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Abstract

We consider a stochastic Volterra integral equation with regular path-dependent
coefficients and a Brownian motion as integrator in a multidimensional setting. Under
an imposed absolute continuity condition, the unique solution is a semimartingale that
admits almost surely Hölder continuous paths. Based on functional Itô calculus, we
prove that the support of its law in Hölder norms can be described by a flow of mild
solutions to ordinary integro-differential equations that are constructed by means of
the vertical derivative of the diffusion coefficient.
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1 Support representations via flows

The support of the law of a continuous process consists of all continuous paths around
any neighborhood the process may stay with positive probability. Determining this class
of paths for a diffusion process, viewed as solution to a stochastic differential equation
(SDE), establishes a relation between the coefficients of the equation and the law of its
solution.

In the pioneering work of Stroock and Varadhan [14], the support of the law of a
diffusion process is characterized by an associated flow of classical solutions to ordinary
differential equations. While Aida [1] generalizes the time-homogeneous case to a Hilbert
space, allowing for an infinite dimension, Gyöngy and Pröhle [9] deal with coefficients
that are of affine growth and not necessarily bounded. Moreover, Pakkanen [12] provides
sufficient conditions for a stochastic integral to have the full support property.

An extension of the Stroock-Varadhan support theorem to any α-Hölder norm, where
α ∈ (0, 1/2), is given in Ben Arous et al. [4]. The case of time-homogeneous coefficients
was independently proven by Millet and Sanz-Solé [11] and later extended to a parabolic
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stochastic partial differential equation (SPDE) in Bally et al. [3]. By using the vertical
derivative as functional space derivative and generalizing the approach in [11] with
the relevant Girsanov changes of measures, a path-dependent version of the Stroock-
Varadhan support theorem in Hölder norms was recently derived in [7]. The contribution
of this article is to extend this support characterization to stochastic Volterra integral
equations with regular path-dependent coefficients by providing a flow of mild solutions
to ordinary integro-differential equations.

Let r, T ≥ 0 with r < T and d,m ∈ N. We work with the separable Banach space
C([0, T ],Rm) of all Rm-valued continuous paths on [0, T ], endowed with the supremum
norm given by ‖x‖∞ = supt∈[0,T ] |x(t)|, where | · | is used as absolute value function,
Euclidean norm or Hilbert-Schmidt norm. Throughout, x̂ ∈ C([0, T ],Rm) and

b : [r, T ]2 × C([0, T ],Rm)→ Rm and σ : [r, T ]2 × C([0, T ],Rm)→ Rm×d

are two product measurable maps that are non-anticipative in the sense that they satisfy
b(t, s, x) = b(t, s, xs) and σ(t, s, x) = σ(t, s, xs) for all s, t ∈ [r, T ] with s ≤ t and each
x ∈ C([0, T ],Rm), where xs denotes the path x stopped at time s.

On a filtered probability space (Ω,F , (Ft)t∈[0,T ], P ) that satisfies the usual conditions
and which allows for a standard d-dimensional (Ft)t∈[0,T ]-Brownian motion W , we
consider the following path-dependent stochastic Volterra integral equation:

Xt = Xr +

∫ t

r

b(t, s,X) ds+

∫ t

r

σ(t, s,X) dWs a.s. (1.1)

for t ∈ [r, T ] with initial condition Xq = x̂(q) for q ∈ [0, r] a.s. An absolute continuity and
affine growth condition on the coefficients b and σ ensures that any solution to (1.1) is a
semimartingale with delayed Hölder continuous trajectories.

In fact, for each α ∈ (0, 1] let Cαr ([0, T ],Rm) represent the non-separable Banach
space of all x ∈ C([0, T ],Rm) that are α-Hölder continuous on [r, T ], endowed with the
delayed α-Hölder norm given by

‖x‖α,r := ‖xr‖∞ + sup
s,t∈[r,T ]: s6=t

|x(s)− x(t)|
|s− t|α

. (1.2)

By convention, we set C0
r ([0, T ],Rm) := C([0, T ],Rm) and ‖ · ‖0,r := ‖ · ‖∞. Then, under

the conditions stated below, there is a unique strong solution to (1.1) whose sample
paths belong a.s. to the delayed Hölder space Cαr ([0, T ],Rm) for any α ∈ (0, 1/2).

For p ≥ 1 consider the separable Banach space W 1,p
r ([0, T ],Rm) of all x ∈ C([0, T ],Rm)

that are absolutely continuous on [r, T ] with a p-fold Lebesgue-integrable weak derivative
ẋ, equipped with the delayed Sobolev Lp-norm defined by

‖x‖1,p,r := ‖xr‖∞ +

(∫ t

r

|ẋ(s)|p ds
) 1
p

. (1.3)

Then it holds that W 1,p
r ([0, T ],Rm) ( C

1/q
r ([0, T ],Rm) and ‖x‖1/q,r ≤ ‖x‖1,p,r for all

x ∈ W 1,p
r ([0, T ],Rm) whenever p > 1 and q is its dual exponent. By allowing infinite

values, we extend the definitions of ‖ · ‖∞ and ‖ · ‖α,r at (1.2) to each path x : [0, T ]→ Rm

and the definition of ‖ · ‖1,p,r at (1.3) to every x ∈W 1,1
r ([0, T ],Rm).

Based on the non-separable Banach space D([0, T ],Rm) of all Rm-valued càdlàg paths
on [0, T ], endowed with the supremum norm ‖ · ‖∞, we use the following pseudometric
on [r, T ]×D([0, T ],Rm) given by

d∞((t, x), (s, y)) := |t− s| 12 + ‖xt − ys‖∞.
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Then a functional on this Cartesian product that is d∞-continuous is also non-anticipative
and Lipschitz continuity relative to d∞ merely requires 1/2-Hölder continuity in the time
variable.

Let us now state the conditions under which the support theorem holds. By referring
to horizontal and vertical differentiability of non-anticipative functionals from [5, 8], we
in particular require that certain time and path space components of σ are of class C1,2,
a property to be recalled in Section 2.1. In this context, let ∂s be the horizontal, ∂x the
vertical and ∂xx the second-order vertical differential operator.

To have a simple notation if these first- and second-order space derivatives appear,
we set ‖y‖ := (

∑m
k=1

∑d
l=1 |yk,l|2)1/2 if y ∈ (R1×m)m×d or y ∈ (Rm×m)m×d. Further, let Id

be the identity matrix in Rd×d and A′ denote the transpose of a matrix A ∈ Rm×d.

(C.1) The map [r, t) × C([0, T ],Rm) → Rm×d, (s, x) 7→ σ(t, s, x) is of class C1,2 for each
t ∈ (r, T ], the maps

b(·, s, x) and σ(·, s, x)

are absolutely continuous on [s, T ] and ∂xσ(·, s, x) is absolutely continuous on (s, T ]

for any (s, x) ∈ [r, T )× C([0, T ],Rm).

(C.2) The maps σ, ∂xσ and its weak time derivatives ∂tσ, ∂t∂xσ are bounded. Further,
there are c, η ≥ 0 and κ ∈ [0, 1) such that

|b(s, s, x)|+ |∂tb(t, s, x)| ≤ c(1 + ‖x‖κ∞)

and |∂sσ(t, s, x)|+ ‖∂xxσ(t, s, x)‖ ≤ c(1 + ‖x‖η∞)

for all s, t ∈ [r, T ) with s < t and each x ∈ C([0, T ],Rm).

(C.3) There is λ ≥ 0 satisfying |b(s, s, x)− b(s, s, y)|+ |∂tb(t, s, x)−∂tb(t, s, y)| ≤ λ‖x−y‖∞
and

|σ(u, t, x)− σ(u, s, y)|+ |∂uσ(u, t, x)− ∂uσ(u, s, y)|
+‖∂xσ(u, t, x)− ∂xσ(u, s, y)‖ ≤ λd∞((t, x), (s, y))

for any s, t, u ∈ [r, T ) with s < t < u and every x, y ∈ C([0, T ],Rm).

Under the assumption that σ(t, ·, ·) is of class C1,2 on [r, t) × C([0, T ],Rm) for each
t ∈ (r, T ], we may introduce the map ρ : [r, T ]2 × C([0, T ],Rm) → Rm, which serves as
correction term, coordinatewise by

ρk(t, s, x) =

d∑
l=1

∂xσk,l(t, s, x)σ(s, s, x)el, (1.4)

if s < t, and ρk(t, s, x) := 0, otherwise. Here, {e1, . . . , ed} stands for the standard basis
of Rd and [r, t) × C([0, T ],Rm) → R1×m, (s, x) 7→ ∂xσk,l(t, s, x) is the vertical derivative
of the (k, l)-entry of the map [r, t) × C([0, T ],Rm) → Rm×d, (s, x) 7→ σ(t, s, x) for each
t ∈ (r, T ], every k ∈ {1, . . . ,m} and any l ∈ {1, . . . , d}.

Finally, to describe the support of the unique strong solution to (1.1) by a flow,
we study the following path-dependent Volterra integral equation associated to any
h ∈W 1,p

r ([0, T ],Rd) with p ≥ 2. Namely,

xh(t) = xh(r) +

∫ t

r

(b− (1/2)ρ)(t, s, xh) ds+

∫ t

r

σ(t, s, xh) dh(s) (1.5)

for t ∈ [r, T ]. By adding x̂ as initial condition, the solution xh lies in the delayed Sobolev
space W 1,p

r ([0, T ],Rm), since it can also be viewed as a mild solution to an associated
ordinary integro-differential equation, as concisely justified in Section 2.2.
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Lemma 1.1. Let (C.1)-(C.3) be valid.

(i) Pathwise uniqueness holds for (1.1) and there is a unique strong solution X such
that Xr = x̂r a.s. Further, X is a semimartingale and E[‖X‖pα,r] < ∞ for any
α ∈ [0, 1/2) and all p ≥ 2.

(ii) For any p ≥ 2 and each h ∈ W 1,p
r ([0, T ],Rd), there is a unique solution xh to (1.5)

satisfying xrh = x̂r and we have xh ∈W 1,p
r ([0, T ],Rm). Moreover, the flow map

W 1,p
r ([0, T ],Rd)→W 1,p

r ([0, T ],Rm), h 7→ xh

is Lipschitz continuous on bounded sets.

Having clarified matters of uniqueness, existence and regularity, let us now consider
the main result of this paper. Namely, a support characterization for solutions to (1.1) in
delayed Hölder norms.

Theorem 1.2. Let (C.1)-(C.3) hold, α ∈ [0, 1/2) and p ≥ 2. Then the support of the image
measure of the unique strong solution X to (1.1) in Cαr ([0, T ],Rm) is the closure of the
set of all solutions xh to (1.5), where h ∈W 1,p

r ([0, T ],Rd). That is,

supp(P ◦X−1) = {xh |h ∈W 1,p
r ([0, T ],Rd)} in Cαr ([0, T ],Rm). (1.6)

Example 1.3. Suppose there are four product measurable maps kb, kσ : [r, T ]2 → R,
b : [r, T ]× C([0, T ],Rm)→ Rm and σ : [r, T ]× C([0, T ],Rm)→ Rm×d such that

b(t, s, x) = kb(t, s)b(s, x) and σ(t, s, x) = kσ(t, s)σ(s, x)

for all s, t ∈ [r, T ] and any x ∈ C([0, T ],Rm) and let the following three conditions hold:

(1) The functions kb(·, s) and kσ(·, s) are absolutely continuous on [s, T ] for all s ∈ [r, T )

and kσ(t, ·) is continuously differentiable on [r, t) for any t ∈ (r, T ]. Further, kb, kσ,
∂tkb, ∂tkσ and ∂skσ are bounded.

(2) The map σ is of class C1,2 on [r, T ) × C([0, T ],Rm) and together with its vertical
derivative ∂xσ it is bounded and d∞-Lipschitz continuous.

(3) There are c, η, λ ≥ 0 and κ ∈ [0, 1) so that |b(s, x)| ≤ c(1 + ‖x‖κ∞), |b(s, x) − b(s, y)|
≤ λ‖x− y‖∞, |kσ(u, t)− kσ(u, s)|+ |∂ukσ(u, t)− ∂ukσ(u, s)| ≤ λ|s− t|1/2 and

|∂sσ(s, x)|+ ‖∂xxσ(s, x)‖ ≤ c(1 + ‖x‖η∞)

for all s, t, u ∈ [r, T ) with s < t < u and any x, y ∈ C([0, T ],Rm).

Then Theorem 1.2 applies and for kb = kσ = 1 it reduces to the support theorem in [7]
with the same regularity conditions. Moreover, we could also take kb(t, s) = (t− s)βb and
kσ(t, s) = (t− s)βσ− 1

2 for any s, t ∈ [r, T ] with s ≤ t, where βb ≥ 1 and βσ ≥ 2.

The structure of this paper is determined by the proof of the support theorem and can
be comprised as follows. Section 2 provides supplementary material and a convergence
result in Hölder norms that yields Theorem 1.2 as a corollary. In detail, Section 2.1
gives a concise overview of horizontal and vertical differentiability of non-anticipative
functionals. Section 2.2 relates the Volterra integral equation (1.5) to an ordinary
integro-differential equation and shows that solutions to (1.1) are semimartingales by
using a stochastic Fubini theorem. In Section 2.3 we consider the approach to prove the
support theorem by introducing a more general setting and stating Theorem 2.3, the
before mentioned convergence result.
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Section 3 derives relevant estimates to infer convergence in Hölder norms in moments.
To be precise, Section 3.1 gives a sufficient condition for a sequence of processes to
converge in this sense by exploiting an explicit Kolmogorov-Chentsov estimate. In
Section 3.2 we introduce the relevant notations in the context of sequences of partitions
and recall a couple of auxiliary moment estimates from [7, 10]. The purpose of Section 3.3
is to deduce moment estimates for deterministic and stochastic Volterra integrals,
generalizing the bounds from [7][Lemmas 20, 21 and Proposition 22].

Section 4 is devoted to a variety of specific moment estimates and decompositions,
preparing the proof of Theorem 2.3. At first, Section 4.1 derives bounds for solutions to
stochastic Volterra integral equations and gives two main decompositions, Proposition 4.3
and equation (4.7). Section 4.2 handles the first two remainders appearing in (4.7). While
the second can be directly estimated, the first relies on the functional Itô formula from [6].
Section 4.3 intends to bound the third remainder in second moment, requiring another
extensive decomposition. In Section 5 we prove the convergence result and the support
representation, including assertions on uniqueness, existence and regularity.

2 Preparations and a convergence result in second moment

2.1 Differential calculus for non-anticipative functionals

We recall and discuss horizontal and vertical differentiability, as introduced in [5, 8].
To this end, let t ∈ (r, T ] and G be a non-anticipative functional on [r, t)×D([0, T ],Rm)

that is considered at a point (s, x) of its domain:

(i) G is horizontally differentiable at (s, x) if the function [0, t−s)→ R, h 7→ G(s+h, xs)

is differentiable at 0. If this is the case, then ∂sG(s, x) denotes its derivative there.

(ii) G is vertically differentiable at (s, x) if the function Rm → R, h 7→ G(s, x+ h1[s,T ])

is differentiable at 0. In this case, its derivative there is denoted by ∂xG(s, x).

(iii) G is partially vertically differentiable at (s, x) if for any k ∈ {1, . . . ,m} the function
R → R, h 7→ G(s, x + hek1[s,T ]) is differentiable at 0, where {e1, . . . , em} is the
standard basis of Rm. In this case, ∂xkG(s, x) represents its derivative there.

So, G is horizontally, vertically or partially vertically differentiable if it satisfies the
respective property at any point of its domain. We observe that vertical differentiability
entails partial vertical differentiability and ∂xG = (∂x1

G, . . . , ∂xmG).
We say that G is twice vertically differentiable if it is vertically differentiable and

the same is true for ∂xG. Then we set ∂xxG := ∂x(∂xG) and ∂xkxlG := ∂xk(∂xlG) for any
k, l ∈ {1, . . . ,m}. If in addition ∂xxG is d∞-continuous, then

∂xkxlG = ∂xlxkG for all k, l ∈ {1, . . . ,m},

by Schwarz’s lemma, showing that ∂xxG is symmetric. Moreover, we call G of class C1,2

if it is once horizontally and twice vertically differentiable such that G, ∂sG, ∂xG and
∂xxG are bounded on bounded sets and d∞-continuous.

Clearly, horizontal differentiability applies to functionals on [r, t)× C([0, T ],Rm) as
well by considering continuous paths only. Vertical differentiability, however, requires
the evaluation along càdlàg paths. So, a functional F on [r, t)× C([0, T ],Rm) is of class
C1,2 if it possesses a non-anticipative extension G : [r, t)×D([0, T ],Rm)→ R that satisfies
this property. Then the restricted derivatives

∂xF := ∂xG and ∂xxF := ∂xxG on [r, t)× C([0, T ],Rm)

are well-defined, by Theorems 5.4.1 and 5.4.2 in [2]. That is, they do not depend on the
choice of the extension G. By combining these considerations with an absolute continuity
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condition, which ensures that only semimartingales appear, we can use the functional
Itô formula from [6] to prove Proposition 4.4, a key component when deriving (1.6).

Examples 2.1. (i) We suppose that α ∈ (0, 1], k ∈ N and ϕ : [r, t) × (Rm)k → Rd is
α-Hölder continuous. For t1, . . . , tk ∈ [0, T ] the Rd-valued non-anticipative map G on
[r, t)×D([0, T ],Rm) given by

G(s, x) := ϕ(s, x(s ∧ t1), . . . , x(s ∧ tk))

is bounded on bounded sets and α-Hölder continuous relative to d∞. If ϕ(·, x1, . . . , xk)

and the map (Rm)k → Rd, (y1, . . . , yk) 7→ ϕ(s, y1, . . . , yk) are differentiable for each
s ∈ [r, t) and all x1, . . . , xk ∈ Rm, then G is horizontally and vertically differentiable with
∂sG(s, x) = (∂+ϕ/∂s)(s, x(s ∧ t1), . . . , x(s ∧ tk)) and

∂xG(s, x) =

k∑
j=1

Dxjϕ(s, x(s ∧ t1), . . . , x(s ∧ tk))1[r,tj ](s)

for any (s, x) ∈ [r, t)×D([0, T ],Rm), where ∂+ϕ/∂s is the right-hand time derivative of ϕ
and Dxjϕ denotes the derivative of ϕ with respect to the j-th space variable xj ∈ Rm for
each j ∈ {1, . . . , k}.

While ∂xG may fail to be d∞-continuous if tj ∈ [r, t) for some j ∈ {1, . . . , k}, we see
that G is of class C1,2 as soon as ϕ is of class C1,2 in the usual sense and tj ≥ t for all
j ∈ {1, . . . , k}.
(ii) Let α ∈ (0, 1], K : [0, t)→ R be continuously differentiable and ϕ be an Rm×d-valued
Borel measurable bounded map on [0, t)×D([0, T ],Rm) that is α-Hölder continuous in
x ∈ D([0, T ],Rm), uniformly in s ∈ [0, t). Then the non-anticipative kernel integral map
G : [r, t)×D([0, T ],Rm)→ Rm×d defined by

G(s, x) :=

∫ s

0

K(s− u)ϕ(u, xu) du

is bounded and α-Hölder continuous relative to d∞. In addition, if ϕ is d∞-continuous,
then G is of class C1,2, since ∂sG(s, x) = K(0)ϕ(s, x) +

∫ s
0
K̇(s − u)ϕ(u, x) du for each

(s, x) ∈ [r, t)×D([0, T ],Rm) and ∂xG = 0.

2.2 Ordinary integro-differential equations and semimartingales

By utilizing an absolute continuity condition, we directly connect the Volterra integral
equation (1.5) to an ordinary integro-differential equation and check that any solution
to (1.1) solves a stochastic differential equation, ensuring that it is a semimartingale.

Let us first briefly analyze (1.5) for h ∈ W 1,1
r ([0, T ],Rd), under the hypothesis that

σ(t, ·, ·) is of class C1,2 on [r, t)× C([0, T ],Rm) for each t ∈ (r, T ]. A solution to (1.5) is a
path x ∈ C([0, T ],Rm) such that∫ t

r

|(b− (1/2)ρ)(t, s, x)|+ |σ(t, s, x)||ḣ(s)| ds and

x(t) = x(r) +

∫ t

r

(b− (1/2)ρ)(t, s, x) ds+

∫ t

r

σ(t, s, x) dh(s)

for any t ∈ [r, T ], since the variation of h on [r, s] is given by
∫ s
r
|ḣ(u)| du for all s ∈ [r, t].

If we now assume that (C.1)-(C.3) are valid, then the d∞-Lipschitz continuity of the
map [r, t)× C([0, T ],Rm)→ R1×m, (s, x) 7→ ∂xσk,l(t, s, x) entails that it admits a unique
continuous extension to [r, t] × C([0, T ],Rm) for any t ∈ (r, T ], each k ∈ {1, . . . ,m} and
every l ∈ {1, . . . , d}.
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In this case, we may define ρ : [r, T ]2 × C([0, T ],Rm) → Rm coordinatewise by
letting ρk(t, s, x) agree with the right-hand side in (1.4), if r < t and s ≤ t, and setting
ρ(t, s, x) := 0, otherwise. Then Fubini’s theorem entails for any x ∈ C([0, T ],Rm) that∫ t

r

(b− (1/2)ρ)(t, s, x) ds+

∫ t

r

σ(t, s, x) dh(s)

=

∫ t

r

(b− (1/2)ρ+ σḣ)(s, s, x) +

∫ s

r

∂s(b− (1/2)ρ+ σḣ)(s, u, x) du ds (2.1)

for every t ∈ [r, T ]. Consequently, the path x solves (1.5) if and only if it is a mild solution
to the path-dependent ordinary integro-differential equation

ẋ(t) = (b− (1/2)ρ+ σḣ)(t, t, x) +

∫ t

r

∂t(b− (1/2)ρ+ σḣ)(t, s, x) ds

for t ∈ [r, T ]. Since all appearing maps are integrable, this means that the increment
x(t)− x(r) agrees with (2.1) for any t ∈ [r, T ]. Let us now turn to the stochastic Volterra
integral equation (1.1), without imposing any conditions for the moment.

Thus, we let C ([0, T ],Rm) denote the completely pseudometrizable topological space
of all (Ft)t∈[0,T ]-adapted continuous processes X : [0, T ] × Ω → Rm and recall that a
solution to (1.1) is a process X ∈ C ([0, T ],Rm) such that∫ t

r

|b(t, s,X)|+ |σ(t, s,X)|2 ds <∞ a.s. and

Xt = Xr +

∫ t

r

b(t, s,X) ds+

∫ t

r

σ(t, s,X) dWs a.s. for all t ∈ [r, T ].

For a process ξ ∈ C ([0, T ],Rm) let (ξE 0
t )t∈[0,T ] be the natural filtration of the adapted

continuous process [0, T ] × Ω → Rm × Rd, (t, ω) 7→ (ξrt ,Wr∨t −Wr)(ω). Put differently,

ξE 0
t = σ(ξq : q ∈ [0, t]) for t ∈ [0, r] and

ξE
0
t = ξE

0
r ∨ σ(Ws −Wr : s ∈ [r, t]) for t ∈ (r, T ].

In particular, ξE 0
t = σ(ξ0) ∨ σ(Ws : s ∈ [0, t]) for all t ∈ [0, T ] if there is no delay. Then

a solution X to (1.1) satisfying Xr = ξr a.s. is called strong if it is adapted to the
right-continuous filtration of the augmented filtration of (ξE 0

t )t∈[0,T ].
Finally, suppose that (C.1) and (C.2) hold. Then it follows from Fubini’s theorem for

stochastic integrals, stated in [15] for instance, that any X ∈ C ([0, T ],Rm) satisfies∫ t

r

b(t, s,X) ds+

∫ t

r

σ(t, s,X) dWs =

∫ t

r

Bs(X) ds+

∫ t

r

σ(s, s,X) dWs

a.s. for any t ∈ [r, T ], where the map B : [r, T ]× Ω× C ([0, T ],Rm)→ Rm, which depends
on whole processes rather than trajectories and is such that B(Y ) is progressively
measurable for any Y ∈ C ([0, T ],Rm), is given by

Bs(Y ) = b(s, s, Y ) +

∫ s

r

∂sb(s, u, Y ) du+

∫ s

r

∂sσ(s, u, Y ) dWu

for every s ∈ [r, T ] a.s. This shows that X solves (1.1) if and only if it is a solution to the
path-dependent stochastic differential equation

Xt = Bt(X) dt+ σ(t, t,X) dWt for t ∈ [r, T ].

Moreover, its restriction to [r, T ]× Ω is automatically a semimartingale in this case.
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2.3 Approach to the main result in a general setting

After these preliminary considerations, we proceed as follows to establish the support
theorem. For any n ∈ N let Tn be a partition of [r, T ] of the form Tn = {t0,n, . . . , tkn,n}
with kn ∈ N and t0,n, . . . , tkn,n ∈ [r, T ] such that r = t0,n < · · · < tkn,n = T and whose
mesh maxi∈{0,...,kn−1}(ti+1,n − ti,n) is denoted by |Tn|. We suppose that limn↑∞ |Tn| = 0

and that there is cT ≥ 1 such that

|Tn| ≤ cT min
i∈{0,...,kn−1}

(ti+1,n − ti,n) for all n ∈ N. (2.2)

For the estimation of one term in Proposition 4.4, when the functional Itô formula is
applied, we also require the following additional condition:

(C.4) There is cT > 0 such that kn|Tn| ≤ cT for each n ∈ N.

However, unless explicitly stated, we shall not impose this condition. Moreover, we
readily notice that any equidistant sequence of partitions satisfies both conditions.

Next, for any k, n ∈ N we are interested in the delayed linear interpolation of a map
x : [0, T ]→ Rk along Tn. Namely, we define Ln(x) : [0, T ]→ Rk by Ln(x)(t) := x(r ∧ t), if
t ≤ t1,n, and

Ln(x)(t) := x(ti−1,n) +
t− ti,n

ti+1,n − ti,n
(x(ti,n)− x(ti−1,n)), (2.3)

if t ∈ (ti,n, ti+1,n] for some i ∈ {1, . . . , kn − 1}. Since Ln(x) is piecewise continuously
differentiable on [r, T ], it belongs to W 1,p

r ([0, T ],Rk) for each p ≥ 1 if x is continuous on
[0, r], and by construction, the process nW : [0, T ]×Ω→ Rd defined via nWt := Ln(W )(t)

is adapted.
Let us now assume that (C.1)-(C.3) and Lemma 1.1 hold. Then the support of P ◦X−1

is included in the closure of {xh |h ∈ W 1,p
r ([0, T ],Rd)} in Cαr ([0, T ],Rm) for α ∈ [0, 1/2)

and p ≥ 2 if we can prove that

lim
n↑∞

P (‖x
nW −X‖α,r ≥ ε) = 0 for any ε > 0. (2.4)

Moreover, if for each h ∈W 1,p
r ([0, T ],Rd) there exists a sequence (Ph,n)n∈N of probability

measures on (Ω,F ) that are absolutely continuous to P such that

lim
n↑∞

Ph,n(‖X − xh‖α,r ≥ ε) = 0 for every ε > 0, (2.5)

then the converse inclusion holds. The sufficiency of (2.4) and (2.5) follows from a basic
result on the support of probability measures, see [7][Lemma 36] for example. To verify
the validity of both limits, we consider a more general setting.

Let B be an Rm-valued and BH , B and Σ be Rm×d-valued non-anticipative product
measurable maps on [r, T ]2 × C([0, T ],Rm). For any n ∈ N we study the path-dependent
stochastic Volterra integral equation:

nYt = nYr +

∫ t

r

B(t, s, nY ) +BH(t, s, nY )ḣ(s) +B(t, s, nY )nẆs ds

+

∫ t

r

Σ(t, s, nY ) dWs a.s. for t ∈ [r, T ].

(2.6)

Provided that the map [r, t)×C([0, T ],Rm)→ Rm×d, (s, x) 7→ B(t, s, x) is of class C1,2 for
all t ∈ (r, T ], we introduce another path-dependent stochastic Volterra integral equation:

Yt = Yr +

∫ t

r

(B +R)(t, s, Y ) +BH(t, s, Y )ḣ(s) ds

+

∫ t

r

(B + Σ)(t, s, Y ) dWs a.s. for t ∈ [r, T ]

(2.7)
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with the Rm-valued non-anticipative product measurable map R on [r, T ]2 ×C([0, T ],Rm)

given coordinatewise by

Rk(t, s, x) =

d∑
l=1

∂xBk,l(t, s, x)
(
(1/2)B + Σ)(s, s, x)el, (2.8)

if s < t, and Rk(t, s, x) := 0, otherwise. In particular, (2.6) reduces to (2.7) in the case
that B = 0. We seek to show that if nY and Y are two solutions to (2.6) and (2.7),
respectively, satisfying nY

r = Y r = x̂r a.s. for all n ∈ N, then

lim
n↑∞

E
[
‖nY − Y ‖2α,r

]
= 0. (2.9)

Thus, by choosing B = b− (1/2)ρ, BH = 0, B = σ and Σ = 0, we obtain (2.4). If instead
B = b, BH = σ, B = −σ and Σ = σ, then (2.5) is implied, as we will see. To derive the
general convergence result (2.9), we introduce the following regularity conditions:

(C.5) The map [r, t) × C([0, T ],Rm) → Rm×d, (s, x) 7→ B(t, s, x) is of class C1,2 for all
t ∈ (r, T ], for any F ∈ {B,BH , B,Σ} the map F (·, s, x) is absolutely continuous on
[s, T ] and ∂xB is absolutely continuous on (s, T ] for all (s, x) ∈ [r, T )×C([0, T ],Rm).

(C.6) There are c ≥ 0 and κ ∈ [0, 1) such that any two maps F ∈ {B,BH} and G ∈ {B,Σ}
satisfy |F (s, s, x)|+ |∂tF (t, s, x)| ≤ c(1 + ‖x‖κ∞) and |G(s, s, x)|+ |∂tG(t, s, x)| ≤ c for
all s, t ∈ [r, T ) with s < t and every x ∈ C([0, T ],Rm).

(C.7) There exists λ ≥ 0 such that |B(s, s, x) − B(s, s, y)| + |∂tB(t, s, x) − ∂tB(t, s, y)|
≤ λ‖x− y‖∞ and for any F ∈ {BH , B,Σ} it holds that

|F (u, t, x)− F (u, s, y)|+ |∂uF (u, t, x)− ∂uF (u, s, y)| ≤ λd∞((t, x), (s, y))

for each s, t, u ∈ [r, T ) with s < t < u and every x, y ∈ C([0, T ],Rm).

(C.8) There are c, η, λ ≥ 0 such that ‖∂xB(s, s, x)‖ + ‖∂t∂xB(t, s, x)‖ ≤ c, |∂sB(t, s, x)|
+ ‖∂xxB(t, s, x)‖ ≤ c(1 + ‖x‖η∞) and

‖∂xB(u, t, x)− ∂xB(u, s, y)‖ ≤ λd∞((t, x), (s, y))

for any s, t, u ∈ [r, T ) with s < t < u and all x, y ∈ C([0, T ],Rm).

(C.9) The map Σ vanishes or there is a measurable function b : [r, T ] → R such that∫ T
r
b(s)2 ds <∞ and B = bΣ.

First, we question uniqueness, existence and regularity of solutions to (2.6) and (2.7).
In this regard, let ξ ∈ C ([0, T ],Rm) and (nξ)n∈N be a sequence in C ([0, T ],Rm).

Lemma 2.2. Assume that (C.5)-(C.7) are satisfied, h ∈ W 1,2
r ([0, T ],Rd) and there is a

sequence (pn)n∈N0
in (2,∞) such that E[‖ξr‖p0∞ + ‖nξr‖pn∞ ] <∞ for all n ∈ N.

(i) Under (C.9), pathwise uniqueness holds for (2.6) and there exists a unique strong
solution nY with nY

r = nξ
r a.s. for any n ∈ N. Further, for each p > 2 and every

α ∈ [0, 1/2− 1/p), there is cα,p > 0 such that

E
[
‖nY ‖pα,r

]
≤ cα,p

(
1 + E

[
‖nξr‖p∞

])
for all n ∈ N.

(ii) If (C.8) holds, then we have pathwise uniqueness for (2.7) and a unique strong
solution Y with Y r = ξr a.s. In this case, for each p > 2 and all α ∈ [0, 1/2− 1/p)

there is cα,p > 0 with E[‖Y ‖pα,r] ≤ cα,p(1 + E[‖ξr‖p∞]).
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Finally, we consider a convergence result in Hölder norms in second moment.

Theorem 2.3. Let (C.4)-(C.9) hold, h ∈ W 1,2
r ([0, T ],Rd) and α ∈ [0, 1/2). Suppose that

limn↑∞E[‖nξr − ξr‖2∞]/|Tn|2α = 0 and there is p > 2 such that

α < 1/2− 1/p and E
[
‖ξr‖p∞

]
+ sup
n∈N

E
[
‖nξr‖(2∨η)p∞

]
<∞.

Let nY and Y be the unique strong solutions to (2.6) and (2.7), respectively, such that

nY
r = nξ

r and Y r = ξr a.s. for all n ∈ N, then

lim
n↑∞

E

[
max

j∈{0,...,kn}
|nYtj,n − Ytj,n |2

]
/|Tn|2α = 0. (2.10)

In particular, (2.9) is satisfied. That is, (nY )n∈N converges in the delayed α-Hölder norm
‖ · ‖α,r in second moment to Y .

3 Estimates for convergence in Hölder norms in moments

3.1 Convergence in moments along a sequence of partitions

We consider a sufficient condition for a sequence of processes to converge in the
norm ‖ ·‖α,r in p-th moment, where α ∈ [0, 1] and p ≥ 1. Its derivation relies on an explicit
Kolmogorov-Chentsov estimate from [7][Proposition 12].

Namely, let X be an Rm-valued right-continuous process for which there are c0 ≥ 0,
p ≥ 1 and q > 0 such that E[|Xs −Xt|p] ≤ c0|s− t|1+q for all s, t ∈ [r, T ]. Then it follows
that

E

[
sup

s,t∈[r,T ]: s6=t

|Xs −Xt|p

|s− t|αp

]
≤ kα,p,qc0(T − r)1+q−αp (3.1)

for any α ∈ [0, q/p) with kα,p,q := 2p+q(2q/p−α − 1)−p. In particular, if q ≤ p, then X itself,
and not necessarily a modification, admits a.s. α-Hölder continuous paths on [r, T ].

Lemma 3.1. Let (nX)n∈N be a sequence of Rm-valued right-continuous processes for
which there are c0 ≥ 0, p ≥ 1 and q > 0 with q ≤ p such that

E
[
|nXs − nXt|p

]
≤ c0|s− t|1+q

for all n ∈ N, each j ∈ {0, . . . , kn − 1} and any s, t ∈ [tj,n, tj+1,n]. If (‖nXr‖∞)n∈N and
(maxj∈{1,...,kn} |nXtj,n |/|Tn|α)n∈N converge in p0-th moment to zero for some p0 ∈ [1, p],
then so does the sequence (‖nX‖α,r)n∈N for every α ∈ [0, q/p).

Proof. For given n ∈ N a case distinction yields that

sup
s,t∈[r,T ]: s6=t

|nXs − nXt|
|s− t|α

≤ 2 max
j∈{0,...,kn−1}

sup
s,t∈[tj,n,tj+1,n]: s6=t

|nXs − nXt|
|s− t|α

+ max
i,j∈{1,...,kn}: i6=j

|nXti,n − nXtj,n |
|ti,n − tj,n|α

.

By virtue of the Kolmogorov-Chentsov estimate (3.1), it holds that

E

[
max

j∈{0,...,kn−1}
sup

s,t∈[tj,n,tj+1,n]: s6=t

|nXs − nXt|p

|s− t|αp

]
≤ kα,p,qc0(T − r)|Tn|q−αp,

since q > αp and
∑kn−1
j=0 (tj+1,n − tj,n) = T − r. Moreover, from condition (2.2) we infer

that |ti,n − tj,n| ≥ |Tn|/cT for all i, j ∈ {0, . . . , kn} with i 6= j. Hence,

E

[
max

i,j∈{1,...,kn}: i 6=j

|nXti,n − nXtj,n |p0
|ti,n − tj,n|αp0

]
≤ 2p0−1cαp0T E

[
max

j∈{1,...,kn}
|nXtj,n |p0

]
/|Tn|αp0 .

Now the claim follows from the definition of the norm ‖ · ‖α,r and Hölder’s inequality.
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3.2 Sequential notations and auxiliary moment estimates

Let us introduce relevant notations related to the sequence of partitions (Tn)n∈N.
For fixed n ∈ N and t ∈ [r, T ), we choose i ∈ {0, . . . , kn − 1} such that t ∈ [ti,n, ti+1,n) and
set

tn := t(i−1)∨0,n, tn := ti,n and tn := ti+1,n.

Verbalized, tn is the predecessor of tn relative to Tn, provided i 6= 0, and tn is the
successor of tn. For the sake of completeness, let Tn := tkn−1,n, Tn := T and Tn := T .
Further, for i ∈ {0, . . . , kn} we set

∆ti,n := ti,n − t(i−1)∨0,n and ∆Wti,n := Wti,n −Wt(i−1)∨0,n .

For p ≥ 1 we recall an interpolation error estimate in supremum norm in p-th moment
and an explicit integral moment estimate for the sequence (nW )n∈N of adapted linear
interpolations of W from [7][Lemmas 19 and 17].

(i) Let (nX)n∈N be a sequence of Rm-valued right-continuous processes for which
there are c0 ≥ 0 and q > 0 such that E[|nXs − nXt|p] ≤ c0|s − t|1+q for all n ∈ N,
each j ∈ {0, . . . , kn − 1} and every s, t ∈ [tj,n, tj+1,n]. Then there is cp,q > 0 such
that

E
[
‖Ln(nX)− nX‖p∞

]
≤ cp,qc0|Tn|q (3.2)

for all n ∈ N. To be precise, cp,q = 2p−1(1 + k0,p,q)(T − r).

(ii) Let q ≥ 1 and Z be an Rd-valued random vector such that Z ∼ N (0, Id). Then the
constant ŵp,q := E[|Z|pq]cpqT satisfies

E

[(∫ t

s

|nẆu|q du
)p]

≤ ŵp,q|Tn|−
pq
2 (t− s)p (3.3)

for all n ∈ N and every s, t ∈ [r, T ] with s ≤ t.

Next, we let p ≥ 2 and state a Burkholder-Davis-Gundy inequality for stochastic
integrals with respect to W from [10][Theorem 7.2]. Based on this bound, one can
deduce an estimate for integrals relative to nW that is independent of n ∈ N and which
is given in [7][Proposition 16].

(iii) For eachRm×d-valued progressively measurable processX for which
∫ T
r
E[|Xu|p] du

is finite,

E

[
sup
v∈[s,t]

∣∣∣∣ ∫ v

s

Xu dWu

∣∣∣∣p] ≤ wp(t− s) p2−1 ∫ t

s

E
[
|Xu|p

]
du (3.4)

for all s, t ∈ [r, T ] with s ≤ t and wp := ((p3/2)/(p− 1))p/2.

(iv) Any Rm×d-valued progressively measurable process X satisfies

E

[
max
v∈[s,t]

∣∣∣∣ ∫ v

s

Xun
dnWu

∣∣∣∣p] ≤ ŵp(t− s) p2 max
j∈{0,...,kn}: tj,n∈[sn,tn]

E
[
|Xtj,n |p

]
(3.5)

for each n ∈ N and all s, t ∈ [r, T ] with s ≤ t, where ŵp := 3pwpc
p/2
T .

3.3 Moment estimates for Volterra integrals

The first integral bound that we consider follows from the auxiliary estimate (3.3).
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Lemma 3.2. Let p > 1 and assume that nX : [r, T ]2 × Ω → R+, (t, s, ω) 7→ Xt,s(ω) is a
product measurable function for each n ∈ N. If there are p0 > p, cp0 > 0 and q ≥ p0/2

such that

E

[
max

j∈{0,...,kn}

∫ tj,n

r
nX

p0
tj,n,s ds

]
≤ cp0 |Tn|q for all n ∈ N. (3.6)

Then there is cp > 0 such that

E

[
max

j∈{0,...,kn}

(∫ tj,n

r
nXtj,n,s|nẆs| ds

)p]
≤ cp|Tn|p(

q
p0
− 1

2 ) for any n ∈ N.

Proof. Let q1 and q2 denote the dual exponents of p and p0/p, respectively, and set
p1 := max{(p− 1)q2, 1}. Then three applications of Hölder’s inequality yield that

E

[
max

j∈{0,...,kn}

(∫ tj,n

r
nXtj,n,s|nẆs| ds

)p]
≤ E

[
max

j∈{0,...,kn}

(∫ tj,n

r
nX

p
tj,n,s ds

) p0
p
] p
p0

cp,1|Tn|−
p
2

with cp,1 := ŵ
(p−1)/p1
p1,q1 (T − r)p−1, where ŵp1,q1 is the constant introduced at (3.3). For this

reason, the constant cp := (T − r)1−p/p0cp/p0p0 cp,1 satisfies the desired estimate.

Remark 3.3. For any n ∈ N let nX be independent of the first time variable, that is,
there is an R+-valued measurable process nY with nXt,s = nYs for all s, t ∈ [r, T ]. Then
for condition (3.6) to hold, it suffices that there is cp0 > 0 so that E[nY

p0
s ] ≤ cp0 |Tn|q for

each n ∈ N and every s ∈ [r, T ).

For the second and various other estimates in the following section, let us use for
each n ∈ N the function γn : [r, T ]→ [0, cT] defined by

γn(s) :=
∆sn
∆sn

. (3.7)

Put differently, γn = ∆ti,n/∆ti+1,n on [ti,n, ti+1,n) for all i ∈ {0, . . . , kn − 1} and γn(T ) = 1.

Lemma 3.4. Assume that F : [r, T ]2 × C([0, T ],Rm)→ Rm is a non-anticipative product
measurable map for which there are c0, λ0 ≥ 0 such that

|F (t, s, x)| ≤ c0(1 + ‖x‖∞) and |F (u, t, x)− F (u, s, x)| ≤ λ0d∞((t, x), (s, x))

for all s, t, u ∈ [r, T ] with s < t < u and each x ∈ C([0, T ],Rm). Further, let (nY )n∈N be a
sequence in C ([0, T ],Rm) which there are p ≥ 1 and cp,0 ≥ 0 such that

E
[
‖nY ‖p∞

]
+ E

[
‖nY s − nY

t‖p∞
]
/|s− t|

p
2 ≤ cp,0

(
1 + E

[
‖nY r‖p∞

])
for each n ∈ N and any s, t ∈ [r, T ] with s < t. Then there is cp > 0 such that

E

[
max

j∈{0,...,kn}

∣∣∣∣ ∫ tj,n

r

F (tj,n, sn, nY )
(
γn(s)− 1

)
ds

∣∣∣∣p] ≤ cp|Tn| p2 (1 + E
[
‖nY r‖p∞

])
for every n ∈ N.

Proof. Let E[‖nY r‖p∞] < ∞, as otherwise the claimed estimate is infinite. Clearly, a
decomposition of the integral shows that∫ tj,n

r

F (tj,n, sn, nY )γn(s) ds =

∫ tj−1,n

r

F (tj,n, sn, nY ) ds
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for all j ∈ {1, . . . , kn}. Hence, a first estimation gives

E

[
max

j∈{1,...,kn}

∣∣∣∣ ∫ tj−1,n

r

F (tj,n, sn, nY )− F (tj,n, sn, nY ) ds

∣∣∣∣p] ≤ cp,1|Tn| p2 (1 + E
[
‖nY r‖p∞

])
for cp,1 := 2p−1(T − r)pλp0(1 + cp,0) and a second yields that

E

[
max

j∈{1,...,kn}

∣∣∣∣ ∫ tj,n

tj−1,n

F (tj,n, sn, nY ) ds

∣∣∣∣p] ≤ cp,2|Tn|p(1 + E
[
‖nY r‖p∞

])
with cp,2 := 2p−1cp0(1 + cp,0). Thus, the constant cp := 2p−1(cp,1 + (T − r)p/2cp,2) satisfies
the asserted estimate.

The third estimate deals with Volterra integrals driven by nW and W , where n ∈ N.

Proposition 3.5. Let F : [r, T ]2 × C([0, T ],Rm) → Rm×d be non-anticipative, product
measurable and such that F (·, s, x) is absolutely continuous on [s, T ] for all s ∈ [r, T ] and
each x ∈ C([0, T ],Rm). Suppose that there are c0, λ0 ≥ 0 such that

|F (s, s, x)|+ |∂tF (t, s, x)| ≤ c0(1 + ‖x‖∞) and

|F (u, t, x)− F (u, s, x)|+ |∂uF (u, t, x)− ∂uF (u, s, x)| ≤ λ0d∞((t, x), (s, x))

for any s, t, u ∈ [r, T ) with s < t < u and every x ∈ C([0, T ],Rm). Moreover, let (nY )n∈N
be a sequence in C ([0, T ],Rm) for which there are p ≥ 2 and cp,0 ≥ 0 such that

E
[
‖nY ‖p∞

]
+ E

[
‖nY s − nY

t‖p∞
]
/|s− t|

p
2 ≤ cp,0

(
1 + E

[
‖nY r‖p∞

])
for all n ∈ N and each s, t ∈ [r, T ] with s < t. Then there is cp > 0 such that

E

[
max

j∈{0,...,kn}

∣∣∣∣ ∫ tj,n

r

F (tj,n, sn, nY ) d(nWs −Ws)

∣∣∣∣p] ≤ cp|Tn| p2−1(1 + E
[
‖nY r‖p∞

])
for every n ∈ N.

Proof. We suppose that E[‖nY r‖p∞] is finite and decompose the integral to get that∫ tj,n

r

F (tj,n, sn, nY ) dnWs =

∫ tj−1,n

r

F (tj,n, sn, nY ) dWs a.s.

for each j ∈ {1, . . . , kn}. Hence, we may apply Fubini’s theorem for stochastic integrals
from [15] to obtain that∫ tj−1,n

r

F (tj,n, sn, nY )− F (tj,n, sn, nY ) dWs =

∫ tj−1,n

r

F (s, sn, nY )− F (s, sn, nY ) dWs

+

∫ tj,n

r

∫ t∧tj−1,n

r

∂tF (t, sn, nY )− ∂tF (t, sn, nY ) dWs dt a.s.

for all j ∈ {1, . . . , kn}. Regarding the first expression, we estimate that

E

[
max

j∈{1,...,kn}

∣∣∣∣ ∫ tj−1,n

r

F (s, sn, nY )− F (s, sn, nY ) dWs

∣∣∣∣p] ≤ cp,1|Tn| p2 (1 + E
[
‖nY r‖p∞

])
for cp,1 := 2p−1wp(T − r)p/2λp0(1 + cp,0), where wp is the constant satisfying (3.4). For the
second expression we first calculate that

E

[
max

j∈{1,...,kn}

∣∣∣∣ ∫ tj−1,n

r

∫ t

r

∂tF (t, sn, nY )−∂tF (t, sn, nY ) dWs dt

∣∣∣∣p]
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≤ cp,2|Tn|
p
2

(
1 + E

[
‖nY r‖p∞

])
with cp,2 := 2p(p+ 2)−1wp(T − r)3p/2λp0(1 + cp,0). And secondly,

E

[
max

j∈{1,...,kn}

∣∣∣∣ ∫ tj,n

tj−1,n

∫ tj−1,n

r

∂tF (t, sn, nY )− ∂tF (t, sn, nY ) dWs dt

∣∣∣∣p]

≤
kn∑
j=1

(tj,n − tj−1,n)p−1
∫ tj,n

tj−1,n

E

[∣∣∣∣ ∫ tj−1,n

r

∂tF (t, sn, nY )− ∂tF (t, sn, nY ) dWs

∣∣∣∣p] dt
≤ cp,3|Tn|p−1

(
1 + E

[
‖nY r‖p∞

])
,

where cp,3 := 2p−1wp(T − r)p/2+1λp0(1 + cp,0). Next, for the remaining term Fubini’s
theorem for stochastic integrals yields that∫ tj,n

tj−1,n

F (tj,n, sn, nY ) dWs =

∫ tj,n

tj−1,n

F (s, sn, nY ) dWs

+

∫ tj,n

tj−1,n

∫ t

tj−1,n

∂tF (t, sn, nY ) dWs dt a.s.

(3.8)

for any j ∈ {1, . . . , kn}. For the first term we have

E

[
max

j∈{1,...,kn}

∣∣∣∣ ∫ tj,n

tj−1,n

F (s, sn, nY ) dWs

∣∣∣∣p] ≤ kn∑
j=1

E

[∣∣∣∣ ∫ tj,n

tj−1,n

F (s, sn, nY ) dWs

∣∣∣∣p]
≤ cp,4|Tn|

p
2−1
(
1 + E

[
‖nY r‖p∞

])
with cp,4 := 2p−1wp(T − r)cp0(1 + cp,0). For the second integral in the decomposition (3.8)
it holds that

E

[
max

j∈{1,...,kn}

∣∣∣∣ ∫ tj,n

tj−1,n

∫ t

tj−1,n

∂tF (t, sn, nY ) dWs dt

∣∣∣∣p]

≤
kn∑
j=1

(tj,n − tj−1,n)p−1
∫ tj,n

tj−1,n

E

[∣∣∣∣ ∫ t

tj−1,n

∂tF (t, sn, nY ) dWs

∣∣∣∣p] dt
≤ cp,5|Tn|

3
2p−1

(
1 + E

[
‖nY r‖p∞

])
for cp,5 := 2p(p+ 2)−1wp(T − r)cp0(1 + cp,0). Hence, the asserted estimate follows readily
by setting cp := 5p−1((T − r)(cp,1 + cp,2) + (T − r)p/2cp,3 + cp,4 + (T − r)pcp,5).

4 Estimates and decompositions for the convergence result

4.1 Decomposition into remainder terms

We first give a moment estimate for solutions to (2.6) that does not depend on n ∈ N.

Proposition 4.1. Let (C.5) and (C.6) hold, h ∈W 1,2
r ([0, T ],Rd) and λ ≥ 0 be so that

|B(u, t, x)−B(u, s, x)|+ |∂uB(u, t, x)− ∂uB(u, s, x)| ≤ λd∞((t, x), (s, x))

for any s, t, u ∈ [r, T ) with s < t < u and every x ∈ C([0, T ],Rm). Then for each p ≥ 2

there is cp > 0 such that any n ∈ N and each solution nY to (2.6) satisfy

E
[
‖nY ‖p∞

]
+ E

[
‖nY s − nY

t‖p∞
]
/|s− t|

p
2 ≤ cp

(
1 + E

[
‖nY r‖p∞

])
(4.1)

for all s, t ∈ [r, T ] with s < t.
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Proof. We let E[‖nY r‖p∞] <∞ and may certainly assume in (C.6) that κ > 0. For given
l ∈ N the stopping time τl,n := inf{t ∈ [0, T ] | |nYt| ≥ l}∨r satisfies ‖nY τl,n‖∞ ≤ ‖nY r‖∞∨l
and we readily estimate that

E
[
‖nY s∧τl,n − nY

t∧τl,n‖p∞
] 1
p ≤

(
cp(t− s)p/2−1

∫ t

s

1 + E
[
‖nY u∧τl,n‖κp∞

]
du

) 1
p

+ E

[
sup
v∈[s,t]

∣∣∣∣ ∫ v∧τl,n

s

B(u, u, nY ) dnWu

∣∣∣∣p] 1
p

+ E

[(∫ t∧τl,n

s

∣∣∣∣ ∫ v

r

∂vB(v, u, nY ) dnWu

∣∣∣∣ dv)p] 1
p

(4.2)

for any fixed s, t ∈ [r, T ] with s < t and cp := 6p−1(1 +T − r)p((T − r)p/2 + ‖h‖p1,2,r +wp)c
p.

We recall the constant ŵp/κ,1 such that (3.3) holds when p and q are replaced by p/κ and
1, respectively. Then

E

[(∫ u∧τl,n

un

|B(v, v, nY )nẆv| dv
) p
κ
]κ
≤ cp,1(u− un)

p
2 and

E

[(∫ u∧τl,n

un

∫ v

r

|∂vB(v, u′, nY )nẆu′ | du′ dv
) p
κ
]κ
≤ (T − r)pcp,1(u− un)

p
2

for any given u ∈ [s, T ] with the constant cp,1 := 2p/2ŵκp/κ,1c
p. We let cp/κ be defined just

as cp above with p replaced by p/κ to get that

E
[
‖nY u∧τl,n − nY

un∧τl,n‖
p
κ∞
]κ ≤ cp,2(u− un)

p
2

(
1 + E

[
‖nY u∧τl,n‖p∞

])κ
for cp,2 := 2p−1(cκp/κ + (1 + T − r)pcp,1), due to the validity of (4.2). Hence, an application
of Hölder’s inequality yields that

E

[(∫ t∧τl,n

s

∣∣(B(u, u, nY )−B(un, un, nY ) nẆu

∣∣ du)p]
≤ cp,3(t− s)

p
2−1

∫ t

s

(
1 + E

[
‖nY u∧τl,n‖p∞

])κ
du and

E

[(∫ t∧τl,n

s

∫ v

r

∣∣(∂vB(v, u, nY )− ∂vB(v, un, nY )
)
nẆu

∣∣ du dv)p]
≤ (T − r)pcp,3(t− s)

p
2−1

∫ t

s

(
1 + E

[
‖nY u∧τl,n‖p∞

])κ
du,

where cp,3 := 2p/23p−1ŵ1−κ
(p/2)/(1−κ),2(T − r)p/2(λp(1 + cp,2) + cp(T − r)p/2). Moreover, the

constant ŵp appearing in (3.5) satisfies

E

[
max
v∈[s,t]

∣∣∣∣ ∫ v∧τl,n

s

B(un, un, nY ) dnWu

∣∣∣∣p] ≤ ŵpcp(t− s) p2 and

E

[(∫ t∧τl,n

s

∣∣∣∣ ∫ v

r

∂vB(v, un, nY ) dnWu

∣∣∣∣ dv)p] ≤ (T − r)pŵpcp(t− s)
p
2 .

Thus, with the constant cp,4 := 3p−1(2cp + (1 + T − r)p(cp,3 + ŵpc
p)) we can now infer

from (4.2) that

E
[
‖nY s∧τl,n − nY

t∧τl,n‖p∞
]
≤ cp,4(t− s)

p
2−1

∫ t

s

1 + E
[
‖nY u∧τl,n‖p∞

]
du. (4.3)
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Hence, Gronwall’s inequality and Fatou’s lemma imply that

E
[
‖nY t‖p∞

]
≤ lim inf

l↑∞
E
[
‖nY t∧τl,n‖p∞

]
≤ cp,5

(
1 + E

[
‖nY r‖p∞

])
,

where cp,5 := 2p−1(1 + (T − r)p/2cp,4) exp(2p−1(T − r)p/2cp,4). For this reason, we set
cp := (1 + cp,4)(1 + cp,5) and apply Fatou’s lemma to (4.3), which gives the result.

Corollary 4.2. Assume (C.5), (C.6) and (C.8) and let h ∈W 1,2
r ([0, T ],Rd). Then for every

p ≥ 2 there is cp > 0 such that each solution Y to (2.7) satisfies

E
[
‖Y ‖p∞

]
+ E

[
‖Y s − Y t‖p∞

]
/|s− t|

p
2 ≤ cp

(
1 + E

[
‖Y r‖p∞

])
(4.4)

for every s, t ∈ [r, T ] with s < t.

Proof. As the map R given by (2.8) is bounded, the assertion is a direct consequence of
Proposition 4.1 by replacing B by B +R, B by 0 and Σ by B + Σ.

For n ∈ N let us recall the linear operator Ln and the function γn given at (2.3)
and (3.7), respectively, and deduce the main decomposition to establish the limit (2.10).

Proposition 4.3. Let (C.5)-(C.8) hold and h ∈ W 1,2
r ([0, T ],Rd). Then for each p ≥ 2

there is cp > 0 such that each n ∈ N and any two solutions nY and Y of (2.6) and (2.7),
respectively, satisfy

E

[
max

j∈{0,...,kn}
|nYtj,n − Ytj,n |p

]
/cp ≤ |Tn|

p
2

(
1 + E

[
‖nY r‖p∞ + ‖Y r‖p∞

])
+ E

[
‖nY r − Y r‖p∞ + ‖Ln(nY )− nY ‖p∞ + ‖Ln(Y )− Y ‖p∞

]
+ E

[
max

j∈{0,...,kn}

∣∣∣∣ ∫ tj,n

r

R(tj,n, sn, nY )
(
γn(s)− 1

)
ds

∣∣∣∣p]
+ E

[
max

j∈{0,...,kn}

∣∣∣∣ ∫ tj,n

r

B(tj,n, sn, nY ) d(nWs −Ws)

∣∣∣∣p]
+ E

[
max

j∈{0,...,kn}

∣∣∣∣ ∫ tj,n

r

(
B(tj,n, s, nY )−B(tj,n, sn, nY )

)
nẆs −R(tj,n, sn, nY )γn(s) ds

∣∣∣∣p].
Proof. We suppose that E[‖nY r‖p∞] and E[‖Y r‖p∞] are finite and will derive the estimate
by applying Gronwall’s inequality to the increasing function ϕn : [r, T ]→ R+ given by

ϕn(t) := E

[
max

j∈{0,...,kn}: tj,n≤t
|nYtj,n − Ytj,n |p

]
.

To this end, let us write the difference of nY and Y as follows:

nYt − Yt = nYr − Yr +

∫ t

r

B(s, s, nY )−B(s, s, Y ) ds

+

∫ t

r

BH(s, s, nY )−BH(s, s, Y ) dh(s) + n∆t

+

∫ t

r

∫ v

r

∂vB(v, u, nY )− ∂vB(v, u, Y ) du dv

+

∫ t

r

∫ v

r

∂vBH(v, u, nY )− ∂vBH(v, u, Y ) dh(u) dv

+

∫ t

r

Σ(s, s, nY )− Σ(s, s, Y ) dWs +

∫ t

r

∫ v

r

∂vΣ(v, u, nY )− ∂vΣ(v, u, Y ) dWu dv
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for each t ∈ [r, T ] a.s. with a process n∆ ∈ C ([0, T ],Rm) satisfying

n∆t =

∫ r∨t

r

B(t, s, nY )nẆs −R(t, s, Y ) ds−
∫ r∨t

r

B(t, s, Y ) dWs

for any t ∈ [0, T ] a.s. So, we let the terms nYr − Yr and n∆ unchanged, then for the
constant cp,1 := 15p−1(1 + T − r)p(T − r)p/2−1((T − r)p/2 + ‖h‖p1,2,r + wp)λ

p we have

ϕn(t)
1
p ≤ δ

1
p

n,1 + δn(t)
1
p +

(
cp,1

∫ tn

r

δn,1 + (δn,2 + εn + ϕn)(s) ds

) 1
p

(4.5)

for all t ∈ [r, T ], where we have set δn,1 := E[‖nY r−Y r‖p∞] and the measurable functions
δn, δn,2, εn : [r, T ]→ R+ are defined by

δn(t) := E

[
max

j∈{0,...,kn}: tj,n≤t
|n∆tj,n |p

]
,

δn,2(s) := E
[
‖Ln(nY )sn − nY

sn‖p∞ + ‖Ln(Y )sn − Y sn‖p∞
]

and

εn(s) := E
[
‖nY s − nY

sn‖p∞ + ‖Y s − Y sn‖p∞
]
.

To obtain the estimate (4.5), we used the chain of inequalities: E[‖Ln(nY )sn−Ln(Y )sn‖p∞]

≤ E[‖nY r − Y r‖p∞ ∨ maxj∈{0,...,kn}: tj,n≤s |nYtj,n − Ytj,n |p] ≤ δn,1 + ϕn(s), valid for every
s ∈ [r, T ].

For the estimation of δn let us define two processes n,3∆, n,5∆ ∈ C ([0, T ],Rm) by

n,3∆t :=
∫ r∨t
r

R(t, sn, nY )
(
γn(s)− 1

)
ds and

n,5∆t :=

∫ r∨t

r

(
B(t, s, nY )−B(t, sn, nY )

)
nẆs −R(t, sn, nY )γn(s) ds

and choose n,4∆ ∈ C ([0, T ],Rm) such that n,4∆t =
∫ r∨t
r

B(t, sn, nY ) d(nWs −Ws) for any
t ∈ [0, T ] a.s. Then n∆ admits the following representation:

n∆t = n,3∆t + n,4∆t + n,5∆t +

∫ t

r

R(t, sn, nY )−R(t, s, Y ) ds

+

∫ t

r

B(s, sn, nY )−B(s, s, Y ) dWs +

∫ t

r

∫ u

r

∂uB(u, sn, nY )− ∂uB(u, s, Y ) dWs du

for all t ∈ [r, T ] a.s. Due to the assumptions, we may assume without loss of generality
that the Lipschitz constant λ is large enough such that

|R(u, t, x)−R(u, s, y)| ≤ λd∞((t, x), (s, y))

for any s, t, u ∈ [r, T ) with s < t < u and every x, y ∈ C([0, T ],Rm). Thus, for the constant
cp,2 := 10p−1(1 + T − r)p(T − r)p/2−1((T − r)p/2 + wp)λ

p we get that

δn(t)
1
p ≤ δn,3(t)

1
p + δn,4(t)

1
p + δn,5(t)

1
p

+

(
cp,2

∫ tn

r

δn,1 + (s− sn)
p
2 + (δn,2 + εn + ϕn)(s) ds

) 1
p (4.6)

for every t ∈ [r, T ], where the increasing function δn,i : [r, T ]→ R+ is given by

δn,i(t) := E

[
max

j∈{0,...,kn}: tj,n≤t
|n,i∆tj,n |p

]
for all i ∈ {3, 4, 5}.
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Thanks to Proposition 4.1 and Corollary 4.2, there are cp, cp > 0 such that (4.1)
and (4.4) hold when cp is replaced by cp and cp, respectively. By combining (4.5)
with (4.6), we see that

ϕn(t) ≤ cp,4|Tn|
p
2

(
1 + E

[
‖nY r‖p∞ + ‖Y r‖p∞

])
+ (5p−1 + cp,3(T − r))δn,1

+ 5p−1(δn,3 + δn,4 + δn,5)(t) + cp,3

∫ tn

r

(δn,2 + ϕn)(s) ds

for fixed t ∈ [r, T ], where cp,3 := 10p−1(cp,1 + cp,2) and cp,4 := 2p/2(T − r)(1 + cp + cp)cp,3.
For this reason, Gronwall’s inequality gives

ϕn(t)/cp ≤ |Tn|
p
2

(
1 + E

[
‖nY r‖p∞ + ‖Y r‖p∞

])
+ δn,1 +

5∑
i=2

δn,i(t)

with cp := exp(cp,3(T − r))(5p−1 + cp,4), which implies the desired estimate.

By the estimate (3.2), Lemma 3.4 and Proposition 3.5, to prove (2.10), only the last
remainder in the estimation of Proposition 4.3 should be investigated in more detail.
Thus, let Φh,n : [r, T ]× C([0, T ],Rm)× C([0, T ],Rd)→ Rm be defined via

Φh,n(s, y, w) := BH(sn, sn, y)(h(s)− h(sn)) +B(sn, sn, y)
(
Ln(w)(s)− Ln(w)(sn)

)
+ Σ(sn, sn, y)(w(s)− w(sn)) +

∫ s

sn

∫ sn

r

∂vB(v, u, y) dLn(w)(u) dv

for each h ∈W 1,2
r ([0, T ],Rd) and any n ∈ N. Whenever nY is a solution to (2.6), then we

will utilize the following decomposition to deal with the considered remainder:(
B(tj,n, s, nY )−B(tj,n, sn, nY )

)
nẆs −R(tj,n, sn, nY )γn(s)

=
(
B(tj,n, s, nY )−B(tj,n, sn, nY )− ∂xB(tj,n, sn, nY )(nYs − nYsn)

)
nẆs

+ ∂xB(tj,n, sn, nY )
(
nYs − nYsn − Φh,n(s, nY,W )

)
nẆs

+ ∂xB(tj,n, sn, nY )Φh,n(s, nY,W )nẆs −R(tj,n, sn, nY )γn(s)

(4.7)

for all j ∈ {1, . . . , kn} and each s ∈ [r, tj,n).

4.2 Moment estimates for the first two remainders

The first result in this section together with Lemma 3.2 provide an estimate for the
first remainder appearing in (4.7).

Proposition 4.4. Let (C.4)-(C.6) be satisfied, h ∈ W 1,2
r ([0, T ],Rd) and F be a product

measurable functional on [r, T ]× [r, T )× C([0, T ],Rm) such that the following holds:

(i) There exists λ ≥ 0 such that |B(u, t, x) − B(u, s, x)| + |∂uB(u, t, x) − ∂uB(u, s, x)|
≤ λd∞((t, x), (s, x)) for any s, t, u ∈ [r, T ) with s < t < u and all x ∈ C([0, T ],Rm).

(ii) The functional [r, t) × C([0, T ],Rm) → R, (s, x) 7→ F (t, s, x) is of class C1,2 for any
t ∈ (r, T ] and there are c0, η, λ0 ≥ 0 such that

|∂sF (t, s, x)|+ |∂xxF (t, s, x)| ≤ c0(1 + ‖x‖η∞) and

|∂xF (u, t, x)− ∂xF (u, s, x)| ≤ λ0d∞((t, x), (s, x))

for each s, t, u ∈ [r, T ) with s < t < u and all x ∈ C([0, T ],Rm).
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Then for any p ≥ 2 there is cp > 0 such that for all n ∈ N and each solution nY to (2.6),

E

[
max

j∈{1,...,kn}

∫ tj,n

r

|F (tj,n, s, nY )− F (tj,n, sn, nY )− ∂xF (tj,n, sn, nY )(nYs − nYsn)|p ds
]

≤ cp|Tn|p−1
(
1 + E

[
‖nY r‖(η∨2)p∞

])
.

Proof. For any j ∈ {1, . . . , kn} let the product measurable map n,j∆ : [r, tj,n)2×Ω→ R1×m

be given by n,j∆s,u := ∂xF (tj,n, u, nY )− ∂xF (tj,n, sn, nY ), if u ∈ [sn, s], and n,j∆s,u := 0,
otherwise. Then from the functional Itô formula in [6] we infer that

F (tj,n, s, nY )− F (tj,n, sn, nY )− ∂xF (tj,n, sn, nY )(nYs − nYsn)

=

∫ s

sn

∂uF (tj,n, u, nY ) +
1

2
tr
(
∂xxF (tj,n, u, nY )(ΣΣ′)(u, u, nY )

)
du

+

∫ s

sn

n,j∆s,u

(
B(u, u, nY ) +BH(u, u, nY )ḣ(u) +B(u, u, nY )nẆu

)
du

+

∫ s

sn

n,j∆s,v

∫ v

r

∂vB(v, u, nY ) + ∂vBH(v, u, nY )ḣ(u) + ∂vB(v, u, nY )nẆu du dv

+

∫ s

sn

n,j∆s,uΣ(u, u, nY ) dWu +

∫ s

sn

n,j∆s,v

∫ v

r

∂vΣ(v, u, nY ) dWu dv

(4.8)

for each s ∈ [r, tj,n) a.s. Now, for η0 := η ∨ 2 Proposition 4.1 gives a constant cη0p > 0

such that (4.1) holds when p and cp are replaced by η0p and cη0p, respectively. Then for
the first two terms on the right-hand side in (4.8) we have

E

[
max

j∈{1,...,kn}
sup

s∈[r,tj,n)

∣∣∣∣ ∫ s

sn

∂uF (tj,n, u, nY ) +
1

2
tr
(
∂xxF (tj,n, u, nY )(ΣΣ′)(u, u, nY )

)
du

∣∣∣∣p]
≤ 2p−1cp0(s− sn)pE

[(
1 + ‖nY ‖η∞

)p]
+ 2−1cp0(s− sn)p−1

∫ s

sn

E
[(

1 + ‖nY u‖η∞
)p|(ΣΣ′)(u, u, nY )|p

]
du

≤ cp,1|Tn|p
(
1 + E

[
‖nY r‖η0p∞

]) η
η0

with cp,1 := 22p−1cp0(2p+c2p)(1+cη0p)
η/η0 . We note that |n,j∆s,u| ≤ λ0d∞((s, nY ), (sn, nY ))

for each j ∈ {1, . . . , kn} and all s, u ∈ [r, tj,n) and by setting cp := 23p/2λp0(1 + cη0p)
1/η0 , we

obtain that

λp0E
[
d∞((s, nY ), (sn, nY ))2p

] 1
2 ≤ cp|Tn|

p
2

(
1 + E

[
‖nY r‖η0p∞

]) 1
η0

for each s ∈ [r, T ]. Consequently, the Cauchy-Schwarz inequality gives us the following
bound for the third and the sixth expression in the decomposition (4.8):

E

[
max

j∈{1,...,kn}

∫ tj,n

r

∣∣∣∣ ∫ s

sn

n,j∆s,v

(
B(v, v, nY ) +

∫ v

r

∂vB(v, u, nY ) du

)
dv

∣∣∣∣p ds]
≤ 2p−1cp

∫ T

r

(s− sn)pλp0E
[
d∞((s, nY ), (sn, nY ))p

(
1 + ‖nY s‖κ∞

)p]
ds

+ 2p−1cp
∫ T

r

λp0E

[
d∞((s, nY ), (sn, nY ))p(s− sn)p−1

∫ s

sn

(∫ v

r

1 + ‖nY u‖κ∞ du

)p
dv

]
ds

≤ cp,2|Tn|p
(
1 + E

[
‖nY r‖η0p∞

]) 2
η0

∫ T

r

(s− sn)
p
2 ds
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Support characterization for stochastic Volterra integral equations

for cp,2 := 25p/2−1(1 + (T − r)p)cp(1 + cη0p)
1/η0cp. For the fourth expression we apply the

Cauchy-Schwarz inequality twice, which entails that

E

[
max

j∈{1,...,kn}

∫ tj,n

r

∣∣∣∣ ∫ s

sn

n,j∆s,uBH(u, u, nY ) dh(u)

∣∣∣∣p ds]
≤ ‖h‖p1,2,rcp

∫ T

r

(s− sn)
p
2 λp0E

[
d∞((s, nY ), (sn, nY ))p

(
1 + ‖nY ‖κ∞

)p]
ds

≤ cp,3|Tn|p
(
1 + E

[
‖nY r‖η0p∞

]) 2
η0 ,

where cp,3 := 23p/2(T − r)‖h‖p1,2,rcp(1 + cη0p)
1/η0cp. Proceeding similarly, it follows for the

seventh expression that

E

[
max

j∈{1,...,kn}

∫ tj,n

r

∣∣∣∣ ∫ s

sn

n,j∆s,v

∫ v

r

∂vBH(v, u, nY ) dh(u) dv

∣∣∣∣p ds]
≤
∫ T

r

(s− sn)p−1
∫ s

sn

λp0E

[
d∞((s, nY ), (sn, nY ))p

∣∣∣∣ ∫ v

r

∂vBH(v, u, nY ) dh(u)

∣∣∣∣p] dv ds
≤ cp,4|Tn|p

(
1 + E

[
‖nY r‖η0p∞

]) 2
η0

∫ T

r

(s− sn)
p
2 ds

with cp,4 := (T − r)p/2−1cp,3. We turn to the fifth and eight term in (4.8) and once again
apply the Cauchy-Schwarz inequality, which leads us to

E

[
max

j∈{1,...,kn}

∫ tj,n

r

∣∣∣∣ ∫ s

sn

n,j∆s,v

(
B(v, v, nY )nẆv +

∫ v

r

∂vB(v, u, nY ) dnWu

)
dv

∣∣∣∣p ds]

≤ 2p−1cp
∫ T

r

(s− sn)
p
2 λp0E

[
d∞((s, nY ), (sn, nY ))p

(∫ s

sn

|nẆv|2 dv
) p

2
]
ds

+ 2p−1cp
∫ T

r

(s− sn)p−1
∫ s

sn

λp0E

[
d∞((s, nY ), (sn, nY ))p

(∫ v

r

|nẆu| du
)p]

dv ds

≤ cp,5|Tn|p
(
1 + E

[
‖nY r‖η0p∞

]) 1
η0

for cp,5 := 22p−1ŵ
1/2
p,2 (T − r)(1 + (T − r)p/(p+ 1))cpcp. By using the constant cT appearing

in condition (C.4), we derive the following estimate for the ninth term:

E

[
max

j∈{1,...,kn}

∫ tj,n

r

∣∣∣∣ ∫ s

sn

n,j∆s,uΣ(u, u, nY ) dWu

∣∣∣∣p ds]

≤ wpcp
kn∑
j=1

∫ tj,n

r

(s− sn)
p
2−1

∫ s

sn

λp0E
[
d∞((s, nY ), (sn, nY ))p

]
du ds

≤ cp,6|Tn|p−1
(
1 + E

[
‖nY r‖η0p∞

]
)

1
η0 ,

where cp,6 := 2p/2wpc
pcp(T−r)cT. Finally, for the last expression we now readily estimate

that

E

[
max

j∈{1,...,kn}

∫ tj,n

r

∣∣∣∣ ∫ s

sn

n,j∆s,v

∫ v

r

∂vΣ(v, u, nY ) dWu dv

∣∣∣∣p ds]
≤
∫ T

r

(s− sn)p−1
∫ s

sn

E

[
λp0d∞((s, nY ), (sn, nY ))p

∣∣∣∣ ∫ v

r

∂vΣ(v, u, nY ) dWu

∣∣∣∣p] dv ds
≤ cp,7|Tn|p

(
1 + E

[
‖nY r‖η0p∞

]) 1
η0

∫ T

r

(s− sn)
p
2 ds
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for cp,7 := 2p/2cpcpw
1/2
2p (T − r)p/2. So, we let cp,8 := (T − r)((T − r)cp,1 + cp,3 + cp,5) and

cp,9 := (T−r)p/2+2(cp,2+cp,4+cp,7) and conclude by setting cp := 7p−1(cp,6+cp,8+cp,9).

Next, we give a bound for the second remainder in (4.7), which allows for another
application of Lemma 3.2, according to Remark 3.3.

Lemma 4.5. Let (C.5)-(C.7) be valid and h ∈W 1,2
r ([0, T ],Rd). Then for each p ≥ 2 there

is cp > 0 such that each n ∈ N and any solution nY to (2.6) satisfy

E
[
|nYs − nYsn − Φh,n(s, nY,W )|p

]
≤ cp|Tn|p

(
1 + E

[
‖nY r‖2p∞

]) 1
2

for every s ∈ [r, T ).

Proof. From Fubini’s theorem for both deterministic and stochastic integrals and the
definition of Φh,n we get that

nYs − nYsn − Φh,n(s, nY,W ) =

∫ s

sn

B(u, u, nY ) du

+

∫ s

sn

BH(u, u, nY )−BH(sn, sn, nY ) dh(u) +

∫ s

sn

B(u, u, nY )−B(sn, sn, nY ) dnWu

+

∫ s

sn

∫ v

r

∂vB(v, u, nY ) du dv +

∫ s

sn

∫ v

r

∂vBH(v, u, nY ) dh(u) dv

+

∫ s

sn

∫ v

sn

∂vB(v, u, nY ) dnWu dv +

∫ s

sn

Σ(u, u, nY )− Σ(sn, sn, nY ) dWu

+

∫ s

sn

∫ v

r

∂vΣ(v, u, nY ) dWu dv a.s.

(4.9)

Proposition 4.1 provides a constant c2p > 0 such that (4.1) holds when p and cp are

replaced by 2p and c2p, respectively. We set cp,1 := (1+c2p)
1/2 and cp,2 := λp+(T−r)p/2cp

and define eight constants as follows:

cp,1 := 22pcpcp,1, cp,2 := 23p‖h‖p1,2,rcp,1cp,2, cp,3 := 2
3
2p3pŵ

1
2
p,2cp,1cp,2,

cp,4 := (T − r)pcp,1, cp,5 := 22p(T − r)
p
2 ‖h‖p1,2,rcpcp,1, cp,6 := 2

3
2pŵp,1(T − r)

p
2 cp,

cp,7 := 2p3pwpcp,1cp,2 and cp,8 := 2pwp(T − r)
p
2 cp.

By using the inequalities of Jensen and Cauchy-Schwarz, (3.3) and (3.4), it follows
readily that the p-th moment of the i-th integral in the decomposition (4.9) is bounded by
cp,i|Tn|p(1 + E[‖nY r‖2p∞])1/2 for all i ∈ {1, . . . , 8}. We set cp := 8p−1(cp,1 + · · ·+ cp,8) and
the asserted estimate follows.

4.3 A second moment estimate for the third remainder

We bound the third remainder in (4.7) by repeatedly using an estimate that follows
for any n ∈ N with kn ≥ 2 from Doob’s L2-maximal inequality; see [7][Lemma 33] for
details.

(v) For every l ∈ {1, . . . , d} assume that (lUi)i∈{1,...,kn−1} and (lVi)i∈{1,...,kn−1} are two
sequences of R1×m-valued and Rm-valued random vectors, respectively, such that

lUi is Fti−1,n -measurable, lVi is Fti,n-measurable,

E
[
|lUi|4 + |lVi|4

]
<∞ and E[lVi|Fti−1,n ] = 0 a.s.

for all i ∈ {1, . . . , kn − 1}. Then

E

[
max

j∈{1,...,kn}

∣∣∣∣ j−1∑
i=1

d∑
l=1

lUi lVi

∣∣∣∣2] ≤ 4

kn−1∑
i=1

d∑
l1,l2=1

E
[
l1Ui l1Vi l2V

′
i l2U

′
i

]
. (4.10)
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Proposition 4.6. Let (C.5)-(C.8) be satisfied and h ∈ W 1,2
r ([0, T ],Rd). Then there is

c2 > 0 such that for each n ∈ N and any solution nY to (2.6) it holds that

E

[
max

j∈{0 ...,kn}

∣∣∣∣ ∫ tj,n

r

∂xB(tj,n, sn, nY )Φh,n(s, nY,W )nẆs −R(tj,n, sn, nY )γn(s) ds

∣∣∣∣2]
≤ c2|Tn|

(
1 + E

[
‖nY r‖2∞

])
.

Proof. By the definition (2.8) of the mapping R, we can write the k-th coordinate of
∂xB(tj,n, sn, nY )Φh,n(s, nY,W )nẆs −R(tj,n, sn, nY )γn(s) in the form

d∑
l=1

∂xBk,l(tj,n, sn, nY )
(
Φh,n(s, nY,W )nẆ

(l)
s − ((1/2)B + Σ)(sn, sn, nY )γn(s)el

)
for each j ∈ {1, . . . , kn}, any k ∈ {1, . . . ,m} and all s ∈ [r, tj,n), where X(l) stands for the
l-th coordinate of any Rd-valued process X for each l ∈ {1, . . . , d}. Based on this identity,
we use the following decomposition:

Φh,n(s, nY,W )nẆ
(l)
s − ((1/2)B + Σ)(sn, sn, nY )γn(s)el

= BH(sn, sn, nY )(h(sn)− h(sn))nẆ
(l)
s +B(sn, sn, nY )(nWsn − nWsn

)nẆ
(l)
s

+ Σ(sn, sn, nY )
(
∆WsnnẆ

(l)
s − γn(s)el

)
+BH(sn, sn, nY )(h(s)− h(sn))nẆ

(l)
s

+B(sn, sn, nY )
(
(nWs − nWsn)nẆ

(l)
s − (1/2)γn(s)el

)
+ Σ(sn, sn, nY )(Ws −Wsn)nẆ

(l)
s +

∫ s

sn

∫ sn

r

∂vB(v, u, nY ) dnWu dv nẆ
(l)
s

(4.11)

with l ∈ {1, . . . , d}. To handle the first appearing term, we decompose the integral and
apply Fubini’s theorem for stochastic integrals to rewrite that∫ tj,n

r

∂xBk,l(tj,n, sn, nY )BH(sn, sn, nY )(h(sn)− h(sn)) dnW
(l)
s

=

∫ tj−1,n

r

∂xBk,l(s, sn, nY )BH(sn, sn, nY )(h(sn)− h(sn)) dW (l)
s

+

∫ tj,n

r

∫ t∧tj−1,n

r

∂t∂xBk,l(t, sn, nY )BH(sn, sn, nY )(h(sn)− h(sn)) dW (l)
s dt a.s.

for any j ∈ {1, . . . , kn}, every k ∈ {1, . . . ,m} and each l ∈ {1, . . . , d}. By Proposition 4.1,
there is c2 > 0 such that (4.1) holds for p = 2 with c2 instead of cp. Therefore,

E

[
max

j∈{0,...,kn}

m∑
k=1

∣∣∣∣ d∑
l=1

∫ tj,n

r

∂xBk,l(tj,n, sn, nY )BH(sn, sn, nY )(h(sn)− h(sn)) dnW
(l)
s

∣∣∣∣2]

≤ 2w2c
2c2
∫ T

r

E
[(

1 + ‖nY sn‖κ∞
)2]|h(sn)− h(sn)|2 ds

+ 2w2(T − r)c2c2
∫ T

r

∫ t

r

E
[(

1 + ‖nY sn‖κ∞
)2]|h(sn)− h(sn)|2 ds dt

≤ c2,1|Tn|
(
1 + E

[
‖nY r‖2∞

])κ
with c2,1 := 23w2(1 + (T − r)2/2)(T − r)‖h‖21,2,rc2c2(1 + c2)κ. Proceeding similarly, we
obtain for the second term in the decomposition (4.11) that∫ tj,n

r

∂xBk,l(tj,n, sn, nY )B(sn, sn, nY )(nWsn − nWsn
) dnW

(l)
s
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=

∫ tj−1,n

r

∂xBk,l(s, sn, nY )B(sn, sn, nY )∆Wsn dW
(l)
s

+

∫ tj,n

r

∫ t∧tj−1,n

r

∂t∂xBk,l(t, sn, nY )B(sn, sn, nY )∆Wsn dW
(l)
s dt a.s.

for every j ∈ {1, . . . , kn}, each k ∈ {1, . . . ,m} and any l ∈ {1, . . . , d}. Hence, by setting
c2,2 := 2w2(1 + (T − r)2/2)(T − r)dc2c2, it follows readily that

E

[
max

j∈{0,...,kn}

m∑
k=1

∣∣∣∣ d∑
l=1

∫ tj,n

r

∂xBk,l(tj,n, sn, nY )B(sn, sn, nY )(nWsn − nWsn
) dnW

(l)
s

∣∣∣∣2]

≤ 2w2c
2c2
∫ T

r

(
E
[
|∆Wtn |2

]
+ (T − r)

∫ t

r

E
[
|∆Wsn |2

]
ds

)
dt ≤ c2,2|Tn|.

To deal with the third expression in (4.11), we utilize the Rd-valued Fti,n -measurable
random vector

l,nVi := ∆Wti,n∆W
(l)
ti,n −∆ti,nel,

which is independent of Fti−1,n
and satisfies E[l,nVi] = 0 for any i ∈ {1, . . . , kn} and each

l ∈ {1, . . . , d}. We note that if Il2,l1 ∈ Rd×d denotes the matrix whose (l2, l1)-entry is 1

and whose all other entries are zero, then

E
[
l1,nVi l2,nV

′
i

]
= (∆ti,n)2

(
1{l2}(l1)Id + Il2,l1

)
whenever i ∈ {1, . . . , kn} and l1, l2 ∈ {1, . . . , d}. Now, by decomposing the integral once
again, we obtain that∫ tj,n

r

∂xBk,l(tj,n, sn, nY )Σ(sn, sn, nY )
(
∆WsnnẆ

(l)
s − γn(s)el

)
ds

=

j−1∑
i=1

∂xBk,l(ti,n, ti−1,n, nY )Σ(ti−1,n, ti−1,n, nY )l,nVi

+

j−1∑
i2=1

∫ ti2+1,n

ti2,n

i2∑
i1=1

∂t∂xBk,l(t, ti1−1,n, nY )Σ(ti1−1,n, ti1−1,n, nY ) l,nVi1 dt

=

j−1∑
i=1

∂xBk,l(ti,n, ti−1,n, nY )Σ(ti−1,n, ti−1,n, nY )l,nVi

+

∫ tj,n

t1,n

in(t)∑
i=1

∂t∂xBk,l(t, ti−1,n, nY )Σ(ti−1,n, ti−1,n, nY )l,nVi dt

for all j ∈ {1, . . . , kn}, each k ∈ {1, . . . ,m} and every l ∈ {1, . . . , d} with the function
in : [r, T ]→ {0, . . . , kn} given by

in(t) := max{i ∈ {0, . . . , kn} | ti,n ≤ t},

which satisfies in = i on [ti,n, ti+1,n) for any i ∈ {0, . . . , kn − 1} and in(T ) = kn. For this
reason, the estimate (4.10) gives us that

E

[
max

j∈{0,...,kn}

m∑
k=1

∣∣∣∣ ∫ tj,n

r

d∑
l=1

∂xBk,l(tj,n, sn, nY )Σ(sn, sn, nY )
(
∆WsnnẆ

(l)
s − γn(s)el

)
ds

∣∣∣∣2]

≤ 24|Tn|
kn−1∑
i=1

∆ti,n

m∑
k=1

d∑
l=1

E
[
|∂xBk,l(ti,n, ti−1,n, nY )Σ(ti−1,n, ti−1,n, nY )|2

]
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+ 2(T − r)
∫ T

t1,n

m∑
k=1

E

[∣∣∣∣ in(t)∑
i=1

d∑
l=1

∂t∂xBk,l(t, ti−1,n, nY )Σ(ti−1,n, ti−1,n, nY )l,nVi

∣∣∣∣2] dt
≤ c2,3|Tn|

with c2,3 := 24(1 + (T − r)2)(T − r)c2c2, since x′Il2,l1y ≤ (1/2)(x2l2 + y2l1) for any x, y ∈ Rd
and every l1, l2 ∈ {1, . . . , d}, by Young’s inequality.

For the fourth term in (4.11) another decomposition of the integral and integration
by parts yield that∫ tj,n
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for each j ∈ {1, . . . , kn}, any k ∈ {1, . . . ,m} and every l ∈ {1, . . . , d}. Hence, from the
Cauchy-Schwarz inequality we get that
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with c2,4 := 23(1 + (T − r)2/2)(T − r)‖h‖21,2,rc2c2(1 + c2)κ, because ∆W

(1)
sn , . . . ,∆W
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sn are

pairwise independent and independent of Fsn
for all s ∈ [r, T ].

The fifth expression in (4.11) can be treated in a similar way as the third. Namely, we
set l,nUs := (nWs − nWsn)nẆ

(l)
s − (1/2)γn(s)el for every s ∈ [r, T ] and rewrite that∫ tj,n
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for all j ∈ {1, . . . , kn}, each k ∈ {1, . . . ,m} and every l ∈ {1, . . . , d}. Thus, from the
estimate (4.10) we can again infer that
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for c2,5 := 22(1 + (T − r)2)(T − r)c2c2. For the sixth expression in (4.11) we decompose
the integral and apply Itô’s formula to the effect that∫ tj,n
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for all j ∈ {1, . . . , kn}, each k ∈ {1, . . . ,m} and every l ∈ {1, . . . , d}. Hence, by utilizing

that ∆W
(1)
sn , . . . ,∆W

(d)
sn are pairwise independent for any s ∈ [r, T ], we estimate that
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where c2,6 := 2w2(1 + (T − r)2/2)(T − r)c2c2.
Finally, for the seventh term in (4.11) we define an Rm-valued Fti−1,n -measurable

random vector by
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for all j ∈ {1, . . . , kn}, each k ∈ {1, . . . ,m} and every l ∈ {1, . . . , d}. As ∆W
(1)
ti,n , . . . ,W

(d)
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are pairwise independent and independent of Fti−1,n for every i ∈ {1, . . . , kn}, it follows
that
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with c2,7 := 25ŵ2,1(1 + (T − r)2)(T − r)3c2c2, by virtue of the estimate (4.10). Hence, we
complete the proof by setting c2 := 7(c2,1 + · · ·+ c2,7).
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5 Proofs of the convergence result and the support theorem

5.1 Proofs of Lemmas 2.2 and 1.1

Proof of Lemma 2.2. (i) If Σ vanishes, then (2.6) can be solved in a pathwise sense.
Namely, for any x ∈ C([0, T ],Rm) and each w ∈ C([0, T ],Rd) Proposition 3 in [7] yields a
unique solution yx,w ∈W 1,2

r ([0, T ],Rm) to the Volterra integral equation

yx,w(t) = x(r) +

∫ t

r

B(t, s, yx,w) +BH(t, s, yx,w)ḣ(s) +B(t, s, yx,w)L̇n(w)(s) ds

for t ∈ [r, T ] with yrx,w = xr, by the absolute continuity condition on B, BH and B in (C.5).
Thus, pathwise uniqueness for (2.6) holds and the process nY ∈ C ([0, T ],Rm) given
by nYt := y

nξ,W (t) is the unique strong solution with nY
r = nξ

r a.s., since the map
C([0, T ],Rm)× C([0, T ],Rd)→W 1,2

r ([0, T ],Rm), (x,w) 7→ yx,w is Borel measurable.
Now suppose that B = bΣ for some measurable function b : [r, T ] → R such that∫ T

r
b(s)2 ds < ∞. In this case, according to Lemma 35 in [7], we may introduce a

martingale nZ ∈ C ([0, T ],R) by nZ
r

= 1 and

nZt = exp

(
−
∫ t

r

b(s)nẆ
′
s dWs −

1

2

∫ t

r

|b(s)nẆs|2 ds
)

for all t ∈ [r, T ] a.s. Then nW ∈ C ([0, T ],Rd) defined via nW t := Wt +
∫ r∨t
r

b(s) dnWs is a
d-dimensional (Ft)t∈[0,T ]-Brownian motion under the probability measure Pn on (Ω,F )

given by Pn(A) := E[nZT1A], by Girsanov’s theorem.
We observe that a process Y ∈ C ([0, T ],Rm) is a solution to (2.6) under P if and only

if it solves the path-dependent stochastic Volterra integral equation

Yt = Yr +

∫ t

r

B(t, s, Y ) +BH(t, s, Y )ḣ(s) ds+

∫ t

r

Σ(t, s, Y ) dnW s (5.1)

a.s. for t ∈ [r, T ] under Pn. In the one-dimensional case m = 1 pathwise uniqueness
and strong existence for (5.1) can essentially be inferred from Theorem 4.3 in [13]
when considering the drift B +BH ḣ and the diffusion Σ. In the general case, pathwise
uniqueness follows, for instance, by proceeding similarly as in the proof of Lemma 27
in [7], due to the absolute continuity condition on B, BH and Σ.

For strong existence we may assume that b = 0 and recall from Proposition 11 in [7]
that the linear space C pn([0, T ],Rm) of all X ∈ C ([0, T ],Rm) for which E[‖X‖pn∞ ] is finite,
endowed with the seminorm C pn([0, T ],Rm) → R+, X 7→ E[‖X‖pn∞ ]1/pn , is complete.
Then the operator Ψ : C pn([0, T ],Rm)→ C ([0, T ],Rm) specified by requiring that

Ψ(Y )t = nξr∧t +

∫ r∨t

r

B(s, s, Y ) +BH(s, s, Y )ḣ(s) ds+

∫ r∨t

r

Σ(s, s, Y ) dWs

+

∫ r∨t

r

∫ v

r

∂vB(v, u, Y ) + ∂vBH(v, u, Y )ḣ(u) du+

∫ v

r

∂vΣ(v, u, Y ) dWu dv

for any t ∈ [0, T ] a.s. maps C pn([0, T ],Rm) into itself and satisfies E[‖Ψ(Y )t −Ψ(Ỹ )t‖pn∞ ]

≤ cpn
∫ t
r
E[‖Y s− Ỹ s‖pn∞ ] ds for any Y, Ỹ ∈ C pn([0, T ],Rm) and all t ∈ [r, T ], where we have

set cpn := 3pn(1 + T − r)3pn/2((T − r)pn/2 + ‖h‖pn1,2,r + wpn)λpn .
Hence, it follows as in the proof of Proposition 5 in [7] that the sequence (k,nY )k∈N0

in C pn([0, T ],Rm), recursively defined by 0,nY := nξ and k,nY := Ψ(k−1,nY ) for all k ∈ N,
converges to the a.s. unique fixed-point nY of Ψ, which is a solution to (5.1) and satisfies

nY
r = nξ

r a.s.
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Regarding the claimed estimate, we let p > 2 and α ∈ [0, 1/2 − 1/p). Then from
Proposition 4.1 we obtain cp > 0 such that (4.1) holds and the Kolmogorov-Chentsov
estimate (3.1) implies that

E
[
(‖nY ‖α,r − ‖nξr‖∞)p

]
≤ kα,p, p2−1cp(T − r)

p( 1
2−α)

(
1 + E

[
‖nξr‖p∞

])
for every n ∈ N. Hence, we set cα,p := 2p−1(1 + kα,p,p/2−1cp(T − r)p(1/2−α)), then the
triangle inequality gives the desired result.

(ii) Pathwise uniqueness, strong existence and the asserted bound can be directly
inferred from (i) by replacing B by B +R, B by 0 and Σ by B + Σ, since in this case the
required condition (C.9) holds for the choice b = 0.

Proof of Lemma 1.1. (i) Pathwise uniqueness, the existence of a unique strong solution
and the integrability condition follow from assertion (ii) of Lemma 2.2 by letting B = b,
BH = B = 0, Σ = σ and ξ = x̂.

(ii) For h ∈ W 1,p
r ([0, T ],Rd) we set Fh := b − (1/2)ρ + σḣ, where ρ(t, s, x) = ρ(t, s, x)

for any s, t ∈ [r, T ] with s < t and all x ∈ C([0, T ],Rm), as defined in Section 2.2.
First, since ∂xσ(·, s, x) is absolutely continuous on (s, T ], so is ρ(·, s, x) and hence,

Fh(·, s, x) for any (s, x) ∈ [r, T ) × C([0, T ],Rm). Secondly, there are c0, λ0 ≥ 0 such that
max{|σ|, |∂tσ|, |ρ|, |∂tρ|} ≤ c0 and

|ρ(s, s, x)− ρ(s, s, y)|+ |∂tρ(t, s, x)− ∂tρ(t, s, y)| ≤ λ0‖x− y‖∞

for all s, t ∈ (r, T ) with s < t and every x, y ∈ C([0, T ],Rm). These conditions ensure that
the map Fh satisfies |Fh(s, s, x)|+ |∂tFh(t, s, x)| ≤ c1(1 + |ḣ(s)|)(1 + ‖x‖∞) and

|Fh(s, s, x)− Fh(s, s, y)|+ |∂tFh(t, s, x)− ∂tFh(t, s, y)| ≤ λ1(1 + |ḣ(s)|)‖x− y‖∞

for any s, t ∈ (r, T ) with s < t and all x, y ∈ C([0, T ],Rm), where c1 := 3 max{c0, c} and
λ1 := 2 max{λ0, λ}. As these are all the necessary assumptions, we invoke Proposition 3
in [7] to get a unique solution xh to (1.5), which satisfies xh ∈W 1,p

r ([0, T ],Rm).
To show the second assertion, we also let g ∈W 1,p

r ([0, T ],Rd). Then for the constant
cp,1 := 22p−2(1 + T − r)p max{1, T − r}p−1 max{cp0, λ

p
1} we have

‖xtg − xth‖
p
1,p,r ≤ cp,1

∫ t

r

|ġ(s)− ḣ(s)|p + (1 + |ḣ(s)|p)‖xsg − xsh‖
p
1,p,r ds

for each t ∈ [r, T ], since ‖y‖∞ ≤ max{1, T − r}1−1/p‖y‖1,p,r for any y ∈ W 1,p
r ([0, T ],Rm).

Hence, Gronwall’s inequality gives ‖xg − xh‖p1,p,r ≤ cp exp(cp‖h‖p1,p,r)‖g − h‖
p
1,p,r, where

we have defined cp := cp,1 exp((T − r)cp,1).

5.2 Proofs of Theorems 2.3 and 1.2

Proof of Theorem 2.3. By Lemma 3.1, which is applicable for q = p/2− 1 and p0 = 2, due
to Proposition 4.1 and Corollary 4.2, we merely have to show the first assertion, as the
second follows from the first.

In this regard, we use the decomposition of Proposition 4.3 in second moment.
Namely, it readily follows from the interpolation error estimate (3.2) that

lim
n↑∞

E
[
‖Ln(nY )− nY ‖p∞ + ‖Ln(Y )− Y ‖p∞

]
/|Tn|αp = 0.

Thus, Lemma 3.4, Proposition 3.5 and Hölder’s inequality show that the claimed limit
holds once we can justify that there is c2 > 0 such that

E

[
max

j∈{0,...,kn}

∣∣∣∣ ∫ tj,n

r

(
B(tj,n, s, nY )−B(tj,n, sn, nY )

)
nẆs −R(tj,n, sn, nY )γn(s) ds

∣∣∣∣2]
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does not exceed c2|Tn|1−2/p for each n ∈ N. Based on the decomposition (4.7) and the
hypothesis that ∂xB is bounded, this fact follows from Proposition 4.4 and Lemma 4.5, in
conjunction with Lemma 3.2 and Remark 3.3, and Proposition 4.6.

Proof of Theorem 1.2. First, we let Nα denote the P -null set of all ω ∈ Ω such that
X(ω) /∈ Cαr ([0, T ],Rm) and recall that the support of P ◦X−1 in Cαr ([0, T ],Rm) coincides
with the support of the inner regular probability measure

B(Cαr ([0, T ],Rm))→ [0, 1], B 7→ P ({X ∈ B} ∩N c
α). (5.2)

Then an application of Theorem 2.3 in the case that B = b − (1/2)ρ, BH = 0, B = σ,
Σ = 0 and ξn = ξ = x̂ for all n ∈ N gives us (2.4), which in turn implies that the support
of (5.2) is included in the closure of {xh |h ∈W 1,p

r ([0, T ],Rd)} relative to ‖ · ‖α,r.
Now we let h ∈W 1,p

r ([0, T ],Rd) be fixed and recall from [7][Proof of Theorem 1] that
for any n ∈ N and each x ∈ C([0, T ],Rd) there is a unique solution yh,n,x ∈ C([0, T ],Rd)

to the ordinary integral equation with running value condition

yh,n,x(t) = x(t)−
∫ r∨t

r

ḣ(s)− L̇n(yh,n,x)(s) ds for t ∈ [0, T ].

As the map C([0, T ],Rd)→ C([0, T ],Rd), x 7→ yh,n,x is Lipschitz continuous on bounded
sets, we may let h,nW ∈ C ([0, T ],Rd) be given by h,nWt := yh,n,W (t) and introduce a
martingale h,nZ ∈ C ([0, T ],R) by requiring that h,nZr = 1 and

h,nZt = exp

(∫ t

r

ḣ(s)′ − L̇n(h,nW )(s)′ dWs −
1

2

∫ t

r

|ḣ(s)− L̇n(h,nW )(s)|2 ds
)

for any t ∈ [r, T ] a.s. By Girsanov’s theorem, h,nW is a d-dimensional (Ft)t∈[0,T ]-Brownian
motion under the probability measure Ph,n on (Ω,F ) given by Ph,n(A) := E[h,nZT1A]

and X is a strong solution to the stochastic Volterra integral equation

Xt = Xr +

∫ t

r

b(t, s,X) + σ(t, s,X)
(
ḣ− L̇n(h,nW )

)
(s) ds+

∫ t

r

σ(t, s,X) dh,nWs

a.s. for t ∈ [r, T ] under Ph,n. Hence, let nY be the unique strong solution to (2.6) when
B = b, BH = σ, B = −σ and Σ = σ with nY

r = x̂r a.s., then uniqueness in law implies
that P (‖nY − xh‖α,r ≥ ε) = Ph,n(‖X − xh‖α,r ≥ ε) for any ε > 0. This shows that
Theorem 2.3 also yields (2.5) and the claimed representation follows.
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