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Abstract: Detecting the change of biological interaction networks is of
great importance in biological and medical research. We proposed a sim-
ple loss function, named as CrossFDTL, to identify the network change or
differential network by estimating the difference between two precision ma-
trices under Gaussian assumption. The CrossFDTL is a natural fusion of
the D-trace loss for the considered two networks by imposing the �1 penalty
to the differential matrix to ensure sparsity. The key point of our method is
to utilize the cross variables, which correspond to the sum and difference of
two precision matrices instead of using their original forms. Moreover, we
developed an efficient minimization algorithm for the proposed loss function
and further rigorously proved its convergence. Numerical results showed
that our method outperforms the existing methods in both accuracy and
convergence speed for the simulated and real data.
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1. Introduction

Network inference based on the observed biological data is a fundamental topic
in network biology along with the rapid developments of high-throughput tech-
nologies. A typical approach in gene regulatory network inference is to utilize
the Gaussian graphical model [18]. In such a model, gene expression levels are
assumed to be a p-dimensional random vector x ∼ N (0,Σ). Then, two genes
i and j are conditionally independent given the other components if and only
if the corresponding entry of the inverse correlation matrix, i.e. precision ma-
trix, Σ−1

ij = 0. Therefore, under the Gaussian assumption, the network inference
problem is equivalent to determinng the sparsity pattern of the precision matrix,
which is consistent with the covariance selection problem [4].

There has been some proposals on solving the covariance selection problem.
Meinshausen and Bühlmann [19] proposed a neighborhood selection scheme in
which one can estimate the support of precision matrix row by row. Yuan and
Lin [30] proposed the �1 penalized log-likelihood estimator and used the Max-
Det algorithm to solve it. The ADMM algorithm is utilized by Scheinberg,
Ma and Goldfarb [22] to solve the �1 penalized log-likelihood maximization
problem. Cai, Liu and Luo [2] proposed a constrained �1 minimization estima-
tor and established its convergence rates under the elementwise �∞ norm and
Frobenius norm. Hsieh et al. [10, 11] utilized the coordinate descent method
to compute the �1 penalized log-likelihood estimator which shows good effi-
ciency. Zhang and Zou [33] proposed the D-trace loss function whose min-
imizer is also a precision matrix but with a simpler mathematical formula-
tion.
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In practical biological applications, many other indices are proposed to de-
tect the direct associations by considering the non-Gaussian effect [23]. Such
attempts include the Pearson correlation coefficient [5], partial correlation [26],
mutual information [17], conditional mutual information [34], partial associa-
tion [24] and so on. Two similar yet more general approaches than finding the
precision matrix, the deconvolution [7] and silencing methods [1], are also pro-
posed to remove the indirect effects from the whole correlations of the considered
variables.

In many cases of medical research, what we are more interested in is not a par-
ticular network but how the network changes from one state to the other state,
i.e. the differential network between two states X and Y . Borrowing the idea
of Gaussian assumption in network inference, we suppose x ∼ N (0,ΣX), y ∼
N (0,ΣY ). The differential network can be defined as Δ = Σ−1

Y − Σ−1
X or

C−1
Y − C−1

X , where CX and CY are the responding correlation matrices. To
estimate the differential network, we can compute Σ−1

Y and Σ−1
X separately and

then take difference. However, this naive approach cannot take advantage of the
sparsity of Δ, which is a usual case in practice, and the available data for X
and Y simultaneously. Danaher, Wang and Witten [3] proposed the joint graph-
ical lasso (JGL) model, which can jointly estimate Σ−1

Y ,Σ−1
X and Δ. However,

there is no theoretical results to guarantee the consistency and convergence of
their algorithm. Zhao, Cai and Li [35] extended the work for precision matrix
estimation by Cai, Liu and Luo [2] to differential network analysis. But the
computational complexity and memory requirement of their method are both
around O(p4), where p is the size of matrix Δ. Yuan et al. [31] proposed the
D-trace loss function for differential network to directly estimate Δ with lasso
penalty. However, their computation time is usually in the order of hours or
days even when p ∼ O(103).

Here, we proposed a new fused D-trace loss function to estimate Δ in this
paper. It can be simply viewed as a fusion of the loss in Zhang and Zou [33],
i.e. the sum of two D-trace loss functions for the networks X and Y . How-
ever, the key novelty of our method is to utilize a transformed formulation
of the loss through cross variables, which correspond to the sum and differ-
ence of two precision matrices instead of using their original form. We call it
CrossFDTL formulation for the differential network inference. As we will see,
the CrossFDTL form permits the construction of an efficient optimization al-
gorithm and rigorous proof of its convergence, which is not feasible for the
original form. Simulation studies and real data analysis show that our method
outperforms the existing methods in both accuracy and convergence speed. Es-
pecially, the final algorithm can identify the differential network in tens of min-
utes, depending on the sparsity of Δ, when the matrix size p ∼ O(104) or
more.

The rest of this paper is organized as follows. In Section 2, we present our
model and optimization algorithm. The convergence and consistency are studied
in Section 3. In Sections 4 and 5, we summarize our numerical results for the
simulation and real data, respectively. Further discussions on possible issues of
the differential network inference are left in Section 6.
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2. Methods

In this section, we will mainly present our CrossFDTL loss function and the
optimization algorithm. The implementation details are also summarized.

2.1. Fused D-trace loss in cross-variable formulation

To estimate Δ = Σ−1
Y −Σ−1

X , we construct the following CrossFDTL loss function

LF (S,Δ,ΣX ,ΣY ) =
1

2
tr((S +Δ)2ΣY ) +

1

2
tr((S −Δ)2ΣX)− 2tr(S). (1)

Straightforward derivation shows that LF has the unique minimizer

S∗ =
1

2
(Σ−1

Y +Σ−1
X ), Δ∗ =

1

2
(Σ−1

Y − Σ−1
X ) (2)

when ΣX and ΣY are invertible.
LF can be understood as the fusion of D-trace loss functions LX , LY for

networks X and Y

LX(ΘX ,ΣX) =
1

2
tr(Θ2

XΣX)− tr(ΘX), LY (ΘY ,ΣY ) =
1

2
tr(Θ2

Y ΣY )− tr(ΘY )

(3)
but with the cross variables S := 1

2 (ΘY +ΘX) and Δ := 1
2 (ΘY −ΘX). We use

the terminology cross variables for S and Δ versus the original variables ΘX

and ΘY by drawing the analogy between them and the cross diagonals versus
adjacent sides in a parallelogram. Note that ΣX and ΣY almost have symmetric
status in CrossFDTL formulation except the sign of Δ. We will show that this
formulation is essential for the construction of efficient optimization algorithm
and rigorous proof of the convergence.

In real computations, the sample covariance matrices Σ̂X and Σ̂Y may not
be invertible, so we can estimate Δ by considering the following minimization
problem with suitable penalties for S and Δ

min
Δ=ΔT ,S=ST

L(S,Δ) = LF (S,Δ, Σ̂X , Σ̂Y ) + λ‖Δ‖1 + ρ/2(‖S‖2F + ‖Δ‖2F ), (4)

where λ > 0, ρ ≥ 0 are tuning parameters. The �1 penalty for Δ ensures sparsity,
while the �2 penalty for both S and Δ ensures strict convexity of the loss function
and boundedness of the minimization. When the sample sizes nX and nY are
smaller than p, we should choose ρ to be positive. We will denote the minimizer
of (4) by (Ŝ, Δ̂).

We remark that in Eq. (4) we interpret the matrix S as an auxiliary variable,
thus we do not require the positivity of S in the minimization. We can also
reformulate (4) in an S-free form

min
Δ=ΔT

L̃(Δ) = L(S(Δ),Δ) = LF (S(Δ),Δ, Σ̂X , Σ̂Y ) + λ‖Δ‖1 + ρ/2‖Δ‖2F , (5)

where S(Δ) = argminS=ST L(S,Δ) which has the explicit solution (9) as shown
in next subsection. However, we will keep the form (4) with S since it is more
convenient for numerics.
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2.2. Minimization algorithm

We minimize (4) by alternating optimization method. Specifically, given
S(k),Δ(k) at the kth step, we update the estimates as the following

S(k+1) = argmin
S=ST

L(S,Δ(k)), (6)

Δ(k+1) = argmin
Δ=ΔT

L(S(k+1),Δ). (7)

For (6), we have

S(k+1) = argmin
S=ST

[
1

2
tr(S2(Σ̂X + Σ̂Y + ρI))−

1

2
tr
(
S(4I +Δ(k)(Σ̂X − Σ̂Y ) + (Σ̂X − Σ̂Y )Δ

(k))
)]

.

Let G(A,B) denote the solution of the optimization problem

min
S=ST

1

2
tr(S2A)− tr(SB), A � 0, B = BT. (8)

We have the explicit form

S = G(A,B) = UA ((UT

ABUA) ◦ C)UT

A, (9)

where ◦ denotes the Hadamard product of matrices, A = UAΣAU
T

A is the
eigenvalue decomposition of A with ordered eigenvalues σ1 ≥ · · · ≥ σp, and
Cij = 2/(σi + σj). Thus we obtain

S(k+1) = G

(
Σ̂X + Σ̂Y + ρI, 2I +

1

2
Δ(k)(Σ̂X − Σ̂Y ) +

1

2
(Σ̂X − Σ̂Y )Δ

(k)

)
.

(10)
To update Δ(k+1), we have

Δ(k+1) = argmin
Δ=ΔT

LQ(Δ) := Q(Δ) + λ‖Δ‖1 (11)

where

Q(Δ) :=
1

2
tr(Δ2A) + tr(ΔB), (12)

and A = Σ̂X + Σ̂Y + ρI, B = 1
2S

(k+1)(Σ̂Y − Σ̂X) + 1
2 (Σ̂Y − Σ̂X)S(k+1). We use

the coordinate descent method [8, 10, 11, 28, 32] to solve (11).
Consider the coordinate descent update for the variable Δij with i < j that

preserves symmetry: Δ̃ = Δ + μ(eie
T
j + eje

T
i ). We need to solve the following

single variable optimization problem

μij = argmin
μ

1

2
tr(Δ̃2A) + tr(Δ̃B) + λ‖Δ̃‖1. (13)
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Expanding the terms in (13), we get

μij = argmin
μ

1

2
(Aii +Ajj)μ

2 + [(AΔ)ij + (AΔ)ji +Bij +Bji]μ+ 2λ|Δij + μ|.

(14)
Let a = Aii + Ajj , b = (AΔ)ij + (AΔ)ji + Bij + Bji, and c = Δij . Then the
minimum is achieved when

μij = −c+ S(c− b/a, 2λ/a) (15)

where
S(z, r) = sgn(z)max {|z| − r, 0} (16)

is the soft-thresholding function. Since a and c are easy to compute, the main
cost lies when evaluating b. Thanks to the sparsity of Δ, AΔ can be obtained
with a relatively small cost in each update. Specifically, it needs O(fp) flops,
where f = # {(k, l)|Δkl �= 0} is the number of nonzero elements in Δ.

In the coordinate descent step, we only update a subset of the variables of Δ
which we call the free set. We identify these variables based on the value of the
gradient. The free set Sfree and the fixed set Sfixed are defined as:

Δij ∈ Sfixed if

∣∣∣∣∂Q(Δ)

∂Δij

∣∣∣∣ ≤ λ and Δij = 0;

Δij ∈ Sfree otherwise.

(17)

Actually, the coordinate descent update restricted to the component Δij ∈ Sfixed

would not change its value due to the following Proposition 1 [10]. Here we
restate it for its simplicity.

Proposition 1. For any Δ and corresponding fixed and free sets Sfixed and Sfree

as defined by (17), δ = 0 is the solution of the following minimization problem:

min
δ=δT

LQ(Δ + δ) with constraints δkl = 0 for (k, l) ∈ Sfree. (18)

Proof. Any optimal solution δ for (18) must satisfy

0 ∈ ∂LQ(Δ + δ)

∂δij
, (i, j) ∈ Sfixed and δkl = 0 for (k, l) ∈ Sfree.

This is equivalent to

∂Q(Δ + δ)

∂δij

⎧⎨
⎩

= −λ, if Δij > 0,
= λ, if Δij < 0,
∈ [−λ, λ], if Δij = 0.

(19)

for (i, j) ∈ Sfixed. The definition of Sfixed in (17) ensures (19).

Based on the above proposition, we perform the inner loop coordinate descent
updates only restricted to the free set. Therefore, the number of variables over
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which we perform the coordinate descent step can be potentially reduced from
p2 to the number of nonzero elements in Δ(k). All of these settings guarantee
that we can save huge computational cost when the solution is sparse. We finally
remark that the D-trace loss function considered in Yuan et al. [31] is not suitable
for coordinate descent method since the sparsity is not preserved during the
updates.

2.3. Implementation details

The choice of penalty parameters is always an issue in practice. For the �1
penalty parameter λ, some information criteria such as the Akaike information
criterion (AIC) or Bayesian information criterion (BIC) are usually suggested
[31]. However, for a general loss function, the corresponding likelihood is difficult
to get and one has to consider different surrogates of AIC or BIC, which may
not give good enough results. Therefore in our computations, we mainly choose
λ by experience. The �2 penalty, which is also called ridge penalty in literature,
can be considered as a complement to the �1 penalty term. In regression theory,
such combination of the lasso and ridge penalty is also called elastic net penalty
[36]. For the choice of �2 penalty parameter ρ, it depends on the sample size
nx, ny and the matrix size p. The less nx, ny is than p, the larger ρ should be
chosen. In the case that nx and ny are far larger than p, ρ can be set as 0. In
our practice, the final results are not sensitive to the choice of ρ.

In the coordinate descent step, we first find the descent direction D where
Dij = μij for (i, j) ∈ Sfree and Dij = 0 for (i, j) ∈ Sfixed. Then we adopt the
Armijo rule and try step-size α ∈

{
β0, β1, β2, · · ·

}
with a constant decrease

rate 0 < β < 1 (typically β = 0.5) until we find the smallest k ∈ N such that
Δ̃ = Δ+ αD with α = βk satisfies the following sufficient decrease condition:

LQ(Δ + αD) ≤ LQ(Δ) + ασδ, δ = tr(G ·D) + ‖Δ+D‖1 − ‖Δ‖1,

where 0 < σ < 0.5, and G denotes the gradient matrix of G with respect to
Δ with components Gij = ∂ΔijQ. We terminate the coordinate descent inner

loop when |LQ(Δ̃) − LQ(Δ)| ≤ ε|LQ(Δ)|, where ε = 10−3 is taken in our
computation.

Now we summarize the overall algorithm in Algorithm 1.
We take the following termination criterion for the overall alternating mini-

mization algorithm in our numerical experiments

‖Δ(k+1) −Δ(k)‖F < 10−3 max(1, ‖Δ(k)‖F , ‖Δ(k+1)‖F ).

In practical computations, we will limit the upper bound of the iteration number
in the inner loop of Step 2(b). As we mentioned above, the coordinate descent
step needs only O(fp) flops, where f is the number of nonzero elements. So
Step 2(b) will not cost too much when the solution is sparse. We speculate that
the efficiency of coordinate descent method is due that it makes the updates
in a strongly targeted way to the selected elements. The simulation studies in
Section 4 verify this point.
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Algorithm 1 Alternating minimization algorithm for the CrossFDTL formu-
lation.

1. Initialization: S0 = 0,Δ0 = 0.

2. Given S(k),Δ(k) at the kth step, make the following updates at the (k + 1)th step:

(a). S(k+1) = G(Σ̂X + Σ̂Y + ρI, 2I + 1
2
Δ(k)(Σ̂X − Σ̂Y ) + 1

2
(Σ̂X − Σ̂Y )Δ(k)).

(b). Apply the following coordinate descent to get Δ(k+1) as below:

Initialization: Δ = Δ(k).

Repeat the inner loops (1)-(3) until convergence:

(1). Partition the variables into free and fixed sets based on (17).

(2). Use coordinate descent to find the optimizing direction D of (11)
over the set of free variables.

(3). Use an Armijo-rule based step-size selection to get α such that there
is a sufficient decrease in the objective function.

Output the final result as Δ(k+1).

3. Repeat (a)-(b) until the convergence criterion is satisfied.

4. Output Δ(k+1) as the estimator of the differential matrix Δ.

3. Theoretical results

3.1. Convergence of the alternating minimization

We will prove the convergence of the iterations (6)-(7) in this subsection. Let
us first state a simple yet important lemma.

Lemma 1. Let F (x, y) = f(x, y) + ‖g(x, y)‖1, where f and g are differen-
tiable convex functions of (x, y). If g has the separable form, i.e. g(x, y) =
(g1(x), g2(y)), where g1(x) and g2(y) are differentiable convex functions of x
and y, then we have

0 ∈ ∂F

∂x

∣∣∣∣
(x∗,y∗)

, 0 ∈ ∂F

∂y

∣∣∣∣
(x∗,y∗)

implies 0 ∈ ∂F

∣∣∣∣
(x∗,y∗)

, (20)

where
∂F

∂x
,
∂F

∂y
, ∂F means the subgradients of F .

Proof. Since g(x, y) = (g1(x), g2(y)), then ‖g(x, y)‖1 = |g1(x)|+ |g2(y)| and

∂‖g(x, y)‖1 = ∂|g1(x)|+ ∂|g2(y)|.

Therefore

0 ∈ ∂F

∂x

∣∣∣∣
(x∗,y∗)

=
∂f

∂x

∣∣∣∣
(x∗,y∗)

+
∂|g1|
∂x

∣∣∣∣
x∗
,

0 ∈ ∂F

∂y

∣∣∣∣
(x∗,y∗)

=
∂f

∂y

∣∣∣∣
(x∗,y∗)

+
∂|g2|
∂y

∣∣∣∣
y∗
.
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We have

∂F

∣∣∣∣
(x∗,y∗)

= ∂f

∣∣∣∣
(x∗,y∗)

+ ∂‖g‖1
∣∣∣∣
(x∗,y∗)

=

(
∂f

∂x

∣∣∣∣
(x∗,y∗)

+
∂|g1|
∂x

∣∣∣∣
x∗
,
∂f

∂y

∣∣∣∣
(x∗,y∗)

+
∂|g2|
∂y

∣∣∣∣
y∗

)T


 0.

Without the separable condition on g in this lemma, the optimization in
alternating directions may be trapped at a meaningless point. This point has
the property that it is a minimum point in each direction but not an optimum
at all. This can be easily checked for the example F (x, y) = x2 + y2 + |2x+2y|,
where g(x, y) = 2x+2y is not of separable form and the alternating minimization
in x and y may be trapped at any (x, y) = (a,−a) with a ∈ [−1, 1]. But the
global minimum is at (x, y) = (0, 0). This means that the convergence is not
guaranteed for JGL proposed in Danaher, Wang and Witten [3].

With this lemma, our algorithm has the convergence.

Theorem 1. For the CrossFDTL minimization problem (4), if L(S,Δ) is
strictly convex with respect to S and Δ, the algorithm (6)-(7) converges to the
unique minimum.

Proof. Denote z(k) = (S(k),Δ(k)). We have

L(S(k),Δ(k)) ≥ L(S(k+1),Δ(k)) ≥ L(S(k+1),Δ(k+1)) (21)

and correspondingly

0 ∈ ∂L

∂S

∣∣∣∣
(S(k),Δk−1)

, 0 ∈ ∂L

∂Δ

∣∣∣∣
(S(k),Δ(k))

. (22)

By the strict convexity of L(S,Δ), z(k) is bounded. Thus we can find a subse-
quence {z(kl)}∞l=1 and an accumulation point z∞ such that z(kl) → z∞.

For any (i, j), if Δ∞
ij > 0 and l is sufficiently big, we have

Δ
(kl)
ij > 0,

∂L

∂Δij

∣∣∣∣
(S(kl),Δ(kl))

=
∂L1

∂Δij

∣∣∣∣
(S(kl),Δ(kl))

+ λ = 0,

where we denote L(S,Δ) = L1(S,Δ) + λ‖Δ‖1. Therefore

∂L

∂Δij

∣∣∣∣
(S∞,Δ∞)

= lim
l→∞

∂L1

∂Δij

∣∣∣∣
(S(kl),Δ(kl))

+ λ = 0.

The case for Δ∞
ij < 0 is similar. If Δ∞

ij = 0, as a result of (22), we have

∂L1

∂Δij

∣∣∣∣
(S(k),Δ(k))

∈ [−λ, λ] thus
∂L1

∂Δij

∣∣∣∣
(S∞,Δ∞)

∈ [−λ, λ].
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Therefore

0 ∈ ∂L

∂Δij

∣∣∣∣
(S∞,Δ∞)

=
∂L1

∂Δij

∣∣∣∣
(S∞,Δ∞)

+ [−λ, λ].

Combining the above results, we get

Δ∞ = argmin
Δ

L(S∞,Δ) (23)

and it is the unique minimum element in Δ direction due to the strict convexity
of L(S,Δ).

Next let us consider the subgradient of L with respect to S at z∞. We will
first show that Δ(kl−1) → Δ∞. Otherwise we can find a further subsequence,
still denoted as

{
Δ(kl)

}
, such that

Δ(kl−1) → Δ# �= Δ∞.

Then we have

L(S∞,Δ∞) = lim
k→∞

L(S(k),Δ(k)) = lim
l→∞

L(S(kl),Δ(kl−1)) = L(S∞,Δ#)

by the squeeze inequalities in (21). This shows that Δ∞ = Δ# by (23), which is
a contradiction. Therefore Δ(kl−1) → Δ∞. Since L(S,Δ) is differentiable with
respect to S, we have

∂L

∂S

∣∣∣∣
(S∞,Δ∞)

= lim
l→∞

∂L

∂S

∣∣∣∣
(S(kl),Δ(kl−1))

= 0.

Now we have already proved that

0 ∈ ∂L

∂S

∣∣∣∣
(S∞,Δ∞)

, 0 ∈ ∂L

∂Δ

∣∣∣∣
(S∞,Δ∞)

.

According to Lemma 1, 0 ∈ ∂L|z∞ implies that z∞ is the unique minimum
element of the strictly convex function L(S,Δ). The limit z(k) → z∞ is due to
the fact that any subsequence limit of z(k) is z∞. The proof is completed.

We remark that the convergence rate of ‖Δ(k) − Δ̂‖ with respect to k is not
discussed in the above theorem.

3.2. Consistency and rate of convergence

Our ultimate goal is Σ−1
Y − Σ−1

X , especially its structure of nonzero entries. In

practice, we only have sample covariance matrices Σ̂X and Σ̂Y , and we have to
consider the approximability of Δ∗ and the minimizer Δ̂ of (4). This amounts
to study the consistency and rate of convergence of ‖Δ̂ −Δ∗‖ with respect to
the sample sizes nX and nY . In this section, we will first present the irrep-
resentability condition (25) for establishing the consistency of our estimator,
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which is based on similar tricks as those done in Ravikumar et al. [21]. Then
we give an estimate of the convergence rate. We will suppose ρ = 0 all along in
this section.

Let S+ = supp(Δ∗) denote the support of Δ∗ and Sc the complement of S+,
s = |S+|. For any matrix M ∈ R

p×p, denote

Γ(M) =
1

2
(M ⊕M) =

1

2
(M ⊗ I + I ⊗M), (24)

where ⊗ is the Kronecker product and ⊕ is the Kronecker sum. We have that
Γ(M) is a p2 × p2 matrix indexed by vertex pairs and

Γ(M)(j,k)(l,m) = Mk,mδ(j, l) +Mj,lδ(k,m),

where δ(j, l) = 1 if j = l and δ(j, l) = 0 otherwise. For simplicity, we denote

Γ∗(1) = Γ(ΣY +ΣX), Γ∗(2) = Γ(ΣY − ΣX),

Γ̂(1) = Γ(Σ̂Y + Σ̂X), Γ̂(2) = Γ(Σ̂Y − Σ̂X).

Then the irrepresentability condition is

max
e∈Sc

‖E∗Z
e ‖1 < 1, (25)

where E∗Z
e is defined as

E∗Z
e = −Γ

∗(1)
eS+

(
Γ
∗(1)
S+S+ − Γ

∗(2)
S+.Γ

∗(1)−1

Γ
∗(2)
.S+

)−1

+Γ∗(2)
e.

(
Γ∗(1) − Γ

∗(2)
.S+ Γ

∗(1)−1

S+S+ Γ
∗(2)
S+.

)−1

Γ
∗(2)
.S+ Γ

∗(1)−1

S+S+ .

Here the notation ΓS+. means the sub-matrix formed by extracting the compo-
nents of Γ with the first index (j, k) ∈ S+ and the second index (l,m) being
arbitrary. The other sub-matrices are defined similarly. The derivation of (25)
is shown in the Appendix.

With the irrepresentability condition, we can establish the consistency and
the rate of convergence of our estimator based on the assumption that X and Y
are subject to sub-Gaussian distribution. A zero-mean random vector X ∈ R

p

with covariance matrix Σ is said to be sub-Gaussian if there exists a constant
σ > 0 such that

E

[
exp

(
tXi(Σi,i)

−1/2
)]

≤ exp(σ2t2/2), ∀t ∈ R, i = 1, . . . , p.

Here Xi is the ith coordinate of the random vector X.

Theorem 2. Assume that X and Y are sub-Gaussian with parameters σX and
σY . Under the irrepresentability condition (25), if



1280 Y. Wu et al.

22

α
Cλδ ≤ λ ≤ 24

α
Cλδ, (26)

where α := 1 − maxe∈Sc ‖E∗Z
e ‖1 and δ := max {δfX (nX , pη), δfY (nY , p

η)} for
some η > 2 and min(nX , nY ) > CGδ̄

−2(η log p + log 4), then with probability
greater than 1− 2/pη−2, the support of Δ̂ lies in the support of Δ∗ and

‖Δ̂−Δ∗‖∞ ≤ MG

{
η log p+ log 4

min(nX , nY )

} 1
2

, ‖Δ̂−Δ∗‖F ≤ MG

{
η log p+ log 4

min(nX , nY )

} 1
2

s
1
2 ,

where ‖A‖∞ := maxij |Ai,j | instead of the usual �∞ norm in matrix analy-
sis [25]. Morever, if min(nX , nY ) > M2

G(η log p+ log 4)/(minj,k:Δ∗
j,k �=0 |Δ∗

j,k|)2,
then the support of Δ̂ equals to the support of Δ∗. Here δ̄,M,Cλ, CG,MG

are constants depending on ΣX ,ΣY , σX , σY . Their definition and the constants
δfX (nX , pη), δfY (nY , p

η) are given in the Appendix.

Although this theorem looks very complicated, its meaning is clear. The lower
bound on sample sizes nX and nY limits the error between covariance matrices
ΣX ,ΣY and sample covariance matrices Σ̂X , Σ̂Y with some probability. The
lower bound on λ ensures that the solution of the l1-penalized optimization
problem (4) is sparse enough. On the other hand, the upper bound on λ limits
the effect of the regularization term. The estimation (26) on λ is not tight, and
it is consistent with the results in [21, 31, 33], which simply take a specific λ in
the admissible range. The detailed proof of Theorem 2 is given in the Appendix.

More generally, this theorem can be extended to random vectors under poly-
nomial tail conditions if we ignore the Gaussian set-up and the goal is just to
estimate the difference on precision matrices [6, 20, 21]. We will skip the details
on this point for its irrelevance.

4. Simulation studies

To show the virtue of our CrossFDTL formulation, in this section, we use the
simulation data to compare the performance of our estimator with that by D-
trace loss function (DTL) [31].

In the simulation study, the data are generated from two independent multi-
variate normal distributions N (0,ΣX) and N (0,ΣY ).

Model 1: Highly structured differential matrix.
The precision matrices are set as

Σ−1
X (i, j) = 0.5|i−j|, Σ−1

Y (i, j) =

{
0.9, |i− j| = �p/4�
0.5|i−j|, otherwise.

To ensure the positive definiteness, we added 1.2 to their diagonal ele-
ments. It is obvious that the differential matrix Δ is sparse.
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Table 1

Problems with large size p (The numbers in parentheses mean the percentage of time cost in
Step 2(b) of Algorithm 1)

p = 2000, n = 500 p = 2000, n = 1000
TPR TNR TDR time TPR TNR TDR time

CrossFDTL 0.9594 0.9363 0.0703 17 s (76) 0.9902 0.9767 0.1762 8 s (30)
DTL 0.9076 0.9115 0.0490 1561 s 0.9888 0.9419 0.0788 1086 s

p = 4000, n = 500 p = 4000, n = 1000
TPR TNR TDR time TPR TNR TDR time

CrossFDTL 0.9493 0.9531 0.0483 102 s (63) 0.9826 0.9909 0.2127 45 s (22)
DTL 0.9178 0.9222 0.0287 15942 s 0.9609 0.9866 0.1525 8596 s

Model 2: Randomly chosen differential matrix.
We first generate the random matrix Σ−1

X by Σ−1
X = D− 1

2 (Z2)Z2D
− 1

2 (Z2),
where Z2 = Z1Z

T
1 , Z1 is a random matrix with entries sampled indepen-

dently from N (0, 1), and D(Z2) is the diagonal matrix with diagonal ele-
ments from Z2. For the choice of Δ, we first randomly set 5p elements of its
lower triangular part to nonzero values sampled from symmetric Bernoulli
distribution valued in {−0.5, 0.5}, then do the same change to the upper
triangular part to make Δ symmetric. Σ−1

Y was then taken to be Σ−1
X +Δ.

Finally to ensure that both Σ−1
X and Σ−1

Y are positive definite, we add a
constant to their diagonals, which is taken as 0.1−min

{
λ(Σ−1

X ), λ(Σ−1
Y )

}
in our numerical experiments below.

Figure 1 shows the receiver operating characteristic (ROC) curves (Fig-
ure 1 (a), (c)) and the precision-recall (PR) curves (Figure 1 (b), (d)) for both
models with DTL and CrossFDTL formulations. We take p = 100, n = 50 in
Model 1 (Figure 1 (a), (b)) and p = 1000, n = 500 in Model 2 (Figure 1 (c),
(d)), respectively. In the plots, each point corresponds to one choice of the tun-
ing parameter λ and the number beside it shows the time cost in seconds. We
only list several of them for clarity. The values auc1 and auc2 in each subfig-
ure correspond to the AUC values, i.e. the area under the ROC or PR curves,
for the DTL and CrossFDTL methods, respectively. It can be found that the
CrossFDTL method outperforms the DTL method in both computational effi-
ciency and accuracy.

To further show the efficiency of the CrossFDTL method, we have computed
problems with a larger size p. In Model 2, we take p = 2000, 4000, n = 500, 1000
with a suitable parameter λ. The comparisons with DTL are shown in Ta-
ble 1.

We can see that the CrossFDTL not only gives more accurate results (the
true positive rate (TPR), true negative rate (TNR), and true discovery rate
(TDR, i.e., the precision) are all higher than those obtained by DTL), but also
cost less time. In the above examples, the DTL costs about 100 times or even
longer computation time than CrossFDTL. Even with early stopping, the DTL
still needs at least 10 times longer time than CrossFDTL to achieve similar
accuracy in our numerical experiments. In this sense, the CrossFDTL can be
utilized to solve quite large scale problems.
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Fig 1. The left panels (a)-(c) show the receiver operating characteristic curves for the support
recovery of Δ∗, with (a) for Model 1 and (c) for Model 2. The right panels (b)-(d) show the
precision-recall curves for the support recovery of Δ∗, with (b) for Model 1 and (d) for Model
2. The matrix size p and sample size n are listed in the subtitles, and the values auc1 and
auc2 give the area under the curves corresponding to CrossFDTL and DTL. The solid and
dashed lines correspond to CrossFDTL and DTL, respectively.

In the simulation studies listed in Table 1, we also show the percentage of time
cost in Step 2(b) of Algorithm 1 when we utilize CrossFDTL. We can observe
that the higher TNR is, the lower percentage it costs. It is reasonable since
higher TNR cases will have lower number of nonzero elements, thus Step 2(b)
costs less. Furthermore, our empirical computations show that the inner loop of
Step 2(b) also converges fast. In each iteration of Step 2(b), there are no more
than 5 iterations in the inner loop although we set an upper bound of 50.

5. Real data analysis

In this section, we apply our CrossFDTL method to the gene expression data
for gastric cancer patients and make comparisons with DTL.

The gene expression profiles for gastric cancer are obtained from GSE27342
dataset of GEO database (https://www.ncbi.nlm.nih.gov/geo/). The data-
set contains 160 samples from cancer tissues and the adjacent non-cancerous
tissues of 80 gastric cancer patients. We attempt to find the difference between
disease and normal gene networks. The pathway information we used was the
Pathways in cancer available in the KEGG pathway database. 409 genes in this
pathway known to play important roles in cancers. We use only genes that the

https://www.ncbi.nlm.nih.gov/geo/
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Fig 2. The convergence history of CrossFDTL and DTL in terms of iteration steps and
computation time. It can be observed that the iteration numbers of CrossFDTL (the overall
iterations in Algorithm 1) is much less than that of DTL, and the CrossFDTL costs much
less time correspondingly.

gene expression data are complete enough (more than 80% samples had this
gene expression data). This left 358 genes to be tested further.

For the consistency of scales, we use the differences between the inverse cor-
relation matrices to represent the differential network. The correlation matrix
can be considered as the normalized version of covariance matrix, therefore it
can eliminate the influence of the units or scales of the data for different genes.
In Figure 3, we showed the top 10 genes according to their importance in the
differential gene regulatory networks inferred by the two methods. Here the im-
portance of a gene is measured by the sum of the strength of the edges linked
to this gene in the differential network, i.e., the importance of gene i is defined
as

I(i) =
∑
j �=i

|Δ̂ij |,

where Δ̂ is the inferred differential matrix. We can see that similar results are
obtained by CrossFDTL and DTL under Gaussian assumptions in the sense
that most of genes in the two differential networks were common.

The identified important genes in the differential network have distinct bio-
logical meaning. The ERBB2 (also called HER2) identified in both CrossFDTL
and DTL is an important cancer causal gene in gastric cancer. FGFR2 is a mem-
ber of the fibroblast growth factor receptor family, and reported association with
gastric cancer [12, 29]. AXIN2 indentified from DTL plays an important role
in the regulation in the Wnt signaling pathway, and is reported to associate
with breast cancer [14, 15] and colorectal cancer [16, 9], but there is no report
about the association between AXIN2 and gastric cancer. The MET is also an
important gene in gastric cancer [13, 27] identified in CrossFDTL while not in
DTL.

To further confirm the obtained results, we use the KEGG gastric cancer
pathway to see whether these genes have been previously reported (Fig. 4).
The biggest circle contains 358 genes in the pathways of all types of cancers.
The medium-sized circle contains 107 genes in the gastric pathway. And the
smallest circle contains the top 10 genes related to gastric cancer identified by
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Fig 3. The top 10 genes according to their importance in the differential gene regulatory
networks between disease and normal issues inferred by the DTL (left panel) and CrossFDTL
(right panel) methods. The common genes identified by both methods are shown in yellow,
while the non-common genes are shown in blue. The width of the edges shows the strength of
the links, and the size of nodes shows the sum of the strength of edges linked to them.

Fig 4. Predicted genes and known gastric cancer related genes. (a) 107 known gastric can-
cer genes are obtained from the KEGG pathway database, 8 of which appear in our top 10
predictions. (b) The number of gastric cancer related genes is significantly higher after our
prediction, especially in the forward genes.

CrossFDTL. We can see that the identified top 10 genes have 8 common genes
with those in the gastric cancer pathway. Furthermore, there are 64 common
genes between the 358 genes in the biggest circle and the genes in the gastric
cancer pathway. This shows that the identified genes have significantly high
incidence in gastric cancer, with a p-value of 0.007 by Fisher’s test.

6. Discussion

In this paper, we constructed a fused D-trace loss function with an efficient
optimization algorithm, the CrossFDTL formulation, to infer the differential
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network between two precision matrices based on the Gaussian assumption. We
established the consistency and rate of convergence of the proposed method.
The theoretical and computational results show the virtue of our formulation
compared with the existing methods. It will be interesting to study the con-
vergence speed of the proposed method with respect to the alternating mini-
mization steps, and generalize the current methodology to non-Gaussian case.
Further application to other practical examples will be pursued as a future
task.
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Appendix

A.1. Tail conditions

In Sections A.1 and A.2, we give the detailed proof of Theorem 2. The idea of
the proof can be summarized in the following three steps.

(1) Estimate the error between the covariance matrices ΣX ,ΣY and sample
covariance matrices Σ̂X , Σ̂Y through tail conditions. It will introduce the
lower bound on sample sizes nX and nY .

(2) Derive the condition under which the solution of l1-penalized optimiza-
tion problem (4) keeps the structure of nonzero entries. That is exactly
what Lemma 2 shows. Only the optimality condition and some ordinary
inequalities are used to obtain the result.

(3) Apply the error estimates obtained in (1) to the condition inferred in (2).
Besides sample sizes, we also need to give an appropriate range of λ to en-
sure the condition holds. The technique is to repeatedly use the elementary
Lemmas 3 and 4.

Below we present the proof details.
According to Ravikumar et al. [21], if a zero-mean random vector X has a

sub-Gaussian tail, then X satisfies the tail condition T (f, ν∗), i.e., there exists
a constant ν∗ > 0 and a function f : N× (0,∞) → (0,∞) such that

P(|Σ̂n
i,j − Σi,j | ≥ δ) ≤ 1/f(n, δ) (i, j = 1, . . . , p, 0 < δ < 1/ν∗),

where Σ is the covariance matrix of X and Σ̂n is the sample covariance matrix
of X from n samples. For each fixed δ > 0 and n, we can define the inverse
functions of f for r ≥ 1 as

nf (δ, r) = max {n : f(n, δ) ≤ r} , δf (n, r) = max {δ : f(n, δ) ≤ r} .
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If X has a sub-Gaussian tail with parameter σ, we have [21]

ν∗ =
{
max

i
Σ∗

i,i8(1 + 4σ2)
}−1

,

f(n, δ) = exp(c∗nδ
2)/4, c∗ =

{
123(1 + 4σ2)2 max

i
(Σ∗

i,i)
2
}−1

,

δf (n, p
η) =

{
128(1 + 4σ2)2 max

i
(Σ∗

i,i)
2(η log p+ log 4)/n

}1/2

,

nf (δ, p
η) = 128(1 + 4σ2)2 max

i
(Σ∗

i,i)
2(η log p+ log 4)/δ2.

With the help of above results, we can obtain the following important lemma.

Lemma 2. The support of Δ̂ lies in the support of Δ∗ if

max
e∈Sc

|ÊI
evec(I)|+ λ‖ÊZ

e ‖∞ ≤ λ, (A.1)

where vec(I) is the p2-vector formed by stacking the columns of matrix I. ÊI ∈
R

p2

, ÊI ∈ R
s have the form

ÊI
e =− 2Γ̂

(1)
eS+

(
Γ̂
(1)
S+S+ − Γ̂

(2)
S+.Γ̂

(1)−1

Γ̂
(2)
.S+

)−1

Γ̂
(2)
S+.Γ̂

(1)−1

+ 2Γ̂(2)
e.

(
Γ̂(1) − Γ̂

(2)
.S+ Γ̂

(1)−1

S+S+ Γ̂
(2)
S+.

)−1

,

ÊZ
e =− Γ̂

(1)
eS+

(
Γ̂
(1)
S+S+ − Γ̂

(2)
S+.Γ̂

(1)−1

Γ̂
(2)
.S+

)−1

+ Γ̂(2)
e.

(
Γ̂(1) − Γ̂

(2)
.S+ Γ̂

(1)−1

S+S+ Γ̂
(2)
S+.

)−1

Γ̂
(2)
.S+ Γ̂

(1)−1

S+S+ .

Proof. Consider
(Δ̃, S̃) = argmin

S=ST,Δ=ΔT,ΔSc=0

L(S,Δ). (A.2)

From the optimality condition, we obtain

Γ̂
(1)
S+S+vec(Δ̃)S+ + Γ̂

(2)
S+.vec(S̃) = −λvec(Z)S+ ,

Γ̂
(2)
.S+vec(Δ̃)S+ + Γ̂(1)vec(S̃) = 2vec(I).

(A.3)

Here Z = sgn(Δ̃) is derived from the subgradient of l1 penalty. Solving (A.3),
we get

vec(Δ̃)S+ =−
(̂
Γ
(1)
S+S+ − Γ̂

(2)
S+.Γ̂

(1)−1

Γ̂
(2)
.S+

)−1 (
λvec(Z)S+ + 2Γ̂

(2)
S+.Γ̂

(1)−1

vec(I)
)
,

vec(S̃) =
(
Γ̂(1) − Γ̂

(2)
.S+ Γ̂

(1)−1

S+S+ Γ̂
(2)
S+.

)−1 (
2vec(I) + λΓ̂

(2)
.S+ Γ̂

(1)−1

S+S+vec(Z)S+

)
.

(A.4)

And we have

max
e∈Sc

|ÊI
evec(I) + λÊZ

e vec(Z)S+ | ≤ max
e∈Sc

‖ÊI
e‖∞ + λ‖ÊZ

e ‖∞ ≤ λ. (A.5)
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Combining (A.4) and (A.5), we obtain

max
e∈Sc

∣∣∣Γ̂(1)
eS+vec(Δ̃)S+ + Γ̂(2)

e. vec(S̃)
∣∣∣ ≤ λ. (A.6)

(A.3) and (A.6) show that

(Δ̃, S̃) = argmin
S=ST,Δ=ΔT

L(S,Δ),

which implies (Δ̃, S̃) = (Δ̂, Ŝ). Therefore Δ̂Sc = 0, i.e. the support of Δ̂ lies in
the support of Δ∗.

We remark that the term ÊIvec(I) exists due to the sample covariance ma-
trix. On the other hand, we have EIvec(I) = 0, which can be inferred by similar
analysis for (Δ∗, S∗). The term ÊZvec(Z) is related to the sample covariance and
the l1 penalty, but is independent of the magnitude of λ. Since ‖vec(Z)‖∞ ≤ 1,
then |EZ

e vec(Z)S+ | ≤ ‖EZ
e ‖1. This is the source of the irrepresentability condi-

tion (25).

A.2. Proof of Theorem 2

For simplicity, we first define some notations:

C∗
1 = Γ

∗(1)
S+S+ − Γ

∗(2)
S+.Γ

∗(1)−1

Γ
∗(2)
.S+ , C∗

2 = Γ∗(1) − Γ
∗(2)
.S+ Γ

∗(1)−1

S+S+ Γ
∗(2)
S+. ,

Ĉ1 = Γ̂
(1)
S+S+ − Γ̂

(2)
S+.Γ̂

(1)−1

Γ̂
(2)
.S+ , Ĉ2 = Γ̂(1) − Γ̂

(2)
.S+ Γ̂

(1)−1

S+S+ Γ̂
(2)
S+.,

e(1)c = �Ĉ−1
1 − C∗−1

1 �∞, e(2)c = �Ĉ−1
2 − C∗−1

2 �∞,

e(1) = �Γ̂(1)−1 − Γ∗(1)−1

�∞, e(2) = �Γ̂
(1)−1

S+S+ − Γ
∗(1)−1

S+S+ �∞,

M = max
{
‖Γ∗(1)−1‖∞, ‖Γ∗(1)−1

S+S+ ‖∞, ‖Γ∗(2)‖∞,

‖Γ∗(2)
S+.Γ

∗(1)−1‖∞, ‖Γ∗(2)
.S+ Γ

∗(1)−1

S+S+ ‖∞, ‖C∗
1‖∞, ‖C∗

2‖∞,

‖C∗−1

1 ‖∞, ‖C∗−1

2 ‖∞, ‖Γ∗(1)
eS+C

∗−1

1 ‖∞, ‖Γ∗(2)
e. C∗−1

2 ‖∞, 1
}
,

r = max
{
p2, s

}
= p2,

where � · �∞ is the operator norm induced by the �∞ norm of vectors. We use
this notation to avoid the confusion with ‖ · ‖∞ defined before.

Since X and Y have sub-Gaussian tails, they satisfy the tail condition
T (fX , νX∗) or T (fY , νY ∗), respectively. Let ν∗ = max(νX∗, νY ∗), then X and Y
also satisfy the tail condition T (fX , ν∗) and T (fY , ν∗). Let

δ̄ = min
{
α(22r9M8)−1, 1/ν∗

}
.
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For sub-Gaussian tail, we have

δ̄ = min

{
α(22r9M8)−1,min

X,Y

{
max

i
Σ∗

Xi,i
8(1 + 4σ2

X),max
i

Σ∗
Yi,i

8(1 + 4σ2
Y )

}}
.

In the following, for η > 2, we assume nX > nfX (δ̄, pη), nY > nfY (δ̄, p
η) and

22

α
Cλδ ≤ λ ≤ 24

α
Cλδ,

where Cλ = r9M8 and δ := max {δfX (nX , pη), δfY (nY , p
η)}. Let

CG = 128
{
1 + 4max(σ2

X , σ2
Y )

}2
max

i
(ΣXi,i ,ΣYi,i)

2,

CP = 4max
i

(ΣXi,i ,ΣYi,i)
2 {max(KXm ,KYm) + 1}1/m ,

then nX > nfX (δ̄, pη), and we have δfX (nX , pη) < δ̄ with probability at least
1− 1/pη−2. Similar result holds for Y .

Now we will prove (A.1), and then complete the proof of Theorems 2 through
Lemma 2. The estimation of (A.1) is relatively technical. We will utilize the
following two important lemmas.

Lemma 3. For v̂, v ∈ R
m, Â, A ∈ R

m×n, B̂, B ∈ R
n×l, we have

‖v̂TÂ− vTA‖1 ≤‖v̂ − v‖1 � Â−A �∞ +‖v̂ − v‖1 � A �∞ +‖v‖1 � Â−A�∞,

�ÂB̂ −AB�∞ ≤ � Â−A �∞ �B̂ −B �∞ + � Â−A �∞ �B�∞

+ �A �∞ �B̂ −B �∞ .

Lemma 4. For matrices A and E, if �A−1 �∞ �E�∞ < 1, then we have

�(A+ E)−1 −A−1�∞ ≤ �A−1 �2
∞ �E�∞

1− �A−1 �∞ �E�∞
.

Lemma 3 is trivial. It only uses triangle inequality and the facts ‖vTA‖1 ≤
‖v‖1 �A�∞, �AB�∞ ≤ �A�∞ �B�∞. Lemma 4 is a result of matrix pertuba-
tion theory [25]. Below we will frequently use these two lemmas without further
explanation.

Firstly, according to the definition of Γ, we can easily obtain

‖Γ̂(1) − Γ∗(1)‖∞ ≤ max(δfX (nX , pη), δfY (nY , p
η)) =: δ,

� Γ̂
(1)
S+S+ − Γ

∗(1)
S+S+ �∞ ≤ �Γ̂(1) − Γ∗(1)�∞ ≤ rδ.

Then

e(1) ≤ �Γ∗(1)−1

�2
∞ �Γ̂(1) − Γ∗(1)�∞

1− �Γ∗(1)−1 �∞ �Γ̂(1) − Γ∗(1)�∞
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≤ (rM)2 · rδ
1− rM · rδ =

r3M2δ

1− r2Mδ

≤ 2r3M2δ,

and similarly
e(2) ≤ 2r3M2δ.

With the estimation for e(1), we get

�Γ̂
(2)
S+.Γ̂

(1)−1 − Γ
∗(2)
S+.Γ

∗(1)−1

�∞ ≤ � Γ̂
(2)
S+. − Γ

∗(2)
S+. �∞ �Γ̂(1)−1 − Γ∗(1)−1

�∞

+ �Γ̂
(2)
S+. − Γ

∗(2)
S+. �∞ �Γ∗(1)−1

�∞

+ �Γ
∗(2)
S+. �∞ �Γ̂(1)−1 − Γ∗(1)−1

�∞

≤rδ · e(1) + rδ · rM + rM · e(1)

≤2r4M2δ2 + r2Mδ + 2r4M3δ

≤3r4M3δ, (A.7)

and

� Γ̂
(2)
S+.

Γ̂(1)−1

Γ̂2
.S+ − Γ

∗(2)
S+.

Γ∗(1)−1

Γ
∗(2)
.S+ �∞

≤ � Γ̂
(2)
S+.Γ̂

(1)−1 − Γ
∗(2)
S+.Γ

∗(1)−1

�∞ �Γ̂
(2)
.S+ − Γ

∗(2)
.S+ �∞

+ �Γ̂
(2)
S+.Γ̂

(1)−1 − Γ
∗(2)
S+.Γ

∗(1)−1

�∞ �Γ
∗(2)
.S+ �∞

+ �Γ
∗(2)
S+.Γ

∗(1)−1

�∞ �Γ̂
(2)
.S+ − Γ

∗(2)
.S+ �∞

≤3r4M3δ(rδ + rM) + rM · rδ
=3r5M3δ2 + r2Mδ + 3r5M4δ. (A.8)

According to the definition of Ĉ1 and C∗
1 , we get

� Ĉ1 − C∗
1 �∞ ≤ rδ + 3r5M3δ2 + r2Mδ + 3r5M4δ ≤ 4r5M4δ. (A.9)

Similar as the estimates in (A.7) and (A.8), we get

� Ĉ2 − C∗
2 �∞ ≤ 4r5M4δ. (A.10)

Utilizing (A.9), we obtain

e(1)c ≤ �C∗
1 �2

∞ �Ĉ1 − C∗
1 �∞

1− �C∗
1 �∞ �Ĉ1 − C∗

1 �∞

≤ (rM)2 · 4r5M4δ

1− rM · 4r5M4δ
≤ 8r7M6δ,

(A.11)

and similarly
e(2)c ≤ 8r7M6δ. (A.12)

Applying (A.11) and (A.12), we have

‖Γ̂(1)
eS+Ĉ

−1
1 − Γ

∗(1)
eS+C

∗−1

1 ‖1 ≤rδe(1)c + rδ · rM + rMe(1)c
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≤8r8M6δ2 + r2Mδ + 8r8M7δ

≤9r8M7δ (A.13)

and
‖Γ̂(2)

e. Ĉ
−1
2 − Γ∗(2)

e. C∗−1

2 ‖1 ≤ 9r8M7δ. (A.14)

Combining (A.7) and (A.13), we get

‖Γ̂(1)
eS+Ĉ

−1
1 Γ̂2

S+.Γ̂
(1)−1 − Γ

∗(1)
eS+C

∗−1

1 Γ
∗(2)
S+.Γ

∗(1)−1‖1
≤‖Γ̂(1)

eS+Ĉ
−1
1 − Γ

∗(1)
eS+C

∗−1

1 ‖1 � Γ̂
(2)
S+.

Γ̂(1)−1 − Γ
∗(2)
S+.

Γ∗(1)−1

�∞

+ ‖Γ̂(1)
eS+Ĉ

−1
1 − Γ

∗(1)
eS+C

∗−1

1 ‖1 � Γ
∗(2)
S+.Γ

∗(1)−1

�∞

+ ‖Γ∗(1)
eS+C

∗−1

1 ‖1 � Γ̂2
S+.Γ̂

(1)−1 − Γ
∗(2)
S+.Γ

∗(1)−1

�∞

≤9r8M7δ · 3r4M3δ + 9r8M7δ · rM + rM · 3r4M3δ

≤10r9M8δ, (A.15)

and similarly

‖Γ̂(2)
e. Ĉ

−1
2 Γ̂

(2)
.S+ Γ̂

(1)−1

S+S+ − Γ∗(2)
e. C∗−1

2 Γ
∗(2)
.S+ Γ

∗(1)−1

S+S+ ‖1 ≤ 10r9M8δ. (A.16)

Recall the definitions of ÊI
e and ÊZ

e and utilize (A.13), (A.14), (A.15) and
(A.16), we get

‖ÊI
e − E∗I

e ‖1 ≤10r9M8δ + 9r8M7δ ≤ 11r9M8δ,

‖ÊZ
e − E∗Z

e ‖1 ≤10r9M8δ + 9r8M7δ ≤ 11r9M8δ.
(A.17)

From the definition

(Δ∗, S∗) = argmin
ΔT=Δ,ST=S

LF (S,Δ,ΣX ,ΣY ),

we have the following optimality conditions

Γ
∗(1)
S+S+vec(Δ

∗)S+ + Γ
∗(2)
S+.vec(S

∗) = 0,

Γ
∗(2)
.S+ vec(Δ∗)S+ + Γ∗(1)vec(S∗) = 2vec(I),

Γ
∗(1)
eS+vec(Δ

∗)S+ + Γ∗(2)
e. vec(S∗) = 0, e ∈ Sc.

(A.18)

Simple calculation shows that

E∗I
e vec(I) = 0, e ∈ Sc. (A.19)

Combining (A.17) and (A.19), we obtain∣∣∣ÊI
evec(I) + λÊZ

e vec(Z)S+

∣∣∣
=
∣∣∣(ÊI

e − E∗I

e

)
vec(I) + λ

(
ÊZ

e − E∗Z

e + E∗Z

e

)
vec(Z)S+

∣∣∣
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≤‖ÊI
e − E∗I

e ‖1 + λ
(
‖ÊZ

e − E∗Z

e ‖1 + ‖E∗Z

e ‖1
)

≤11r9M8δ + λ(11r9M8δ + 1− α)

=λ+ 11r9M8δ(λ+ 1)− αλ

<λ+
α

2
λ+ 11r9M8δ − αλ

=λ+ 11r9M8δ − α

2
λ

<λ.

Thus the condition of Lemma 2 is confirmed, and we have the support of Δ̂ lies
in the support of Δ∗.

From (A.18) we get

vec(Δ∗)S+ = −
(
Γ
∗(1)
S+S+ − Γ

∗(2)
S+.Γ

∗(1)−1

Γ
∗(2)
.S+

)−1

2Γ
∗(2)
S+.Γ

∗(1)−1

vec(I).

Combining with (A.4) we obtain

‖Δ̂−Δ∗‖∞ = ‖vec(Δ̂)S+ − vec(Δ∗)S+‖∞
=‖ − Ĉ−1

1 2Γ̂
∗(2)
S+ Γ̂∗(1)−1

vec(I) + C∗−1

1 2Γ
∗(2)
S+ Γ∗(1)−1

vec(I)− λĈ−1
1 vec(Z)S+‖∞

≤ � −Ĉ−1
1 2Γ̂

∗(2)
S+ Γ̂∗(1)−1

+ C∗−1

1 2Γ
∗(2)
S+ Γ∗(1)−1

�∞ +λ � Ĉ−1
1 �∞

≤2(8r7M6δ · 3r4M3δ + rM · 3r4M3δ + 8r7M6δ · rM) + λ(rM + 8r7M6δ)

≤25r10M9δ.

Since X and Y are sub-Gaussian, we have

‖Δ̂−Δ∗‖∞ ≤ MG

{
η log p+ log 4

min(nX , nY )

}1/2

,

where

MG = 200
√
2r10M9(1 + 4σ2)max

i
(Σ∗

Xi,i
,Σ∗

Yi,i
).

Since we have known that the support of Δ̂ lies in the support of Δ∗,

‖Δ̂−Δ∗‖F ≤ MG

{
η log p+ log 4

min(nX , nY )

}1/2

s1/2.

If min(nX , nY ) > M2
G(η log p+ log 4)/(minj,k:Δ∗

j,k �=0 |Δ∗
j,k|)2, we have

‖Δ̂−Δ∗‖∞ < min
j,k:Δ∗

j,k �=0
|Δ∗

j,k|.

Therefore sgn(Δ̂i,j) = sgn(Δ∗
i,j) for all i, j with probability at least 1− 2/pη−2.
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A.3. Supplementary figures for simulation studies

Fig 5. The left panels show the receiver operating characteristic curves for the support recovery
of Δ∗, and the right panels show the precision-recall curves, with (a)(b) p = 100, n = 10,
(c)(d) p = 100, n = 20 in model1. The values auc1 and auc2 are the area under the curves
correspond to CrossFDTL and DTL. The solid and dashed lines correspond to the CrossFDTL
and DTL, respectively.

Fig 6. The left panels show the receiver operating characteristic curves for the support recovery
of Δ∗, and the right panels show the precision-recall curves, with (a)(b) p = 1000, n = 50,
(c)(d) p = 1000, n = 100 in model1. The values auc1 and auc2 are the area under the curves
correspond to CrossFDTL and DTL. The solid and dashed lines correspond to the CrossFDTL
and DTL, respectively.
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Fig 7. The left panels show the receiver operating characteristic curves for the support recovery
of Δ∗, and the right panels show the precision-recall curves, with (a)(b) p = 500, n = 100,
(c)(d) p = 500, n = 200 in model2. The values auc1 and auc2 are the area under the curves
correspond to CrossFDTL and DTL. The solid and dashed lines correspond to the CrossFDTL
and DTL, respectively.

Fig 8. The left panels show the receiver operating characteristic curves for the support recovery
of Δ∗, and the right panels show the precision-recall curves, with (a)(b) p = 1000, n = 100,
(c)(d) p = 1000, n = 200 in model2. The values auc1 and auc2 are the area under the curves
correspond to CrossFDTL and DTL. The solid and dashed lines correspond to the CrossFDTL
and DTL, respectively.
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A.4. Supplementary figures for real data analysis

We apply our CrossFDTL method to different types of cancer data from TCGA
and make comparisons with DTL. For each type of cancer, we showed the in-
ferred differential gene regulatory networks in two ways. The only difference
is the way of the choices of genes. We showed the top 10 genes according
to their importance in the differential networks inferred by the two methods.
Here are two different definitions of the importance of gene i used in this pa-
per:

Sum of strength:

I(i) =
∑
j �=i

|Δ̂ij |,

Degree:

I(i) = #
{
j|j �= i, Δ̂ij �= 0

}
.

Fig 9. Gastric cancer, top 10 genes identified by the degree (top 10 genes identified by the
sum of strength are shown in the main text).

Fig 10. Lung adenocarcinoma (LUAD), top 10 genes identified by the sum of strength.
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Fig 11. Lung adenocarcinoma (LUAD), top 10 genes identified by the degree.

Fig 12. Lung squamous cell carcinoma (LUSC), top 10 genes identified by the sum of strength.

Fig 13. Lung squamous cell carcinoma (LUSC), top 10 genes identified by the degree.
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Fig 14. Breast invasive carcinoma (BRCA), top 10 genes identified by the sum of strength.

Fig 15. Breast invasive carcinoma (BRCA), top 10 genes identified by the degree.

Fig 16. Thyroid carcinoma (THCA), top 10 genes identified by the sum of strength.
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Fig 17. Thyroid carcinoma (THCA), top 10 genes identified by the degree.

Fig 18. Kidney renal clear cell carcinoma (KIRC), top 10 genes identified by the sum of
strength.

Fig 19. Kidney renal clear cell carcinoma (KIRC), top 10 genes identified by the degree.
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Fig 20. Uterine corpus endometrial carcinoma (UCEC), top 10 genes identified by the sum
of strength.

Fig 21. Uterine corpus endometrial carcinoma (UCEC), top 10 genes identified by the degree.
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