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Abstract: A new class of nonparametric prior distributions, termed Beta-
Binomial stick-breaking process, is proposed. By allowing the underlying
length random variables to be dependent through a Beta marginals Markov
chain, an appealing discrete random probability measure arises. The chain’s
dependence parameter controls the ordering of the stick-breaking weights,
and thus tunes the model’s label-switching ability. Also, by tuning this
parameter, the resulting class contains the Dirichlet process and the Ge-
ometric process priors as particular cases, which is of interest for MCMC
implementations.

Some properties of the model are discussed and a density estimation
algorithm is proposed and tested with simulated datasets.
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1. Introduction

Discrete random probability measures and their distributions play a key role in
Bayesian nonparametric statistics. The availability of general classes of priors
and their different representations are crucial for the study of theoretical prop-
erties, as well as for the proposal of simulation and estimation algorithms. This
continuously encourages the search of competitive alternatives to the canoni-
cal model, Ferguson (1973) Dirichlet process. At the outset, one could consider
a (proper) species sampling process (Pitman; 2006) over a measurable Polish
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space (S, %4(S)),
p= ijééja (1)
i>1
where the atoms, E = (£j)j>1, and the weights, W = (Wj)j>1, are independent

collections of random variables (r.v.’s), with &; i Py, a diffuse measure on
(S,2(S)), and ;5 wj = 1, almost surely (a.s.). To fully specify the law of
w, one could assume a form for Py and place a distribution over the infinite
dimensional simplex A, = {(w,we,...) : w; >0, 2121 w; = 1}. An important

aspect to note is that
d
D o Wide, = Y Wi, (2)
jz1 jz1

for every random permutation of N, p, independent of E. This means that once
the atom’s distribution, Py, is fixed, there are infinitely many distributions over
A that lead to the exact same prior, hence the need to study orderings for the
weights. In particular, one can consider the decreasing ordering of its elements,
here denoted by W+ = (wj)jzl, with wh > wi > --- a.s., or the size-biased
permutation, denoted by W = (%,);>1, which satisfies P[W; = w;|W] = w;,
and for n > 2
-~ ~ ~ W 1
PW, = w;|W,Wq,... W, 1] = 1oy T, Sl
i=1 Wi

Working with decreasing representations of the weights reduces the identifiabil-
ity problem that arises from (2) in the sense that if ~1,~2, ... is sampled i.i.d.

from p, conditionally given p, then w% corresponds to the atom that appears

more frequently in the sequence, w% corresponds to the second most frequent
value, and so on (e.g., Mena and Walker; 2015). On the other hand, the size-
biased permutation of the weights is of interest when the focus is in the clusters
featured in the sample, i.e. if 7} is the jth distinct value to appear in the sample,
then the long-run proportion of elements in {n : v, = v } coincides precisely
with w; (Pitman; 1996a).

Different techniques to place distributions on A, are available (e.g. Fergu-
son; 1973; Blackwell and MacQueen; 1973; James et al.; 2009) and connections
among such techniques are well known (e.g. Ishwaran and James; 2001; Ishwaran
and Zarepour; 2002; Hjort et al.; 2010). Perhaps one of the most practical con-
structions is enjoyed by the so-called stick-breaking process (McCloskey; 1965;
Sethuraman; 1994; Ishwaran and James; 2001) where the weights are decom-
posed as

j—1
W1 =V, Wj :VjH(]-_Vi)a 322, (3)
i=1

for some sequence taking values in [0, 1], V = (v;),~,, hereinafter referred to as
length variables (1.v.’s). The practical compromise inherent to (3) is relatively
little, as most practical classes of priors have a stick-breaking representation,
e.g. the Dirichlet process (Ferguson; 1973; Sethuraman; 1994), its two-parameter
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generalization (Perman et al.; 1992; Pitman and Yor; 1992), the normalized
inverse-Gaussian process (Favaro et al.; 2012) and the more general class of ho-
mogeneous normalized random measures with independent increments (Favaro

et al.; 2016). In particular, the Dirichlet process is recovered when v; id Be(1,0),
for some 6 > 0, and, as shown by Pitman (1996b), the resulting weights coin-
cide with the corresponding size-biased permutation of them, an ideal feature
for clustering (Pitman; 1996a). A different stick-breaking prior is the Geometric
process, introduced by Fuentes-Garcia et al. (2010). For this case, the decreasing
ordering of the weights takes the form

wi=A1-A)/"Y >,

for some A ~ Be(a,6), with a,8 > 0. Here the random variables (v;);>1 are
completely dependent, indeed identical, unlike for the Dirichlet process. As men-
tioned above, the ordering of the weights, or lack of it, is of high relevance when
using Bayesian nonparametric priors for density estimation and/or clustering.
The dependence on only one random variable makes the Geometric process an
attractive choice from a numerical point of view, and also makes it quite simple
to generalize to non-exchangeable settings (Fuentes-Garcia et al.; 2009; Mena
et al.; 2011; Hatjispyros et al.; 2018). Furthermore, as shown by Bissiri and On-
garo (2014), both the Dirichlet and the Geometric processes have full support.

We propose a new class of stick-breaking distributions over A, featured
by dependent l.v.’s driven by a strictly stationary Beta Markov chain, thus
leading to a novel family of random probability measures, the Beta-Binomial
stick-breaking (BBSB) priors. The Beta Markov chain in question has a depen-
dence parameter which modulates the ordering of the corresponding weights,
allowing BBSB priors to enjoy a good trade-off between weights identifiability
and mixing. For extreme values of the dependence parameter, we find that the
Dirichlet process and the Geometric process priors are particular cases of our
model. Furthermore, using an extension of the aforementioned result by Bissiri
and Ongaro (2014), we will see that BBSB priors also have full support.

The remaining part of the article is organized as follows: In Section 2 we
present the construction of the Markov chain with Be(«, #) marginals. Inhere,
we also analyse some special and limiting cases that will subsequently allow to re-
cover the Dirichlet and Geometric processes. This Markov chain then assembles
in Section 3 a sequence of 1.v.’s, thus leading to Beta-Binomial stick-breaking
priors. In Section 4 we derive a sampling scheme for density estimation and,
in Section 5 we test it in simulated data. The proofs of the main results are
deferred to the Appendix.

2. Beta-Binomial Markov chain

Following Pitt et al. (2002), given a density function my x(v,z) with marginals
7y (v) and 7y (), and whose conditional distributions are 7y« (v|x) and 7y (z[v),
it is possible to construct two of reversible Markov chains (v;);>1 and (x;)i>1
with stationary distributions 7, and 7y respectively. The construction considers
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the law induced by vi ~ 7y, and {x; | vi} ~ Ty (Vi) {Vigr | Xi} ~ Ty (-[%4),
for i > 1; where v;41 is conditionally independent of (vi,x1,...,Vv;—1,X;-1,V;)
given x;, and analogously x;1 is conditionally independent of (v1,x1,...,v;, X;)
given v;41. Arising from the Beta-Binomial conjugate model, we take

Ty x (v, ) = Bin(z|k, v)Be(v|a, 0),

for some «, 0 > 0, k € {0, 1,...}, and where Bin(0, p) = dy. Thus, the dependence
induced by vy ~ Be(a, 0), and {x; | v;} ~ Bin(k,v;), {vit1 | x;} ~ Be(a+x;,0+
Kk —X;), for i > 1 generates Markov chains, V = (v;);>1 and X = (x;);>1, where
the former has transition probabilities given by

Plv; € Alv;—1] = / Z Be(s|la + x,0 + k — z)Bin(x|k, v;—1)ds, (4)
Az=0
and stationary distribution Be(a, 6), and the latter

1
Plx; = z|x;_1] = / Bin(z|x, p)Be(p|la + x;—1,0 + k — x;_1)dp
0

_ (H> (a+%i-1)21(0 + K — Xi—1) k-2t
x (+ 0+ K)xr

)

where (y)mt = H;n:_ol(y + 7), and its stationary distribution is

Plx; = 2] = (H) ()21 (0)—at. (6)

z) (a+0)xt

To any Markov chains, V, X and (V,X) = (v;,X;);>1, we refer to them as
Beta, Binomial and Beta-Binomial chains. See Nieto-Barajas and Walker (2002)
and Mena and Walker (2009) for more on this kind of Markov chains. In what
follows, we focus on the the Beta chain and some of its properties, specifically in
how the parameter x affects the dependence of the chain. This will be relevant
for our construction of the nonparametric prior in the following section.

Proposition 2.1. Let (V,X) be a Beta-Binomial chain with parameters
(k,,0), then for the Beta chain, V, and for every i > 1, we have the following
conditional moments
o+ KV;
e )0+ 51— v) + il = vi)(a + 6+ )
a+kv)( @+ k(1 —v;)+rv(l—v))(a+0+k
b) V i i) = .
) Var(visa[vi) (a+0+k)2a+0+Kk+1)
Kol
(a+0)?(a+0+1)(a+0+k)
Cov(vi, Vit1) B K
V/Var(vi)/Var(vit1) a+0+rk

Fixing the value of k and increasing either « or 6, the correlation coefficient,
Pvivi, goes to 0. Conversely, if we fix o and 0, for large values of &, py,, ~ 1.

a) E[vii1|vi] =

C) COV(V@7 Vi+1) =

d) Pvivigr —

Vitl
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Also, if o and 6 are very small with respect to x

2V1(1 — Vi)

E[vit1|vi = v; and Var(v;yi|v;) =~ T

Hence, intuition tells us that the conditional distribution of v;;; given v,
tends to dy,, as k grows, see Figure 1. The following result generalizes this
intuition.
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Fia 1. Conditional densities of vi41 given v; = 0.4, for distinct values of k. We vary s in
the set {10, 50,200, 1000, 5000}, the values of a and 6 were fized to 10.

Proposition 2.2. Let V(®) = (VEK))‘>1 be a Beta-chain with parameters
(k,a, 0). -
(i) For k=0, VO s a sequence of i.i.d. random variables with distribution
Be(a, 0).
(i) As K — oo, V) converges in distribution to (X, X,...), where A ~
Be(a,0).

3. Beta-binomial stick-breaking prior

We call Beta-Binomial stick-breaking prior to any species sampling process, u,
with weights sequence as in (3) for some 1.v.’s, V, driven by a Beta chain with
transition density (4). As usual, the parameters of the 1.v.’s are inherited to the
prior, adding to the latter, the diffuse probability measure, Py, as an additional
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parameter. The first property to check is that the corresponding weights add
up to one.
Proposition 3.1. Let W be as in equation (3), for some Beta chain, V. Then
Z Wj a.:s. 1.
j>1

Moreover, notice that for every 0 < § < ¢ < 1 and n > 1, any Beta-Binomial
chain, (V,X), with parameters (k, «, 0), satisfies

P[ﬁ(5<vi<5)1 =E

i=1

[Pl < vi <elX]
i=1

Pl6 < vy < g]xq] HIP’[(S < v < elxi—1,%5]| >0,
i=2

=E

as conditionally given X, the elements of V are independent and Beta dis-
tributed. As shown by Bissiri and Ongaro (2014), the above observation shows
that any Beta-Binomial prior has full support, and thus feasible for nonparamet-
ric inference. The following results, which follow from Proposition 2.2, motivate
their study.

Theorem 3.2. Let u'*) be a BBSB prior with parameters (k,,0, Py) then

(i) For k=0 and o = 1, u'% is a Dirichlet process with parameters (6, Py).
(ii) For any a and 0 fized, as k — oo, u) converges in distribution to the
Geometric process, p, with parameters (o, 6, Pp).

In terms of the ordering of the corresponding weights, we have the following
corollary.

Corollary 3.3. Let (wgn)) be as in equation (3), for some Beta chain,
Jj=1

<V§H)> o with parameters (k, a,0). Then
i>

(i) For a =1, k =0, and any choice of 0, <W§H)> N is size-biased ordered.
j>1
(ii) For any choices of a and 0, and for every j > 1

; (r) =] _
HILIEOIP’ [Wj-s-l <w; ] =1

If we fix &« = 1, the choice x = 0 implies that W = W is size-biased or-
dered. In general for such sequences E[W;] > E[W,1], even though W; > W;;
does not occur with probability 1. On the other extreme, as kK — oo we have
the decreasing ordering of the Geometric weights W = W+, which satisfy

P [w]l > Wj +1} = 1. Roughly speaking, by increasing the parameter x, we make
the weights sequence more likely to be decreasingly ordered. Figure 2 shows some

simulations of (wj)?il and their corresponding l.v.’s that illustrate the afore-
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Fic 2. Simulations of (Wj)?il (A.2 and B.2) and their corresponding l.v.’s (A.1 and B.1

respectively) for distinct values of k. For the Beta chains in A.l, we fited « =1 and 6 = 1,
for the ones in B.1 we used the same value of o, whilst 0 = 10. The chains in a single graph
share the same initial r.v. for the sake of a simpler analysis.

mentioned behaviour. The initial value, v, of the Beta chain strongly affects
the behaviour of the complete sequence of weights, this is particularly evident
for large values of . Recall that if  is sufficiently large we have vi & v, so for
instance if vy is close to 0, then (1 — vy) & 1 and wa = vo(l — vy) & vi = wy,
which means that if vo > vy even slightly, we might obtain wo > wj. Al-
ternatively, a large value of v, translates to a small value of (1 — vy), so in
order to obtain wo > wi, it would require v, to be significantly larger than
v1, which under the assumption that x is large, is not very likely to happen, as
v1 = va. The same intuition is inherited to the subsequent indexes since we also
have vy &~ v3 & - -+, for large values of k. Hence, the larger/smaller vy is, the
larger /smaller we expect v; to be, for ¢ > 1. Moreover, for large values of the
parameter 6 we expect vy to take small values, thus in general, a bigger value
of 6 requires an even larger value of k, to induce a stochastically decreasing
ordering of the weights.

3.1. Distribution of the number of groups

When working with any species sampling process, u, such as a Dirichlet, BBSB
or Geometric process. .., a r.v. of interest is the number of distinct values, K,,,
that a sample {71,...,7v,} driven by p exhibits. Although for some priors it
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is possible to compute or characterize the probabilistic behaviour of K,, (see
for instance Pitman; 2006), in general this is not an easy task to do. Despite
this, whenever it is feasible to obtain samples from the weights sequence, W,
as is the case of any BBSB prior, obtaining samples from K,, can be easily
achieved as follows: Sample n independent U(0, 1) r.v.’s, (uy)i_;, and (w;)7_,
where ¢ is some constant satisfying Z}D:l w,; > maxy u. For k € {1,...,n}
and i € {1,...,¢}, let dj = i if and only if Z;;ll wj < ugp < Y5, wj (with
the convention that the empty sum equals 0) then the number of distinct values
(dy,...,d,) exhibits is precisely a sample from K,,.
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Fic 3. Frequency polygons of samples of size 10000 from Koo for distinct values of k and
0 and fizing o = 1. For the frequency polygons in A,B and C we fized k to 0,10 and 100
respectively, whilst the frequency polygons in D correspond to the Geometric prior. For each
fized value of k, we vary 6 in the set {0.5,1,3,6,10}.

To understand how the parameters of a BBSB prior affect the distribution
of K,,, we sampled as aforementioned varying the values of k, a and . Partic-
ularly, Figure 3(A) shows the distribution of K,, corresponding to the Dirichlet
process, for which is well known that E[K,] increases when 6 grows. This loca-
tion behavior is also observed for other fixed values of k (B,C and D). Figures
3 and 4, illustrate how for fixed o and 6, an increment on k contributes to the
distribution of K, with a heavier right tail, and thus a larger mean and vari-
ance, say the prior on K,, is less informative. In Figure 3, where we fixed a = 1,
it can be observed that for bigger values of 6, the distribution of K,, is more
sensitive to an increment of k. The same can be seen in Figure 4, for fixed 6 = 1
and smaller values of a.
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Fic 4. Frequency polygons of samples of size 10000 from Koo for distinct values of k and
a and fizing 0 = 1. For the frequency polygons in A,B and C we fized k to 0,10 and 100
respectively, whilst the frequency polygons in D correspond to the Geometric prior. For each
fized value of Kk, we vary a in the set {0.5,0.75,1,3,6}.

4. Density estimation for Beta-Binomial mixtures

Given a BBSB prior, p, and a density kernel, g(-|s), with parameter space S,
we can consider BBSB mixtures. Namely, we can model elements in y(™ =
{¥1,...,¥n} as i.i.d. sampled from the random density

B(y) == m(y|W,E) = / olyls)u(ds) = 3 wig(ylé;). (7)
s i>1

For MCMC implementation purposes, and following Walker (2007), this ran-
dom density can be augmented as

W(Y? u|W7 E) = Z 1{u<w_,~}g(Y|£j)v (8)

Jj=1

where it can be easily deduced

m(u|W) = Z liucw,y- 9)

Jj=1
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As in the Dirichlet process case, given u, the number of components in the
mixture is finite, with indexes being the elements of A,(W) = {j : u < w;,},
that is

m(ylu, W, 8) = > glylg)). (10)

1
AWl e i)

Using the membership variable d, i.e. d = j iff y is sampled from g(-|¢;), one
can further consider the augmented joint density

7(y,u,d|W,E) = 11ycw,19(y1€a)- (11)

The complete data likelihood based on a sample of size n from (11) is easily
seen to be

Eg W((ykvukvdk k= 1 H 1{Uk<de}g(yk|£dk) (12)
k=1

and under the assumption Py has a density, pg, with respect to a suitable mea-
sure, the full joint density of every variable involved is

(Y, wr, di )1, (Vi)i>1, (§5)5>1)

(H 1{uk<wdk}g yklédk ) Hpo SJ

k=1 j>1

x | Be(vi|a,0) H Z Be(viti|a + x,0 + k — x)Bin(z|k, v;) |,
i>12=0
(13)
recall wq, = vq, Hd’“ '(1 — v;) with the convention that the empty product
equals 1

4.1. Full conditionals

The full conditional distributions, required for posterior inference via a Gibbs
sampler implementation, are proportional to (13), and given as follows.

1. Updating E:

7§l ) <po(&) [ 9elé), 5>1,

keD;

where D; = {k > 1:dg = j}. If po and g form a conjugate pair, the above is
easy to sample from.
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2. Updating V and U = (ug)}_; as a block:

n
(U, V]...) x <H W;jl{uk<wdk}wdk> X

k=1

x | Be(vi|a,0) H Z Be(vit1]la + x,0 + k — z)Bin(z|k, v;)

i>12=0

As wq, = vq, H?:’“l_l(l —v;), with the convention H?:1(') =1, then

(U, V]...) x [H de.ll{uk<wdk}1 [ver (1 — v1)" Be(vi]a, 0)] x
k=1

X H Z(Vi+1)ai+l (1 —vip1)?*Be(vigi|a + z,0 + Kk — x)Bin(z|k, v;)

i>1x=0

where
a; = Z ]-{dk:i} and 92' = Z 1{dk>i}-
k=1 k=1

Recalling that for m € N, and z > 0, I'(m + z) = (2)m1+I'(2), we obtain

(U, V|...) x l]‘[ U(ug|0,wa, )| [Be(vi|a + a1, 6 + 6,)]

k=1

X H Z Be(vi+1|ai+1 +a+ $»9i+1 +0+kK— .’17)
i>1x=0
o 0 - . .
(a + ‘r) L+1T( + K m)01+1T B|n(.’L‘|K/, Vl)} ,
(a +60+ H)(ai+1+0i+l)T

with the convention (2)opy = 1. Thus, to update V and U, we first sample V
from

w(V]...(exclude U)...) x [Be(vi|a + ag,0 + 61)]

X H Z Be(viti|aiti +a+ 2,041 + 0+ Kk — )
i>12=0
(a + f)az‘+1’r(9 + K- x)9i+1T Bin
(Oé +60 + K‘)(Oéi+1+0i+1)T

(z|k,vi) |,

which can be normalized to a product of Beta densities mixtures, and latter
sample U from 7(U|...) = [[,_; U(u|0, wa,).
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3. Updating D = (dg)}_,

7T(dk:j|"')O(g(yk|£J‘)]'{uk<wj'}7 kE{l,...ﬂ’L},
which is a discrete distribution with finite support, hence easy to sample from.
Remark 4.1 (For the updating of & and V). As it is well-known for this
algorithm, we do not need to sample v; and &; for every j > 1, it suffices
to sample enough of them so that step 3 can take place. Explicitly, it suffices

to sample &; and v; for j < ¢, where ¢ is a constant such that Z W >
maxy(1 —uy), then it is not possible that w; > uy, for any k <n and 7> .

4.2. Posterior distribution analysis

Given{(é(t)) (w (t)) ( (t)>k (d(t)) }T from {E, W, U, D|y(™} obtained
¢

after T iterations of the Gibbs sampler, followmg (10) we estimate the density
of the data by

E[gly™] ~ 15:%2 Z g (1€"). (14)

where A,(C { 7 u,(f) ;t) } Furthermore, we can also estimate the posterior

distribution of {K,|y™} through
1 T
- (n)| ~ =
P {Kn = m’y n } =~ T ; 1{K£f):m}’ (15)

where Kgf) is the number of distinct values (d,(:)> exhibits. As usual, when

working with mixtures of densities, K,, can be interpreted as the number of
components of the mixture featured in the sample y(™, that is the number of
elements in {g(-|£;)},>1 such that y} is sampled from g(-|&;), for some y;, € y (™,
This way, the estimates (14) together with (15), give us information of how well
a model performs for the given data set. Among the models for which (14)
adjusts well to the data, those for which (15) favours smaller values of m might
be preferred, as this means the model is mixing the components, {g(:|£;)};>1,
more efficiently.

4.3. Posterior inference for the dependence parameter

In order to highlight the role of the dependence parameter, k, we incorporate its
posterior inference. Namely, we consider this parameter random and endow it
with a prior distribution, & ~ 7. For this case, the likelihood (12) remains iden-
tical and the joint distribution (13) is multiplied by 7. (&). It can easily be seen
that, conditionally given &, the full conditionals {7 (§;|...)};>1, {m(dx|...)}7_;
and 7(V,U]...) also remain the same. As to the full conditional of k given the
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rest of the r.v.’s, we have that

m(k =kK|...) x ms(K) H Z Be(Vitila+ x,0 + k — x)Bin(z|k, v;), (16)
i>12=0

which is easy to sample from if 7, has finite support. Summarizing, at each
iteration of the Gibbs sampler, we update E, V, U and D as above and add a
fourth step in which we sample & from (16).

Finally, given the samples (n(t))tT:l obtained after T iterations of the Gibbs
sampler, once the burn-in period has elapsed, we estimate the posterior distri-

bution of K by

T
1
P[K, = K/|y(n)] ~ T Z 1{n(t):.‘€}
t=1

5. Illustrations

In principle, every choice of k leads to robust posterior MCMC estimates, after
an appropriate burn-in period and enough valid iterations. However, depending
on the sample, initial conditions, and current parameter values in the Gibbs
sampler, the need to more/less ordered weights, thus different values of x, might
be required. To test the performance of BBSB priors for density estimation, we
first conduct a small experiment in which we fix the value of « to 0,10, 100 and
oo and compare the results provided by the 4 distinct models. Secondly, in order
to choose the optimal value of k for a dataset and given that the rest of the
parameters are fixed, we place a prior distribution on the dependence parameter
and analyse its posterior distribution. Here we also compare our models to
another well-known stick-breaking prior, the Pitman-Yor process (Perman et al.;
1992; Pitman and Yor; 1992). In all cases we assume a Gaussian kernel with
random location and scale parameters, i.e., for each j > 1, §; = (m;, p;), and
9(yl&;) = N(y|mj,pj_1). To attain a conjugate pair for py and g, we assume
po(&;) = N(my|9,7p; ")Ga(p;la,b), where a = b = 0.5, 7 = 100 and ¢ =

n~! ZZ:1 Yk-

5.1. Analysis for BBSB mixtures with fired dependence parameter

For this exercise we simulated a data set (database 1) containing 200 observations
and featuring 11 modes equally spaced. As it is well known for this type of
data, and if the parameter 6 is not carefully chosen, the Dirichlet mixture under
estimates the number modes featured in the sample. Alternatively, Geometric
mixtures do recognize every mode, but they tend to use a large number of
mixture components. In order to study how BBSB priors perform in this context,
and to compare them with the Dirichlet and Geometric processes, we fixed
a = 1,0 =1 and vary  in the set {0,10,100,00}. No burn-in period was



1492 M. F. Gil-Leyva et al.

B
iterations iterations

0.8 2000 0.06 2000
1000

density

0.00
20 -10 0 10 20 -30 20 -10 0 10

D
iterations iterations

2000 2000
1000 1000

density

0.00
20 10 0 10 20 30 -20 -10 0 10 20
data data

Fic 5. Evolution of the estimated densities for database 1, through the first 3000 iterations of
the Gibbs sampler, for four distinct BBSB mixztures. The estimated densities in A, B, C and D
correspond to BBSB miztures with k fized to 0,10,100 and oo respectively, in the four cases
a=0=1.

considered, so that one may analyse the number of iterations required by the
model to provide a good estimate.

In Figure 5 we observe that the Dirichlet process (A) fails to recover the eleven
modes featured in the dataset, the three remaining models are able to capture
the 11 well-separated modes. In terms of the number of iterations required to
recognize the modes, we observe that BBSB mixtures with larger values of x (C
and D) perform better. Consistently with the prior analysis of the number of
groups, in Figure 6 we observe that the posterior mean and variance increase as k
does. Comparing Figures 5 and 6 we note that the model with x = 10 (B) mixes
better the components of the mixture than the other ones in the sense that fewer
components were needed in order to capture every mode. Overall, the cases k =
10 (B) and k = 100 (C), seem to inherit desirable properties from the limiting
cases, i.e. K =0 (A) and kK = oo (D). From the Dirichlet process they inherit a
more efficient component mixing, while from the Geometric process they inherit
the flexibility to adapt even if the parameter 6 is not carefully chosen.

5.2. Analysis for BBSB mixtures with random dependence
parameter

The main objective of this analysis is to determine the optimal value of &
for different datasets. To this aim, we first we consider a very simple data
set (database 2) consisting of 200 observations that were sampled from a mix-
ture of two Gaussian distributions. And secondly, we examine a more compli-
cated set of data (database 3) that contains 200 observations sampled from a
mixture of seven Gaussian kernels with distinct means, variances and weights,
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Fic 6. Frequency polygon of the estimated posterior distributions of K, given database 1 for
the four BBSB miztures which share the parameters a = 0 = 1, and differ on the parameter
K, same one that varies in the set {0, 10,100, c0}.

this database was created and studied before by Lijoi et al. (2007). For each,
database 2 and database 3, we study three BBSB mixtures with parameters «
and 0 fixed to distinct values, and compare the estimations with the ones pro-
vided by a Pitman-Yor mixture. Recall that this two-parameter generalization
of the Dirichlet process has stick-breaking representation with independent 1.v.’s
v; ~ Be(l — 0,0 4+ ic) where 0 < ¢ < 1 and § > —o (see for instance Perman
et al.; 1992; Pitman and Yor; 1992; Pitman; 2006, for further details). In par-
ticular the Dirichlet process is recovered when ¢ = 0. For this mixture we fixed
0 and consider the other parameter random with a uniform distribution over
[0, 1], this way the model is allowed to choose the best value of o for the data
set. In a similar spirit, for every BBSB mixture considered here, the parameter
K was considered random with a uniform prior distribution over {0, 1,...,100}.

5.2.1. Results for database 2

In Figure 7 we observe that the estimated densities for the four mixtures adjust
well to the data and do not differ significantly. In Figure 8 we see that every
posterior distribution is asymmetrical, hence we will estimate the corresponding
randomized parameter by the mode rather that the mean. For the BBSB models
with parameter « = 1 (A and B), the posterior mode of k equals 0, suggesting
that for this simple data set, the Dirichlet process is an excellent choice. In D we
see that for the Pitman-Yor mixture the posterior distribution of o also assigns
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Fic 7. Estimated densities for database 2, taking into account 5000 iterations of the Gibbs
sampler after a burn-in period of 3000, for three distinct BBSB miztures with parameters
(a,0) fized to (1,1),(1,0.3) and (0.3,2), and a Pitman-Yor mizture with parameter 6 = 1.

a bigger probability to values closer to 0, so it agrees with our models that
the Dirichlet process adjust well to this data set. As for the BBSB model with
a = 0.3 and 6 = 2, we observe that the posterior distribution of k (C) prefers a
value bigger than 0. Explicitly, the posterior mode of this distribution is k = 6.
This could be due to the fact that for « = 0.3 and § = 2 the stick-breaking
mixture with completely independent 1.v.’s is not a good choice for this dataset,
so the BBSB mixture corrects this by adjusting the value of the dependence
parameter.

5.2.2. Results for database 3

Insomuch as the distributions in Figure 10 are asymmetrical, once again we
estimate the randomized parameter by the posterior modes. In the same fig-
ure we observe that the posterior distribution of Kk for every BBSB mixture
(A, B and C) favours values of k that are bigger than 0, yet smaller than 50.
Specifically, the posterior modes of k for the BBSB models with («a,6) fixed
to (1,1.3),(1,0.3) and (0.3,2) are 12, 12 and 30, respectively. That is to say,
in every case the model estimates that corresponding l.v.’s are dependent. In
fact, if we insert the parameters o = 1,1,0.3, 8 = 1.3,0.3,2, and the posterior
mode of k = 12,12, 30, into Proposition 2.1 (d), we estimate the correlation co-
efficients of consecutive 1.v.’s by 0.8992, 0.9023 and 0.9288, respectively. Notice
that although the posterior modes of k are not large, these choices affect greatly
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F1G 8. Posterior distributions of k (A, B and C) for the BBSB miztures with parameters (., 0)
fized to (1,1),(1,0.3) and (0.3,2), respectively. D illustrates the posterior distribution of o
for the Pitman-Yor mizture with @ = 1. The dotted and dashed lines indicate the posterior
means and modes, respectively.

the dependence of the 1.v.’s in question. In particular, for the couple of BBSB
mixtures with a = 1, this suggest the Dirichlet mixture is not the best choice.
Among these two, for the one with § = 1.3, we chose this parameter so that
for the Dirichlet prior E[Kspo] & 7, which coincides with the number of actual
modes featured in database 3. Even in this case, the posterior distribution of K
suggest that other BBSB models fit better than the Dirichlet mixture. As to
the Pitman-Yor mixture, for which 6 was also chosen as above, we see in Figure
10 (D) that the posterior distribution of o favours values close to 0. Meaning
that this model suggests that among the possibilities, the Dirichlet process is
the best fit. However, if we concentrate in Figure 9 we see that the estimated
densities by all three BBSB mixtures adjust well the data and recover the seven
modes featuring the data set, whilst the Pitman-Yor model confuses the couple
of modes in the left hand side of the figure. This suggests the class of BBSB
mixtures offers a bigger capacity to adjust to the data by tuning the parameter
K, than the class of Pitman-Yor mixtures have by tuning the parameter o.

6. Discussion

By using Beta chains as the 1.v.’s of stick-breaking sequences, we were able to
construct a new family of distributions over the infinite dimensional simplex,
hence a new class of species sampling priors. The parameter, , that modulates
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Fic 9. Estimated densities for database 3, taking into account 5000 iterations of the Gibbs
sampler after a burn-in period of 3000, for three distinct BBSB miztures with parameters
(a, 0) fized to (1,1.3),(1,0.3) and (0.3,2), and a Pitman-Yor mizture with parameter 6 = 1.3.

the dependence among the elements of the Beta chain, also modulates the or-
dering of the corresponding weights. While the choice Kk = 0 and « = 1 recovers
the size-biased permutation of the weights of Dirichlet processes, as kK — 0o, we
recover the decreasing ordered weights of Geometric processes, both classes of
processes being models of interest. This approach to define priors also allows
the construction of random measures that are hybrids between Dirichlet and
Geometric processes. Furthermore, how similar is the BBSB prior to one model
or the other can also be tuned by the parameter . As to the prior distribution
of K,,, generally speaking, we found that a larger value of k translates to a less
informative prior. This in turn allows more flexible models in a density estima-
tion context. In general the class of BBSB mixtures offers models with a great
capacity to adapt to distinct data sets and models with a efficient component
mixing. By endowing the parameter x with a prior distribution, one can esti-
mate its optimal value for a given data set, thus choose the BBSB mixture that
admits the optimal balance between flexibility and efficient mixing.

The present work gives rise to interesting questions, such as how to character-
ize the distribution of K,, for BBSB priors and analyse its asymptotic behaviour
as n — oo, or even further study the underlying exchangeable partition prob-
ability functions. As to the orderings of the weights, it is also of interest to
compute or approximate P{w; > w;] for a fixed value of x, and to determine
the rate at which P[w; > w,11] — 1 as K — co. On a non-exchangeable context
(e.g. Leisen and Griffin; 2017; De Torio et al.; 2004), one could also use the Beta-
Binomial transition to model dependence between two of more species sampling
processes whose weights enjoy the stick-breaking decomposition. Hopefully, the
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Fic 10. Posterior distributions of & (A,B and C) for the BBSB miztures with parameters
(a0, 0) fized to (1,1.3),(1,0.3) and (0.3,2), respectively. D illustrates the posterior distribution
of o for the Pitman-Yor mizture with 8 = 1.3. The dotted and dashed lines indicate the
posterior means and modes, respectively.

present paper motivates the study of stick-breaking sequences featuring depen-
dent 1.v.’s, that might even lead to other type of priors.

Acknowledgements

The first author gratefully thanks the support of CONACyT PhD scholarship
program and CONACyT project 241195. The second author gratefully acknowl-
edges the support of CONTEX project 2018-9B as well as the hospitality of the
University of Bath, where part of the project was done, during a Global Professor
research visit.

Appendix A.
Appendix A.1. Convergence of probability measures

To formally give the proof of the main results, we recall some topological details
of measure spaces. For a Polish space S, with Borel o-algebra %(.S), we denote
by P(S) the space of all probability measures over (S, %(S)). A well-known
metric on P(5) is the Lévy-Prokhorov metric given by

dy(P,P) =inf{e > 0: P(A) < P' (A%) + ¢, P'(A) < P(A%) +¢,YA € B(S)},
(17)
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for any P, P’ € P(S), and where A° = {s € S : d(s,A) < €}, d(s,A) =
inf{d(a,s) : a € A} and d is some complete metric on S. For probability
measures P, Py, Ps,... it is said that P, converges weakly to P, denoted by
P, & P, whenever /. g fdPp, — /. g JdP for every continuous bounded function
f S — [0,00). This condition is known to be equivalent to dr(P,, P) — 0,
and to v, 4 v, whenever «,, ~ P, and v ~ P. P(S), equipped with the
topology of weak convergence, is Polish again. Its Borel o-field, Z(P(S)), can
equivalently be defined as the o-algebra generated by all the projection maps
{P — P(B) : B € #A(S)}. In this sense the random probability measures
(measurable mappings from a probability space (2, F,P) into (P(S), B(S5))),
I, 1, fo, . . ., are said to converge weakly, a.s. whenever p,(w) - p(w), for
every w outside a P-null set. Analogously, if [ fdu, S Js fdu for every con-
tinuous bounded function f : S — [0, 00), it is said that u,, converges weakly in
distribution to p, denoted by g, &y . Evidently, g, — p a.s. implies f,, &y u,
which, in turns is a necessary and sufficient condition for u,, A p. For further
details see for instance Parthasarathy (1967), Billingsley (1968) or Kallenberg
(2017).

Appendix A.2. Proof of Proposition 2.1

a) Using elementary properties of conditional expectation and the fact that
given x;, v;11 is conditionally independent of v;, we obtain

o+ X;

Efvisavil = ElElvasabediv] =B | 252y

| o+ KV;
T a+0+k

b) Notice that Var(vi+1|vi) = E[Var(vi+1|xi)|vi} + Var(IE[vi+1|x,»]|vi), with

) - <Vof_(+1—e_ :2;

o+ X;

Var(E[vit1|x;]|v;) = Var { ————
ar(E[viy1|x;]|v;i) ar(a+9+ﬁv

Now, note that

E[(a+x:)(0 + k —x;)|v;] = Cov(a + x4,0 + k — x;|v;)
+ Ela + x;|vi]JE[0 + & — x| V]
= —Var(x;|v;) + (a4 £v;)(0 + £ — KVv;)
= —kvi(l —v;)+ (a+ kv;)(0 + k(1 —Vv;))
(a+x:)0+ kK —x;)

(@+0+r)2at0+trtl) VZ}
—kvi(1 —v;) + (a4 £vy) (0 + k(1 —vy))
@t 0tr)2(atftrtl)

Hence

E[Var(vi11]x;)|vi] = E

)
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and we can conclude the proof of b),

(a4 wvy) (0 + k(1 —vy)) + mvi(1 —vi)(a+ 04 k)
Var(visalvi) = (a+0+r2(Q+0+r+1) '

c) We first note that as a consequence of the joint reversibility of the Beta-
Binomial chain, v; ~ Be(a + x;,0 + k — x;) conditionally given x;, thus

2
o+ x;
E[vivit1] = E[E[viviyi|xi]] = E[E[vi[x]E[vipi[x]] = E (m) ,
conditioning on v;, we obtain
2 2
o+ x; —Elg o+ X; v,
a+0+k a+0+k
a? + 2aE[x;|v;] + E[x?|v;]
=E
(a+ 0+ k)2
a? + 2akE[v;] + kE[v;] + k(k — 1)E[vZ]
N (a+ 0+ k)2
[, 22+ @) | k(k—Dafa+1) 5
_{a + oy TR, (a+0+ k)",
hence
ko

Cov(vi, Vit1) = E[vivipi] — E[viE[viti] = (a+0)2(a+0+1)(a+0+r)

d) The correlation simplifies as follows

COV(Vl',VH_l) - KR

Privies = VVar(vi)NVar(vig) a+0+rk

Appendix A.3. Proof of Proposition 2.2

To prove Proposition 2.2 we need some preliminary results.

Lemma A.1 (Continuous mappings). Let S and T be Polish spaces. Letm,my, . . .

be random elements taking values in S, with n, 4 1, and consider some mea-
surable mappings f, f1, fa... from S into T satisfying fn(sn) = f(s), for every

Sp — s in S. Then fn(nn) A f(n).

Lemma A.2. Let v" = (v, v%,...), ¥ = (71,72,.-.) be random sequences
taking values in a Polish space S. Then ~™ A ~ if and only if

d .
(Y1) = (Vs %i), for every i > 1.
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Lemmas A.2 and A.1 are well-known result in probability theory, see for
instance Theorems 4.27 and 4.29, respectively, in Kallenberg (2002).

Lemma A.3. Let S and T be Polish spaces. Consider some random elements
Yy Y1,Y2, - - - and M, 11, N2, . .. taking values in S and T, respectively. Let p be
the distribution of ~v and p,, the distribution of =, also consider some regu-
lar versions, 7(-|v) and m,(:|vn), of Pln € -|v] and P[n, € - |vn] respectively.
If pn = p and for every s, — s in S we have that m,(-|s,) — 7(-|s), then
(Yo ) > (v,m).

Proof. Let g : S x T — R be a continuous and bounded function. Define
faf17f2a"':S4)Rby

Fuls) = / g(s,)ma(di]s) and  f(s) = / o(s,t)m(dt]s)
The first thing we will prove is that

fu(sn) — f(s) as s, —s. (18)

So let s, — s. Choose some random elements ¢, (1, s, ... with {, ~ m,("|sn)

and ¢ ~ m(+|s), this way, ¢, A ¢ by hypothesis. Define h, hq,ha,...: T — R by
hn(t) = g(sn,t) and h(t) = g(s,t). As g is continuous, we have that h,(t,) =
9(Sn,tn) — g(s,t) = h(t), for every t, — t in T. By Lemma A.1 we obtain

hin(Cn) A h(¢), which in turn implies
/ 0(5ms ) (dt]52) = Elg(5n, Co)] = Efhn(C)]
S E[h(C)] = Elg(s,¢)] = / o(s, tyn(dt]s).

Since s, — s was arbitrary, this proves equation (18), which together with the

hypothesis and by Lemma A.1 show that f,(vy) A f (). Particularly,
J ([ stsstomatils) ) pu(as) = Bl )
8l = [ ([ atsmtals)) plas. o)

Note that the double integral in the left side of equation (19) coincides with
Elg(v¥n, Mr)], whilst the one at the right side coincides with E[g(y,n)]. That
is, we have proven that E[g(vn,mn)] — E[g(y,n)], for every continuous and

bounded function g : S x T'— R. Or equivalently (v, n,) 4 (v,m). O

Lemma A.4. Let (x,)n>1 be a sequence of random variables such that x,, ~
Bin(n,p,) for every n > 1 and where p, — p in [0,1]. Then

X’fL

L
n
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Proof. Forn > 1,

[(2 )] - Aol - P

" 1 —p) (20)
Pn{l — Pn
S
n
By taking limits as n — oo in (20) we obtain
2
lim E[(——p) } =0.
n—00 n
O

Proof of Proposition 2.2.

(i) Insomuch as the correbponding spaces are Borel, we may construct on
some probability space (€2, F,P) a Beta-Binomial chain (V, X) with parameters
(0,,0). Now, the elementb of V are conditionally 1ndependent given X, and
given that x = 0, X = (0,0,...), so we may think of X as if it was determin-
istic, which implies that the elements of V must be independent and Be(«, 6)
distributed.

(ii) For every s > 1, let V(®) = (VEH)> - be a Beta chain with parameters

K]

(K, 0), and let 7, (-’VEH)> be some regular version of P [vgi)l €- |v£'{)} (which
clearly does not depends on ). Further let A ~ Be(a, #) and fix 7(|A) = da.

The first thing we are interested in proving is that for every p, — p in [0, 1] we
have that

m([ps) = 7(-Ip)- (21)
So, let p, — p in [0,1], by Lemma A.4 and given that all the correspond-
ing spaces are Borel, we may construct on a probability space (Q, F,P), with
expectations E[], some pairs of 1.v.’s (X4, Vi), such that X, ~ Bin(x,ps),
{Ve|%e} ~ Be(a + %.,0 + 1 — %), and %X./k “5 p. Note that marginally

Vi ~ m(-|pi) SO to prove equation (21), it suffices to show v, 4 D.
Conditionally given X, the moment generator function of v is

9] k—1 ~ k
St o 1 a+X,+r t
EW“W]1+Z<Hoa+€+n+r>k!’ tek (22)
=1 r=

By construction we have that X,/ 23" p, which means that for every r > 0,

a+X,+r a+r X, a+60+r 71a,5_
(e ) (e )y
a+0+k+r K K K

as k — oo. Hence by the tower property of conditional expectation, equations
(22) and (23), and Lebesgue dominated convergence theorem (the corresponding
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functions are dominated by e') we obtain

lim E [eto”] = lim E [E [et‘?*‘|§<,§]}

KR—00 RKR—0Q

[e's) k—1 ~ k
a+X,+r t

1 lm — =T )2

+Z<Hﬁ,5&a+0+n+r> k!]

k=1 \r=0

which proves altogether v, 4 p and equation (21).

Returning to the original Beta chains, we have that VY”) L\ for every Kk >

1, so trivially, VEH) A A, this together with equation (21) and the recursive

application of Lemma A.3 allows us to obtain

(vgn),...,vg'{)> 4 A, .oy A), 1>1,

and by Lemma A.2 we can conclude vV#E) = (vg'{))

Appendix A.4. Proof of Proposition 3.1

For sequences that enjoy the decomposition (3) we may equivalently prove that

(1 - iw) = ﬁ(l —v;) 80,

i=1

as j — oo (see for instance Ghosal and van der Vaart; 2017). Further, these
r.v.’s are non-negative and bounded by 1, thus it is enough to show that

[1a- vi)] =0. (24)

i=1

lim E

Jj—o0

As the corresponding spaces are Borel, (after possibly enlarging the original
probability space) it is possible to construct a Binomial chain X such that (V, X)
defines a Beta-Binomial chain. Conditionally given X = {x;};>1, the elements
of V.= {v;}i>1 are independent with, {vi|x1} ~ Be(a + x1,60 + x — x1) and
{Vit1|xi, Xi41} ~ Bela + x; + x441,0 + 26 — x; — X;41), for ¢ > 1. Hence

E [ﬁ(l—vi) —E [}E X]

=E [E[u —vy)x] B - Vi)|xi_1,xi]‘|

J

H(l — Vi)

i=1

=2
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_E 9+/€—x1ﬁ9+2/€—xi—x11]

a+9—|—mi:2 a+ 60+ 2k

Recalling that 0 < x; < K a.s. we obtain

0 0 i ’ O+ ( 0+26 \'
<E 1-v;)| < ,
a+0+/€(0¢+9+2/€> - H( V)]_a+9<a+0+2fi)

i=1
for every j > 1. Finally by taking limits as j — oo in the last equation, (24)
follows.

Appendix A.5. Proof of Theorem 3.2

To prove Theorem 3.2 we will first prove a couple of elementary results.

Lemma A.5. Let S be a Polish space and fix some distinct s1,82,... € S,
let p = (p1,p2,...) and ¢ = (q1,42,...) be elements of A and define P =
> j>1Pj0s; and Q =5, qj0s;. Then for di as in equation (17)

du(P.Q) < > Ips — a5l

Jj=1

Proof. Define e(p,q) = Zj>1 |p; — ¢;l, by definition of dy, it suffices to prove
for all A € A(5) B

P(A)gQ(AE(p"I))—i—s(p,q), and Q(A)gP(A6<M>)+5(p,q). (25)

So let A€ #(S) and set My ={j > 1:s; € A}, then

P(A)= > P{s;})= >0, < > a5+ Y. Ipj—al

JEMa JEMa JEMa JEMa
<Q(4) +(p.q)

< Q (40 + <),

Analogously, we have that Q(A) < P (AE(P"Z)) +e(p, q). O
Lemma A.6. For fized and distinct elements s1, So,... € S, the mapping,

(wl,’UJQ, .. ) —> Z’LUJ'(SSJ,

jz1
from A into P(S) is continuous with respect to the weak topology.

Proof. Let w™ = (w%n),wgn),...) and w = (wy,ws,...) be any elements of

A such that wj(-n) — wj, for every j > 1. Define pn) — Zj21wj(-n)55j and
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P =35, w;ds;. By Lemma A.5
i>1

1504
dL( ")P) Z\w —wj\SZw](")—i—ZwJ—Q
i>1

j>1
and by the general Lebesgue dominated convergence theorem we obtain
_ ; (
w;| = anL%\wj —w;| =0
3. O

. (n) s
Jm s (P P) = lim 3
Jj=21 >

which means that the mapping (wy,wa,...) — 221 w;d,; is continuous

Remark A.7. Despite the choice of the metric, p, in Ao, as long as p generates
the Borel o-algebra, p (w("),w) — 0 implies |w§n) —w;| = 0, for every j > 1
For this reason, in the above proof we did not discuss the details on the metric,
i

of Ao, that is being used.

Proof of Theorem 3.2. The proof of (i) follows directly from Proposition 2.2 (i)
To prove (ii), note that by Proposition 2.2 (ii) and given that all the correspond-
ing spaces are Borel, we can construct on a probability space (2, F,P), Beta

chains V(*) ( (H)) with parameters (k, o, ) and a A ~ Be(a, 6) such that
K]
A, as kK — 00, for every ¢ > 1. Define also an independent sequence

5 &
j=21

5 3 us o oo
with éj i Py. Now, for kK > 1 set
and pto) = ijﬁ)é

). izt
(26)

k>1
is continuous, we have that

W
K3
-1
with the empty product equating to 1, also set f EJ>1 (1 /\> 55 , SO
) L ), and < p.
(k)

As the mapping (VA 5'{), . ,VAEK)) W
A ~\J—1
vi/](-”) X (1 - A) , j>1.

and  §(w) # &(w)

For the sequence =, the diffuseness of Py implies that for i # j, & # &; a.s
some B € F such that P[B] = 1 and for every w € B
j—1
Jj=1 i F ]

since we are dealing with a countable number of random variables, there exist
(W),

o (k) \
Wi W) = A (1-AW)
By Lemma A.6
j—1
Do @) B DA (1-AW) T dg weB
jz1 §>1
that is, 4 % [ a.s., implying *) % . Finally, by equation (26), the result

follows.

O
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Appendix A.6. Proof of Corollary 3.3

The proof of (i) can be found in Theorem 1 by Pitman (1996a). To prove (ii)
note that we may write

() ()
v, 1—v;
k k ]+1( J ) .
wit = v, Wil = w2
V.
J

)

hence

P [w§?1 < W§K):| =P [Vgi)l (1 — ng)) < v§ﬁ)] .

By the second part of Proposition 2.2 and as the corresponding spaces are Borel,
we may construct on some probability space, (2, F,P), with expectations E[-],
Beta chains, (\A/EK)) , with parameters (k, a, 6), and a A~ Be(a, 0) satisfying

i>1

(\A/EK))Dl = (AL as.

Then for j > 1, there exist A € F with P[A] = 1 and such that for every w € A,
¥ (W) = A(w) and ¥{7; (w) = A(w). Fix w € A, since A(w)(1 - Aw)) < A(w),
we may choose £’ such that for every k > &/, \Algi)l (w)(1— \Afj(-'{) (w)) < Vgn)(w).
As w was chosen arbitrarily in A we have that 1 {\7;'_7_)1 (1 — {,5&)) < \7;'“)} -1

a.s., as k — 0o. Finally, by Lebesgue dominated convergence theorem we obtain

)

lim P [W(i)l < W(H):| = lim E [1 {v;i)l (1 - v§

i 8[1 {59, (1-59) < 5]
(
j

K—00 J J K—»00

K— 00

=& [ lim 1{v) (1-9(7) <o{"}]

K—» 00
=1.
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