Xn,2k−1
+G(In,2k)E log

1− τ

1−Xn,2k−1

]

(using concavity of log(x) and Jensen’s inequaliy)

=

∞∑
n=1

2n−1∑
k=1

[
G(In,2k−1) logE

τ

Xn,2k−1
+G(In,2k) logE

1− τ

1−Xn,2k−1

]
.

Now, we use the sharp Kantorovich’s inequality (see eq. (4) in [8]), with M =
1− ln and m = ln: we have that

E

(
τ

Xn,2k−1

)
·
(

τ

EXn,2k−1

)−1

≤

(
1−ln
1−2ln

log 1−ln
ln

− 1
2(1−ln)

)2
2
(
log 1−ln

ln
− 1−2ln

1−ln

) ≤ −3

2
log(ln),

where the last inequality holds for all ln < 0.5. The same inequality holds for

E

(
1−τ

1−Xn,2k−1

)
. Then, we can write the following upper bound for the sum above:

3

2

∞∑
n=1

2n−1∑
k=1

(
G(In,2k−1) log

τ

τn
+G(In,2k) log

1− τ

1− τn

)
| log(ln)|

=
3

2

∞∑
n=1

(
τ log

τ

τn
+ (1− τ) log

1− τ

1− τn

)
| log(ln)|,

where the last identity follows from
∑2n−1

k=1 G(In,2k−1) = 1−
∑2n−1

k=1 G(In,2k) =
τ (this can be seen by induction). The right hand side converges under the
assumptions of the theorem which implies convergence in mean of (3.8).
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This implies that

E

⎛
⎝ ∞∑

n=m

2n−1∑
k=1

[
log

τ

Xn,2k−1
G(In,2k−1) + log

1− τ

1−Xn,2k−1
G(In,2k)

]⎞⎠ m→∞−→ 0

and this yields convergence in probability, that is: for every γ, η > 0, ∃ε > 0
such that

Bλn, n≥1

⎧⎨
⎩

∞∑
n=nε+1

2n−1∑
k=1

[
log

τ

Xn,2k−1
G(In,2k−1) + log

1− τ

1−Xn,2k−1
G(In,2k)

]
< γ

⎫⎬
⎭ > 1− η.

4. Generalizations

We dedicate this section to some generalizations. First we extend SQA procedure
to unbounded set as R. Then we show that the SQA can be used to generate ran-
dom probability distributions F , whose expectiles of level τ (or more generally,
whose generalized M -quantiles, following the definition of [5]) have distribution
λ1. Finally we consider the case of generating a random probability distribution
with two given quantiles.

4.1. Extension to RPM’s on unbounded sets

The SQA procedure described in Section 3.2 can be extended for the construc-
tion of random measures in R (the same reasoning applies to any unbounded
subset of R) without losing their main properties.

Let H : R �→ [0, 1] be an absolutely continuous cdf. Then, any SQA-RPM
G on [0, 1] can be transformed into a RPM on R by using the distribution H
as a link function: F (x) = G(H(x)). Then, if G is differentiable, so is F , with
density f(x) = g(H(x))h(x).

Moreover, for any absolutely continuous distribution F0 in R, the distribution
G0(u) = F0(H

−1(u)) is an absolutely continuous distribution function on [0, 1]
with density g0(u) = f0(H

−1(u))/h(H−1(u)) and we have

KL(F0, F ) =

∫
f0(x) log

f0(x)

f(x)
dx

by applying the transform x = H−1(u)

=

∫
f0(H

−1(u))

h(H−1(u))
log

f0(H
−1(u))

f(H−1(u))
du

=

∫
g0(u) log

g0(u)

g(u)
du = KL(G0, G).

From this remark we can conclude that Theorem 3.6 can be also extended to
SQA-RPM on the real line. A small issue to take care of is to ascertain that F0
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is such that the entropy of G0 is finite. This can be checked by noting that∫
g0(u) log g0(u)du =

∫
f0(H

−1(u))

h(H−1(u))
log

f0(H
−1(u))

h(H−1(u))
du

=

∫
f0(x)

h(x)
log

f0(x)

h(x)
h(x)dx = KL(F0, H).

Thus, the condition of bounded entropy of G0 is equivalent to finite KL-diver-
gence between H and F0.

Also the truncation procedure defined in Section 3.3 is easily adapted. Given
the continuous distribution H, the truncated SQA random distribution function
Fε may be defined from Gε: Fε(x) = Gε(H(x)): for any x ∈ (H−1(qNε,kj−1),
H−1(qNε,kj )]

Fε(x) = G(qNε,kj−1) +
H(x)− qNε,kj−1

qNε,kj − qNε,kj−1

G(Iεj ),

where Iε = (qNε,kj−1 , qNε,kj ].
Then, while the density of Gε is stepwise constant, the density of Fε is not

constant and its behavior depends on the link H:

fε(x) =
G(Iεj )

qNε,kj − qNε,kj−1

h(x), for H(x) ∈ Iεj .

This definition of the truncated distribution allows us to approximate F with
arbitrary precision (according to the measure of discrepancy defined by the KL-
divergence). In fact, Theorem 3.7(ii) applies, because of

KL(F, Fε) =
∑
j

∫
x:H(x)∈Iε

j

h(x)g(H(x)) log
g(H(x))h(x)

gε(H(x))h(x)
dx = KL(G,Gε).

We point out that, given λ1, the choice of H might be determined by the
constraint on the distribution of the random τ -quantile. In fact, from

Pr
(
F−1(τ) ≤ u

)
= Pr (F (u) ≥ τ) = Pr (G(H(u)) ≥ τ) = λ1 ((0, H(u)]) ,

then if we wish for the τ -quantile of F to have a given distribution, say π, we
need H to satisfy H(u) = λ−1

1 ((0, π(u)]).

4.2. Generating random distributions from M-quantiles

One way to define the quantile of level τ of a continuous distribution with density
f , is as that value q that satisfies∫

ρ1(x− q)f(x)dx = 0,
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where ρ1(u) = τ − 1{u ≤ 0}. This corresponds to solving the optimization:

qτ (F ) = argmin
q

EF [ρ1(X − q)(X − q)] , (4.1)

where EFX =
∫
xf(x)dx.

If one replaces to the function ρ1 the function ρ2(u) = (τ − 1{u ≤ 0})|u|,
a different function, called expectile function (Newey and Powell (1987) [27]),
is defined. [5] proposed a natural generalization of quantiles and expectiles, by
replacing the constant and modulus functions by the modulus of a more general
odd function, ψ: ∫

(τ − 1{x ≤ y})|ψ(x− y)|f(x)dx = 0. (4.2)

The function ψ is related to the choice of the function in an M -estimation
procedure. In particular, if τ = .5, then the corresponding quantity is equal
to the M -estimator of the location parameter. For this reason [5] proposed the
name M -quantiles for the solution to (4.2).

[20] proved that, if ψ is odd, monotone nondecreasing, continuous and piece-
wise differentiable, the M -quantile corresponds to the quantile of level τ of the
distribution function

G(y) =

∫ y
ψ(y − x)f(x)dx

2
∫ y

ψ(y − x)f(x)dx−
∫
ψ(y − x)f(x)dx

. (4.3)

Thus, in particular, one obtains the standard quantiles by taking ψ equal
to the odd function ψ(u) = sign(u), and in that case it is easy to see that
G(y) = F (y).

From ψ(x) = x, Jones proves in particular that expectiles are quantiles of
the distribution function

G(y) =
μ(y)− yF (y)

2(μ(y)− yF (y)) + y − μ
, (4.4)

where μ(y) =
∫ y

xf(x)dx.
Expectiles have been experiencing a growing interest in the recent financial

literature (as well as in all fields where it is crucial to manage extreme events,
such as actuarial sciences), in particular since the introduction of the concept
of elicitability ([14]) and the proof by [35], that expectiles give the only risk
measure that is both coherent and elicitable5. See [2] and references therein for
their use as risk measure in comparison with VaR and ES. However, expectiles
are known to be less robust to extreme events relative to the VaR. [10] consider

5A risk measure is elicitable if there exists a scoring function such that the risk under
a given distribution is obtained by minimizing the expected value of the score under that
distribution. All M -quantiles are elicitable. A risk measure is coherent if it is simultaneously
(i) translation invariant, (ii) monotonic, (iii) positively homogeneous, (iv) subadditive (see [1]
for more details). While the ES is coherent but not elicitable, the VaR is elicitable but not
coherent.
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Lp-quantile based risk measures, (see [7]), obtained by taking the function ψ in
(4.2) equal to |x|p−1 with 1 < p < 2.

The SQA procedure can be used to generate RPMs controlling for the dis-
tribution of a given M-quantile. We illustrate the procedure by focusing on the
case of expectiles, namely to the case ψ = |x|. This clearly includes the case, if
τ = 1/2, of random distributions with mean distributed according to λ1.

The idea behind this procedure is straightforward: exploiting the fact that
M -quantiles of a distribution F are ordinary quantiles of the distribution G in
(4.3), we first generate a random distribution from a SQA sequence of level τ
as described in the previous section. Then, we invert the transformation (4.3)
to get the distribution F := FG.

In particular, the inverse transformation of (4.4) can be easily found once
we notice that the median of the G distribution and the mean of FG coincide.
Then, for all y, from

G(y)

1− 2G(y)
=

μ(y)− yF (y)

y − μ
,

we can get:

FG(y) =
∂

∂y

G(y)(μ− y)

1− 2G(y)
. (4.5)

The link between quantiles of G and expectiles of FG guarantees that, if the
τ -level quantile of G has distribution λ1 Bλn,n≥1-a.s., then also the τ -expectile
of FG follows the same distribution. We underline that equation (4.5) is inde-
pendent on the τ level.

If in particular we choose τ = 1/2, this procedure gives a distribution FG

whose mean has distribution λ1. Besides the already mentioned SBA by [17],
the problem of generating RPMs whose mean follow a given distribution, has
been studied with a focus on Dirichlet means, motivated by applications in non-
parametric statistics and in combinatorics (see [23], [30] and [31]). Our procedure
thus also permits to define an alternative approach to tackle this issue.

4.3. SQA with two given quantiles

We can consider an extension of the proposed SQA procedure with more given
quantiles. Consider the case we want construct a RPM G with given quantiles at
level τ1 and τ2, with τ1 < τ2, denoting qτ1 and qτ2 respectively and assuming we
need qτ1 ∼ λ1

1 and qτ2 ∼ λ2
1. The construction in (3.1) must be slightly changed

in the number of points in each partition and two initial distributions must be
introduced; indeed, in redefining the (3.1), we have that {Xn,2k−1}n,k, n ≥ 1
and k = 1, . . . , 3 · 2n−2 is a triangular array of independent random variables,
with X1,1 ∼ λ1

1, X1,2 ∼ λ2
1 and Xn,2k−1 ∼ λn, for all n ≥ 2. Then the first two

lines of the recursive construction (3.1) change in

q1,1 = X1,1 q1,2 = X1,2

qn,2k = qn−1,k, n ≥ 1, k = 1, . . . , 3 · 2n−2
(4.6)
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and the rest remains unchanged. Supposing to adopt a generic τ after the first
partition, the result in Theorem 2.1 still holds, except for G(qn,0) = 0 = 1 −
G(qn,2n) that must be transformed in G(qn,0) = 0 = 1 − G(qn,3·2n−3) and the
fact that G(q11) = τ1 and G(q1,2) = τ2.

Finally Theorem 3.1 still holds with

Bλn,n≥1

{
G : G−1(τi) ≤ z

}
= λi

1([0, z]) i = 1, 2.

5. Simulations

In the following we report some examples of random probabilities obtained via
our SQA construction. The truncation procedure has been used to reduce the
computational time with ε = 10−3.

In Figure 3 five examples of random distributions obtained with q1,1 = 0.1
and τ = 0.05 are reported; these five examples are derived with the same λ
distribution equal to a Beta(3, 30), plotted on the left up corner. In contrast, in
Figure 4, five examples of random distributions obtained with the same q1,1 =
0.1 and τ = 0.05, but with five different λs, are reported. In this case the λ
distributions, plotted on the left up corner, are Beta(3, 3a2), with a = 1, .., 5.
The more the distribution is symmetric the higher the probability assigned to
one. Indeed a symmetric λ tends to select more likely the mid point of each
interval leaving τ probability on the left and 1 − τ on the right. Given a fixed

Fig 3. Five random SQA cumulative distribution function with the same λ that is a
Beta(3, 30). The quantile q1,1 is 0.1 with τ = 0.05.
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Fig 4. Five random SQA cumulative distribution function with different λ. The distributions
λ are Beta(3, 3a2) with a = 1, .., 5. The quantile q1,1 is 0.1 with τ = 0.05.

quantile q1,1 at level τ all the distributions pass necessarily through the point
(q1,1, τ)

6, see Figure 3 and 4.
Differently from [6] the SQA procedure allows to build random distributions

with quantile following a given distribution λ1; in Fig 5 five examples are re-
ported. In this case λ is Beta(3, 15) and is the same for all the five examples,
while the given quantile is drawn by a λ1 equal to a uniform from 0 and 0.2.

Differently from [17] SQA-RPM can be continuous even if λ assigns some
probability to 0. Fig 6 shows on the left hand side five SQA-RPMs and on
the right hand side five SBA-RPM. Both SQA and SBA are generated with
λ that gives 0.1 probability to 0 and Uniform(0,1) elsewhere; the quantile and
the mean are both fixed to 0.4 and for an easier comparison τ is 0.5. This
figure offers a graphical intuition about the difference in continuity of the two
constructions as formalized in our Theorem 3.3 and Theorem 3.6 by [17]. Indeed
in Theorem 3.6 by [17] for any distribution μ (the equivalent of our λ) giving
positive mass in zero they get discrete distributions, while we can have also
continuous distributions.

In Figure 7 (lhs) five simulations of SQA with λn changing with n are repre-
sented. The distributions λn are chosen to satisfy conditions of Theorems 3.5,
3.6 and 3.7, namely λn are Beta(an, bn) in [ln, 1− ln] with ln = 0.8τ

n
√
n
, an = τn2,

bn = 1−ln−τn
τn−ln

an and τn = τ+ 1
n2 . The quantile q1,1 = 0.2 and τ = 0.2. Finally in

Figure 8 five simulations of RPM on R are reported, indeed they are the trans-

6This is equivalent to choosing λ1 = δq11
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Fig 5. Five random SQA cumulative distribution function with λ1 uniform from 0 and 0.2.
λ is Beta(3, 15) and is the same for all the five examples

Fig 6. Five random SQA cumulative distribution function on the left and five random SBA on
the right. The SQA is derived with τ = 0.5 for an easier comparison with SBA that consider
the mean. The median on the left and the mean on the right are assigned equal to 0.4. λ gives
0.1 mass to 0 and is uniform elsewhere.

formation of those reported in Figure 7 (lhs) with the link function H chosen
as the standard normal distribution.

5.1. Comparison with similar approaches

Polya tree and mixture of Polya tree, are widely used to construct random prob-
ability distributions. [24] showed that Polya trees can give probability 1 to the
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Fig 7. Five random SQA cumulative distribution functions on the left with λn changing with
n. Five random Polya tree cumulative distribution function on the right. Both are derived
with τ = 0.2 and quantile 0.2. The λn in SQA are such that to satisfy conditions of Theorems
3.5, 3.6 and 3.7 while PT is simulated as in [34] using a Beta(n2, n2).

Fig 8. Five random SQA cumulative distribution function on R obtained by those reported
in 7(rhs) with the link function H chosen as the inverse of a standard normal.

set of continuous distribution functions, they constitute a conjugate family with
an easy update to get the posterior distribution and they have full support.
However a well known drawback is the dependence of the model on the parti-
tion specified to construct the tree, indeed the partition can affect the posterior
distribution. [28] addressed this issue “jittering” the partition. Similarly [18]
proposed quantile pyramids to build random partition with fixed mass instead
of having random mass in a fixed partition. Our approach builds a random par-
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tition assigning back the distribution, in this sense it looks more alike to quantile
pyramids. In terms of Polya tree, SQA is like a realization from a Polya tree
distribution with partition given by our SQA realization and degenerate Beta.
In terms of quantile pyramids instead SQA can be seen as a generalization that
uses τ quantiles instead of dyadic quantiles. With both methods we share the
property of producing continuous distributions with probability one, whenever
the partition has not degenerate intervals, and we share also the property of
large support on the space of probability measures.

Polya trees and Mixtures of Polya trees, that are less sensible to the parti-
tion choice, can be used also to generate RPMs with given median or quantiles
and this finds application in Bayesian quantile regression (see [34], [16]). Rela-
tive to those methods, the SQA procedure permits an even easier simulation of
prior distributions, with any distributional constraint on one or more quantiles.
As quantile pyramides, however, SQA distribution is less analitically tractable
than Polya tree and requires a computational effort to derive the posterior dis-
tribution. In Figure 7 (rhs) five simulations of Polya tree RPM are represented
jointly with five simulations of SQA with λn changing with n. In both the dis-
tribution generating the partition in SQA and the weights of the partition in
PT are chosen to satisfy conditions that ensures continuity and differentiability.
Polya Tree RPMs are simulated according to [34] with the Beta distributions
with parameters an = bn = n2. A comparison of the graphs produced by the
two methods (also considering different choices of the parameters), shows that
SQA-RPMs can be a valid substitute for the Polya tree RPMs.

6. Concluding remarks

In this paper we studied a procedure for the generation of RPMs based on
a sequence of conditional quantiles. This procedure offers an alternative with
respect to the popular approaches based on Polya trees, and can be seen as a
generalization of the more recent quantile pyramids ([18]). The SQA procedure
is able to produce families of both continuous and discrete random distributions,
and also with full support, under the appropriate conditions.

As the Polya tree or other procedures for the generation of random prob-
ability measures, the SQA procedure can be used in Bayesian nonparametric
statistics, and it represents a suitable choice especially in cases when it is neces-
sary to control for one or more quantiles (see for instance the approach in [29]).
A thorough analysis of the application of SQA-RPM to Bayesian nonparametric
statistics is worth doing and will be object of future research.

Further, this procedure can be used in other types of applications as those
addresses by [17]. We here mention some examples for which a procedure fixing
one (or more) quantile distribution is convenient.

Example 5 (Approximation of Universal Constants). The SQA procedure can
be used to derive an experimental method to estimate the supremum or the in-
fimum of a continuous functional f : P ([0, 1]) → R, under constraints on an
M -quantile.
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As a particular case, we can consider the problem of finding the KL projec-
tion of a probability distribution onto a set of probability distributions defined
by nonlinear constraints7. Given a two distributions F0, F with Radon-Nikodym
derivative dF/dF0, the KL-divergence KL(F, F0) =

∫
log (dF/dF0) dF . For any

subset Ω ⊂ P([0, 1]), a KL projection of F0 onto Ω is the pdf F ∗ ∈ Ω satisfying
KL(F ∗, F0) ≤ KL(F, F0), for every F ∈ Ω. Suppose that Ω is the set of dis-
tribution functions with a constraint on a quantile (i.e. F−1(τ) = c). This is a
nonlinear constraint, therefore the minimum KL-divergence between F0 and Ω
can be approximated by taking the minimum over a finite set of simulated SQA
distributions {Fi, i = 1, . . . , N}: KL(F ∗, F0) = mini KL(Fi, F0).

Example 6. The SQA procedure can be used to generate scenarios in which the
distributions must satisfy some condition on the risk measure if this is defined
by quantiles (VaR for example) or expectiles.

SQA could be also applied in generating RPMs for which the First degree
Stochastic Dominance (FSD) holds. Indeed given that, according to the quantile
formulation of FSD, F dominates G if qτ (F ) ≥ qτ (G) ∀τ ∈ [0, 1], fixing one of
the two distributions, a specific construction using SQA and involving a sequence
of quantiles can generate randomly the other distribution such that the FSD
holds.
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