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Abstract

We introduce a framework to derive quantitative central limit theorems in the context
of non-linear approximation of Gaussian random variables taking values in a separable
Hilbert space. In particular, our method provides an alternative to the usual (non-
quantitative) finite dimensional distribution convergence and tightness argument
for proving functional convergence of stochastic processes. We also derive four
moments bounds for Hilbert-valued random variables with possibly infinite chaos
expansion, which include, as special cases, all finite-dimensional four moments results
for Gaussian approximation in a diffusive context proved earlier by various authors.
Our main ingredient is a combination of an infinite-dimensional version of Stein’s
method as developed by Shih and the so-called Gamma calculus. As an application,
rates of convergence for the functional Breuer-Major theorem are established.
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1 Introduction

Random variables taking values in Hilbert spaces play an important role in many
fields of mathematics and statistics, both at a theoretical and applied level. For example,
they arise naturally in statistics, in particular in the field of functional data analysis or
machine learning (for example in the context of Reproducing Kernel Hilbert Spaces). An
important and classical topic is the asymptotic analysis of sequences of such random
variables.
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Approximation of Hilbert-valued Gaussians on Dirichlet structures

In the linear case, i.e., when looking at normalized sums of i.i.d. random variables,
the asymptotic behaviour is very well understood, with central limit theorems including
error bounds being available in Banach or more general infinite-dimensional spaces
(see [1]). Here, (separable) Hilbert spaces have the distinguished property of being
the only infinite-dimensional Banach spaces for which convergence of such sums is
equivalent to finite variances (square integrability of the norms) of the components.

In the non-linear case, where the sum is replaced by a general transformation, much
less is known, except when the dimension of the Hilbert space is finite. In this case,
Nourdin and Peccati ([30]) have introduced the very powerful combination of Stein’s
method and Malliavin calculus, which yields quantitative central limit theorems for a
very wide class of square integrable real-valued transformations of arbitrary Gaussian
processes. Since its inception, this approach, which is now known as the Malliavin-
Stein method, has had a very substantial impact with numerous generalizations and
applications. We refer to the monograph [31] for an overview.

In this paper, we lift the theory to infinite-dimension, thus obtaining quantitative
central limit theorems for square-integrable and Hilbert-valued random variables. The
setting we will be working in is that of a diffusive Markov generator L, acting on
L2(Ω;K), where K is a real separable Hilbert space. Our main result (see Section 3
for unexplained definitions and Theorem 3.2 for a precise statement) then states that
for random variables F in the domain of the associated carré du champ operator Γ and
centered, non-degenerate Gaussians Z on K with covariance operator S, one has

d(F,Z) ≤ 1

2

√
E
(
‖Γ(F,−L−1F )− S‖2HS

)
. (1.1)

Here, ‖·‖HS denotes the Hilbert-Schmidt norm, L−1 the pseudo-inverse of the generator
L and d is a probability metric generating a topology which is stronger than convergence
in distribution.

Some examples of random variables F fitting our framework are homogeneous sums
of i.i.d. Gaussians with Hilbert-valued coefficients (or more generally a polynomial
chaos with distributions coming from a diffusion generator), stochastic integrals of the
form Ft =

∫∞
0
ut,s dBs, where B is Brownian motion and the kernel u is such that the

trajectories of F are Hölder-continuous of order less than one half, or multiple Wiener-Itô
integrals.

Proceeding from the general bound (1.1), we generalize and refine the two most
important results of the finite-dimensional Malliavin-Stein framework:

The first results are quantifications of so-called Fourth Moment Theorems (first
discovered in [39] and substantially generalized in [24, 2, 7]), which state that for a
sequence of eigenfunctions of the carré du champ operator satisfying a chaotic property,
convergence in distribution to a Gaussian is equivalent to convergence of the second and
fourth moment. We prove that such quantitative Fourth Moment Theorems continue to
hold in infinite-dimension, i.e., that if F is a chaotic eigenfunction of the carré du champ
operator and Z is a Gaussian having the same covariance operator as F , then one has
(see Section 3.2 for precise statements)

d(F,Z) ≤ 1

2

√
E
(
‖F‖4

)(
E
(
‖F‖4

)
− E

(
‖Z‖4

))
. (1.2)

The fact that the moment difference on the right-hand side is non-negative will follow
from our analysis. In fact, we prove a more general version of (1.2) for K-valued random
variables F which have a possibly infinite chaos expansion and whose covariance operator
not necessarily coincides with the one of Z. Even in finite dimensions, such bounds are
new.
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Approximation of Hilbert-valued Gaussians on Dirichlet structures

The second type of results we obtain are so called contraction bounds in the special
case where L is the Ornstein-Uhlenbeck generator. Here, the chaotic eigenfunctions
of the generator become multiple Hilbert-valued Wiener-Itô integrals, so that, using a
Hilbert-valued version of Malliavin calculus, their moments can be expressed in terms
of contraction norms of their kernels (see (4.3) for a definition). Such contractions
are important in applications due to their relatively straightforward computability. We
provide bounds on d(F,Z) (F and Z as in (1.1)) in terms of such contraction norms,
again for random variables with possibly infinite chaos expansions. As an application, we
explain how these bounds can be used to obtain rates of convergence in the functional
Breuer-Major Theorem.

From a theoretical point of view, our results described above contain and extend, in
a unified way, all previously established fourth moment theorems as well as carré du
champ, fourth moment and contraction bounds for Gaussian approximation in a diffusive,
finite-dimensional context (see [24, 2, 10, 7, 30, 33, 27, 36, 39]).

Furthermore, in the context of weak convergence of stochastic processes, our ap-
proach is an alternative to the usual method of proving finite-dimensional distribution
convergence and tightness, with the advantage of yielding rates of convergence.

The existing literature on quantitative limit theorems in a non-linear and infinite-
dimensional context is rather scarce. Barbour extended Stein’s method to a functional
setting in [4] for diffusion approximations by a Brownian motion. This has recently
been applied and extended by Kasprzak in [18, 19, 20]. Coutin and Decreusefond
([12]) combined Stein’s method with integration by parts techniques in a separable
Hilbert space setting. While the general theme of this latter reference is similar to
ours, the results are very different: the bounds in [12] are stated in terms of partial
traces and require explicit evaluations of isometries as all calculations are done in `2(N);
furthermore, no carré du champ, moment, or contraction bounds are provided.

The rest of the paper is organized as follows. In Section 2, after recalling basic
notions of probability theory on Hilbert spaces (Subsection 2.1), we provide an outline of
Stein’s method on abstract Wiener spaces (Subsection 2.2) and introduce the Dirichlet
structure framework we will be working in (Subsection 2.3). The main results are
contained in Section 3: we start by proving the aforementioned general carré du champ
bound (1.1) in Section 3.1 and then provide quantitative fourth moment theorems
in Section 3.2. Section 4 is devoted to the special case of the Ornstein-Uhlenbeck
generator. First, we present the associated Malliavin calculus in a Hilbert space setting
(Subsection 4.1), which then leads to quantitative refined Fourth Moment and contraction
bounds (Subsection 4.2). Finally, in Section 5, rates of convergence for the functional
Breuer-Major theorem are established.

2 Preliminaries

2.1 Probability on Hilbert spaces

Let K be a separable real Hilbert space, B(K) the family of Borel sets of K and
(Ω,F , P ) a complete probability space. A K-valued random variable X is a measurable
map from (Ω,F) to (K,B(K)). Such random variables are characterized by the property
that for any continuous linear functional ϕ ∈ K∗, the function ϕ(X) : Ω → R is a (real-
valued) random variable. As usual, the distribution or law of a random variable X is
defined to be the push-forward probability measure P ◦X−1 on (K,B(K)). The set of
all K-valued random variables is a vector space over the field of real numbers. If the
Lebesgue integral E (‖X‖K) =

∫
Ω
‖X‖K dP exists and is finite, then the Bochner integral∫

Ω
X dP exists in K and is called the expectation of X. Slightly abusing notation, we

denote this integral by E (X) as well. It will always be clear from the context if E (·)
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Approximation of Hilbert-valued Gaussians on Dirichlet structures

denotes Lebesgue or Bochner integration with respect to P . For p ≥ 1, we denote by
Lp(Ω;K) the Banach space of all equivalence classes (under almost sure equality) of
K-valued random variables X with finite p-th moment, i.e., such that

‖X‖Lp(Ω,K) = (E (‖X‖pK))
1/p

<∞.

Note that for all X ∈ Lp(Ω;K), the Bochner integral E (X) ∈ B exists. If X ∈ L2(Ω;K),
the covariance operator S : K → K of X is defined by

Su = E (〈X,u〉X) . (2.1)

It is a positive, self-adjoint trace-class operator and verifies the identity

trS = E
(
‖X‖2

)
. (2.2)

We denote by S1(K) the Banach space of all trace class operators on K with norm
‖T‖S1(K) = tr |T |, where |T | =

√
TT ∗. The subspace of Hilbert-Schmidt operators will

be denoted by HS(K), its inner product and associated norm by 〈·, ·〉HS(K) and ‖·‖HS(K),
respectively. Recall that

‖·‖op ≤ ‖·‖HS(K) ≤ ‖·‖S1 ,

where ‖·‖op denotes the operator norm.
When there is no ambiguity about what Hilbert space K underlies 〈·, ·〉K , ‖·‖K , S1(K)

or HS(K), we will drop the K dependency and just write 〈·, ·〉, ‖·‖, S1, HS, and so on.

2.2 Gaussian measures and Stein’s method on abstract Wiener spaces

In this section, we introduce Gaussian measures, the associated abstract Wiener
spaces and Stein’s method. We present the theory in a Banach space setting as specializ-
ing to Hilbert spaces brings no significant advantages at this point. Standard references
for Gaussian measures and abstract Wiener spaces are the books [5, 23], Stein’s method
on abstract Wiener space has been introduced by Shih in [41].

2.2.1 Abstract Wiener spaces

Let H be a real separable Hilbert space with inner product 〈·, ·〉H and define a norm
‖·‖ on H (not necessarily induced by another inner product) that is weaker than ‖·‖H .
Denote by B the Banach space obtained as the completion of H with respect to the
norm ‖·‖ (note that if the ‖·‖ norm happens to be induced by an inner product, then
B is actually a Hilbert space), and define i to be the canonical embedding of H into
B. Then, the triple (i,H,B) is called an abstract Wiener space. We identify B∗ as a
dense subspace of H∗ under the adjoint operator i∗ of i, so that we have the continuous
embeddings B∗ ⊂ H ⊂ B, where, as usual, H is identified with its dual. The abstract
Wiener measure p on B is characterized as the Borel measure on B satisfying∫

B

ei〈x,η〉B,B∗p(dx) = e−
‖η‖2H

2 ,

for any η ∈ B∗, where 〈·, ·〉B,B∗ denotes the dual pairing in B.

2.2.2 Gaussian measures on Banach and Hilbert spaces

For a Banach space B, we denote by B(B) its family of Borel sets.
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Definition 2.1. Let B be a real separable Banach space. A Gaussian measure ν is a
probability measure on (B,B(B)), such that every linear functional x ∈ B∗, considered
as a random variable on (B,B(B), ν), has a Gaussian distribution (on (R,B(R))). The
Gaussian measure ν is called centered (or non-degenerate), if these properties hold for
the distributions of every x ∈ B∗.

We see from the definition that every abstract Wiener measure is a Gaussian measure
and, conversely, for any Gaussian measure ν on a separable Banach space B, there
exists a Hilbert space H such that the triple (i,H,B) is an abstract Wiener space with
associated abstract Wiener measure ν (see [22, Lemma 2.1]). The space H is called the
Cameron-Martin space.

2.2.3 Stein characterization of abstract Wiener measures

Let B be real separable Banach space with norm ‖·‖ and let Z be a B-valued random
variable on some probability space (Ω,F , P ) such that the distribution µZ of Z is a non-
degenerate Gaussian measure on B with zero mean. Let (i,H,B) be the abstract Wiener
space associated to the Wiener measure µZ , as described in the previous subsection. Let
{Pt : t ≥ 0} denote the Ornstein-Uhlenbeck semigroup associated with µZ and defined,
for any B(B)-measurable function f and x ∈ B, by

Ptf(x) =

∫
B

f
(
e−tx+

√
1− e−2ty

)
µZ(dy), t ≥ 0,

provided such an integral exists. We have the following Stein lemma for abstract Wiener
measures (see [41, Theorem 3.1]).

Theorem 2.2. Let X be a B-valued random variable with distribution µX .

(i) If B is finite-dimensional, then µX = µZ if and only if

E
[
〈X,∇f(X)〉B,B∗ −∆Gf(X)

]
= 0 (2.3)

for any twice differentiable function f on B such that E
[∥∥∇2f(Z)

∥∥
S1(H)

]
<∞.

(ii) If B is infinite-dimensional, then µX = µZ if and only if (2.3) holds for any
twice H-differentiable function f on B such that ∇f(x) ∈ B∗ for any x ∈ B,

E
[∥∥∇2f(Z)

∥∥
S1(H)

]
<∞ and E

[
‖∇f(Z)‖2B∗

]
<∞.

The notion of an H-derivative appearing in Theorem 2.2 was introduced by Gross
in [16] and is defined as follows. A function f : U → W from an open set U of B into a
Banach space W is said to be H-differentiable at a point x ∈ U if the map φ(h) = f(x+h),
h ∈ H, regarded as a function defined in a neighborhood of the origin of H is Fréchet
differentiable at 0. The Fréchet derivative φ′(0) at 0 ∈ H is called the H-derivative of
f at x ∈ B. The H-derivative of f at x in the direction h ∈ H is denoted by 〈∇f(x), h〉H .
The k-th order H-derivatives of f at x can be defined inductively and are denoted by
∇kf(x) for k ≥ 2, provided they exist. If f is scalar-valued, ∇f(x) ∈ H∗ ≈ H and
∇2f(x) is regarded as a bounded linear operator from H into H∗ for any x ∈ U , and
the notation

〈
∇2f(x)h, k

〉
H

stands for the action of the linear form ∇2f(x)(h, ·), h ∈ H,
on k ∈ H, denoted by ∇2f(x)(h, k). Furthermore, if ∇2f(x) is a trace-class operator on
H, we can define the so-called Gross Laplacian ∆Gf(x) of f at x appearing in (2.3) by
∆Gf(x) = trH(∇2f(x)).

Remark 2.3 (On the relation between Fréchet and H-derivatives). An H-derivative
∇f(x) at x ∈ B determines an element in B∗ if there is a constant C > 0 such that
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|〈∇f(x), h〉H | ≤ C ‖h‖H for any h ∈ H. Then, ∇f(x) defines an element of B∗ by con-
tinuity and we denote this element by ∇f(x) as well. Now, if f is also twice Fréchet
differentiable on B, then ∇f(x) coincides with the first-order Fréchet derivative f ′(x) at
x ∈ B and is automatically in B∗. Furthermore, ∇2f(x) coincides with the restriction
of the second-order Fréchet derivative f ′′(x) to H × H at x ∈ B. In this framework,
since for any x ∈ B, f ′′(x) is a bounded linear operator from B into B∗, Goodman’s
theorem (see [23, Chapter 1, Theorem 4.6]) implies that ∇2f(x) is a trace-class operator
on H and that, consequently, the Gross Laplacian ∆Gf(x) is well-defined. Twice Fréchet
differentiability hence constitutes a sufficient condition for the existence of the Gross
Laplacian.

2.2.4 Stein’s equation and its solutions for abstract Wiener measures

In view of the above Stein lemma (Theorem 2.2), the associated Stein equation is given
by

∆Gf(x)− 〈x,∇f(x)〉B,B∗ = h(x)− E[h(Z)] , x ∈ B, (2.4)

where h is given in some class of test functionals. Shih showed in [41] that

fh(x) = −
∫ ∞

0

(Puh(x)− E[h(Z)]) du, x ∈ B (2.5)

solves the Stein equation (2.4) whenever h is an element of ULip-1(B), the Banach
space of scalar-valued uniformly 1-Lipschitz functions h on B with the norm ‖h‖ =

‖h‖ULip + |h(0)|, where

‖h‖ULip = sup
x 6=y∈B

|h(x)− h(y)|
‖x− y‖

<∞.

In what follows, we will consider test functions from the space Ckb (K) of real-valued,
k-times Fréchet differentiable functions on a separable Hilbert space K with bounded
derivatives up to order k. A function h thus belongs to Ckb (K) whenever

‖h‖Ckb (K) = sup
j=1,...,k

sup
x∈K

∥∥∇jh(x)
∥∥
K⊗j

<∞.

The following lemma collects some properties of the Stein solution fh for a given function
h ∈ Ckb (K).

Lemma 2.4. Let K be a separable Hilbert space, k ≥ 1 and h ∈ Ckb (K). Then the Stein
solution fh defined in (2.5) also belongs to Ckb (K) and furthermore one has that

sup
u∈K

∥∥∇jfh(u)
∥∥
K⊗j
≤ 1

j
‖h‖Cjb (K) , j ∈ N, j ≤ k. (2.6)

Proof. As for any x ∈ K, fh(x) = −
∫∞

0
(Puh(x)− E[h(Z)]) du, we have, for any j =

1, . . . , k,

∇jfh(x) = −
∫ ∞

0

∇jPuh(x)du,

so that

‖fh‖Ckb (K) = sup
j=1,...,k

sup
x∈K

∥∥∥∥−∫ ∞
0

∇jPuh(x)du

∥∥∥∥
K⊗j

≤ sup
j=1,...,k

sup
x∈K

∫ ∞
0

∥∥∇jPuh(x)
∥∥
K⊗j

du.

EJP 25 (2020), paper 150.
Page 6/30

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP551
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Approximation of Hilbert-valued Gaussians on Dirichlet structures

Using the property of the semigroup P that ∇jPuh(x) = e−juPu∇jh(x), and the fact that
P is contractive yields

‖fh‖Ckb (K) ≤ sup
j=1,...,k

sup
x∈K

∫ ∞
0

e−ju
∥∥Pu∇jh(x)

∥∥
K⊗j

du

≤ sup
j=1,...,k

sup
x∈K

∫ ∞
0

e−ju
∥∥∇jh(x)

∥∥
K⊗j

du

= sup
j=1,...,k

sup
x∈K

1

j

∥∥∇jh(x)
∥∥
K⊗j

≤ ‖h‖Ckb (K) <∞,

proving that fh ∈ Ckb (K). The bound (2.6) can be derived similarly.

2.3 Dirichlet structures

In this section, a Dirichlet structure for Hilbert-valued random variables is introduced,
which will be the framework we work in. We start by recalling the well-known definition
in the case of real-valued random variables (full details can for example be found
in [6, 14, 26, 3], where the latter reference emphasizes the equivalent notion of a Markov
triple). Given a probability space (Ω,F , P ), a Dirichlet structure (D, E) on L2(Ω;R) with
associated carré du champ operator Γ consists of a Dirichlet domain D, which is a dense
subset of L2(Ω;R) and a carré du champ operator Γ: D×D→ L1(Ω;R) characterized
by the following properties.

– Γ is bilinear, symmetric (Γ(f, g) = Γ(g, f)) and positive Γ(f, f) ≥ 0,

– for all m,n ∈ N, all Lipschitz and continuously differentiable functions ϕ : Rm → R

and ψ : Rn → R and all f = (f1, . . . , fm) ∈ Dm, g = (g1, . . . , gn) ∈ Dn, it holds that

Γ(ϕ(f), ψ(g)) =

m∑
i=1

n∑
j=1

∂iϕ(f)∂jψ(g)Γ(fi, gj), (2.7)

– the induced positive linear form f 7→ E(f, f), where

E(f, g) =
1

2
E (Γ(f, g))

is closed in L2(Ω;R), i.e., D is complete when equipped with the norm

‖·‖2D = ‖·‖2L2(Ω;R) + E(·).

Here and in the following, E (·) denotes expectation on (Ω,F) with respect to P . The
form f → E(f, f) is called a Dirichlet form, and, as is customary, we will write E(f) for
E(f, f). Every Dirichlet form gives rise to a strongly continuous semigroup {Pt : t ≥ 0} on
L2(Ω;R) and an associated symmetric Markov generator −L, defined on a dense subset
dom(−L) ⊆ D. We will often switch between −L and L, as these two operators only
differ by sign. There are two important relations between Γ and L. The first one is the
integration by parts formula

E (Γ(f, g)) = −E (fLg) = −E (gLf) , (2.8)

valid whenever f, g ∈ D, the second one is the relation

Γ(f, g) =
1

2
(L(fg)− gLf − fLg) ,
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which holds for all f, g ∈ dom(L) such that fg ∈ dom(L). If −L is diagonalizable with
spectrum {0 = λ0 < λ1 < . . . }, a pseudoinverse −L−1 can be introduced via spectral
calculus as follows: if f =

∑∞
i=0 fi with fi ∈ ker (L+ λi Id), then

−L−1f =

∞∑
i=1

1

λi
fi.

It follows that

LL−1f = f − E (f) .

Consider now such a Dirichlet structure on L2(Ω;R) with diagonalizable generator
as given and denote the Dirichlet domain, Dirichlet form, carré du champ operator, its
associated infinitesimal generator and pseudo-inverse by D̃, Ẽ , Γ̃, L̃ and L̃−1, respectively,
in order to distinguish these objects from their extensions to the Hilbert-valued setting
to be introduced below.

Given a separable Hilbert space K, one has that L2(Ω;K) is isomorphic to L2(Ω;R)⊗
K. The Dirichlet structure on L2(Ω;R) can therefore be extended to L2(Ω;K) via a
tensorization procedure as follows.

Let {0 = λ0 < λ1 < . . . } be the spectrum of −L̃ and A the set of all functions F of the
form

F =
∑

(i,j)∈I

fpi ⊗ kj , (2.9)

where I ⊆ N×N is finite, the fpi are eigenfunctions of −L̃ with eigenvalue λpi ≥ 0 and
the kj form an orthonormal basis in K. Then A is dense in L2(Ω;K). For F ∈ A of the
form (2.9) and analogously G =

∑
(i′,j′)∈I′ fpi′ × kj′ ∈ A, define linear operators L, L−1

by

LF =
∑

(i,j)∈I

(L̃fpi)⊗ kj = −
∑

(i,j)∈I

λpifpi ⊗ kj ,

L−1(F ) =
∑

(i,j)∈I

(L̃−1fpi)⊗ kj = −
∑

(i,j)∈I
pi 6=0

1

λpi
fpi ⊗ kj ,

a bilinear and positive operator Γ by

Γ(F,G) =
1

2

∑
(i,j)∈I

∑
(i′,j′)∈I′

Γ̃(fpi , fpi′ )⊗ (kj ⊗ kj′ + kj′ ⊗ kj)

and a bilinear, positive and symmetric form E by

E(F,G) = E (tr Γ(F,G)) ,

where in the definition of E we identify Γ(F,G) ∈ L2(Ω;R) ⊗K ⊗K ' L2(Ω;L(K,K))

with a random operator on K, whose action is given by

Γ(F,G)u =
1

2

∑
(i,j)∈I

∑
(i′,j′)∈I′

Γ̃(fpi , fpi′ ) (〈kj , u〉 ⊗ kj′ + 〈kj′ , u〉 ⊗ kj) , u ∈ K.

For all F,G ∈ A, the operator Γ(F,G) is then of trace class and an element of L1(Ω;S1).
It is standard to verify that the definitions of L, L−1 and Γ do not depend on the choice of
the basis of K. Furthermore, from the well-known results for L̃, Γ̃ and Ẽ , we can extend
them as follows.

EJP 25 (2020), paper 150.
Page 8/30

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP551
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Approximation of Hilbert-valued Gaussians on Dirichlet structures

Proposition 2.5. The operators L, L−1, E and Γ introduced above can be extended to
dom(L), dom(L−1) and dom(Γ) = dom(E) = D×D, given by

dom(L) =

{
F ∈ L2(Ω;K) :

∞∑
p=1

λ2
p π̃p

(
‖F‖2

)
<∞

}
dom(L−1) = L2(Ω;K)

and

D =

{
F ∈ L2(Ω;K) :

∞∑
p=1

λp π̃p

(
‖F‖2

)
<∞

}
,

respectively, where π̃p denotes the orthogonal projection onto

ker(L̃+ λp Id) ⊆ L2(Ω;R).

In particular, one has

A ⊆ dom(L) ⊆ D ⊆ dom(L−1) = L2(Ω;K),

where all inclusions are dense.

Throughout this article, the extensions of L, L−1 and Γ to their maximal domains
will still be denoted by the same symbols. The operators just defined yield a Dirichlet
structure (Γ,D) on L2(Ω;K), which is a natural counterpart to the given structure (Γ̃, D̃)

on L2(Ω;R). The following theorem summarizes its main features.

Theorem 2.6. For a Dirichlet structure (D,Γ) on L2(Ω;K), consisting of a dense sub-
space D of L2(Ω;K) and a carré du champ operator Γ: D×D→ L1(Ω;S1) as introduced
above, the following is true.

(i) Γ is bilinear, almost surely positive (i.e., Γ(F, F ) ≥ 0 as an operator onK), symmetric
in its arguments and self-adjoint (〈Γ(F,G)u, v〉 = 〈u,Γ(F,G)v〉 for all u, v ∈ K).

(ii) The Dirichlet domain D, endowed with the norm

‖F‖2D = ‖F‖2L2(Ω;K) + ‖Γ(F, F )‖L1(Ω;S1)

is complete, so that Γ is closed.

(iii) For all Lipschitz and Fréchet differentiable operators ϕ,ψ on K and F,G ∈ D, one
has that ϕ(F ), ψ(G) ∈ D and the diffusion identity

Γ(ϕ(F ), ψ(G)) =
1

2

(
∇ϕ(F )∗Γ(F,G)∇ψ(G) +∇ψ(G)∗Γ(F,G)∇ϕ(F )

)
(2.10)

holds, where ∇ϕ(F ) and ∇ψ(G) denote the Fréchet derivatives of ϕ and ψ at F and
G, respectively, and ∇ϕ(F )∗, ∇ψ(G)∗ are their adjoints in K.

(iv) The associated generator −L acting on L2(Ω;K) is positive, symmetric, densely
defined and has the same spectrum as −L̃.

(v) There exists a compact pseudo-inverse L−1 of L such that

LL−1F = F − E (F )

for all F ∈ L2(Ω;K), where the expectation on the right is a Bochner integral (well
defined as F ∈ L2(Ω;K)).
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(vi) The integration by parts formula

E (tr Γ(F,G)) = −E (〈LF,G〉) = −E (〈F,LG〉) (2.11)

is satisfied for all F,G ∈ dom(−L).

(vii) The carré du champ Γ and the generators L and L̃ are connected through the
identity

tr Γ(F,G) =
1

2

(
L̃ 〈F,G〉 − 〈LF,G〉 − 〈F,LG〉

)
,

valid for F,G ∈ dom(L).

(viii) The fundamental identity

〈Γ(F,G)u, v〉 =
1

2

(
Γ̃ (〈F, u〉 , 〈G, v〉) + Γ̃ (〈G, u〉 , 〈F, v〉)

)
, (2.12)

connecting Γ and its one-dimensional counterpart Γ̃ is valid for all F,G ∈ D and all
u, v ∈ K.

Proof. Parts (i) − (ii) and (iv) − (viii) are straightforward to verify. In order to prove
(iii), write

F =

∞∑
p=0

∞∑
i=1

fp ⊗ ki and G =

∞∑
p=0

∞∑
i=1

gp ⊗ ki,

where the fp and gp are eigenfunctions of L̃ with eigenvalue −λp, and {ki : i ∈ N} is
an orthonormal basis of K. Let Kn = span {ki : 1 ≤ i ≤ n} and ρn be the orthogonal
projection onto L2(Ω;Kn), so that

ρn(F ) =

∞∑
p=0

n∑
i=1

fp ⊗ ki and ρn(G) =

∞∑
p=0

n∑
i=1

gp ⊗ ki.

Denote by in : Kn → Rn the canonical isometric isomorphism mapping Kn to Rn so that
ξn = in ◦ ρn(F ) ∈ Rn and υn = in ◦ ρn(G) ∈ Rn.

Let ϕ̃n = ϕ ◦ i−1
n and ψ̃n = ψ ◦ i−1

n . Then ϕ̃n : Rn → K is Lipschitz and Fréchet
differentiable, with Fréchet derivative given by

∇ϕ̃n(x)(y) = ∇ϕ(i−1
n (x))(i−1

n (y))

for all x, y ∈ Rn and an analogous result is true for ∇ψ̃n. Therefore, via

Γ (ϕ(ρn(F )), ψ(ρn(G))) = Γ
(
ϕ̃n(ξn), ψ̃n(υn)

)
and identity (2.12), the assertion can be transformed into an equivalent assertion for
Γ̃, which can then be verified by tedious but straightforward calculations, using the
diffusion property (2.7) for Γ̃ and then letting n→∞.

The most important example in our context is the Dirichlet structure given by the
Ornstein-Uhlenbeck generator of a Hilbert-valued Ornstein-Uhlenbeck semigroup. Here,
−L = δD, where D and δ denote the Malliavin derivative and divergence operator, and
the carré du champ operator is given by Γ(X,Y ) = 〈DX,DY 〉H, where H is the Hilbert
space associated to the underlying isonormal Gaussian process (see Section 4 for full
details). The corresponding eigenspaces are known as Wiener chaos and spanned by
the infinite-dimensional Hermite polynomials. In the same way, one can obtain Jacobi,
Laguerre or other polynomial chaoses (see for example [2] for the real-valued case). We
refer to the monographs quoted at the beginning of this section for further numerous
examples.
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3 Approximation of Hilbert-valued Gaussians

In this section, we combine Stein’s method introduced in Section 2.2 with the Dirichlet
structure defined in Section 2.3 in order to derive bounds on a probabilistic metric
between the laws of square integrable random variables and a Gaussian, both taking
values in some separable Hilbert space.

Throughout the whole section, this separable Hilbert space will be denoted by K, and
we furthermore assume as given a Dirichlet structure on L2(Ω;K) as introduced in the
previous section, with Dirichlet domain D, carré du champ operator Γ and associated
generator L.

The probabilistic distance we use is the well-known d2-metric, given by

d2(F,G) = sup
h∈C2

b (K)
‖h‖

C2
b
(K)
≤1

|E (h(F ))− E (h(G))| , (3.1)

where C2
b (K) denotes the twice Fréchet differentiable, real-valued functions on K

with uniformly bounded first and second derivatives (see Section 2.2.4). In an infinite-
dimensional context, this distance has already been used in [12] and, in a weakened
form, also in [4]. As already observed in [12], it metrizes convergence in distribution:

Lemma 3.1. If {Fn : n ∈ N0} is a sequence of K-valued random variables such that

d2(Fn, F0)→ 0

as n→∞, then the law of Fn converges in distribution to the law of F0, i.e.,

E (h(Fn))→ E (h(F0))

as n→∞, for all bounded, real-valued and continuous functions h on K.

Proof. The proof given in [12, Lemma 4.1] for K = `2(N) continues to work without any
modification.

3.1 An abstract carré du champ bound

The following general bound between the laws of a square integrable K-valued
random variable in the Dirichlet domain D and an arbitrary Gaussian random variable
holds.

Theorem 3.2. Let Z be a centered, non-degenerate Gaussian random variable on K

with covariance operator S and let F ∈ D. Then

d2(F,Z) ≤ 1

2

∥∥Γ(F,−L−1F )− S
∥∥
L2(Ω;HS)

. (3.2)

If K has dimension d <∞, then

dW (F,Z) ≤ CS,d
∥∥Γ(F,−L−1F )− S

∥∥
L2(Ω;HS)

, (3.3)

where dW denotes the Wasserstein distance, and

CS,d =
√
d ‖S‖op

∥∥S−1
∥∥

op
.

Proof. To prove (3.2), it suffices to show that for h ∈ C2
b (K) one has∣∣∣E(trH ∇2fh(F )− (F,∇fh(F ))K,K∗

)∣∣∣
≤ 1

2

∥∥∇2h
∥∥
C2
b (K)

∥∥Γ(F,−L−1F )− S
∥∥
L2(Ω;HS)

, (3.4)
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where fh is the Stein solution given by (2.5). Indeed, using Stein’s equation (see (2.4)),
the left hand side of (3.4) is equal to |E (h(X))− E (h(Z))|, so that the assertion follows
after taking the supremum over h.

Identifying K∗ with K, using the integration by parts formula (2.11) and the diffusion
property (2.10) for the carré du champ, we can write

E
(

(F,∇fh(F ))K,K∗
)

= E (〈F,∇fh(F )〉K)

= E
(〈
LL−1F,∇fh(F )

〉
K

)
= E

(
trK Γ

(
∇fh(F ),−L−1F

))
= E

(
trK

(
∇2fh(F )Γ(F,−L−1F )

))
.

Now let H be the Cameron-Martin space associated to Z as introduced in Section 2.2.
As the covariance operator S of Z is compact and one-to-one, it holds that S =∑

i∈N λi 〈·, ek〉K ei for some λi > 0 and an orthonormal basis {ei : i ∈ N} of H consisting
of eigenvectors. Then {ki : i ∈ N}, where ki = 1√

λi
ei, is an orthonormal basis of K, as

H =
√
S(K). It thus follows that

trH ∇2fh(F ) =
∑
i∈N
∇2fh(F )(ei, ei) =

∑
i∈N
∇2fh(F ) (S ki, ki) = trK

(
∇2fh(F )S

)
.

Combining the last two calculations yields that

E
(
〈F,∇fh(F )〉K,K∗ − trH ∇2fh(F )

)
= E

(
trK

(
∇2fh(F )

(
Γ(F,−L−1F )− S

)))
,

and, taking absolute values and applying Hölder’s inequality for the Schatten norms, we
get ∣∣∣E(〈F,∇fh(F )〉K,K∗ − trH ∇2fh(F )

)∣∣∣
=
∣∣E (trK (∇2fh(F )

(
Γ(F,−L−1F )− S

)))∣∣
≤ E

(
trK

∣∣∇2fh(F )
(
Γ(F,−L−1F )− S

)∣∣)
≤ E

(∥∥∇2fh(F )
∥∥

HS(K)

∥∥Γ(F,−L−1F )− S
∥∥

HS(K)

)
≤
∥∥∇2fh(F )

∥∥
L2(Ω;HS(K))

∥∥Γ(F,−L−1F )− S
∥∥
L2(Ω;HS(K))

. (3.5)

An application of Lemma 2.4 now yields (3.4), finishing the proof of (3.2). If K has
finite-dimension d, one can proceed as in [31, Proposition 4.3.2] to obtain that∥∥∇2fh(F )

∥∥
L2(Ω;HS(K))

≤ CS,d ‖h‖Lip ,

where ‖·‖Lip denotes the Lipschitz norm. The Wasserstein distance is then obtained
by approximating Lipschitz functions in C2

b (K) (for example by convoluting a Gaussian
kernel).

If Z is a K-valued Gaussian random variable with covariance operator S, then, taking
L to be the Ornstein-Uhlenbeck generator (see the forthcoming Section 4), one has that
Γ(Z,−L−1Z) = S. Therefore, taking F to be Gaussian in Theorem 3.2 yields a bound on
the distance between two Gaussians Z1, Z2 in terms of the Hilbert-Schmidt norm of their
covariance operators S1, S2. We state this as a corollary.

Corollary 3.3. Let Z1, Z2 be two centered, non-degenerate Gaussian random variables
on K with covariance operators S1, S2, respectively. Then, it holds that

d2(Z1, Z2) ≤ 1

2
‖S1 − S2‖HS .
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We continue with some remarks on Theorem 3.2.

Remark 3.4.

(i) Note that the proof of Theorem 3.2 does not use diagonalizability of L, so that
this assumption can be replaced by weaker conditions guaranteeing that a pseudo-
inverse can still be defined (in a finite-dimensional context, this has been done
in [7]). However, we will not need this level of generality.

(ii) While
∥∥Γ(F,−L−1F )− S

∥∥
HS

is almost surely finite for any F ∈ D, it might be that∥∥Γ(F,−L−1F )− S
∥∥
L2(Ω;HS)

is infinite. A simple sufficient condition for finiteness of
the latter norm is that F has finite chaos decomposition (see Section 3.2). In the
case of an infinite decomposition, some control on the tail is needed.

(iii) In principle, Theorem 3.2 can also be used to prove weak convergence in a Banach
space setting. Starting from a Gaussian random variable on a separable Banach
space B, it is always possible (see [22, Lemma 2.1]) to densely embed B in a
separable Hilbert space K such that the Borel sets of B are generated by the inner
product of K. Then, by applying our methods, one obtains weak convergence in K,
which in turn implies weak convergence in B.

3.2 Fourth Moment bounds via chaos expansions

In this section, we show how the carré du champ bounds obtained in Theorem 3.2
can be further estimated by the first four moments of the approximating random variable
or sequence. For this, we need to assume that the generator satisfies the following,
generalized version of an abstract polynomial chaos property first stated in [2] for the
finite-dimensional case.

Definition 3.5. Denote by L̃ the one-dimensional counterpart of L as introduced in
Section 2.3 and recall that L and L̃ have the same spectrum. Let λ, η be two of their
common eigenvalues. Two eigenvectors F ∈ ker (L+ λ Id) and G ∈ ker (L+ η Id) are
called jointly chaotic, if

〈F,G〉K ∈
⊕
α∈Λ

α≤λ+η

ker
(
L̃+ α Id

)
,

where Λ denotes the spectrum of L. An eigenvector F ∈ ker (L+ λ Id) is called chaotic
if it is jointly chaotic with itself, i.e., if

‖F‖2K ∈
⊕
α∈Λ
α≤2λ

ker
(
L̃+ α Id

)
.

The generator L is called chaotic, if any two of its eigenfunctions are jointly chaotic.

Prime examples of chaotic generators are those whose eigenspaces consist of (clo-
sures of) multivariate polynomials, such as the Hilbert-valued Ornstein-Uhlenbeck gen-
erator, Laguerre or Jacobi generators, in finite or infinite dimension. The Ornstein-
Uhlenbeck case will be covered in depth in Section 4, precise definitions for the other
two generators can for example be found in [2].

We will also make use of the following covariance condition.

Definition 3.6. A random variable F ∈ L2(Ω;K) is said to satisfy the covariance condi-
tion if it holds that

2 Cov (〈F, u〉 , 〈F, v〉)2 ≤ Cov
(
〈F, u〉2 , 〈F, v〉2

)
(3.6)

for any two orthonormal vectors u, v ∈ K.
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It will be proved later that both the covariance condition and the chaotic property is
satisfied whenever F is an eigenfunction of the Ornstein-Uhlenbeck generator.

Now we can state the main result of this section.

Theorem 3.7. Let F ∈ D with chaos expansion F =
∑∞
p=1 Fp, where LFp = −λpFp and

assume that L is chaotic and its eigenfunctions verify the covariance assumption (3.6).
Denote the covariance operators of Fp by Sp, so that F has covariance operator S =∑∞
p=1 Sp. Then ∥∥Γ(F,−L−1F )− S

∥∥
L2(Ω;HS(K))

≤
√
M(F ) + C(F ), (3.7)

where

M(F ) =
1√
3

∞∑
p,q=1

cp,q

√
E
(
‖Fp‖4

)(
E
(
‖Fq‖4

)
− E

(
‖Fq‖2

)2

− 2 ‖Sq‖2HS

)
, (3.8)

C(F ) =
∑
p,q∈N
p 6=q

ap,q Cov
(
‖Fp‖2 , ‖Fq‖2

)
, (3.9)

and the constants ap,q and cp,q are given by ap,q = (λp + λq)/2λq and

cp,q =

{
1 +
√

3 if p = q,

ap,q if p 6= q,

respectively.

Before proving Theorem 3.7, let us give the following restatement of M in terms of
fourth moments only.

Proposition 3.8. In the setting of Theorem 3.7, it holds that

M(F ) =
1√
3

∞∑
p,q=1

cp,q

√
E
(
‖Fp‖4

)(
E
(
‖Fq‖4

)
− E

(
‖Zq‖4

))
, (3.10)

where the Zp are centered Gaussian random variables with the same covariance opera-
tors as the Fp.

Proof. Using similar arguments as in [35, Proof of Theorem 4.2] combined with [17,
Theorem 2.1], a straightforward calculation yields

E
(
‖Zp‖4

)
= E

(
‖Fp‖2

)2

+ 2 ‖Sp‖2HS . (3.11)

Proof of Theorem 3.7. The idea of the proof is to transfer the Dirichlet structure from
L2(Ω;K) to L2(Ω;R) by expanding in an orthonormal basis and working on the coef-
ficients, afterwards reassembling everything again. To this end, let {ei : i ∈ N} be an
orthonormal basis of K and denote Fi = 〈F, ei〉, as well as Fp,i = 〈Fp, ei〉 for i ∈ N. Note
that 〈

Γ(F,−L−1F )ei, ej
〉

= Γ̃(Fi,−L̃−1Fj),

where Γ̃ and L̃ are the real-valued counterparts of Γ and L (see Section 2.3). To improve
readability, we will not make any notational distinction between the real-valued and
Hilbert-valued case and therefore denote Γ̃ and L̃ by the symbols Γ and L as well
throughout the proof. The meaning can always unambigously be inferred from the
context, depending on whether the arguments are K- or R-valued.

Define the cross-covariance operators Cp,q : K → K via the identity

E (〈Fp, k〉 〈Fq, l〉) = 〈Cp,qk, l〉 , k, l ∈ K.
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Then, Cp,p = Sp and, by orthogonality, Cp,q = 0 if p 6= q. Therefore,

S =

∞∑
p=1

Sp =

∞∑
p,q=1

Cp,q,

and consequently∥∥Γ(F,−L−1F )− S
∥∥
L2(Ω;HS(K))

≤
∞∑

p,q=1

∥∥Γ(Fp,−L−1Fq)− Cp,q
∥∥
L2(Ω;HS(K))

=

∞∑
p,q=1

√√√√ ∞∑
i,j=1

E
(

(Γ(Fp,i,−L−1Fq,j)− E (Fp,iFq,j))
2
)

=

∞∑
p,q=1

√√√√ ∞∑
i,j=1

Var (Γ(Fp,i,−L−1Fq,j)), (3.12)

Note that all carré du champ operators appearing in the double sum (3.12) are acting on
real valued random variables, so that known results from the finite-dimensional theory
can be applied.

For p = q, Theorem 3.2 in [2] yields

Var
(
Γ(Fq,j ,−L−1Fq,j)

)
≤ 1

3

(
E
(
F 4
q,j

)
− 3 E

(
F 2
q,j

)2)
, (3.13)

which, together with the covariance condition (3.6), implies that
∞∑
j=1

Var
(
Γ(Fq,j ,−L−1Fq,j)

)
≤ 1

3

∞∑
j=1

(
E
(
F 4
q,j

)
− 3 E

(
F 2
q,j

)2)
≤ 1

3

∞∑
i,j=1

(
E
(
F 2
q,iF

2
q,j

)
− E

(
F 2
q,i

)
E
(
F 2
q,j

)
− 2 E (Fq,iFq,j)

2
)

=
1

3

(
E
(
‖Fq‖4

)
− E

(
‖Fq‖2

)2

− 2 ‖Sq‖2HS

)
. (3.14)

For p 6= q, similar calculations as in [10, Proof of Theorem 1.2] (which in turn relied
on the main ideas of [2]) lead to

Var
(
Γ(Fp,i,−L−1Fq,j)

)
≤ ap,q

(
E
(
F 2
p,iF

2
q,j

)
− E

(
F 2
p,i

)
E
(
F 2
q,j

)
− 2 E (Fp,iFq,j)

2

− E
(
F 2
p,i

(
Γ(Fq,j ,−L−1Fq,j)− E

(
F 2
q,j

))) )
,

so that
∞∑

i,j=1

Var
(
Γ(Fp,i,−L−1Fq,j)

)

≤ ap,q

E
(
‖Fp‖2 ‖Fq‖2

)
− E

(
‖Fp‖2

)
E
(
‖Fq‖2

)
− 2

∞∑
i,j=1

E (Fp,iFq,j)
2

−
∞∑
j=1

E
(
‖Fp‖2

(
Γ(Fq,j ,−L−1Fq,j)− E

(
F 2
q,j

)))
≤ ap,q

E
(
‖Fp‖2 ‖Fq‖2

)
− E

(
‖Fp‖2

)
E
(
‖Fq‖2

)
− 2

∞∑
i,j=1

E (Fp,iFq,j)
2

+

√
E
(
‖Fp‖4

)√√√√ ∞∑
j=1

Var (Γ(Fq,j ,−L−1Fq,j))

 .
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Together with (3.14), we thus get for p = q that

∞∑
i,j=1

Var
(
Γ(Fp,i,−L−1Fp,j)

)
≤ E

(
‖Fp‖4

)
− E

(
‖Fp‖2

)2

− 2 ‖Sp‖2HS

+

√
1

3
E
(
‖Fp‖4

)√
E
(
‖Fp‖4

)
− E

(
‖Fp‖2

)2

− 2 ‖Sp‖2HS

≤ 1 +
√

3√
3

√
E
(
‖Fp‖4

)√
E
(
‖Fp‖4

)
− E

(
‖Fp‖2

)2

− 2 ‖Sp‖2HS

and for p 6= q that

∞∑
i,j=1

Var
(
Γ(Fp,i,−L−1Fq,j)

)
≤ ap,q

(
E
(
‖Fp‖2 ‖Fq‖2

)
− E

(
‖Fp‖2

)
E
(
‖Fq‖2

))
+
ap,q√

3

√
E
(
‖Fp‖4

)√
E
(
‖Fq‖4

)
− E

(
‖Fq‖2

)2

− 2 ‖Sq‖2HS,

from which the asserted bound follows.

Inspecting the proof of Theorem 3.7, it becomes apparent that for the case where
F = Fp is a chaotic eigenfunction, we can remove one square root. In other words, the
following holds.

Corollary 3.9. If F is a chaotic eigenfunction of L and Z a centered, non-degenerate
Gaussian on K, both having covariance operator S, then∥∥Γ(F,−L−1F )− S

∥∥
L2(Ω;HS(K))

≤ 1 +
√

3√
3

√
E
(
‖F‖4

)(
E
(
‖F‖4

)
− E

(
‖F‖2

)2

− 2 ‖S‖2HS

)
=

1 +
√

3√
3

√
E
(
‖F‖4

)(
E
(
‖F‖4

)
− E

(
‖Z‖4

))
. (3.15)

Combining Theorems 3.7 and 3.2, the following moment bound is obtained.

Theorem 3.10. Let Z be a centered Gaussian, non-degenerate random variable on K,
assume that L is chaotic and let F ∈ L2(Ω;K) with chaos expansion F =

∑∞
p=1 Fp, where

LFp = −λpFp. Denote the covariance operators of Z, F and Fp by S and T and Sp,
respectively. Then the following two statements are true.

(i) If Fp satisfies the covariance condition (3.6) for all p ∈ N, then

d2(F,Z) ≤ 1

2

(√
M(F ) + C(F ) + ‖S − T‖HS

)
(3.16)

where the quantities M(F ) and C(F ) are given by (3.8) (or equivalently (3.10))
and (3.9), respectively.

(ii) If F = Fp for some eigenfunction Fp ∈ ker (L+ λp Id), then

d2(F,Z) ≤ 1 +
√

3

2
√

3

√
E
(
‖F‖4

)(
E
(
‖F‖4

)
− E

(
‖F‖2

)2

− 2 ‖Sp‖2HS

)
+

1

2
‖S − Sp‖HS .
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Remark 3.11. In applications, given F =
∑∞
p=1 Fp, it might sometimes be favorable to

apply Theorem 3.10 to the truncated series GN =
∑N
p=1 Fp via the simple estimate

d2(F,Z) ≤ d2(GN , Z) + d2(GN , F ),

so that the expressionsM(GN ) and C(GN ) are no longer infinite series but finite sums. To
handle the additional term d2(GN , F ), one then needs control on the tails E (‖F −GN‖),
for example via

E (‖F −GN‖)2 ≤ E
(
‖F −GN‖2

)
=

∞∑
p=N+1

trSp.

Of course, in the setting of Theorem 3.10, if K is assumed to have finite dimension
d, then the right hand side of (3.16) also bounds the Wasserstein distance dW (F,Z)

(with constant 1/2 replaced by Cs,d of Theorem 3.2). Let us now state two central limit
theorems which are direct consequences of Theorem 3.10. The first one is an abstract
Fourth Moment Theorem.

Theorem 3.12 (Abstract fourth moment theorem). Let Z be a centered, non-degenerate
Gaussian random variable on K and {Fn : n ∈ N} be a sequence of K-valued chaotic

eigenfunctions such that E
(
‖Fn‖2

)
→ E

(
‖Z‖2

)
. Consider the following two asymptotic

relations, as n→∞:

(i) Fn converges in distribution to Z;

(ii) E
(
‖Fn‖4

)
→ E

(
‖Z‖4

)
.

Then, (ii) implies (i), and the converse implication holds whenever the moment sequence{
‖Fn‖4 : n ≥ 1

}
is uniformly integrable.

Proof. Denote the covariance operators of Z and the Fn by S and Sn, respectively. Then
by assumption tr(Sn − S) → 0. The fact that (ii) implies (i) is a direct consequence of
Theorem 3.10. The converse implication follows immediately if the additional uniform
integrability condition is assumed to hold.

Remark 3.13. (i) As is well known, a sufficient condition for uniform integrability of

the sequence
{
‖Fn‖4 : n ≥ 1

}
is given by supn≥1 E

[
‖Fn‖4+ε

]
<∞ for some ε > 0.

(ii) Theorem 3.12 is a Hilbert-valued generalization of the Gaussian Fourth Moment
Theorems derived in [2] (K = R) and [10] (K = Rd with Euclidean inner product).
As further special cases, taking L to be the Ornstein-Uhlenbeck generator on
L2(Ω,R), the classical Fourth Moment Theorem of [39] (K = R) and Theorem 4.2
of [35] (K = Rd with Euclidean inner product) are included. Further details on
these latter two cases will be provided in Section 4.2.

For functionals with infinite chaos expansions, the corresponding limit theorem reads
as follows. Again, the proof is a straightforward application of Theorem 3.10.

Theorem 3.14. Let Z be a centered, non-degenerate Gaussian random variable on K
with covariance operator S and let {Fn : n ∈ N} be a sequence of square integrable,
K-valued random variables with chaos decomposition

Fn =

∞∑
p=1

Fp,n,

where, for each n, p ≥ 1, Fp,n is a chaotic eigenfunction associated to the eigenvalue −λp
(of the operator −L) and verifying the covariance condition (3.6). For n, p ∈ N, let Sn
and Sp,n be the covariance operators of Fn and Fp,n, respectively. Suppose that:
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(i) There exists a sequence {Sp : p ∈ N} of covariance operators such that S =
∑∞
p=1 Sp

is of trace class, tr(Sp,n − Sp)→ 0 as n→∞ and

lim
N→∞

sup
n∈N

∞∑
p=N

tr(Sp,n) = 0 (3.17)

(ii) For all p, q ∈ N, it holds that

E
(
‖Fp,n‖4

)
− E

(
‖Fp,n‖2

)2

− 2 ‖Sp,n‖2HS → 0

and, if p 6= q,

E
(
‖Fp,n‖2 ‖Fq,n‖2

)
− E

(
‖Fp,n‖2

)
E
(
‖Fq,n‖2

)
→ 0

as n→∞.

Then Fn converges in distribution to Z as n→∞.

Proof. For N ∈ N, define Fn,N =
∑N
p=1 Fp,n, Rn,N = Fn − Fn,N =

∑∞
p=N+1 Fp,n and let

ZN be a centered Gaussian random variable on K with covariance operator
∑N
p=1 Sp.

Now let ε > 0 and note that

d2(Fn, Z) ≤ d2(Fn, Fn,N ) + d2(Fn,N , ZN ) + d2(ZN , Z). (3.18)

For h ∈ C2
b (K), we get by Lipschitz-continuity that

d2(Fn, Fn,N ) ≤ E (‖Rn,N‖) ≤
√

E
(

(‖Rn,N‖)2
)
≤

√√√√ ∞∑
p=N+1

tr(Sp,n).

Similarly,

d2(ZN , Z) ≤

√√√√ ∞∑
p=N+1

tr(Sp)

The above two calculations, together with assumption (i), yield the existence of N ∈ N,
not dependent of n, such that

d2(Fn, Fn,N ) + d2(ZN , Z) < ε. (3.19)

By assumption (ii) and Theorem 3.10, we also have that

d2(Fn,N , ZN )→ 0

as n→∞, so that in view of (3.18),

0 ≤ lim
n→∞

d(Fn, Z) < ε.

The assertion follows as ε was arbitrary.

Although we stated Theorems 3.12 and 3.14 in a qualitative way, it should be clear
that the convergences in both results are actually quantified by Theorem 3.10.
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4 Hilbert-valued Wiener structures

In this section, we apply our general results to the special Dirichlet structure induced
by the Ornstein-Uhlenbeck generator. This leads to Hilbert-valued Wiener chaos and
a carré du champ operator given by a gradient of Hilbert-valued Malliavin derivatives.
The eigenfunctions are multiple Wiener-Itô integrals with Hilbert-valued deterministic
kernels. This additional structure allows to express the moment bounds of the previous
sections in terms of kernel contractions, which in the finite-dimensional case have
already proved themselves to be very useful in applications, due to their comparatively
easy computability when compared to moments.

4.1 Malliavin calculus

We present some basic elements of the Malliavin calculus on Hilbert spaces, as
introduced in [25] (based on the earlier work [15]). Expository references are [21,
Chapter 4], [11, Chapter 5]. The authoritative reference for Malliavin calculus on
L2(Ω;R) is [38], a further excellent exposition can be found in [31, Chapters 1 and 2].

4.1.1 The Malliavin derivative and divergence operators

Let {W (h) : h ∈ H} be an isonormal Gaussian process with underlying separable Hilbert
space H, that is {W (h) : h ∈ H} is a centered family of Gaussian random variables, defined
on a complete probability space (Ω,F , P ), satisfying

E[W (h1)W (h2)] = 〈h1, h2〉H , h1, h2 ∈ H.

We assume that the σ-algebra F is generated by W . Let K be another separable Hilbert
space and denote by S ⊗K the class of smooth K-valued random variables F : Ω→ K of
the form F = f (W (h1), . . . ,W (hn))⊗ v, where f ∈ C∞b (Rn), h1, . . . , hn ∈ H, v ∈ K, and
linear combinations thereof. S ⊗K is dense in L2(Ω;K) and for F ∈ S ⊗K, define the
Malliavin derivative DF of F as the H⊗K-valued random variable given by

DF =

n∑
i=1

∂if (W (h1), . . . ,W (hn))hi ⊗ v. (4.1)

It can be shown that D is a closable operator from L2 (Ω;K) into L2 (Ω;H⊗K), and
from now we continue to use the symbol D to denote the closure. The domain of D,
denoted byD1,2(K), is the closure of S⊗K with respect to the Sobolev norm ‖F‖2D1,2(K) =

‖F‖2L2(Ω;K) +‖DF‖2L2(Ω;H⊗K). Similarly, for k ≥ 2, let Dk,2(K) denote the closure of S⊗K
with respect to the Sobolev norm ‖F‖2Dk,2(K) = ‖F‖2L2(Ω;K)+

∑k
i=1

∥∥DiF
∥∥2

L2(Ω;H⊗i⊗K)
. For

any k ≥ 2, the operator Dk can be interpreted as the iteration of the Malliavin derivative
operator defined in (4.1). As D is a closed linear operator from D1,2(K) to L2(Ω;H⊗K),
it has an adjoint operator, denoted by δ, which maps a subspace of L2(Ω;H ⊗K) into
L2(Ω;K) through the duality relation

E
[
〈DF, η〉H⊗K

]
= E[〈F, δ(η)〉K ] ,

for any F ∈ D1,2(K) and η ∈ dom(δ). The domain of δ, denoted by dom(δ), is the subset
of random variables η ∈ L2(Ω;H⊗K) such that

∣∣E[〈DF, η〉H⊗K]∣∣ ≤ Cη ‖F‖L2(Ω;K), for all

F ∈ D1,2(K), where Cη is a positive constant depending only on η. Since D is a form of
gradient, its adjoint δ should be interpreted as a divergence, so that it is referred to as
the divergence operator. Similarly, for any k ≥ 2, we denote by δk the adjoint of Dk as
an operator from L2(Ω;H⊗k ⊗K) to L2(Ω;K) with domain dom(δk).
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4.1.2 Multiple integrals and chaos decomposition

Any K-valued random variable F ∈ L2(Ω;K) can be decomposed as

F =

∞∑
n=0

δn(fn), (4.2)

where the kernel fn ∈ H�n ⊗ K are uniquely determined by F , where H�n denotes
the n-fold symmetrized tensor product of H. The representation (4.2) is called the
chaos decomposition of F , and for each n ≥ 0, δn(fn) is an element of the closure
of Hn ⊗ K with respect to the norm on L2(Ω;K), where the so-called n-th Wiener
chaos Hn is defined to be closed linear subspace of L2(Ω) generated by the random
variables

{
Hn(W (h)) : h ∈ H, ‖h‖H = 1

}
, where Hn is the n-th Hermite polynomial given

by Hn(x) = (−1)nex
2/2
(
d
dx

)n
e−x

2/2 (recall that H0 is identified with R). For any n ≥ 0,
the K-valued random variable δn(fn) is usually denoted by In(fn) and called the (K-
valued) multiple Wiener integral of order n of fn. In the particular case where K = R,
these integrals coincide with the ones defined in [38]. Denote by Jn the linear operator
on L2(Ω) given by the orthogonal projection onto Hn, and by JKn the extension of Jn⊗IdK
to L2(Ω;K). Then, it holds that JKn F = Ip(fn). Let {ek : k ≥ 0} be an orthonormal basis
of H. Given f ∈ H�n and g ∈ H�m, for every r = 0, . . . , n ∧m, the r-th contraction of f
and g is the element of H⊗(n+m−2r) defined as

f ⊗r g =

∞∑
i1,...,ir=0

〈f, ei1 ⊗ · · · ⊗ eir 〉H⊗r ⊗ 〈g, ei1 ⊗ · · · ⊗ eir 〉H⊗r . (4.3)

We denote by f⊗̃rg the symmetrization (average over all permutations of the arguments)
of f ⊗r g. Given an orthonormal basis {vk : k ≥ 0} of K, the following multiplication
formula is satisfied by K-valued multiple Wiener integrals: for two arbitrary basis
elements vi, vj of K and for f ∈ H�n ⊗ K and g ∈ H�m ⊗ K, define fi = 〈f, vi〉K and
gj = 〈g, vj〉K . Then

In(fi)Im(gj) =

n∧m∑
r=0

r!

(
n

r

)(
m

r

)
In+m−2r(fi⊗̃rgj). (4.4)

Finally, the action of the Malliavin derivative operator on a K-valued multiple Wiener
integral of the form In(f) ∈ L2(Ω;K), where f ∈ H�n ⊗ K, is given by DIn(f) =

nIn−1(f(·)) ∈ L2(Ω;H⊗K).

4.2 Fourth moment and contraction bounds

In this section, we are going to apply our abstract results to the Dirichlet structure
given by the Ornstein-Uhlenbeck generator, acting on L2(Ω;K), where K is a real, sepa-
rable Hilbert space and the σ-algebra of the underlying probability space is generated
by an isonormal Gaussian process W , indexed by a real, separable Hilbert space H. The
Ornstein-Uhlenbeck generator, commonly denoted by −L in this context, is then defined
as −L = δD. Its spectrum is given by the non-negative integers and the eigenspace
asociated to the eigenvalue p ∈ N0 consists of K-valued multiple Wiener-Itô integrals
of order p. The product formula (4.4) furthermore shows that each of these eigenfunc-
tions is chaotic in the sense of Definition 3.5. The carré du champ operator is given
by Γ(F,G) = 〈DF,DG〉H, where H denotes the underlying Hilbert space on which the
isonormal Gaussian process is defined. The operator Γ(F,G) thus acts on K via

Γ(F,G)u = 〈〈DF, u〉K , DG〉H .
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Using this concrete structure, our bounds can be expressed in terms of kernel
contractions. In applications, such contractions have proven to be very useful, as they
are typically easier to evaluate than moments (see, among many others, [30, 32] for the
context of Breuer-Major theorems, for instance).

Throughout the rest of this section, we assume a Dirichlet structure as introduced in
the above paragraph as given.

We start by proving that the covariance condition (3.6) always holds in the present
context.

Lemma 4.1. For p ∈ N and f ∈ H�p⊗K, let F = Ip(f) be a multiple integral with values
in K. Then F satisfies the covariance condition (3.6).

Proof. Let u, v ∈ K. For better legibility, we will write Ip(fu) = Ip(〈f, u〉) and Ip(fv) =

Ip(〈f, v〉). By the product formula for multiple integrals, we get that

E
(
Ip(fu)2Ip(fv)

2
)

=

p∑
r=0

a2
p,r(2p− 2r)!

〈
fu⊗̃rfv, fu⊗̃rfv

〉
H⊗(2p−2r)

= (2p)!
∥∥fu⊗̃fv∥∥2

H⊗2p + (p!)2 〈fu, fv〉2H⊗p

+

p−1∑
r=1

a2
r(2p− 2r)!

∥∥fu⊗̃rfv∥∥2

H⊗(2p−2r) ,

where ap,r = r!
(
p
r

)2
. A straightforward modification of the calculations given in [31,

Pages 97-98] yields

(2p)!
∥∥fu⊗̃fv∥∥2

H⊗2p

= p!2 ‖fu‖2H⊗p ‖fv‖
2
H⊗p + p!2 〈fu, fv〉2H⊗p + p!2

p−1∑
r=1

(
p

r

)2

‖fu ⊗r fv‖2H⊗(2p−2r)

= E
(
Ip(fu)2

)
E
(
Ip(fv)

2
)

+ E (Ip(fu)Ip(fv))
2

+ p!2
p−1∑
r=1

(
p

r

)2

‖fu ⊗r fv‖2H⊗(2p−2r) .

Combining the last two calculations and rearranging terms gives

E
(
Ip(fu)2Ip(fv)

2
)
− E

(
Ip(fu)2

)
E
(
Ip(fv)

2
)
− 2 E (Ip(fu)Ip(fv))

2

=

p−1∑
r=1

(
a2
r(2p− 2r)!

∥∥fu⊗̃rfv∥∥2

H⊗(2p−2r) + p!2
(
p

r

)2

‖fu ⊗r fv‖2H⊗(2p−2r)

)
> 0, (4.5)

which is the desired inequality.

The contraction bound is as follows.

Theorem 4.2. For F ∈ D1,4 with covariance operator S and chaos decomposition
F =

∑∞
p=1 Fp, where Fp = Ip(f) and f ∈ H�p ⊗K, one has∥∥∥〈DF,−DL−1F

〉
H
− S

∥∥∥
L2(Ω;HS(K))

≤ M̃(F ) + C̃(F ), (4.6)

where

M̃(F ) =

∞∑
p=1

√√√√p−1∑
r=1

cp,p(r)2 ‖fp ⊗r fp‖2H⊗(2p−2r)⊗K⊗2 ,

C̃(F ) =
∑

1≤p,q≤∞
p 6=q

√√√√p∧q∑
r=1

cp,q(r)2 ‖fp ⊗r fq‖2H⊗(p+q−2r)⊗K⊗2
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and the positive constants cp,q(r) are given by

cp,q(r) = p2(r − 1)!

(
p− 1

r − 1

)(
q − 1

r − 1

)
(p+ q − 2r)!. (4.7)

Proof. Let {ei : i ∈ N} be an orthonormal basis of K and abbreviate the inner products
〈Fp, ei〉 and 〈fp, ei〉 by Fp,i and fp,i, respectively. As in the proof of Theorem 3.7, it follows
that

∥∥∥〈DF,−DL−1F
〉
H
− S

∥∥∥
L2(Ω;HS(K))

≤
∞∑

p,q=1

√√√√ ∞∑
i,j=1

Var
(
〈DFp,i,−DL−1Fq,j〉H

)
,

so that we can apply the finite-dimensional result [31, Lemma 6.2.1] and obtain

Var
(〈
DFp,i,−DL−1Fq,j

〉
H

)
=

{∑p∧q
r=1 cp,q(r)

2
∥∥fp,i⊗̃rfq,j∥∥2

H⊗(p+q−2r) if p 6= q,∑p−1
r=1 cp,p(r)

2
∥∥fp,i⊗̃rfp,j∥∥2

H⊗(2p−2r) if p = q,
(4.8)

≤ p2

{∑p∧q
r=1 cp,q(r)

2 ‖fp,i ⊗r fq,j‖2H⊗(p+q−2r) if p 6= q,∑p−1
r=1 cp,p(r)

2 ‖fp,i ⊗r fp,j‖2H⊗(2p−2r) if p = q.

The assertion follows after summing over i and j.

Combined with Theorem 3.2, the contraction bound just obtained yields the following
result.

Theorem 4.3. Let Z be a centered Gaussian random variable on K with covariance
operator S and F ∈ D1,4 with covariance operator T and chaos decomposition F =∑∞
p=1 Ip(fp), where, for each p ≥ 1, fp ∈ H�p ⊗K. Then

d2(F,Z) ≤ 1

2

(
M̃(F ) + C̃(F ) + ‖S − T‖HS

)
,

where the quantities M̃(F ) and C̃(F ) are defined as in Theorem 4.2.

As special cases for K = R, Theorem 4.3 includes the main results of [13] and [33]
(as usual in finite dimension, d2 can be replaced by the Wasserstein distance – see the
proof of Theorem 3.2).

Let us now show how the results proved in Section 3.2 can be refined in the Wiener
chaos setting. We start with the Fourth Moment Theorem.

Theorem 4.4 (Infinite-dimensional Fourth Moment Theorem). Let Z be a centered
Gaussian random variable on K with covariance operator S, and, for p ≥ 1, let
{Fn : n ∈ N} = {Ip(fn) : n ∈ N} be a sequence of K-valued multiple integrals such that
tr(Sn − S)→ 0 as n→∞. Then, as n→∞, the following assertions are equivalent.

(i) Fn converges in distribution to Z,

(ii) E
(
‖Fn‖4

)
→ E

(
‖Z‖4

)
,

(iii) ‖fn ⊗r fn‖H(2p−2r)⊗K⊗2 → 0 for all r = 1, . . . , p− 1,

(iv)
∥∥fn⊗̃rfn∥∥H(2p−2r)⊗K⊗2 → 0 for all r = 1, . . . , p− 1,

(v)
∥∥〈DFn, DFn〉H − pSn∥∥L2(Ω;HS(K))

→ 0.
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Proof. As tr(Sn − S) → 0 as n → ∞, hypercontractivity of Wiener chaos implies that
for any r ≥ 2, supn E[‖Fn‖r] < ∞, which yields that (i) implies (ii) by uniform inte-
grability. Summing (4.5) over i and j and using (3.11) yields the implication (ii)⇒(iii)
(and also (ii)⇒(iv) ). The fact that

∥∥fn⊗̃rfn∥∥H(2p−2r)⊗K⊗2 ≤ ‖fn ⊗r fn‖H(2p−2r)⊗K⊗2 gives
(iii)⇒(iv) and the implication (iv)⇒(v) follows by summing (4.8) over i and j. Finally,
(v)⇒(i) is a consequence of Theorem 4.2.

The corresponding Fourth Moment Theorems for random variables with infinite chaos
expansion (Theorem 3.14 in Section 3.2) can be expressed using contractions as follows:

Theorem 4.5. Let {Fn : n ∈ N} be a sequence of square integrable K-valued random
variables with chaos decomposition

Fn =

∞∑
p=1

Ip(fp,n), (4.9)

where, for each n, p ≥ 1, fp,n ∈ H�p ⊗K. Suppose that:

(i) for every p ∈ N there exists fp ∈ H�p ⊗K such that ‖fn,p − fp‖H⊗p⊗K → 0,

∞∑
p=1

p! ‖fp‖2H⊗p⊗K <∞

and

lim
N→∞

sup
n≥1

∞∑
p=N+1

p! ‖fp,n‖2H⊗p⊗K = 0.

(ii) for all p ∈ N and r = 1, . . . , p− 1, it holds that

‖fp,n ⊗r fp,n‖H⊗2(p−r)⊗K⊗2 → 0.

Then Fn converges in distribution to a centered Gaussian Z with covariance operator S
given by

S =

∞∑
p=1

E
(
‖fp‖2H⊗p

)
,

where, with some slight abuse of notation, E
(
‖fp‖2H⊗p

)
∈ K ⊗K ' L(K,K) denotes the

covariance operator of Ip(fp).

Proof. For p, n ∈ N, let Sp and Sp,n be the covariance operators of Ip(fp) and Ip(fp,n),
respectively. Then

|tr(Sp,n − Sp)| =
∣∣∣E(‖Ip(fp,n)‖2K − ‖Ip(fp)‖

2
K

)∣∣∣
≤
√

E
(
‖Ip(fp,n − Ip(fp)‖2K

)
E
(
‖Ip(fp,n) + Ip(fp)‖2K

)
= p! ‖fp,n − fp‖H⊗p⊗K ‖fp,n + fp‖H⊗p⊗K ,

which tends to zero as n → ∞ by assumption (i). As tr(Sp,n) = E
(
‖Ip,n‖2K

)
=

p! ‖fp,n‖2H⊗p⊗K , the same assumption also implies that

lim
N→∞

sup
n≥1

∞∑
p=N+1

tr(Sp,n) = 0.

The rest of the proof can now be done as in Theorem 3.14, using the bound provided by
Theorem 4.2.
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5 Quantifying the functional Breuer-Major Theorem

In this section, we will give rates of convergence for a functional version of the
seminal Breuer-Major Theorem. To introduce the setting, let X = {Xt : t ≥ 0} be a
centered, stationary Gaussian process and define ρ(k) = E (X0Xk) such that E (XsXt) =

ρ(t− s) = ρ(s− t). Assume ρ(0) = 1, denote the standard Gaussian measure on R by γ
and let ϕ ∈ L2(R, γ) be of Hermite rank d ≥ 1, so that ϕ can be expanded in the form

ϕ(x) =

∞∑
i=d

ciHi(x), cd 6= 0, (5.1)

where Hi(x) = (−1)iex
2/2
(
d
dx

)i
e−x

2/2 is the ith Hermite polynomial. The Breuer-Major
Theorem then states that under the condition∑

k∈Z

ρ(k)d <∞,

the finite-dimensional distributions of the stochastic process {Un(t) : t ∈ [0, 1]} given by

Un(t) =
1√
n

bntc∑
i=0

ϕ(Xi) (5.2)

converge in law to those of a scaled Brownian motion σW , where W = {Wt : t ∈ [0, 1]} is
a standard Brownian motion and the scaling is given by

σ2 =

∞∑
p=d

p!c2p
∑
k∈Z

ρ(k)p. (5.3)

After its discovery by Breuer and Major (see [8]), it took more than twenty years until
progress was made towards quantifying this result. Taking X to be the normalized
increment process of a fractional Brownian motion, Nourdin and Peccati ([30]), as an
illustration of the Malliavin-Stein method introduced in the same reference, were able to
associate rates to the normal convergence of the chaotic projections of the coordinate
sequences of Un, i.e., to the random sequence

1√
n

n∑
k=1

Hp

(
nH
(
BHk+1

n

−BHk
n

))
, (5.4)

where Hp denotes the pth Hermite polynomial and BH is a fractional Brownian motion
with Hurst index H. Note that the random variables defined in (5.4) can be represented
as multiple integrals of order p and therefore are elements of the pth Wiener chaos.
Recently, the Breuer-Major Theorem has been intensively studied, and very strong results
have been obtained concerning the coordinate sequence, providing rates of convergence
in total variation distance for general functions ϕ under rather weak assumptions
(see [37, 29, 34]). Turning to infinite-dimension, it also has been proved recently in [9]
and [28] that the process Un converges in distribution towards a scaled Brownian motion
in the Skorohod space or in the space of continuous functions (replacing the Gauss
brackets in the sum by a linear interpolation).

In this section, it will be shown how, using our bounds, one can associate rates to
the aforementioned functional convergences, taking place in a suitable Hilbert space
K containing D([0, 1]) and C0([0, 1]), respectively. The rates are obtained through the
contraction bounds obtained in the previous section, which allow a natural and straight-
forward lifting of the one-dimensional results. We illustrate this method on [32, Example
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2.5], where ϕ = Hp and ρ(k) = kαl(k) for some α < 0 and a slowly varying function l.
This latter assumption on ρ for example includes the case where X is the increment
process of a fractional Brownian motion. Also, for simplicity, we set K = L2([0, 1]). Our
results also allow the analysis of more general functions ϕ and smaller Hilbert spaces K
with finer topologies, such as the Besov-Liouville (see [40] for definitions and [12] for
proofs of related functional limit theorems in this space) or other reproducing kernel
Hilbert spaces, but as the calculations are more involved and also quite lenghty and
technical, we decided to focus on the general picture in this article and will provide full
details on this topic in a dedicated followup work.

The statement is as follows.

Theorem 5.1. Let {Un(t) : t ∈ [0, 1]} be the stochastic process defined in (5.2), consid-
ered as a sequence of random variables taking values in L2([0, 1]), assume that ϕ = Hp

for some p ∈ N and that the covariance function ρ of the underlying centered, stationary
Gaussian process is of the form ρ(k) = |k|α l(|k|), where α < −1/p and l is a slowly
varying function. Then there exists a constant C > 0, such that

d2(Un, σW ) ≤ Crα(n) (5.5)

where σ is defined in (5.3), W denotes a standard Brownian motion on L2([0, 1]) and the
rate function is given by

rα(n) =


n−1/2 if α < −1,

nα/2l(n) if α ∈
(
−1,− 1

p−1

)
,

n(αq+1)/2l2(n) if α ∈
(
− 1
p−1 ,

−1
p

)
.

Remark 5.2. Theorem 5.1 applies to the case where Xi = BHi+1 −BHi is the increment
process of a fractional Brownian motion with Hurst index H ≤ 2p−1

2p . In this case, the
corresponding bound reads

d2(Un, σW ) ≤ C


n−1/2 if H ∈

(
0, 1

2

)
,

nH−1 if H ∈
[

1
2 ,

2p−3
2p−2

]
n(2pH−2p+1)/2 if H ∈

(
2p−3
2p−2 ,

2p−1
2p

)
.

See [32, Example 2.6] for further details. See also [31, Exercise 7.5.1] for a particular
(and simpler) case where the function ϕ is taken to be the p-th Hermite polynomial Hp.

Proof of Theorem 5.1. Throughout this proof, C denotes a positive constant which might
change from line to line. Let H be the Hilbert space obtained by the closure of the set of
all finite linear combinations of indicator functions 1[0,t], t ≥ 0 with respect to the inner
product 〈

1[0,s], 1[0,t]

〉
H

= ρ(t− s)

and let X be an isonormal Gaussian process on H (for details on this construction, see [31,
Example 2.1.5]). Then

E
(
X (1[0,i])X (1[0,j])

)
=
〈
1[0,i], 1[0,j]

〉
H

= ρ(j − i) = E (XiXj) ,

where expectations are taken over the respective probability spaces of X and X. Fur-
thermore, note that Un has the same law as Ip(fn,t), where

fn,t(x) =
1√
n

bntc−1∑
i=1

gp(i, x) =
1√
n

n−1∑
i=1

1[ i+1
n ,1](t)g(i, x) (5.6)
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and g(i, x) =
∏p
j=1 1[0,i](xj) ≥ 0. Let us denote by Tn the covariance operator of Un and

define

σ2
n = p!

∑
k∈Z

ρ(k)p
(

1− |k|
n

)
1{|k|<n}.

Now
d2 (Un, σW ) ≤ d2 (Un, σnW ) + d2 (σnW,σW ) , (5.7)

and applying Corollary 3.3 together with the identity (2.2), we obtain

d2(σnW,σW ) ≤ 1

2

∥∥σ2
nS − σ2S

∥∥
L1(Ω;S1(L2([0,1])))

=
1

2

∣∣σ2
n − σ2

∣∣ trS =
1

2

∣∣σ2
n − σ2

∣∣ ≤ C (n−1 + nαp+1l(n)
)
, (5.8)

where the last inequality follows after a straightforward calculation, using the same
estimate as in [32, Example 2.5]. Furthermore, by Theorem 4.3,

d2 (Un, σnW ) ≤ 1

2

p−1∑
r=1

p ‖fn,· ⊗r fn,·‖H⊗(2p−2r)⊗L2([0,1])⊗2 +
1

2

∥∥Tn − σ2
nS
∥∥

HS(L2([0,1]))
. (5.9)

Lemma 5.3 yields that ∥∥Tn − σ2
nS
∥∥
HS
≤ C

(
n−1 + nαp+1l(n)

)
. (5.10)

Plugging (5.10) into (5.9), then together with (5.8) into (5.7) and noting that

n−1∨(1−αp)

rα(n)
→ 0

as n→∞, it remains to show that

p−1∑
r=1

‖fn,· ⊗r fn,·‖H⊗(2p−2r)⊗L2([0,1])⊗2 ≤ C rα(n). (5.11)

Now, as for any s1, s2 ∈ [0, 1], it holds that〈
1[
s1
n ,1](·), 1[

s2
n ,1](·)

〉
L2([0,1])

≤ 1,

we have that for r = 1, . . . , p ∧ q,

‖fn,t ⊗r fn,t‖H⊗(p+q−2r)⊗L2([0,1])⊗2 ≤ ‖fn,1 ⊗r fn,1‖H⊗(p+q−2r) .

In other words, the contraction norms of the kernels of the stochastic process
{Un(t) : t ∈ [0, 1]} are bounded by those of the random variable Un(1), so that (5.11)
follows from the one-dimensional calculations in [32, Example 2.5].

Lemma 5.3. In the setting of Theorem 5.1, it holds that∥∥Tn − σ2
nS
∥∥

HS(L2([0,1]))
≤ C

(
n−1 + nαp+1l(n)

)
. (5.12)

Proof. The operator Kn = Tn − σ2
nS is a Hilbert-Schmidt integral operator of the form

Knf(t) =
∫ 1

0
kn(s, t)f(s) ds, with kernel kn given by

kn(s, t) = E (Un(s)Un(t))− (s ∧ t)σ2
n.
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Note that by orthogonality

E (Un(s)Un(t)) = p! 〈fn,s, fn,t〉H⊗p , (5.13)

where the kernels fn,· are given by (5.6). Now

〈fp,n,s, fp,n,t〉H⊗p =
1

n

n∑
i,j=1

1[ in ,1](s)1[ jn ,1](t)ρ (|i− j|)p

=
1

n

n∑
i=1

n−i∑
j=1−i

1[ in ,1](s)1[ j+in ,1](t)ρ (|j|)p

=
1

n

n−1∑
j=−(n−1)

n∑
i=1

1[1−j,n−j](i)1[ in ,1](s)1[ j+in ,1](t)ρ(|j|)p

=
1

n

n−1∑
j=−(n−1)

n∑
i=1

1[1−j,n−j](i)1[ in ,1](s)1[ j+in ,1](t)ρ(|j|)p

= An +Bn + Cn, (5.14)

where the terms An, Bn and Cn are obtained by decomposing the sum over j according
to

n−1∑
j=−(n−1)

β(j) =

−1∑
j=−(n−1)

β(j) + β(0) +

n−1∑
j=1

β(j),

where

β(j) =
1

n

n∑
i=1

1[1−j,n−j](i)1[ in ,1](s)1[ j+in ,1](t)ρ(|j|)p.

Now, we have

An =
1

n

−1∑
j=−(n−1)

# {1 ≤ i ≤ n : 1− j ≤ i, i ≤ ns, i ≤ nt− j} ρ (|j|)p

=
1

n

−1∑
j=−(n−1)

(bns ∧ (nt− j)c+ j) ρ (|j|)p

=

−1∑
j=−(n−1)

ρ (|j|)p ×

{
bnsc
n + j

n if t− s > j
n

bntc
n if t− s ≤ j

n

,

Bn =
1

n
# {1 ≤ i ≤ n : i ≤ n(s ∧ t)} =

bn(s ∧ t)c
n

and

Cn =
1

n

n−1∑
j=1

# {1 ≤ i ≤ n : i ≤ n− j, i ≤ ns, i ≤ nt− j} ρ (|j|)p

=
1

n

n−1∑
j=1

((n− j) ∧ bns ∧ (nt− j)c) ρ (|j|)p

=

n−1∑
j=1

ρ (|j|)p ×

{
bnsc
n if t− s > j

n
bntc
n −

j
n if t− s ≤ j

n

.
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Plugging (5.14) into (5.13) and using formula (2.1) for σn, this yields

E (Un(s)Un(t))− (s ∧ t)σn

= p!

An +Bn + Cn − (s ∧ t)
n−1∑

j=−(n−1)

ρ (|j|)p
(

1− |j|
n

)
and after a tedious but straightforward calculation (similarly as in [32, Proof of Theorem
2.2]), one arrives at

|kn(s, t)| = |E (Un(s)Un(t))− (s ∧ t)σn| .
1

n

1 + p!

n−1∑
j=1

jρ(|j|)p


. n−1 + nαp+1l(n),

where we have used Karamata’s theorem to obtain the last estimate (see [32, Example
2.5] for details). Consequently,∥∥Tn − σ2

nS
∥∥

HS(L2([0,1]))
= ‖kn‖L2([0,1]2) ≤ sup

s,t∈[0,1]

|kn(s, t)| ≤ C
(
n−1 + nαp+1l(n)

)
as asserted.
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