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Abstract: Estimating a low rank matrix from its linear measurements is
a problem of central importance in contemporary statistical analysis. The
choice of tuning parameters for estimators remains an important challenge
from a theoretical and practical perspective. To this end, Stein’s Unbi-
ased Risk Estimate (SURE) framework provides a well-grounded statisti-
cal framework for degrees of freedom estimation. In this paper, we use the
SURE framework to obtain degrees of freedom estimates for a general class
of spectral regularized matrix estimators—our results generalize beyond the
class of estimators that have been studied thus far. To this end, we use a
result due to Shapiro (2002) pertaining to the differentiability of symmetric
matrix valued functions, developed in the context of semidefinite optimiza-
tion algorithms. We rigorously verify the applicability of Stein’s Lemma
towards the derivation of degrees of freedom estimates; and also present
new techniques based on Gaussian convolution to estimate the degrees of
freedom of a class of spectral estimators, for which Stein’s Lemma does not
directly apply.
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1. Introduction

Consider the basic sequence model setup with

y = μ+ ε, Cov(ε) = τ2I, E(ε) = 0,

where, I is the identity matrix; and we observe y ∈ R
n, a noisy version of the

unknown signal μ ∈ R
n. Let μ̂ be an estimator of μ. The accuracy of μ̂ as an

estimator for μ is often quantified via the expected mean squared error (MSE)
which admits the following decomposition [9]

R � E‖μ̂− μ‖22 = −τ2n+ E‖μ̂− y‖22 + 2

n∑
i=1

Cov(μ̂i, yi), (1.1)

where ‖·‖2 is the usual �2 norm, and the subscript i indicates the ith component
of a vector. The covariance term appearing in (1.1) measures the complexity of
the estimator μ̂ and is related to the well known degrees of freedom (df ) of an
estimator [29, 9]:

df(μ̂) =

n∑
i=1

Cov(μ̂i, yi)/τ
2. (1.2)

The decomposition (1.1) suggests an unbiased estimator d̂f (μ̂) for df(μ̂) that
leads to an unbiased estimate for R:

R̂ = −τ2n+ ‖μ̂− y‖22 + 2τ2 · d̂f (μ̂). (1.3)
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We can then use R̂ to choose between different estimators. Hence the degrees of
freedom plays an important role in model assessment and selection. Consider the
example of multiple linear regression, where μ = Xβ with design matrix X ∈
R

n×p and regression coefficient β ∈ R
p. In the case when n > p and X is of full

rank, the df of the least square estimates equals p, i.e., the number of parameters
in the model. This fact combined with (1.3) leads to the well known Mallows’s
Cp criterion [20]. For estimators μ̂ that are a linear functional of y (arising via
ridge regression, for example), the df can be computed by looking at the trace of
the smoother matrix [12]. However, for estimators that are nonlinear functionals
of y, the computation of df becomes much more challenging. [29, 9] derive an
alternate expression of df for the Gaussian sequence model y ∼ N(μ, τ2I) when
μ̂ is weakly differentiable1 with respect to y. In this case, the degrees of freedom
of μ̂ is given by the well-known Stein’s Lemma:

(Stein’s Lemma) df(μ̂) = E

(
n∑

i=1

∂μ̂i/∂yi

)
(1.4)

which suggests an unbiased estimate for R, termed Stein’s Unbiased Risk Esti-
mate (SURE):

R̂ = −τ2n+ ‖μ̂− y‖22 + 2τ2 ·
n∑

i=1

∂μ̂i/∂yi.

The SURE framework has been successfully utilized in different statistical prob-
lems. For instance, [5] derived the df of soft thresholding in a wavelet shrinkage
procedure. [42, 34] studied the df of lasso and generalized lasso fit. [21, 33] ob-
tained the df of best subset selection under the linear regression model with
orthogonal design.

The above framework also applies to matrix estimation — here, data is of the
form yij = μij+εij for i = 1, . . . ,m and j = 1, . . . , n. The general problem of low
rank matrix estimation has been widely studied in the statistical community in
the context of multivariate linear regression [1, 16, 39] and matrix completion
[3, 22], among others. There has been nice recent work on using SURE the-
ory to derive the df of low rank matrix estimators – but the problem becomes
quite challenging as one needs to deal with the differentiability properties of
nonlinear functions of the spectrum and singular vectors of a matrix. Candès
et al. [4] obtained the analytic expression of the divergence2

∑
ij ∂μ̂ij/∂yij for

a singular value thresholding estimator – they also rigorously verified sufficient
conditions under which Stein’s Lemma holds. [25, 38] derived expressions for
the divergence of certain reduced rank and nuclear norm penalized estimators;
but they do not appear to formally verify if the regularity conditions sufficient
for Stein’s Lemma to hold, are satisfied. To sum up, the challenge for deriv-
ing the df of matrix estimators is three-fold. Firstly, it may be challenging to

1There are additional mild integrability conditions about μ̂. Please refer to Appendix 7.9
for details.

2See the formal definition in Section 1.1.
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verify the regularity conditions required for (1.4) to hold. A direct plug-in of
formula (1.4) may lead to inaccurate df calculation3. Secondly, even when for-
mula (1.4) is available, it might be difficult to derive an analytical expression
of

∑
ij ∂μ̂ij/∂yij , especially for matrix estimators that depend on the singular

vectors/values of the observed matrix in a non-linear way. Thirdly, there are
estimators for which Stein’s Lemma is not readily applicable – in these cases,
new techniques may be necessary to derive df estimates. Thusly motivated, in
this paper, we aim to present a systematic study of two generic low rank matrix
estimators, namely spectral regularized and rank constrained estimators—this
includes, but is not limited to, all estimators studied in the three aforementioned
works. Our contributions are summarized as:

(i) We propose a framework to derive the analytic formula of
∑

ij ∂μ̂ij/∂yij
for general matrix estimators, by appealing to some nice (but seemingly
underutilized) results pertaining to differentiability of symmetric matrix
valued functions due to Shapiro [28]—these results were derived in the
context of semidefinite optimization algorithms. The expressions for the
df of several estimators are thus shown to follow as special cases.

(ii) For several matrix estimators where Stein’s Lemma is not directly appli-
cable, our derivation of the df relies on using ideas from Gaussian con-
volution along with subtle limiting arguments that utilize the eigenvalue
distribution of a real-valued central Wishart matrix. The techniques pro-
posed in this paper may apply to a wider class of estimators, beyond what
is studied herein.

(iii) Our analysis covers a much wider range of low rank matrix estimators
than what has been studied before, and we present a unified framework
to address these problems.

The remainder of the paper is organized as follows. We introduce the main
theorem for calculating the divergence of matrix estimators in Section 2. Sections
3 and 4 consist of multiple applications of the main theorem in deriving the de-
grees of freedom for various low rank matrix estimators. Numerical experiments
are performed in Section 5 to validate the derived df formulas. We present our
concluding remarks in Section 6. All of our proofs and related technical material
are relegated to the appendix.

1.1. Notations

For a vector a = (a1, . . . , an) ∈ R
n, we use the notation diag(a) to denote

the n × n diagonal matrix with ith diagonal entry being ai. For a real matrix
Y ∈ R

m×n (we assume, without loss of generality, m ≥ n throughout the pa-
per), let its transpose be Y ′ and its reduced singular value decomposition be
Y = Udiag(σ)V ′, where U = (u1, . . . ,un), V = (v1, . . . ,vn),σ = (σ1, . . . , σn)

3For example, in the best subset selection procedure in linear regression, the formula does
not hold and the df estimate is not the number of nonzero regressors.



1352 R. Mazumder and H. Weng

and σ1 ≥ · · · ≥ σn ≥ 0. We denote the Frobenius norm of Y by ‖Y ‖F . Un-
less otherwise stated, we use Y = Udiag(σ)V ′ to represent the reduced singular
value decomposition (SVD). Y is called simple if it has no repeated singular val-
ues. For a real valued function f : R+ → R, define the associated matrix valued
spectral function S(·; f) : Rm×n → R

m×n as S(Y ; f) = Udiag(f(σ))V ′ where
f(σ) = (f(σ1), . . . , f(σn)). A function f is said to be directionally differentiable
at x if the directional derivative

f ′(x;h) � lim
t↓0

f(x+ th)− f(x)

t
(1.5)

exists for any h. Denote the divergence of S(Y ; f) by

∇ · S(Y ; f) �
∑
ij

∂[S(Y ; f)]ij/∂Yij ,

where [S(Y ; f)]ij is the (i, j)th element of S(Y ; f). When we mention regu-
larity conditions, we refer to the usual integrability and weak differentiability
conditions that are required for (1.4) to hold (see Appendix 7.9 for details).

2. Computing the divergence of matrix valued spectral functions

We present herein a framework to compute the df for matrix estimators of
the form S(Y ; f). Towards this end, we will need to compute the divergence
∇ · S(Y ; f), by making use of results due to [28]. For a symmetric matrix X ∈
R

N×N , let λ1(X) > · · · > λq(X) be the set of its unique eigenvalues, r1, . . . , rq
be the associated multiplicities, and E1(X) ∈ R

N×r1 , . . . , Eq(X) ∈ R
N×rq be the

set of matrices whose columns are the corresponding orthonormal eigenvectors.
For any given function f : R → R, define the associated matrix valued function
F : RN×N → R

N×N as follows:

F (X) =

q∑
k=1

f(λk(X))Ek(X)Ek(X)′. (2.1)

Shapiro [28] investigates differentiability properties of the function F (X) in cases
where f(x) is directionally differentiable. Shapiro’s study seems to be motivated
by the works of [31, 26] on the semismoothness of F (X) when f(x) = |x| or
max{0, x}, which play important roles in algorithms for semidefinite programs
and complementarity problems. For our purpose, we consider a special case of
the directional differentiability property of F (X) from [28].

Suppose f is directionally differentiable at every point λk(X), k = 1, . . . , q.
Then the directional derivative f ′(λk(X);h) exists ∀h ∈ R. Let Ψk : Rrk×rk →
R

rk×rk be the associated matrix valued function defined through f ′(λk(X); ·).
That is, for a given symmetric matrix Y ∈ R

rk×rk ,

Ψk(Y ) =
∑
i

f ′(λk(X);λi(Y ))Ei(Y )Ei(Y )′,
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where {λi(Y )}, {Ei(Y )} are the sets of unique eigenvalues and the corresponding
orthonormal eigenvectors of Y , respectively.

Lemma 1. (Shapiro [28]) Using the notation above, F (X) is directionally dif-
ferentiable at X and its directional derivative F ′(X;H) is given by:

F ′(X;H) = lim
t ↓ 0

F (X + tH)− F (X)

t

=
1

2

q∑
l �=k
l,k=1

f(λl(X))− f(λk(X))

λl(X)− λk(X)
(ElE

′
lHEkE

′
k + EkE

′
kHElE

′
l)

+

q∑
k=1

Ek[Ψk(E
′
kHEk)]E

′
k , (2.2)

where H ∈ R
N×N is an arbitrary real symmetric matrix, X is symmetric and

Ek denotes Ek(X) for k = 1, 2, . . . , q.

Lemma 1 ensures that matrix valued functions inherit directional differentia-
bility (at a matrix point X which is symmetric), from the real valued function
f(·) (at all the distinct eigenvalues of X). Lemma 2 presents a generalization
of Lemma 1 to asymmetric matrices—this will be useful to address the differ-
entiability properties of (rectangular) matrix valued spectral functions (see the
definition in Section 1.1).

Lemma 2. For any matrix Y ∈ R
m×n, consider the reduced singular value

decomposition Y = UΣV ′ with Σ ∈ R
n×n. Thus, there exists Ū ∈ R

m×(m−n)

such that Ū ′Ū = I ∈ R
(m−n)×(m−n) and Ū ′U = 0 ∈ R

(m−n)×n. Define the
matrices

Y ∗ =

[
0 Y
Y ′ 0

]
, P =

[
1√
2
U 1√

2
U Ū

1√
2
V −1√

2
V 0

]
and Σ∗ =

⎡⎣Σ 0 0
0 −Σ 0
0 0 0

⎤⎦ .

An eigendecomposition of Y ∗ is given by: Y ∗ = PΣ∗P ′.

The relation between the singular value decomposition of a matrix Y and
the Schur decomposition of its symmetrized version Y ∗ is a well known result
in matrix-theory – see [14] for example. In our case, Lemma 2 provides a tool
to study the directional differentiability of matrix valued spectral functions via
Lemma 1. In particular, for any given S(Y ; f), we can define a real valued
function f∗ : R → R as f∗(x) = f(x) for x ≥ 0 and f∗(x) = −f(−x) otherwise.
Let Y ∗ be the matrix defined in Lemma 2 and F ∗(Y ∗) be the matrix valued
function associated with f∗(x) as described in (2.1). Then Lemma 2 leads to

F ∗(Y ∗) =

[
0 S(Y ; f)

S(Y ; f)′ 0

]
.

Hence the directional differentiability of S(Y ; f) can be analyzed by studying the
symmetric matrix valued function F ∗(Y ∗) through Lemma 1. The divergence
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of S(Y ; f) can then be accordingly derived. An expression for the divergence
of matrix valued spectral functions is given in Corollary 1; and the proof is
presented in Appendix 7.1.

Corollary 1. Given a matrix Y ∈ R
m×n with singular values σ1 ≥ . . . ≥ σn,

let s1 > s2 > . . . > sK ≥ 0 be the set of distinct singular values, d1, . . . , dK
be the associated multiplicities. For any f : R+ → R with f(0) = 0, if it is
differentiable at every point si, 1 ≤ i ≤ K, then

m∑
i=1

n∑
j=1

∂[S(Y ; f)]ij
∂Yij

=
∑
si>0

[
di(di + 1)

2
f ′(si) +

(
(m− n)di +

di(di − 1)

2

)
f(si)

si

]
+dK(m− n+ dK)f ′(0)1(sK = 0) +

∑
1≤i �=j≤K

didj
sif(si)− sjf(sj)

s2i − s2j
.

We remark that the differentiability condition on f can be weakened to direc-
tional differentiability leading to a more complex divergence formula, as derived
in Appendix 7.1. We choose to present the streamlined version in Corollary
1 for simplicity. The divergence expression in Corollary 1 appears in earlier
work [4]—in this paper, the authors first derive the divergence formula for a
matrix Y which is simple and has full rank. Their derivation is based on stan-
dard techniques of computing the Jacobian of the SVD [8, 27]. They then extend
the result to general matrices. Here we show that the divergence formula can be
derived as a consequence of Lemma 1, and can be generalized to a larger class
of functions f .

On a related note, the differentiability properties of singular values of a rect-
angular matrix have been studied in [18, 19, 6]. These results however, are not
applicable to our current setting because we are concerned with matrix functions
that involve both singular values and singular vectors.

3. Degrees of freedom for additive Gaussian models

We start by considering the canonical additive Gaussian model:

Y = M∗ + E , (3.1)

where Y ∈ R
m×n is the observed matrix, M∗ ∈ R

m×n is the underlying low
rank matrix of interest, and E = (εij)m×n is the random noise matrix with

εij
iid∼ N(0, τ2).

3.1. Estimators obtained via spectral regularization

A popular class of low rank matrix estimators are obtained via spectral regu-
larization:

Sθ(Y ) ∈ argmin
M∈Rm×n

1

2
‖Y −M‖2F +

n∑
i=1

Pθ(σi), (3.2)
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where σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0 are the singular values of M and Pθ : R+ → R
+

is a family of sparsity promoting penalty functions indexed by θ. For example,
Pθ(x) = θx gives the nuclear norm penalty [3]. Some non-convex penalty func-
tions include MC+ [40] and SCAD [10]. The optimization problem in (3.2) is
closely related to the following problem

sθ(σ) ∈ argmin
α∈Rn

1

2
‖σ(Y )−α‖22 +

n∑
i=1

Pθ(αi), (3.3)

where sθ(σ) = (sθ(σ1), . . . , sθ(σn)) ∈ R
n,α = (α1, . . . , αn) ∈ R

n, and σ(Y ) =
(σ1(Y ), . . . , σn(Y )) ∈ R

n are the singular values of Y . Due to the separability
in (3.3), it is clear that sθ(·) is the proximal function induced by the penalty
Pθ:

sθ(u) ∈ argmin
x∈R

1

2
(x− u)2 + Pθ(x).

Problem (3.2) in fact, admits a closed form solution (See Proposition 1 in [23]):

Sθ(Y ) = Udiag(sθ(σ))V
′,

where Y = Udiag(σ)V ′ is the reduced SVD of Y . Since the penalty function
Pθ(·) shrinks some singular values to zero, it results in a low rank matrix estima-
tor Sθ(Y ). An appropriate amount of shrinkage (that is, θ) can be obtained by
using the SURE framework—to this end, the following corollary presents SURE
expressions for a variety of estimators.

Corollary 2. Consider the spectral regularized estimator Sθ(Y ) in (3.2) under
the model (3.1). Assuming Pθ(·) is differentiable on (0,∞) and Pθ(0) = 0, we
introduce the following quantity (φP ) that measures the amount of concavity of
Pθ(·):

φP := inf
α,α′>0

P ′
θ(α)− P ′

θ(α
′)

α− α′ ,

where P ′
θ(α) denotes the derivative of Pθ(α) wrt α on α > 0. Suppose φP+1 > 0,

then

df(Sθ(Y )) = E

[
n∑

i=1

(
s′θ(σi) + (m− n)

sθ(σi)

σi

)
+ 2

n∑
i �=j
i,j=1

σisθ(σi)

σ2
i − σ2

j

]
, (3.4)

where σ1 ≥ . . . ≥ σn ≥ 0 are the singular values of Y .

In a recent piece of work [15], Hansen derives the same df formula as in (3.4).
However, the result in [15] holds for a different class of matrix estimators than
the one considered in Corollary 2. Specifically, Theorem 1 in [15] requires the
function sθ(·) to be differentiable but allows different sθ(·) applied to each of
the singular value. In contrast, Corollary 2 assumes the same sθ(·) across the
singular values, but we allow for a non-differentiable function sθ(·). We discuss
a few examples below.
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The condition φP + 1 > 0 holds for many penalty functions. First of all, any
convex function differentiable over (0,∞), has a non-negative φP . In particular,
for Pθ(α) = θα, it is straightforward to confirm that sθ(σ) = (σ − θ)+ (i.e., the
soft-thresholding operator). This recovers the df formula of the singular value
thresholding estimator studied in [4]. Moreover, some families of non-convex
penalty functions satisfy φP +1 > 0 as well. Examples include MC+ (for γ > 1)
and SCAD (for a > 2), where γ, a are tuning parameters associated with the
two penalty functions, respectively. We refer the reader to Section 5 for explicit
expressions. Non-convex penalties are well known to attenuate the estimation
bias caused by convex sparsity-promoting functions [10, 21, 23]. Note that some
popular non-convex penalties like Pθ(α) = θ|α|q (0 ≤ q < 1) do not satisfy the
condition φP + 1 > 0. In particular, when q = 0, Pθ(α) = θ1(α �= 0) gives the
widely known rank regularized estimator

Sθ(Y ) =

n∑
i=1

σi1(σi >
√
2θ)uiv

′
i. (3.5)

Due to the hard thresholding rule on the singular values, Sθ(Y ) is not a con-
tinuous function of Y , hence Stein’s Lemma cannot be directly applied. The
following corollary (the proof is presented in Appendix 7.4) derives an expres-
sion for the degrees of freedom of the rank regularized estimator.

Corollary 3. Consider the rank regularized matrix estimator in (3.5) under the
model (3.1), then

df(Sθ(Y )) = E

n∑
i �=j
i,j=1

(σ2
i 1(σi >

√
2θ)

σ2
i − σ2

j

+
σ2
j1(σj >

√
2θ)

σ2
j − σ2

i

)

+

n∑
i=1

[
(m− n+ 1)P (σi >

√
2θ) +

√
2θfσi(

√
2θ)

]
,

(3.6)

where fσi(·) is the marginal probability density function of σi, which is the ith
singular value of Y .

If we ignore the regularity conditions and use Equation (1.4) directly, we will
get an incorrect estimate of the df — specifically, the expression we obtain (by
applying Corollary 1) will not include the term

∑n
i=1

√
2θfσi(

√
2θ) appearing

in (3.6).
To arrive at (3.6) we construct a sequence of matrix valued spectral functions

(induced by MC+ penalty) which satisfy the conditions of Corollary 2. The df
of this sequence converges to the df of the rank regularized matrix estimator.
We then combine the formula in Corollary 2 with a careful limiting argument
that hinges on the eigenvalue distribution of a central Wishart matrix to derive
the df of the rank regularized estimator.

Note that when Pθ(α) = θ|α|q with 0 < q < 1, problem (3.3) does not admit
an explicit solution. Introducing the notation
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ηq(σ; θ) = argmin
x∈R

1

2
|σ − x|2 + θ|x|q, (3.7)

we have sθ(σ) = ηq(σ; θ). According to Lemmas 5 and 6 in [41], the function
ηq(σ; θ) has a jump discontinuity:

ηq(σ; θ) = 0, for 0 ≤ σ < cqθ
1/(2−q),

ηq(cqθ
1/(2−q); θ) = [2(1− q)θ]1/(2−q),

cq = [2(1− q)]1/(2−q) + q[2(1− q)](q−1)/(2−q). (3.8)

Hence sθ(σ) is not continuous. Similar to the rank regularized estimator, Stein’s
Lemma is not applicable to the case Pθ(α) = θ|α|q for q ∈ (0, 1). We adapt the
approach used in the proof of Corollary 3 to derive the df for the case 0 < q < 1
– the result is presented in the following corollary, the proof of which is in
Appendix 7.5.

Corollary 4. Consider the matrix estimator Sθ(Y ) in (3.2) with Pθ(α) = θ|α|q
for q ∈ (0, 1) under the model (3.1), then

df(Sθ(Y )) = E

n∑
i �=j
i,j=1

σiηq(σi; θ)− σjηq(σj ; θ)

σ2
i − σ2

j

+E

n∑
i=1

[
(m− n)

ηq(σi; θ)

σi
+ η′q(σi; θ) + [2(1− q)θ]1/(2−q)fσi(cqθ

1/(2−q))

]
,

where fσi(·) is the marginal density function of Y ’s ith singular value σi; η
′
q(σi; θ)

is the partial derivative of ηq(σi; θ) with respect to σi.

By a quick inspection, we observe that setting q = 1 and q = 0 in the df for-
mula of Corollary 4 recovers the df formulae for the cases q = 1 and q = 0—
these special cases are already derived in Corollaries 2 and 3 respectively. Hence
Corollary 4 presents a unified df formula for the family of penalty functions for
all q ∈ [0, 1]. Note also, that the term

∑n
i=1[2(1 − q)θ]1/(2−q)fσi(cqθ

1/(2−q)) in
the expression of Corollary 4 will not appear if we had directly applied Stein’s
Lemma and Corollary 1 to derive the df. Supporing simulation results are pre-
sented in Figure 1.

3.2. Reduced rank estimators

We now consider rank constrained estimators [14] of the form:

CK(Y ) ∈ argmin
rank(M)≤K

‖Y −M‖2F , (3.9)

for some positive integer K ≤ n. The Eckart-Young Theorem [7] states that

CK(Y ) =
K∑
i=1

σiuiv
′
i,
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Fig 1. The df computation of Sθ(Y ) with Pθ(α) = θ|α|q for q = 0 (left), and q =
0.1 (right). The true df (red curve) is computed according to the definition of df in
(1.2). The legend “formula-1” (purple diamond) denotes the df obtained by using (1.4)
directly; the legend “formula-2” (blue cross) represents the df derived from Corollary 4.
In this simulation, we set n = m = 50,M∗ = 5 · 11′ (where, 1 is a vector of all ones),
and τ = 1. The df is calculated by Monte Carlo simulation over 10,000 replications.

where σ1 ≥ · · · ≥ σK are the K largest singular values of Y , and {ui,vi}Ki=1 are
the corresponding singular vectors. Here, K controls the amount of regulariza-
tion. The choice of K can be guided by an expression for the df of CK(Y ), as
presented below.

Corollary 5. For the reduced rank estimator CK(Y ) in (3.9) under the model
(3.1), we have

df(CK(Y )) =

⎧⎨⎩E

[
(m+ n−K)K + 2

∑K
i=1

∑n
j=K+1

σ2
j

σ2
i−σ2

j

]
, if K < n

mn if K = n
(3.10)

where σ1 ≥ . . . ≥ σn ≥ 0 are the singular values of Y .

The proof of Corollary 5 can be found in Appendix 7.6. The term (m+ n−
K)K appearing in the formula of df equals the number of free parameters in
the specification of a m×n matrix with rank K. Corollary 5 demonstrates that
the degrees of freedom of CK(Y ) is typically larger than the number of free
parameters (when K < n).

The expression inside the expectation in (3.10) has been proved equal to the
divergence ∇ · CK(Y ) in Yuan [38]. This was obtained by fairly involved tools
in calculus and tedious algebraic derivations. As we show in Appendix 7.6, we
obtain this expression via a direct application of Corollary 2. More importantly,
Corollary 5 establishes that ∇ · CK(Y ) is unbiased for df(CK(Y )) – that is,
formula (1.4) holds for the matrix estimator CK(Y ). Yuan [38] on the other
hand, assumes that (1.4) is applicable—here, we present a formal justification
of this assumption. The following section provides some intuition regarding the
regularity conditions that imply the validity of (1.4).
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3.2.1. Verifying the regularity conditions

We showed in Section 3.1 that Stein’s Lemma (1.4) does not apply to the dis-
continuous rank regularized estimator Sθ(Y ). In light of this observation, it is
important to investigate if CK(Y ) satisfies the regularity conditions sufficient
for the identity df(CK(Y )) = E[∇ · CK(Y )] in (1.4) to hold true. As we dis-
cuss below, verifying the weak differentiability of CK(Y ) does not appear to be
straightforward.

Firstly, CK(Y ) might not be continuous at Y when σK(Y ) = σK+1(Y ). This
can be seen by a simple example. Suppose m = n = 3,K = 2 and {e1, e2, e3}
is a set of orthonormal bases in R

3. For Y = 2e1e
′
1 + e2e

′
2 + e3e

′
3, consider a

sequence

Y� = 2e1e
′
1 + (1 + 1/�)e2e

′
2 + (1− 1/�)e3e

′
3 → Y, as � → ∞.

One can directly verify that as � → ∞,

CK(Y�) = 2e1e
′
1 + (1 + 1/�)e2e

′
2 → 2e1e

′
1 + e2e

′
2.

Now consider another sequence converging to Y :

Ỹ� = 2e1e
′
1 + (1− 1/�)e2e

′
2 + (1 + 1/�)e3e

′
3 → Y, as � → ∞.

For sequence Ỹ� it is clear that as � → ∞,

CK(Ỹ�) = 2e1e
′
1 + (1 + 1/�)e3e

′
3 → 2e1e

′
1 + e3e

′
3.

Moreover, CK(Y ) might not be Lipschitz continuous over the open ball out-
side the set {Y : σK(Y ) = σK+1(Y )}. To illustrate this, we take a simple
example as follows. Let m = n = 2K for a positive integer K, and set

Y1 = Udiag(σ)V ′, Y2 = Udiag(σ̃)V ′,

σi = a, σ̃i = b, σj = b, σ̃j = a, 1 ≤ i ≤ K,K + 1 ≤ j ≤ n,

where U, V ∈ R
n×n are orthogonal matrices and a, b are two constants satisfying

0 < b < a. We can then compute that ‖Y1−Y2‖2F = 2K(a− b)2, and ‖CK(Y1)−
CK(Y2)‖2F = 2Ka2. Hence, by choosing b = a− 1, we can conclude

sup
a

‖CK(Y1)− CK(Y2)‖F
‖Y1 − Y2‖F

= ∞.

3.2.2. Estimating df via smoothing with convolution operators

The discussions in Section 3.2.1, suggest challenges in legitimately invoking
Stein’s Lemma to obtain an expression for df. We thus pursue a different ap-
proach, which to our knowledge, is novel. To this end, we first compute the df for
a smoothed version of CK(Y ), obtained by the following convolution operation:

gh(Y ) = EZ [CK(Y + hZ)],
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where the elements of Z ∈ R
m×n are i.i.d from N(0, 1), independent of Y ; the

expectation EZ(·) is taken with respect to Z; and h > 0 is a constant. Because
gh(Y ) satisfies the regularity conditions, we can derive df(gh(Y )) by computing
the divergence of gh(Y ). We show that df(gh(Y )) → df(CK(Y )) as h → 0+—
using this result, we obtain df(CK(Y )) by letting h → 0+. The detailed analysis
is quite technical, and is presented in the Appendix 7.6.

As we were preparing the paper, we became aware of the recent work by
Hansen [15] who also provides a rigorous derivation of the df for reduced rank
estimators. However, the proof technique in [15] is significantly different from
ours. Hansen directly verifies the weak differentiability of the estimator and
proceeds with divergence calculation—our approach however, uses a continuity
argument as explained in the preceding paragraph. Moreover, the approximation
strategy via convolution with Gaussian kernel discussed above can work beyond
matrix estimation settings; and is hence of independent interest. For example,
under the linear regression model, the best subset selection in constrained form
is:

β̂ ∈ argmin
β∈Rp

‖y −Xβ‖22 subject to ‖β‖0 ≤ k.

In the orthogonal design setting, the ith coordinate of β̂ i.e., β̂i = x′
iy ·1(|x′

iy| ≥
|x′y|(k)), where xi is the ith column of X and |x′y|(k) is the kth largest value

among {|x′
iy|}i. The df of β̂ when the underlying signal is null, has been de-

rived in [37] by making use of the projection property of least square estimates.
Alternatively, we can follow the continuity argument outlined above, and study
the sequence

β̂h
i = Ez[(x

′
iy + zi) · 1(|x′

iy + zi| ≥ |x′y + z|(k))], z ∼ N(0, h · Ip)

to obtain the df formula. Since the calculation is standard, we skip it here.

4. Degrees of freedom in multivariate linear regression

Low rank matrix estimation problems also arise in the multivariate linear regres-
sion setting, where one is interested in modeling several response measurements
simultaneously. In particular, the multivariate linear regression model is given
by:

Y = XM∗ + E , (4.1)

where, Y = (y1, . . . ,ym)′ ∈ R
m×n is the response matrix, X = (x1, . . . ,xm)′ ∈

R
m×p is the design matrix, M∗ ∈ R

p×n is the underlying coefficient matrix, and

E = (εij)m×n with εij
iid∼ N(0, τ2) is the random noise matrix.

4.1. Reduced rank regression estimators

In many applications, it is reasonable to assume that the dependency of Y
on X is only through K < min(p, n) linear combinations, namely, M∗ is of
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low rank. In such cases, we can consider the following reduced rank regression
estimator [1, 35]

MK(Y ) ∈ argmin
rank(M)≤K

‖Y −XM‖2F . (4.2)

Let the compact singular value decomposition of X be Xm×p = Um×rΣr×rV
′
p×r,

with r being the rank of X. Then the least squares fit is given by

Ŷ = X(X ′X)+X ′Y = UU ′Y, (4.3)

where (X ′X)+ is the Moore-Penrose pseudo inverse of X ′X. By applying the
Eckart-Young Theorem, an explicit solution of (4.2) is given as follows [38, 25]:

MK(Y ) = (X ′X)−1X ′CK(Ŷ ) if r = p < m.

MK(Y ) might not be unique when p > m, but the fitted value XMK(Y ) is
unique with XMK(Y ) = CK(UU ′Y ). The reduced rank problem (3.9) can be
thought of as a special case of (4.2) where X equals the identity matrix I ∈
R

m×m. We will use the df result for the reduced rank estimator in Corollary 5
to derive the df formula for the estimator defined in (4.2). It is important to note
that, in the current regression setting, we are interested in the prediction error
E(‖XM∗−XMK(Y )‖2F ) rather than the estimation error E(‖M∗−MK(Y )‖2F ).
Therefore, the degrees of freedom for MK(Y ) is defined as

df(MK(Y )) =
∑
ij

Cov((XMK(Y ))ij , Yij)/τ
2,

where (XMK(Y ))ij is the (i, j)th entry of the matrix XMK(Y ).

Corollary 6. Consider the reduced rank regression estimator MK(Y ) in (4.2)
under the model (4.1). We have the following df formula for MK(Y ):

df(MK(Y ))

=

⎧⎨⎩E

[
(r + n−K)K + 2

∑K
i=1

∑min(r,n)
j=K+1

σ2
j

σ2
i −σ2

j

]
, if K < min(r, n)

rn, if K ≥ min(r, n)
(4.4)

where σ1 ≥ . . . ≥ σmin(r,n) ≥ 0 are the singular values of the least squares fitted

value Ŷ , as defined in (4.3).

Note that the analytic expression inside the expectation in (4.4) has been
shown to be equal to ∇ · (XMK(Y )) in Yuan [38], Mukherjee et al. [25]. Both
papers use the chain rule to relate the divergence of XMK(Y ) to the divergence
of a related reduced rank estimator. Our approach differs as we compute the
df from basic principles and then appeal to Corollary 5. We emphasize that it
is not immediately clear if the regularity conditions sufficient for the identity
in (1.4) to hold, are satisfied — see also the discussion in Section 3.2.1. Based on
the result in Corollary 5, we present a formal justification of the result in (4.4).
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4.2. Spectral regularized regression estimators

In addition to the constrained estimator in (4.2), we may also consider the
penalized problem

argmin
M∈Rp×n

1

2
‖Y −XM‖2F +

min(p,n)∑
i=1

Pθ(σi). (4.5)

However, unlike the spectral regularized problem (3.2), except for few penalty
functions like Pθ(σ) = θ1(σ �= 0) [2], there is no closed form solution for (4.5).
Simple expressions for the degrees of freedom for such fitting procedures seem
to be unknown. We note however, that some nice work is available on the df
of regularized estimators in the linear regression setting—see for e.g. Zou et al.
[42], Tibshirani and Taylor [34].

We follow the approach of Mukherjee et al. [25]. Motivated by the solution
form of (4.2), we explicitly construct an estimator for M∗ given by

RMθ(Y ) = (X ′X)−1X ′Sθ(Ŷ ), X ·RMθ(Y ) = Sθ(UU ′Y ), (4.6)

where Ŷ is the least square fitted value, U is the left singular vector matrix of X,
and Sθ(·) is defined in (3.2). The following two corollaries provide an expression
of the df for a variety of such estimators.

Corollary 7. For the penalized multivariate regression estimator RMθ(Y ) in
(4.6) under the model (4.1), if the same conditions for Pθ(·) as in Corollary 2
hold, then

df(RMθ(Y )) = E

[
min(r,n)∑

i=1

(
s′θ(σi) + |r − n|sθ(σi)

σi

)
+ 2

min(r,n)∑
i �=j
i,j=1

σisθ(σi)

σ2
i − σ2

j

]
,

where σ1 ≥ . . . ≥ σmin(r,n) ≥ 0 are the singular values of the least square fitted

value Ŷ in (4.3).

Corollary 8. Consider the penalized multivariate regression estimator RMθ(Y )
in (4.6) with Pθ(α) = θ|α|q for q ∈ (0, 1), under the model (4.1). We have

df(RMθ(Y )) = E

min(r,n)∑
i �=j
i,j=1

σiηq(σi; θ)− σjηq(σj ; θ)

σ2
i − σ2

j

+

E

min(r,n)∑
i=1

[
|r − n|ηq(σi; θ)

σi
+ η′q(σi; θ) + [2(1− q)θ]1/(2−q)fσi(cqθ

1/(2−q))

]
,

where fσi(·) is the marginal probability density function of the ith singular value
of Y (i.e., σi); η

′
q(σi; θ) is the partial derivative of ηq(σi; θ) with respect to σi;

η(·; θ), cq are defined in (3.7) and (3.8) respectively; σ1 ≥ . . . ≥ σmin(r,n) ≥ 0

are the singular values of the least square fitted value Ŷ , appearing in (4.3).
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The results in the above two corollaries for RMθ(Y ) notably differ from that
in [25]. We present a formal justification for the unbiasedness of the divergence
for df(RMθ(Y )) under a wide class of non-convex penalties Pθ(·) in Corollary 7.
Furthermore, Corollary 8 presents the df formula for a family of penalty func-
tions for which Stein’s Lemma does not apply. We refer the reader to Table 1 for
a summary of different penalty functions and whether Stein’s Lemma applies or
not.

Table 1

Examples of commonly used penalty functions. We summarize when Stein’s Lemma is
applicable for the estimator Sθ(Y ) in (3.2) under model (3.1); and the estimator RMθ(Y )

in (4.6) under model (4.1).

Penalty name Penalty function Stein’s Lemma

Lasso [32] Pθ(σ) = θσ Yes

SCAD [10] Pθ(σ) =

⎧⎪⎨⎪⎩
θσ 0 ≤ σ ≤ θ
−σ2+2aθσ−θ2

2(a−1)
θ < σ ≤ aθ

(a+1)θ2

2
σ > aθ

Yes, when a > 2

MC+ [40] Pθ(σ) =

{
θ(σ − σ2

2θγ
) 0 ≤ σ ≤ γθ

γθ2

2
σ > γθ

Yes, when γ > 1

Bridge [11] Pθ(σ) = θσq, q ∈ [0, 1) No

Log [21] Pθ(σ) =
θ log(γσ+1)
log(1+γ)

Yes, when log(1+γ)

θγ2 > 1

Firm [13] Pθ(σ) =

{
θ(σ − σ2

2γ
) 0 ≤ σ ≤ γ

γθ
2

σ > γ
Yes, when γ > θ

5. Simulations

In this section, we perform simulation studies to lend further support to the
df formulas presented in Sections 3 and 4.

5.1. Additive Gaussian model

We generate synthetic data Y according to the canonical additive Gaussian
model (3.1):

Y = M∗ + E ,
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Fig 2. Degrees of freedom under the additive Gaussian model. The true df (red curve) is
computed from (1.2). The estimate (blue cross) is the average of the unbiased estimator over
100 repetitions.

where Y ∈ R
m×n,M∗ ∈ R

m×n, and E = (εij)m×n with εij
iid∼ N(0, τ2). We set

m = n = 100, τ = 0.1,M∗ =
∑5

k=1 kuku
′
k, where all entries of the uk’s are

independently sampled from N(0, 1/
√
n). We consider the spectral regularized

estimator Sθ(Y ) in (3.2) with the following non-convex penalty functions:

(1) The SCAD penalty [10]

Pθ(σ) = θσ1(σ ≤ θ) +
−σ2 + 2aθσ − θ2

2(a− 1)
1(θ < σ ≤ aθ) +

(a+ 1)θ2

2
1(σ > aθ),

where a > 2 is a fixed parameter. We choose a = 3.7 as used in Fan and
Li [10].

(2) The MC+ penalty [40]

Pθ(σ) = θ
(
σ − σ2

2θγ

)
1(0 ≤ σ ≤ γθ) +

γθ2

2
1(σ > γθ),

where γ > 0 is a fixed constant. We set γ = 2.
(3) The log-penalty [21]

Pθ(σ) =
θ

log(1 + γ)
log(1 + γσ), γ > 0.

We choose γ = 0.01.
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Fig 3. Expected MSE under the additive Gaussian model. The truth (red curve) is computed
via Monte Carlo simulation. The estimate (blue cross) is the average of the unbiased estimator
over 100 repetitions.

(4) The bridge-penalty [11]

Pθ(σ) = θσq, q ∈ [0, 1).

We consider q = 0.1, 0.5, 0.9.

It is straightforward to verify that the first three penalty functions above
satisfy the conditions in Corollary 2 for θ ∈ (0, 20]. Hence we can use formula
(3.4) in Corollary 2, to construct an unbiased estimator for df(Sθ(Y )) when
θ ∈ (0, 20]. For the bridge-penalty function, we use the result in Corollary 4 to
obtain the estimator for the df. Moreover, for each matrix estimator Sθ(Y ), we
compute its df (the ground truth) according to the definition (1.2).

Figure 2 depicts the true df and its unbiased estimate for the aforementioned
non-convex penalties with θ varying over [0, 20]. It is clear that the ground truth
and the (averaged) estimates are compatible for all the penalties and values of
θ under consideration, thus offering empirical support for the correctness of the
derived df expressions.

In addition to df, we further evaluate the estimation of the expected MSE
i.e., E‖Sθ(Y )−M∗‖22. Recall that for a given Sθ(Y ), once an unbiased estima-
tor of the df is available, an unbiased estimate for the expected MSE can be
constructed based on (1.3). In the present case, we will use the df estimates to
obtain the estimates for E‖Sθ(Y )−M∗‖22 according to (1.3). Figure 3 shows the
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Fig 4. Degrees of freedom under multivariate linear regression. The true df (red curve) is
computed from (1.2). The estimate (blue cross) is the average of the (theoretical) unbiased
estimator across100 replications.

expected MSE and its estimates for the four types of non-convex penalties with
θ ∈ [0, 20]. We observe that the (averaged) estimates are in agreement with the
truth.

5.2. Multivariate linear regression

We generate data Y according to the multivariate linear regression model (4.1):

Y = XM∗ + E ,

where Y ∈ R
m×n, X ∈ R

m×p,M∗ ∈ R
p×n, and E = (εij)m×n with εij

iid∼
N(0, τ2). We set m = 300, n = p = 100, τ = 0.1, and M∗ as in Section 5.1. Each
row of the design matrix X is independently sampled from N(0,Σ), where Σ is
a Toeplitz matrix with the (i, j)th entry equal to 0.5|i−j|/m for 1 ≤ i, j ≤ n. We
consider the regularized estimator RMθ(Y ) in (4.6) with the same non-convex
penalty functions studied in Section 5.1. Here, we are interested in df in the
context of the prediction error E‖XM∗ −XRMθ(Y )‖22:

df(RMθ(Y )) =
∑
ij

Cov((XRMθ(Y ))ij , Yij)/τ
2.
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Fig 5. Prediction error (PE) under multivariate linear regression. The truth (red curve)
is computed via Monte Carlo simulation. The estimate (blue cross) is obtained from the
(theoretical) unbiased estimator upon averaging over 100 replications.

Corollaries 7 and 8, lead to estimates of the df. As in Section 5.1, we can also
construct the estimates for the prediction error (PE) according to (1.3). Figures
4 and 5 depict the comparison between the estimates and the truth for the
df and PE, respectively. The plots empirically validate the correctness of the
df expressions derived in Section 4.

6. Conclusion

In this paper, we present a systematic study of computing the degrees of freedom
for a wide range of low rank matrix estimators, under the SURE framework. As
a building block for the computation, the divergence formula for general spectral
functions is derived by appealing to a fundamental result on differentiability of
matrix functions due to Shapiro [28]. For a class of estimators, our df expres-
sions depend upon the use of Stein’s Lemma (i.e., the divergence formula)—in
these cases, we have rigorously established the regularity conditions sufficient
for Stein’s Lemma to be applicable. For other estimators where, Stein’s Lemma
does not seem to be readily applicable (as the sufficient regularity conditions
are not satisfied or difficult to verify), we propose a new Gaussian convolution
method and successfully derive their df expressions. The estimators studied in
this paper include those studied in the recent literature as special cases—our
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approach either presents a simple derivation of the df expressions and/or com-
plements existing analyses via a rigorous justification for the applicability of
Stein’s Lemma.

7. Appendix

Here we present proofs of all the main results presented in the paper. The
organization is listed below:

1. Appendix 7.1 proves Corollary 1.
2. Appendix 7.2 proves a lemma that is useful in multiple places.
3. Appendix 7.3 proves Corollary 2.
4. Appendix 7.4 proves Corollary 3.
5. Appendix 7.5 proves Corollary 4.
6. Appendix 7.6 proves Corollary 5.
7. Appendix 7.7 proves Corollary 6.
8. Appendix 7.8 proves Corollaries 7 and 8.
9. Appendix 7.9 reviews the regularity conditions that are sufficient for the

SURE formula to be applicable.

7.1. Proof of Corollary 1

We present a more general result than what appears in Corollary 1, and prove
the general result by making use of Lemmas 1 and 2. The proof of Corollary 1
follows as a special case.

Theorem. Given a matrix Y ∈ R
m×n with singular values σ1 ≥ . . . ≥ σn; let

s1 > s2 > . . . > sK ≥ 0 be the set of distinct singular values, and d1, . . . , dK be
the associated multiplicities. Consider a function f : R+ → R with f(0) = 0 that
is differentiable at every point si with di > 1 and directionally differentiable at
every point si with di = 1. Let D denote the set of points where f is directionally
differentiable but not differentiable. Then

m∑
i=1

n∑
j=1

∂[S(Y ; f)]ij
∂Yij

=
∑
si>0

[
di(di + 1)

2
f ′(si)1(si /∈ D) +

(
(m− n)di +

di(di − 1)

2

)
f(si)

si

]
+

dK(m− n+ dK)f ′(0)1(sK = 0) +
∑

1≤i �=j≤K

didj
sif(si)− sjf(sj)

s2i − s2j
+

∑
sk>0
sk∈D

m∑
i=1

n∑
j=1

[
u2
ikv

2
jkf

′(sk; 1)1(uikvjk > 0)− u2
ikv

2
jkf

′(sk;−1)1(uikvjk < 0)
]
,

where uik is the (i, k)th entry of the left singular vector matrix U of Y . A similar
notation applies to vik for the right singular vector matrix V .
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According to the above theorem, if f is differentiable at some singular value
sj , the corresponding singular vectors do not appear in the divergence formula
of S(Y ; f). Under the conditions of Corollary 1, D = ∅. This directly leads to
the formula appearing in Corollary 1. From the proof that appears below, we
can show a more general result: the directional differentiability of f at singular
values of Y is sufficient to guarantee the existence of ∇ · S(Y ; f). But since the
explicit formula is complicated, we skip it for simplicity.

Proof. We focus on the more complicated setting when sK = 0. The case in
which Y is of full rank can be analyzed in the same way. We first assume f
is differentiable at every point sj , 1 ≤ j ≤ K. Consider the symmetric matrix
in Lemma 2: it follows that Y ∗ has distinct eigenvalues ±s1, . . . ,±sK−1, 0 with
multiplicities d1, . . . , dK−1, 2dK +m− n. To simplify the notations in the later
calculations, we denote those distinct eigenvalues by {μk}2K−1

k=1 and the cor-

responding multiplicities by {rk}2K−1
k=1 . Define a real function f∗ : R → R as

f∗(x) = f(x) for x ≥ 0 and f∗(x) = −f(−x) for x < 0. Let F ∗(Y ∗) be the
corresponding matrix valued function stated in Lemma 1. The eigenvalue de-
composition in Lemma 2 implies a key connection between F ∗(Y ∗) and S(Y ; f)

F ∗(Y ∗) =

[
0 S(Y ; f)

S(Y ; f)′ 0

]
. (7.1)

Let eij ∈ R
m×n be the canonical basis matrix in Euclidean space, i.e., the matrix

with all entries equal to 0 but the (i, j)th equal to 1, and denote

hij =

[
0 eij
e′ij 0

]
.

Note that (7.1) leads to

lim
t ↓ 0

F ∗(Y ∗ + thij)− F ∗(Y ∗)

t
=

⎡⎣ 0 ∂S(Y ;f)
∂Yij(

∂S(Y ;f)
∂Yij

)T

0

⎤⎦ .

By the differentiability of f at sj , 1 ≤ j ≤ K; f∗ is differentiable at all the
distinct eigenvalues of Y ∗. We can thus apply Lemma 1 to F ∗(Y ∗) withH = hij .
After some algebraic manipulations, we obtain4∑

i,j

∂[S(Y ; f)]ij
∂Yij

=
∑
i,j

tr

{
S(Y ; f)

∂Yij
e′ij

}

=
1

2

∑
i,j

q∑
l �=k,l,k=1

glk

{
2tr[El(1)El(2)

′e′ijEk(1)Ek(2)
′e′ij ]+

tr[El(1)El(1)
′eijEk(2)Ek(2)

′e′ij ] + tr[Ek(1)Ek(1)
′eijEl(2)El(2)

′e′ij ]

}
+

4Note that the second term on the right hand side of Equation (2.2) in Lemma 1 is∑q
k=1 f

′(μk(X))EkE
′
kHEkE

′
k
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∑
i,j

q∑
k=1

(f∗(μk))
′
{
tr[Ek(1)Ek(2)

′e′ijEk(1)Ek(2)
′e′ij ] +

tr[Ek(1)Ek(1)
′eijEk(2)Ek(2)

′e′ij ]

}
� I + II, (7.2)

where glk = f∗(μl)−f∗(μk)
μl−μk

, q = 2K − 1 is the number of distinct eigenval-

ues and Ek(1), Ek(2) are the first m rows and last n rows of the eigenvector
matrix Ek, respectively. We have used I, II to represent the two summations
1
2

∑
i,j

∑q
l �=k,l,k=1(·) and

∑
i,j

∑q
k=1(·), respectively. Let Ek(1) = (wk

1 , . . . ,w
k
rk
),

Ek(2) = (zk
1 , . . . , z

k
rk
) and wk

1 (i) be the ith element of wk
1 . We then have

T (μl, μk) �
∑
ij

tr[El(1)El(2)
′e′ijEk(1)Ek(2)

′e′ij ]

=
∑
ij

rl∑
a=1

rk∑
b=1

tr[wl
a(z

l
a)

′e′ijw
k
b (z

k
b )

′e′ij ]

=

rl∑
a=1

rk∑
b=1

∑
ij

zla(j)w
k
b (i)z

k
b (j)w

l
a(i) =

rl∑
a=1

rk∑
b=1

[(wk
b )

′wl
a] · [(zk

b )
′zl

a]

(a)
=

{
0 if |μk| �= |μl| or |μkμl| = 0

sign(μk

μl
) rk4 otherwise.

(7.3)

Here, (a) follows due to the fact that wk
a (and zk

a) is one of the columns of
the matrix ( 1√

2
U, 1√

2
U, Ū) (and ( 1√

2
V, −1√

2
V, 0), respectively), by checking the

eigenvector matrix specified in Lemma 2. Similarly, we also get

G(μl, μk) �
∑
ij

tr[El(1)El(1)
′eijEk(2)Ek(2)

′e′ij ] =
rl∑

a=1

rk∑
b=1

||wl
a||2 · ||zk

b ||2

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
rkrl
4 if μl, μk �= 0

rk(m−n+dK)
2 if μl = 0, μk �= 0

rldK

2 if μl �= 0, μk = 0

dK(m− n+ dK) if μl = μk = 0.

(7.4)

We now use the results (7.3) and (7.4) to calculate I and II in (7.2). Recall
that {μk}qk=1 = {±s1, . . . ,±sK−1, 0}, {rk}qk=1 = {d1, . . . , dK} and f∗ is an odd
function. It is then not hard to see that

q∑
l �=k,l,k=1

glkT (μl, μk) =
−1

2

∑
sk>0

dk
f(sk)

sk

and

1

2

q∑
l �=k,l,k=1

glk(G(μl, μk) +G(μk, μl))
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=
∑

μl �=0,μk �=0
l �=k

glk
rkrl
4

+
∑

μl=0,μk �=0

glk
rk(m− n+ 2dK)

2

=
∑
sk>0

f(sk)

sk

(
d2k
2

+ dk(m− n)

)
+

K∑
l �=k,l,k=1

dldk
f(sl)sl − f(sk)sk

s2l − s2k
.

Therefore,

I =
1

2

q∑
l �=k,l,k=1

glk(2T (μl, μk) +G(μl, μk) +G(μk, μl)) =

∑
sk>0

f(sk)

sk

(
dk(dk − 1)

2
+ dk(m− n)

)
+

K∑
l �=k,l,k=1

dldk
f(sl)sl − f(sk)sk

s2l − s2k
. (7.5)

Regarding II, it is straightforward to do the computation and obtain,

II =

q∑
k=1

(f∗(μk))
′(T (μk, μk) +G(μk, μk))

=
∑
sk>0

dk
2
f ′(sk) + dK(m− n+ dK)f ′(0) +

∑
sk>0

d2k
2
f ′(sk). (7.6)

Combining (7.2), (7.5) and (7.6) gives the divergence formula.
When f is only directionally differentiable at some singular value points, the

first part I remains the same since it does not involve the directional deriva-
tives. For the second part II, the derivative should be replaced by the directional
derivative if the former does not exist. According to the conditions in the theo-
rem, it is sufficient to consider non-zero singular values with multiplicity one at
which f is only directionally differentiable. Suppose sk > 0 is one such point.
Then f∗ will be only directionally differentiable at ±sk (note that f∗ is always
differentiable at 0). Recall that we have used {μk}qk=1 to denote all the distinct
eigenvalues of Y ∗ : ±s1, . . . ,±sK−1, 0. If μa = sk, μb = −sk, then the terms
involving μa, μb in II can be simplified as follows:

2
∑
ij

[E′
a(2)e

′
ijEa(1)]

2(f∗)′(sk; sign(E
′
a(2)e

′
ijEa(1))) · sign(E′

a(2)e
′
ijEa(1)) +

2
∑
ij

[E′
b(2)e

′
ijEb(1)]

2(f∗)′(−sk; sign(E
′
b(2)e

′
ijEb(1))) · sign(E′

b(2)e
′
ijEb(1))

=
∑
ij

u2
ikv

2
jkf

′(sk; sign(uikvjk)) · sign(uikvjk),

where we have used the facts that

(f∗)′(sk;h) = −(f∗)′(−sk;−h), (f∗)′(sk;h) = f ′(sk;h), ∀h ∈ R,

Ea(1) = Eb(1) =
uk√
2
, and Ea(2) = −Eb(2) =

vk√
2
,
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and the notation f ′(x;h) for the directional derivative of a function f(·) at x
along the direction h as defined in (1.5). This completes the proof.

7.2. A useful lemma

We present a lemma below that will be used multiple times in subsequent proofs.

Lemma 3. Under the canonical additive Gaussian model Y = M∗ + E, let
the singular values of Y ∈ R

m×n be σ1 ≥ . . . ≥ σn ≥ 0, then we have

(1) E

(
σi

σi−σj

)
< ∞, (2) E

(
1

σi−σj

)
< ∞, and (3) E

(
σ2
i

σ2
i −σ2

j

)
< ∞, where

1 ≤ i < j ≤ n.

Proof. Firstly, we show the results hold when M∗ = 0. Let λi = σ2
i for 1 ≤

i ≤ n, then λ1 ≥ . . . ≥ λn are the eigenvalues of Y ′Y . The joint distribu-
tion f(λ1, . . . , λn) of the eigenvalues of a real-valued central Wishart matrix, is
known to be [24]:

f(λ1, . . . , λn) ∝
n∏

a=1

exp

(
−λa

2τ

)
·

n∏
a=1

λ(m−n−1)/2
a ·

∏
a<b

(λa − λb).

Hence, we have

E

(
σi

σi − σj

)
∝

∫
· · ·

∫
λ1≥...≥λn

√
λi√

λi −
√

λj

·
n∏

a=1

exp

(
−λa

2τ

)
·

n∏
a=1

λ(m−n−1)/2
a ·

∏
a<b

(λa − λb)dλ

≤
∫

· · ·
∫

λ1≥...≥λn

2λi

n∏
a=1

exp

(
−λa

2τ

)
·

n∏
a=1

λ(m−n−1)/2
a ·

∏
a<b

(a,b) �=(i,j)

(λa − λb)dλ

≤ 2

∫
· · ·

∫
λ1≥...≥λn

n∏
a=1

exp

(
−λa

2τ

)
·

n∏
a=1

λ(m−n−1)/2
a ·

n∏
a=1

λn−a
a dλ

≤ 2

n∏
a=1

∫ +∞

0

exp

(
−λa

2τ

)
· λ(m−n−1)/2+n−a

a dλa < ∞,

where the second inequality is simply due to λa − λb ≤ λa for a < b. Similarly,
we can show E(1/(σi − σj)) < ∞. Moreover,

E(σ2
i /(σ

2
i − σ2

j )) ≤ E(σi/(σi − σj)) < ∞.

When M∗ �= 0, we express σi/(σi − σj) as a function of M∗ + E , denoted by
h(M∗ + E). Then,

E

(
σi

σi − σj

)
=

1

(2π)mn/2τmn

∫
h(M∗ + E)exp

(
− 1

2τ2
‖E‖2F

)
dE
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=
1

(2π)mn/2τmn

∫
h(E)exp

(
− 1

2τ2
‖E −M∗‖2F

)
dE

≤ 1

(2π)mn/2τmn
· exp(‖M∗‖2F /(2τ2))

∫
h(E)exp

(
− 1

4τ2
‖E‖2F

)
dE

(a)
< ∞,

where (a) is implied by the boundedness result for M∗ = 0. Similar arguments
work for the other two expectations.

7.3. Proof of Corollary 2

According to Proposition 3 in Mazumder et al. [23], Sθ(Y ) is Lipschitz contin-
uous, which is sufficient for the regularity conditions to hold (see Lemma 3.2 in
Candès et al. [4]). Since sθ(·) is Lipschitz, it is differentiable almost everywhere.
Under the model (3.1), the singular values of Y have a multiplicity of one and are
non-zero with probability one. It means that we only need to compute ∇·Sθ(Y )
for a full rank matrix Y with singular values σ1 > . . . > σn > 0 at which sθ(·)
is differentiable. A direct application of Corollary 1 gives the formula in (3.4).

7.4. Proof of Corollary 3

Denote the spectral regularized estimator in expression (3.2) with Pθ(·) being
the MC+ penalty by S√

2θ,γ(Y ). Specifically, S√
2θ,γ(Y ) =

∑n
i=1 g

√
2θ,γ(σi)uiv

′
i,

where g√2θ,γ(·) is a piecewise linear function defined on [0,+∞):

g√2θ,γ(σ) =

⎧⎪⎨⎪⎩
0 if σ ≤

√
2θ

γ(σ−
√
2θ)

γ−1 if
√
2θ < σ ≤

√
2θγ

σ if σ >
√
2θγ.

Then it is easy to see that S√
2θ,γ(Y ) → Sθ(Y ), as γ ↓ 1. Hence we have,

|df(Sθ(Y ))− df(S√
2θ,γ(Y ))| =

1

τ2

∣∣∣∑
ij

E((Sθ(Y ))ij − (S√
2θ,γ(Y ))ij)εij

∣∣∣
≤ 1

τ2
E‖Sθ(Y )− S√

2θ,γ(Y )‖F · ‖E‖F

≤ 1

τ2
E
1/2‖Sθ(Y )− S√

2θ,γ(Y )‖2F · E1/2‖E‖2F
→ 0 as γ ↓ 1,

where the last line holds by using Dominated Convergence Theorem (DCT). We
can apply DCT here because

‖Sθ(Y )− S√
2θ,γ(Y )‖2F ≤ (‖Sθ(Y )‖F + ‖S√

2θ,γ(Y )‖F )2

≤2(‖Sθ(Y )‖2F + ‖S√
2θ,γ(Y )‖2F ) ≤ 4‖Sθ(Y )‖2F ≤ 4‖Y ‖2F .
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Therefore, we can calculate df(Sθ(Y )) via the following limiting argument,

df(Sθ(Y )) = lim
γ↓1

df(S√
2θ,γ(Y )).

When γ > 1, the operator S√
2θ,γ(Y ) satisfies the conditions in Corollary 2.

Hence:

df(S√
2θ,γ(Y )) =

n∑
i=1

(
γ

γ − 1
P (

√
2θ < σi ≤

√
2θγ) + P (σi >

√
2θγ)

)

+E

[
n∑

i �=j
i,j=1

σig√2θ,γ(σi)− σjg√2θ,γ(σj)

σ2
i − σ2

j

]

Now we calculate the limit of each term in the above equation. Let Fσi(·), fσi(·)
be the cdf, pdf of σi respectively, and fσi,σj (·, ·) the joint pdf of (σi, σj). It is

straightforward to see limγ↓1 P (σi >
√
2θγ) = P (σi >

√
2θ), and

lim
γ↓1

γ

γ − 1
P (

√
2θ < σi ≤

√
2θγ) = lim

γ↓1

√
2θγ · lim

γ↓1

Fσi(
√
2θγ)− Fσi(

√
2θ)√

2θ(γ − 1)

=
√
2θfσi(

√
2θ).

Finally, we decompose E

(
σig√2θ,γ(σi)−σjg√2θ,γ(σj)

σ2
i−σ2

j

)
into 8 terms:

I1 = E1(σi ≤
√
2θ,

√
2θ < σj ≤

√
2θγ) · γσj(σj −

√
2θ)

(γ − 1)(σ2
j − σ2

i )

I2 = E1(σj ≤
√
2θ,

√
2θ < σi ≤

√
2θγ) · γσi(σi −

√
2θ)

(γ − 1)(σ2
i − σ2

j )

I3 = E1(σi ≤
√
2θ, σj >

√
2θγ) ·

σ2
j

σ2
j − σ2

i

I4 = E1(σj ≤
√
2θ, σi >

√
2θγ) · σ2

i

σ2
i − σ2

j

I5 = E1(
√
2θ < σi ≤

√
2θγ,

√
2θ < σj ≤

√
2θγ) · γ

γ − 1
·
(
1−

√
2θ

σi + σj

)
I6 = E1(

√
2θ < σi ≤

√
2θγ, σj >

√
2θγ) ·

(
1 +

1

γ − 1
· σ

2
i −

√
2θγσi

σ2
i − σ2

j

)
I7 = E1(

√
2θ < σj ≤

√
2θγ, σi >

√
2θγ) ·

(
1 +

1

γ − 1
·
σ2
j −

√
2θγσj

σ2
j − σ2

i

)
I8 = E1(σi >

√
2θγ, σj >

√
2θγ).

We analyze each of the above terms individually. First, since E(1/|σj−σi|) < ∞
by Lemma 3, it holds that

I1 ≤ E1(σi ≤
√
2θ,

√
2θ < σj ≤

√
2θγ) · γσj(

√
2θγ −

√
2θ)

(γ − 1)(σj + σi)(σj − σi)
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≤ E1(σi ≤
√
2θ,

√
2θ < σj ≤

√
2θγ) · γ

√
2θ

σj − σi

≤ E1(
√
2θ < σj ≤

√
2θγ) · γ

√
2θ

|σj − σi|
→ 0, as γ ↓ 1.

Similarly, we have limγ↓1 I2 = 0. Because E(σ2
j /|σ2

j − σ2
i |) < ∞ by Lemma 3,

we have limγ↓1 I3 = E1(σi <
√
2θ, σj >

√
2θ) · σ2

j /(σ
2
j − σ2

i ), and limγ↓1 I4 =

E1(σj <
√
2θ, σi >

√
2θ) · σ2

i /(σ
2
i − σ2

j ). Moreover,

I5 ≤ γ

γ − 1
P (

√
2θ < σi ≤

√
2θγ,

√
2θ < σj ≤

√
2θγ) → 0,

since P (
√
2θ < σi ≤

√
2θγ,

√
2θ < σj ≤

√
2θγ) ∼ (γ − 1)2. Also,

I6 ≤ E1(
√
2θ < σi ≤

√
2θγ, σj >

√
2θγ) ·

(
1 +

1

γ − 1
· σi(

√
2θγ −

√
2θ)

(σj − σi)(σj + σi)

)
≤ E1(

√
2θ < σi ≤

√
2θγ, σj >

√
2θγ) ·

(
1 +

√
2θ

σj − σi

)
≤ P (

√
2θ < σi ≤

√
2θγ) + E1(

√
2θ < σi ≤

√
2θγ) ·

√
2θ

|σj − σi|
→ 0.

Similarly, limγ↓0 I7 = 0. Clearly, limγ↓1 I8 = P (σi >
√
2θ, σj >

√
2θ). Collecting

all the terms we analyzed so far leads to the df expression of rank regularized
estimator.

7.5. Proof of Corollary 4

According to Lemmas 5–7 in [41], we can decompose the function ηq(σ; θ) over
[0,∞) as follows:

ηq(σ; θ) = ζq(σ; θ) + ξq(σ; θ),

where ζq(σ; θ) = [2(1− q)θ]1/(2−q) ·1(σ > cqθ
1/(2−q)), and ξq(σ; θ) is a Lipschitz

continuous function. Let us define

S̃θ(Y ) =

n∑
i=1

ζq(σi; θ)uiv
′
i and S̄θ(Y ) =

n∑
i=1

ξq(σi; θ)uiv
′
i.

By the definition of df in (1.2), we have

df(Sθ(Y )) = df(S̃θ(Y )) + df(S̄θ(Y )).

Due to the Lipschitz continuity of ξq(σ; θ), we can use the same arguments as
presented in the proof of Lemma 4 to conclude that S̄θ(Y ) is Lipschitz contin-
uous. Hence the formula (1.4) is applicable to S̄θ(Y ). Its df can be computed
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by the divergence formula in Corollary 1. Regarding the df of S̃θ(Y ), similar to
what we did in the proof of Corollary 3, we construct a sequence of approxima-
tions: S̃θ,h(Y ) =

∑n
i=1 gθ,h(σi)uiv

′
i, where gθ,h is a piecewise linear function:

gθ,h(σ) =

⎧⎪⎨⎪⎩
0 if 0 ≤ σ < cqθ

1/(2−q)

[2(1−q)θ]1/(2−q)

h (σ − cqθ
1/(2−q)) if cqθ

1/(2−q) ≤ σ ≤ cqθ
1/(2−q) + h

[2(1− q)θ]1/(2−q) if σ > cqθ
1/(2−q) + h.

Because S̃θ,h(Y ) is Lipschitz, we can compute df(S̃θ,h(Y )) with the divergence

formula in Corollary 1 and obtain df(S̃θ(Y )) by letting h ↓ 0. Since the calcu-
lations are very similar to those in the proof of Corollary 3, we do not repeat
here. Adding up the df formulas of S̃θ(Y ) and S̄θ(Y ) finishes the proof.

7.6. Proof of Corollary 5

We consider the non-trivial case when K < n. The case K = n can be directly
verified. Before we go to the the main proof, we present two lemmas that will
be used in the proof.

Lemma 4. For any two matrices Y1, Y2 ∈ R
m×n, denote

L � max

{
σK(Y1)

σK(Y1)− σK+1(Y1)
,

σK(Y2)

σK(Y2)− σK+1(Y2)

}
.

We then have

‖CK(Y1)− CK(Y2)‖F ≤ L · ‖Y1 − Y2‖F .

Proof. Let f1(σ) = σ1(σ ≥ σK(Y1)) and f2(σ) = σ1(σ ≥ σK(Y2)). Then

L2‖Y1 − Y2‖2F − ‖CK(Y1)− CK(Y2)‖2F
=

∑
i

[L2(σ2
i (Y1) + σ2

i (Y2))− f2
1 (σi(Y1))− f2

2 (σi(Y2))]

−2L2tr(Y ′
1Y2) + 2tr(C ′

K(Y1)CK(Y2))

=
∑
i

[L2(σ2
i (Y1) + σ2

i (Y2))− f2
1 (σi(Y1))− f2

2 (σi(Y2))]

−2tr[(LY1 − CK(Y1))
′(LY2 − CK(Y2))]

−2tr[(LY1 − CK(Y1))
′CK(Y2)]− 2tr[CK(Y1)

′(LY2 − CK(Y2))]

(a)

≥
∑
i

[L2(σ2
i (Y1) + σ2

i (Y2))− f2
1 (σi(Y1))− f2

2 (σi(Y2))]

−2
∑
i

[Lσi(Y1)− f1(σi(Y1))] · [Lσi(Y2)− f2(σi(Y2))]

−2
∑
i

[Lσi(Y1)− f1(σi(Y1))] · f2(σi(Y2))
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−2
∑
i

f1(σi(Y1)) · [Lσi(Y2)− f2(σi(Y2))]

≥
∑
i

[L2(σi(Y1)− σi(Y2))
2 − (f1(σi(Y1))− f2(σi(Y2)))

2]

≥ 0,

where, inequality (a) holds by (i) making use of Von Neumann’s trace inequality
[36]; and (ii) noting that the sequences {Lσi(Y1)−f1(σi(Y1))}ni=1 and {Lσi(Y2)−
f2(σi(Y2))}ni=1 are descending5 in i.

Lemma 5. Given any Y ∈ R
m×n, if σK(Y ) > σK+1(Y ), then CK(Y ) is direc-

tionally differentiable at Y and

EZ

(
lim

h→0+

([CK(hZ + Y )]ij − [CK(Y )]ij)Zij

h

)
=

∂[CK(Y )]ij
∂Yij

, (7.7)

where the entries of Z follow i.i.d N(0, 1). Moreover,

∑
ij

∂[CK(Y )]ij
∂Yij

= (m+ n−K)K + 2

K∑
i=1

n∑
K+1

σ2
j

σ2
i − σ2

j

. (7.8)

Proof. Construct a function v : R+ → R
+ as

v(x) =

⎧⎪⎨⎪⎩
0 if x ≤ σK+1(Y ) + Δ,
(σK(Y )−Δ)(x−σK+1(Y )−Δ)

σK(Y )−σK+1(Y )−2Δ if σK+1(Y ) + Δ < x ≤ σK(Y )−Δ,

x otherwise,

where Δ is a positive constant smaller than (σK(Y )−σK+1(Y ))/2. It is straight-
forward to confirm that v(0) = 0 and v(·) is differentiable at σi(Y ), 1 ≤ i ≤ n.
Hence applying Theorem 1 gives

∑
ij

∂[S(Y ;w)]ij
∂Yij

= (m+ n−K)K + 2

K∑
i=1

n∑
K+1

σ2
j

σ2
i − σ2

j

.

Note that since the singular values σi(Y ) are continuous, we know CK(Ỹ ) =
S(Ỹ ;w) for Ỹ in a small neighborhood of Y . This fact combined with the last
equality proves (7.8). Regarding (7.7), since v(·) is differentiable at σi(Y ), 1 ≤
i ≤ n, we can combine Lemmas 1 and 2 (as we did in the proof of Theorem 1) to
conclude that the directional derivative limh→0+([CK(hZ+Y )]ij−[CK(Y )]ij)/h
is linear in Z. Denoting the directional derivative by D(Y ) ∈ R

m×n, we have:

EZ lim
h→0+

([CK(hZ + Y )]ij − [CK(Y )]ij)Zij

h
= EZ [tr(Z

′D(Y ))Zij ] = [D(Y )]ij

5This follows from the choice of L.
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By the definition of D(Y ), we know that

[D(Y )]ij = lim
h→0+

([CK(heij + Y )]ij − [CK(Y )]ij)

h
=

∂[CK(Y )]ij
∂Yij

,

where, recall that eij is a matrix with its (i, j)th entry being one and the rest
being zero. This completes the proof of (7.7).

Consider a smoothed version of CK(Y ), defined below

gh(Y ) � EZ [CK(Y + hZ)],

where the elements of Z are i.i.d fromN(0, 1), independent of Y ; the expectation
EZ is taken only with respect to Z; and h is a positive constant. We will show
that df (gh(Y )) is a good approximation to df (CK(Y )) i.e.,

lim
h→0+

df(gh(Y )) = df(CK(Y )). (7.9)

To prove (7.9), by using the original definition of df, it suffices to show

lim
h→0+

E([gh(Y )]ijYij) = E([CK(Y )]ijYij), lim
h→0+

E([gh(Y )]ij) = E([CK(Y )]ij)

for all 1 ≤ i ≤ m, 1 ≤ j ≤ n.
We prove the first equality above; the second one follows using a similar

argument. First note that

E([gh(Y )]ijYij)− E([CK(Y )]ijYij) = E(([CK(Y + hZ)]ij − [CK(Y )]ij)Yij)

Since ‖CK(Y )‖F ≤ ‖Y ‖F for any Y ∈ R
m×n, we have for small h

|([CK(Y + hZ)]ij − [CK(Y )]ij)Yij | ≤ (‖Z‖F + 2‖Y ‖F )‖Y ‖F .

Hence we can use the Dominated Convergence Theorem (DCT) to conclude

lim
h→0+

E(([CK(Y + hZ)]ij − [CK(Y )]ij)Yij)

= E lim
h→0+

(([CK(Y + hZ)]ij − [CK(Y )]ij)Yij)
(b)
= 0.

To derive (b) we have used the fact that CK(Y ) is directionally differentiable
from Lemma 5. Based on (7.9), we can compute df(CK(Y )) by first calculat-
ing df(gh(Y )) and then use a limiting argument with h ↓ 0. Since gh(Y ) is
differentiable, it is straightforward to get

df(gh(Y )) =
∑
ij

E

(∂[gh(Y )]ij
∂Yij

)
=
∑
ij

E

( [CK(hZ + Y )]ijZij

h

)
(c)
=

∑
ij

E

( ([CK(hZ + Y )]ij − [CK(Y )]ij)Zij

h

)
, (7.10)
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where (c) holds because Z is independent of Y and has zero mean. We seek to
compute the following limits:

lim
h→0+

E

( ([CK(hZ + Y )]ij − [CK(Y )]ij)Zij

h

)
= lim

h→0+
EZ J(Z, h) (7.11)

where,

J(Z, h) �
∫

([CK(hZ + Y )]ij − [CK(Y )]ij)Zij

h

1

(
√
2πτ)mn

exp
(‖Y −M∗‖2F

−2τ2

)
dY.

According to Lemma 4, we can obtain

|J(Z, h)| ≤ ‖Z‖F |Zij | · EY
σK(Y )

σK(Y )− σK+1(Y )
+

‖Z‖F |Zij | · EY
σK(hZ + Y )

σK(hZ + Y )− σK+1(hZ + Y )
. (7.12)

Moreover, a simple change of variable gives us

EY
σK(hZ + Y )

σK(hZ + Y )− σK+1(hZ + Y )
(7.13)

=

∫
σK(Y )

σK(Y )− σK+1(Y )

1

(
√
2πτ)mn

exp
(‖Y − hZ −M∗‖2F

−2τ2

)
dY

≤ 1

(
√
2πτ)mn

exp
(‖hZ +M∗‖2F

2τ2

)∫ σK(Y )

σK(Y )− σK+1(Y )
exp

(‖Y ‖2F
−4τ2

)
dY

≤ 1

(
√
2πτ)mn

exp
(‖M∗‖2F

τ2

)
· exp

(h2‖Z‖2F
τ2

)
·∫

σK(Y )

σK(Y )− σK+1(Y )
exp

(‖Y ‖2F
−4τ2

)
dY

Combining Lemma 3 part (1) with (7.12) and (7.13), we can conclude that for
sufficiently small h, there exists an upper bound on J(Z, h) that is independent
of h and is integrable. We thus can employ DCT to get

lim
h→0+

EZ [J(Z, h)] = EZ lim
h→0+

[J(Z, h)]. (7.14)

We next focus on calculating limh→0+[J(Z, h)]. We decompose J(Z, h) into two
terms:

J(Z, h) = EY

[
([CK(hZ + Y )]ij − [CK(Y )]ij)Zij

h
· (7.15)

1(σK(Y ) ≥ h2/3, σK(Y )− σK+1(Y ) ≥ h2/3)

]
+

EY

[
([CK(hZ + Y )]ij − [CK(Y )]ij)Zij

h
·
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1(σK(Y ) ≤ h2/3 or σK(Y )− σK+1(Y ) ≤ h2/3)

]
.

Denoting the two terms by H1(Y, Z, h) and H2(Y, Z, h) respectively, we ana-
lyze them separately. Regarding H1(Y, Z, h), first note that according to Weyl’s
inequality [30], we know

|σi(hZ + Y )− σi(Y )| ≤ h‖Z‖F , 1 ≤ i ≤ n

Therefore, on the event {σK(Y ) ≥ h2/3, σK(Y ) − σK+1(Y ) ≥ h2/3}, when h is
sufficiently small, we have:

σK(hZ + Y )

σK(hZ + Y )− σK+1(hZ + Y )
≤ 4σK(Y )

σK(Y )− σK+1(Y )
.

We can then employ Lemma 4 to obtain,

|H1(Y, Z, h)| ≤ ‖Z‖F |Zij |
4σK(Y )

σK(Y )− σK+1(Y )
.

This enables us to apply DCT to derive

EZ lim
h→0+

EY H1(Y, Z, h) = E lim
h→0+

H1(Y, Z, h)
(d)
= EY

∂[CK(Y )]ij
∂Yij

, (7.16)

where (d) is due to Lemma 5. For the term H2(Y, Z, h), we have

|EY H2(Y, Z, h)| ≤
EY [|Zij | · |(‖Z‖F + 2‖Y ‖F /h) · 1(σK(Y ) ≤ h2/3 or σK(Y )− σK+1(Y ) ≤ h2/3)]

(e)

≤|Zij | · ‖Z‖F · P (σK(Y )− σK+1(Y ) ≤ h2/3)+

2|Zij | · (E‖Y ‖7F )1/7 ·
(P (σK(Y )− σK+1(Y ) ≤ h2/3)

h7/6

)6/7

. (7.17)

We have used Hölder’s inequality to derive (e). Clearly the first term of the
upper bound above vanishes as h → 0+. We now show the second term goes to
zero as well. For simplicity, we only show it forM∗ = 0. The general caseM∗ �= 0
can be proved by the same arguments as presented in the proof of Lemma 3. We
hence skip it here. Similar to the proof in Lemma 3, let λi = σ2

i (Y ), 1 ≤ i ≤ n
and denote the joint distribution of (λ1, . . . , λn) by f(λ1, . . . , λn). We can then
rewrite

P (σK(Y )− σK+1(Y ) ≤ h2/3)

=

∫
· · ·

∫
λ1≥...≥λn≥0

f(λ1, . . . , λn) · 1(
√

λK −
√
λK+1 ≤ h2/3)dλ ∝

∫
· · ·

∫
λ1≥...≥λn≥0

1(
√

λK −
√
λK+1 ≤ h2/3)

n∏
a=1

e
λa
−2τ ·

n∏
a=1

λ(m−n−1)/2
a ·

∏
a<b

(λa − λb)dλ
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(f)

≤
∫

· · ·
∫

λ1≥...≥λn≥0

1(
√

λK −
√

λK+1 ≤ h2/3)

n∏
a=1

e
λa
−2τ ·

n∏
a �=K

λ(m+n−1)/2−a
a ·

λ
(m+n−3)/2−K
K (λK − λK+1)dλ

(g)

≤
∫∫

0≤λK+1≤λK

1(
√

λK −
√

λK+1 ≤ h2/3)e
λK+λK+1

−2τ (λKλK+1)
(m+n−3)/2−K ·

(λK − λK+1)dλKdλK+1

·
[ n∏
a �=K,K+1

∫ ∞

0

e
λa
−2τ λ(m−n−1)/2+n−a

a dλa

]
, (7.18)

where, inequality (f) is obtained by using λa − λb ≤ λa, for a < b; and inequal-
ity (g) holds simply because we enlarge the set over which the integration is
performed. We easily see that the second term on the right hand side of the last
inequality is finite and independent of h. We denote the first term by Q(h). For
this term, by using λK − λK+1 ≤ 2

√
λK(

√
λK −

√
λK+1), we have

Q(h) ≤ 2h2/3

∫∫
0≤λK+1≤λK

1(
√

λK −
√

λK+1 ≤ h2/3)e
λK+λK+1

−2τ λ
(m+n)/2−K−1
K ·

λ
(m+n−3)/2−K
K+1 dλKdλK+1

= 2h2/3

∫ ∞

0

[ ∫ (
√

λK+1+h2/3)2

λK+1

e
λK
−2τ λ

(m−n)/2+n−K−1
K dλK

]
·

e
λK+1
−2τ λ

(m−n−1)/2+n−K−1
K+1 dλK+1 (7.19)

(h)
= O(h4/3), (7.20)

where (h) can be derived by using mean value theorem for the integral appearing
in (7.19). Combining (7.17), (7.18) and (7.20) together gives us

lim
h→0+

EY H2(Y, Z, h) = 0. (7.21)

Collecting the results from (7.9), (7.10), (7.11), (7.14), (7.15), (7.16) and (7.21),
we can finally conclude

df(CK(Y )) = E

∑
ij

∂[CK(Y )]ij
∂Yij

.

A direct application of Equation (7.8) from Lemma 5 completes the proof.

7.7. Proof of Corollary 6

Denote the compact SVD of X by X = UΣV ′. We construct an ancillary matrix
Q = U ′Y , which is the response matrix of the following additive model,

Q = M̃ + Ẽ , (7.22)
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where M̃ = U ′XM∗, Ẽ = U ′E . Due to the orthogonality of the columns of U ,

the entries of Ẽ , i.e., ε̃ij iid∼ N(0, τ2). We now relate df(MK(Y )) under the model
(4.1) to df(CK(Q)) under the model (7.22). A key observation is

XMK(Y ) = CK(UU ′Y ) = UCK(Q).

It follows that

E

⎛⎝ m∑
i=1

n∑
j=1

(XMK(Y ))ijεij

⎞⎠ = E

⎛⎝ m∑
i=1

n∑
j=1

r∑
k=1

uik(CK(Q))kjεij

⎞⎠ ,

E

(
r∑

a=1

n∑
b=1

(CK(Q))abε̃ab

)
= E

(
r∑

a=1

n∑
b=1

m∑
l=1

(CK(Q))abulaεlb

)
,

where uik is the (i, k)th entry of U and (CK(Q))ab is the (a, b)th element of
CK(Q). Arranging the notation a = k, b = j, l = i, we thus obtain df(MK(Y )) =
df(CK(Q)). Given that Q and Ŷ share the same singular values, a direct use of
Corollary 5 for CK(Q) gives us the df formula for MK(Y ).

7.8. Proof of Corollaries 7 and 8

Observe that
XRMθ(Y ) = Sθ(UU ′Y ) = USθ(U

′Y ).

Thus we can use the same arguments as in the proof of Corollary 6 to obtain

df(RMθ(Y )) = df(Sθ(U
′Y )).

Then we use Corollaries 2 and 4 to complete the proof of Corollaries 7 and 8,
respectively.

7.9. Stein’s unbiased risk estimate

Proposition. [29, 9, 17] Suppose y ∼ N(μ, τ2In), h : Rn → R
n is weakly

differentiable, and E|yihi(y)|+ E|∂hi(y)
∂yi

| < ∞ for i = 1, . . . , n. Then

df(h(y)) = E

( n∑
i=1

∂hi(y)/∂yi

)
,

E‖h(y)− μ‖22 = E

[
− τ2n+ ‖h(y)− y‖22 + 2τ2 ·

n∑
i=1

∂hi(y)/∂yi

]
.

A function g : Rn → R is said to be weakly differentiable if there exist functions
fi : R

n → R, i = 1, . . . , n, such that for all compactly supported and infinitely
differentiable functions ϕ,∫

ϕ(z)h(z)dz = −
∫

∂ϕ(z)

∂zi
g(z)dz.



Degrees of freedom in low rank matrix estimation 1383

Acknowledgements

This work started as a part of a class project when both the authors were at
Columbia University. Rahul Mazumder’s research was partially supported by
ONR-N000141512342, ONR-N000141812298 (YIP) and NSF-IIS1718258.

References

[1] Anderson, T. W. (1951). Estimating linear restrictions on regression co-
efficients for multivariate normal distributions. The Annals of Mathematical
Statistics 327–351. MR0042664

[2] Bunea, F., She, Y. and Wegkamp, M. H. (2011). Optimal selection
of reduced rank estimators of high-dimensional matrices. The Annals of
Statistics 1282–1309. MR2816355

[3] Candès, E. J. and Recht, B. (2009). Exact matrix completion via con-
vex optimization. Foundations of Computational mathematics, 9 717–772.
MR2565240

[4] Candès, E. J., Sing-Long, C. A. and Trzasko, J. D. (2013). Unbiased
risk estimates for singular value thresholding and spectral estimators. IEEE
Transactions on Signal Processing, 61 4643–4657. MR3105401

[5] Donoho, D. L. and Johnstone, I. M. (1995). Adapting to unknown
smoothness via wavelet shrinkage. Journal of the American Statistical As-
sociation, 90 1200–1224. MR1379464

[6] Drusvyatskiy, D. andKempton, C. (2015). Variational analysis of spec-
tral functions simplified. arXiv preprint arXiv:1506.05170.

[7] Eckart, C. and Young, G. (1936). The approximation of one matrix by
another of lower rank. Psychometrika, 1 211–218.

[8] Edelman, A. (2005). Matrix jacobians with wedge products.
[9] Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004). Least

angle regression. The Annals of statistics, 32 407–499. MR2060166
[10] Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized

likelihood and its oracle properties. Journal of the American statistical As-
sociation, 96 1348–1360. MR1946581

[11] Frank, L. E. and Friedman, J. H. (1993). A statistical view of some
chemometrics regression tools. Technometrics, 35 109–135.

[12] Friedman, J., Hastie, T. and Tibshirani, R. (2001). The elements
of statistical learning, vol. 1. Springer series in statistics Springer, Berlin.
MR2722294

[13] Gao, H.-Y. and Bruce, A. G. (1997). Waveshrink with firm shrinkage.
Statistica Sinica 855–874. MR1488646

[14] Golub, G. H. and Van Loan, C. F. (2012). Matrix computations, vol. 3.
JHU Press. MR3024913

[15] Hansen, N. R. (2018). On stein’s unbiased risk estimate for reduced rank
estimators. Statistics & Probability Letters, 135 76–82. MR3758265

[16] Izenman, A. J. (1975). Reduced-rank regression for the multivariate linear
model. Journal of multivariate analysis, 5 248–264. MR0373179

http://www.ams.org/mathscinet-getitem?mr=0042664
http://www.ams.org/mathscinet-getitem?mr=2816355
http://www.ams.org/mathscinet-getitem?mr=2565240
http://www.ams.org/mathscinet-getitem?mr=3105401
http://www.ams.org/mathscinet-getitem?mr=1379464
https://arxiv.org/abs/arXiv:1506.05170
http://www.ams.org/mathscinet-getitem?mr=2060166
http://www.ams.org/mathscinet-getitem?mr=1946581
http://www.ams.org/mathscinet-getitem?mr=2722294
http://www.ams.org/mathscinet-getitem?mr=1488646
http://www.ams.org/mathscinet-getitem?mr=3024913
http://www.ams.org/mathscinet-getitem?mr=3758265
http://www.ams.org/mathscinet-getitem?mr=0373179


1384 R. Mazumder and H. Weng

[17] Johnstone, I. M. (2017). Gaussian estimation: Sequence and wavelet
models. Manuscript, August.

[18] Lewis, A. S. and Sendov, H. S. (2005). Nonsmooth analysis of singular
values. part i: Theory. Set-Valued Analysis, 13 213–241. MR2162512

[19] Lewis, A. S. and Sendov, H. S. (2005). Nonsmooth analysis of singular
values. part ii: Applications. Set-Valued Analysis, 13 243–264. MR2162513

[20] Mallows, C. L. (1973). Some comments on c p. Technometrics, 15 661–
675.

[21] Mazumder, R., Friedman, J. H. and Hastie, T. (2011). Sparsenet: Co-
ordinate descent with nonconvex penalties. Journal of the American Sta-
tistical Association, 106. MR2894769

[22] Mazumder, R., Hastie, T. and Tibshirani, R. (2010). Spectral regu-
larization algorithms for learning large incomplete matrices. The Journal
of Machine Learning Research, 11 2287–2322. MR2719857

[23] Mazumder, R., Saldana, D. F. and Weng, H. (2018). Matrix comple-
tion with nonconvex regularization: Spectral operators and scalable algo-
rithms. arXiv preprint arXiv:1801.08227.

[24] Muirhead, R. J. (2009). Aspects of multivariate statistical theory, vol.
197. John Wiley & Sons. MR0652932

[25] Mukherjee, A., Chen, K., Wang, N. and Zhu, J. (2015). On the
degrees of freedom of reduced-rank estimators in multivariate regression.
Biometrika, 102 457–477. MR3371016

[26] Pang, J.-S., Sun, D. and Sun, J. (2003). Semismooth homeomorphisms
and strong stability of semidefinite and lorentz complementarity problems.
Mathematics of Operations Research, 28 39–63. MR1961266

[27] Papadopoulo, T. and Lourakis, M. I. (2000). Estimating the jacobian
of the singular value decomposition: Theory and applications. In Computer
Vision-ECCV 2000. Springer, 554–570.

[28] Shapiro, A. (2002). On differentiability of symmetric matrix
valued functions. Georgia Institute of Technology, available at
http: // www. optimization-online. org/ DB_ FILE/ 2002/ 07/ 499. pdf .

[29] Stein, C. M. (1981). Estimation of the mean of a multivariate normal
distribution. The Annals of Statistics 1135–1151. MR0630098

[30] Stewart, G. W. (1998). Perturbation theory for the singular value de-
composition. Technical Report.

[31] Sun, D. and Sun, J. (2002). Semismooth matrix-valued functions. Math-
ematics of Operations Research, 27 150–169. MR1886224

[32] Tibshirani, R. (1996). Regression shrinkage and selection via the lasso.
Journal of the Royal Statistical Society. Series B (Methodological) 267–288.
MR1379242

[33] Tibshirani, R. J. (2015). Degrees of freedom and model search. Statistica
Sinica 1265–1296. MR3410308

[34] Tibshirani, R. J. and Taylor, J. (2012). Degrees of freedom in lasso
problems. The Annals of Statistics, 40 1198–1232. MR2985948

[35] Velu, R. and Reinsel, G. C. (2013). Multivariate reduced-rank regres-
sion: theory and applications, vol. 136. Springer Science & Business Media.

http://www.ams.org/mathscinet-getitem?mr=2162512
http://www.ams.org/mathscinet-getitem?mr=2162513
http://www.ams.org/mathscinet-getitem?mr=2894769
http://www.ams.org/mathscinet-getitem?mr=2719857
https://arxiv.org/abs/arXiv:1801.08227
http://www.ams.org/mathscinet-getitem?mr=0652932
http://www.ams.org/mathscinet-getitem?mr=3371016
http://www.ams.org/mathscinet-getitem?mr=1961266
http://www.optimization-online.org/DB_FILE/2002/07/499.pdf
http://www.ams.org/mathscinet-getitem?mr=0630098
http://www.ams.org/mathscinet-getitem?mr=1886224
http://www.ams.org/mathscinet-getitem?mr=1379242
http://www.ams.org/mathscinet-getitem?mr=3410308
http://www.ams.org/mathscinet-getitem?mr=2985948


Degrees of freedom in low rank matrix estimation 1385

MR1719704
[36] Von Neumann, J. (1937). Some matrix-inequalities and metrization of

matric-space. Tomsk. Univ. Rev., 1 286–300.
[37] Ye, J. (1998). On measuring and correcting the effects of data mining

and model selection. Journal of the American Statistical Association, 93
120–131. MR1614596

[38] Yuan, M. (2011). Degrees of freedom in low rank ma-
trix estimation. Georgia Institute of Technology, available at
http: // pages. stat. wisc. edu/ ~ myuan/ papers/ matcp. pdf .

[39] Yuan, M., Ekici, A., Lu, Z. and Monteiro, R. (2007). Dimension re-
duction and coefficient estimation in multivariate linear regression. Journal
of the Royal Statistical Society: Series B (Statistical Methodology), 69 329–
346. MR2323756

[40] Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax
concave penalty. The Annals of Statistics 894–942. MR2604701

[41] Zheng, L., Maleki, A., Weng, H., Wang, X. and Long, T. (2017).
Does �p-minimization outperform �1-minimization? IEEE Transactions on
Information Theory, 63 6896–6935. MR3724407

[42] Zou, H., Hastie, T. and Tibshirani, R. (2007). On the degrees of free-
dom of the lasso. The Annals of Statistics, 35 2173–2192. MR2363967

http://www.ams.org/mathscinet-getitem?mr=1719704
http://www.ams.org/mathscinet-getitem?mr=1614596
http://pages.stat.wisc.edu/~myuan/papers/matcp.pdf
http://www.ams.org/mathscinet-getitem?mr=2323756
http://www.ams.org/mathscinet-getitem?mr=2604701
http://www.ams.org/mathscinet-getitem?mr=3724407
http://www.ams.org/mathscinet-getitem?mr=2363967

	Introduction
	Notations

	Computing the divergence of matrix valued spectral functions
	Degrees of freedom for additive Gaussian models 
	Estimators obtained via spectral regularization
	Reduced rank estimators
	Verifying the regularity conditions
	Estimating df via smoothing with convolution operators


	Degrees of freedom in multivariate linear regression
	Reduced rank regression estimators
	Spectral regularized regression estimators

	Simulations
	Additive Gaussian model
	Multivariate linear regression

	Conclusion
	Appendix
	Proof of Corollary 1
	A useful lemma
	Proof of Corollary 2
	Proof of Corollary 3
	Proof of Corollary 4
	Proof of Corollary 5
	Proof of Corollary 6
	Proof of Corollaries 7 and 8
	Stein's unbiased risk estimate

	Acknowledgements
	References

