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Abstract

In this paper we study the probability that a d dimensional simple random walk (or the
first L steps of it) covers each point in a nearest neighbor path connecting 0 and the
boundary of an L1 ball. We show that among all such paths, the one that maximizes
the covering probability is the monotonic increasing one that stays within distance
1 from the diagonal. As a result, we can obtain an exponential upper bound on the
decaying rate of covering probability of any such path when d ≥ 4. The main tool is a
general combinatorial inequality, that is interesting in its own right.
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1 Introduction

Cover times of graphs by a simple random walk is a well studied subject [8]. However
there is not much literature on the basic question of subgraphs covering probabilities.
Such questions are useful for geometric studies of random walk traces [9], entropic
calculations such as those appearing in Wulff constructions [1] and percolation questions
such as for random interlacements [2, 12, 14].

In this paper, we study the probability that a finite subset, especially the trace of a
nearest neighbor path in Zd is completely covered by the trace of a d dimensional simple
random walk.

For any finite subset A ⊂ Zd and a d dimensional simple random walk {Xn}∞n=0

starting at 0, we say that A is completely covered by the first L steps of the random walk
if

A ⊆ Trace(X0, X1, · · · , XL) := {x ∈ Zd : ∃0 ≤ i ≤ L,Xi = x}.
*Research supported by NSF grant 1407558.
†The manuscript of the first version of this paper was done when YZ was a visiting assistant professor at

Texas A&M University.
‡Technion - Israel Institute of Technology, Israel and Texas A&M University, USA.
E-mail: eviatarp@technion.ac.il

§Peking University, China.
E-mail: zhangyuan@math.pku.edu.cn

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/20-EJP545
https://ams.org/mathscinet/msc/msc2020.html
mailto:eviatarp@technion.ac.il
mailto:zhangyuan@math.pku.edu.cn


On covering monotonic paths with simple random walk

For simplicity we state our first result for d = 2. For an integer l0 ≥ 0 and the subspace
of reflection l : x = y + l0, define ϕl : Z2 → Z2 as the reflection mapping around l. I.e.,
for any (x, y) ∈ Z2,

ϕl(x, y) = (l0 + y, x− l0).

Suppose two disjoint finite sets A0, B0 ⊂ Z2 ∩ {(x, y) : x ≤ y + l0} both stay on the left of
l. We then have the following theorem which states that the covering probability cannot
get larger when we reflect one of them to the other side of the line:

Theorem 1.1. For any integer L ≥ 0,

P
(
A0 ∪B0 ⊆ Trace

(
{Xn}Ln=0

))
≥ P

(
A0 ∪ ϕl(B0) ⊆ Trace

(
{Xn}Ln=0

))
.

Remark 1.2. By taking the union over all the L’s, one can immediately see the theorem
also holds for L =∞.

Remark 1.3. One would think (like the authors first did) that Theorem 1.1 should follow
from repeated use of the reflection principle. Two problems arise when one explores this
idea. The first is that reflecting a path does not conserve the hitting order within the
sets, which makes it hard to determine the times of reflection. The second is that even
if we consider the sets before and after reflection with the same hitting order we can
get a contradiction to the monotonicity of cover probabilities with the specified order.
See Figure 1 for an example. Here the numbers associated with each vertex represent
a specified hitting order. One may see that, after the reflection, it is now harder for a
random walk starting from vertex 1′ to reach vertex 2 without firsting hitting vertices
3, 4, and 5. An anonymous referee suggested to use Reimer’s inequality to de-correlate
excursions around l. Here we present a purely combinatorial argument not relying on
strong probability tools.

0 8 7 6 5 2

3 4 1

1′

Figure 1: A counter example to monotonicity for every order.

With Theorem 1.1, we could consider the problem of covering a nearest neighbor
path in Zd. For any integer N ≥ 1, let ∂B1(0, N) be the boundary of the L1 ball in Zd

with radius N . We say that a nearest neighbor path

P =
(
P0, P1, · · · , PK

)
connects 0 and ∂B1(0, N) if P0 = 0 and inf{n : ‖Pn‖1 = N} = K. And we say that a path
P is covered by the first L steps of {Xn}∞n=0 if

Trace(P) ⊆ Trace(X0, X1, · · · , XL).

Then we are able to use Theorem 1.1 to show that the covering probability of any such
path can be bounded by that of the diagonal. Let

↗
P =

(
arc1[0 : d− 1], arc2[0 : d− 1], · · · , arc[N/d][0 : d− 1], arc[N/d]+1[0 : N − d[N/d]]

)
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On covering monotonic paths with simple random walk

be the staircase path spiraling around the d-dimensional diagonal, where

arc1[0 : d− 1] =

(
0, e1, e1 + e2, · · · ,

d−1∑
i=1

ei

)

and arck = (k − 1)
∑d
i=1 ei + arc1.

Remark 1.4. It can be useful to note that arc1[0 : d − 1] forms a nearest neighbor
path in Zd from (0, 0, · · · , 0) to (1, 1, · · · , 1, 0), which “jumps” exactly d − 1 steps, and
that arck[0 : d − 1] is arc1[0 : d − 1] shifted by (k − 1)

∑d
i=1 ei. One may also note that

arck[0 : d− 1]’s are connected and together form a nearest neighbor spiral around the
diagonal.

Theorem 1.5. For each integers L ≥ N ≥ 1, let P be any nearest neighbor path in
Zd connecting 0 and ∂B1(0, N). Let Xn, n ≥ 0 be a d dimensional simple random walk
starting at 0. Then

P
(
Trace(P) ⊆ Trace(X0, · · · , XL)

)
≤ P

(↗
P ⊆ Trace(X0, · · · , XL)

)
.

The following main theorem gives an upper bound of the covering probability over all
nearest neighbor paths connecting 0 and ∂B1(0, N).

Theorem 1.6. Let d ≥ 4 and let {Xn}∞n=0 be a d dimensional simple random walk
starting at 0. Then there is a Pd ∈ (0, 1) such that for any nearest neighbor path
P = (P0, P1, · · · , PK) connecting 0 and ∂B1(0, N), we always have

P
(
Trace(P) ⊆ Trace

(
{Xn}∞n=0

))
≤ P [N/d]

d .

Here Pd is equal to the probability that {Xn}∞n=0 ever returns to the d dimensional
diagonal line.

Note that in Theorem 1.6 the upper bound is not very sharp since we only look at
returning to the exact diagonal line for [N/d] times, which may cover at most 1/d of the

total points in
↗
P . Although for any fixed d, we still have an exponential decay with respect

to N , when d→∞, such exponential decaying speed, which is lower bounded by
(

1
2d

)1/d
,

goes to one. Fortunately, in Appendix A we are able to show that limd→∞ 2dPd = 1,
and then further find an upper bound on the asymptotic of the probability that a d

dimensional simple random walk starting from some point in Trace
(↗
P
)

will ever return

to Trace
(↗
P
)
. Note that we now need to return at least N times to cover all the points in

↗
P . We state this result as an additional theorem which is stronger than Theorem 1.6.
However, the proof of Theorem 1.7 is much more elaborate and is left in the Appendix.

Theorem 1.7. There is a C ∈ (0,∞) such that for any d ≥ 4 and any nearest neighbor
path P = (P0, P1, · · · , PK) ⊂ Zd connecting 0 and ∂B1(0, N) and {Xn}∞n=0 which is a d
dimensional simple random walk starting at 0, we always have

P
(
Trace(P) ⊆ Trace

(
{Xn}∞n=0

))
≤
(
C

d

)N
.

The proof of Theorem 1.7 can be found at the end of Section A.1.

Remark 1.8. Actually, any C > 3/2 will serve as a good upper bound for sufficiently
large d. See Remark A.5 in Appendix A for details.
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Remark 1.9. Note that we do not present a proof of Theorem 1.7 for d = 3. With
Theorem 1.5 at hand, it is possible to prove some upper bounds by considering returns
to an infinite transient subset of the diagonal. However this yields non sharp bounds
and requires extra techniques. We consider this case in [13].

Remark 1.10. Note that the probability to cover a space filling curve in B1(0, N) decays

asymptotically slower that cN
d

. Sznitman [15, Section 2] showed that the probability a
random walk path covers B1(0, N) completely can be bounded below by ce−cN

d−1 logN .

A natural generalization of Theorem 1.7 is to try applying the same reflection process
in this paper but also consider the repetition of visits rather than just looking at the trace
of the path. In other words, consider the probability that the random walk’s local time
along a certain path is larger than a sequence of given values. Note that the event the
random walk covers a path is equivalent to the event that the random walk’s local time
along this path ≥ 1. However, it is shown that once we consider local time, the diagonal
line (with repetition) no longer maximizes the covering probability. See Section 6 for
details.

For the minimizer of covering probabilities over the family of monotonic nearest
neighbor paths starting at 0, we also conjecture that the cover probability is minimized
when the path goes straightly along a coordinate axis. I.e.,

Conjecture 1.11. For each integers L ≥ N ≥ 1, let P be any nearest neighbor monotonic
path in Zd with length N . Let Xn, n ≥ 0 be a d dimensional simple random walk starting
at 0. Then

P
(
Trace(P) ⊆ Trace(X0, · · · , XL)

)
≥ P

(→
P ⊆ Trace(X0, · · · , XL)

)
where

→
P =

(
(0, 0, · · · , 0), (1, 0, · · · , 0), · · · , (N − 1, 0, · · · , 0)

)
.

Remark 1.12. Note that the constants we get in Theorem 1.6 are not sharp. In fact,
the upper bound we obtain for the covering of the diagonal path is of order (1/2d)N . If
we use the same argument as in Theorem 1.6 for the straight line we will get a bound
of [1/2(d− 1)]N , since a return to the straight line is equivalent to a d− 1 dimensional
random walk returning to the origin. Thus we get that the bound we obtain is larger for
the path that we conjecture minimizes the cover probability.

The structure of this paper is as follows: in Section 2 we prove a combinatorial
inequality, which can be found later equivalent to finding a one-to-one mapping between
nearest neighbor trajectories. In Section 3 we use this combinatorial inequality to
prove Theorem 1.1. With Theorem 1.1, we construct a finite sequence of paths with
non-decreasing covering probabilities in Section 4 to show that the covering probability
is maximized by the path that goes along the diagonal, see Theorem 1.5 and 4.1. The
proof of Theorem 1.6 is completed is Section 5, while in Section 6 we discuss the two
conjectures and show numerical simulations. In Appendix A we prove that limd→∞ 2dPd =

1 and then show that the probability a simple random walk returns to
↗
P also has an

upper bound of O(d−1), which implies Theorem 1.7. In Appendix B we prove that the
monotonicity fails when considering covering probability with repetitions.

2 Combinatorial inequalities

In this section, we discuss a combinatorial inequality problem, which can be found
equivalent to finding a one-to-one mapping between nearest neighbor trajectories. For
n ∈ Z+ and Ω a set of n integer numbers, say Ω = {1, 2, · · · , n} and any A ⊂ Ω, abbreviate
−A = {−x : x ∈ A} and Ac = Ω \A.
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For any m ∈ Z+, consider a collection of arcs which is a “vector” of subsets

~V = V1 ⊗ V2 ⊗ · · · ⊗ Vm, Vk ⊆ Ω,

where each Vk is called an arc, and an m dimensional vector ~D = (δ1, · · · , δm) ∈ {−1, 1}m
which is called a configuration. Then we can introduce the inner product

~D · ~V =

m⋃
k=1

δkVk ⊆ −Ω ∪ Ω. (2.1)

Moreover, for any subset A ⊆ Ω, we denote −Ac ∪A ⊂ −Ω∪Ω as the reflection induced
by A. I.e., the reflection induced by A is when we keep A and reflect the rest to the
negative. We say a configuration ~D of ~V covers the reflection A if

−Ac ∪A ⊆ ~D · ~V ,

and let
C
(
~V ,A

)
=
{
~D : −Ac ∪A ⊆ ~D · ~V

}
be the subset of all such configurations.

In the simple random walk covering problem we wish to prove that the covering
probability of a set is higher if it resides above some line than if some subsets of it are
reflected below the line. The arcs will stand for a random walk path’s excursions around
a given line and ~D · ~V will specify which excursions are reflected. The next Lemma will
conclude that there are more ways to reflect the random walk excursions to cover a set
if non of its subsets are reflected.

Lemma 2.1. For any m,n ∈ Z+, and any collection of arcs ~V = V1 ⊗ V2 ⊗ · · · ⊗ Vm∣∣∣C (~V ,Ω)∣∣∣ ≥ ∣∣∣C (~V ,A)∣∣∣ (2.2)

for all A ⊆ Ω = {1, 2, · · · , n}.
Before proving the lemma we set some notations. For any n and m = m0 + 1, we can

separate the last arc Vm0+1 and the rest of the arcs and look at the truncated system at
m0. I.e.,

~V [1 : m0] = V1 ⊗ V2 ⊗ · · · ⊗ Vm0

and
~D[1 : m0] = (δ1, · · · , δm0

).

We have for any A

C
(
~V ,A

)
=
{
~D : −Ac ∪A ⊆ ~D[1 : m0] · ~V [1 : m0]

}
∪ Pm

(
~V ,A

)
(2.3)

where

Pm
(
~V ,A

)
=
{
~D : −Ac ∪A * ~D[1 : m0] · ~V [1 : m0], −Ac ∪A ⊆ ~D · ~V

}
.

Noting that ∣∣∣{ ~D : −Ac ∪A ⊆ ~D[1 : m0] · ~V [1 : m0]
}∣∣∣ = 2

∣∣∣C (~V [1 : m0], A
)∣∣∣ ,

and that the two sets in (2.3) are disjoint,∣∣∣C (~V ,A)∣∣∣ = 2
∣∣∣C (~V [1 : m0], A

)∣∣∣+
∣∣∣Pm (~V ,A)∣∣∣ . (2.4)

In order to study the cardinality of P, we first show that
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Lemma 2.2. Recall Ω = {1, 2, · · · , n}. For m = m0 + 1, any ~V = V1 ⊗ V2 ⊗ · · · ⊗ Vm, any

A ⊂ Ω, and any two different ~D1 and ~D2 in Pm
(
~V ,A

)
, we must have

~D1[1 : m0] 6= ~D2[1 : m0].

Proof. The proof is straightforward. Suppose ~D1[1 : m0] = ~D2[1 : m0] = D′, then their
m0 + 1st coordinates must be different. Thus

Vm0+1 ∪ ~D1[1 : m0] · ~V [1 : m0] ⊇ −Ac ∪A

and
−Vm0+1 ∪ ~D1[1 : m0] · ~V [1 : m0] ⊇ −Ac ∪A.

The first inclusion above implies that(
~D1[1 : m0] · ~V [1 : m0]

)c
∩
(
−Ac ∪A

)
⊆ Vm0+1

while the second implies that(
~D1[1 : m0] · ~V [1 : m0]

)c
∩
(
−Ac ∪A

)
⊆ −Vm0+1.

Combining the two inclusion gives us

−Ac ∪A ⊆ ~D1[1 : m0] · ~V [1 : m0]

which contradicts with the definition of Pm
(
~V ,A

)
. Thus the proof is complete.

Now we can prove the main result of this section.

Proof of Lemma 2.1. First we give an explanation of how the inductive arguments work
in this proof: In the inductive basis we have proved Lemma 2.1 holds for all n = 1,m ≥ 1

and all n ≥ 1,m = 1. To see why it is now sufficient to prove the desired result for
n = n0,m = m0 + 1, note that once the inequality has been shown for n = n0,m = m0 + 1,
the same argument immediately gives us the that the inequality holds for n = n0,m =

m0 + 2, and thus for n0 and all m. Then by the inductive basis we have Lemma 2.1 for
n = n0 + 1,m = m0 = 1. Repeat this argument one may verify the lemma for all n and m.

Note that the reflection induced by Ω is Ω itself while reflection induced by Ø is −Ω.

By symmetry one can immediately see that ~D ∈ C
(
~V ,Ω

)
if and only if − ~D ∈ C

(
~V ,Ø

)
.

And thus ∣∣∣C (~V ,Ω)∣∣∣ =
∣∣∣C (~V ,Ø)∣∣∣ .

So we will concentrate on the case when A 6= Ø and prove the inequality by induction on
m and n. To show the basis of induction, it is easy to see that for any n and m = 1∣∣∣C (~V ,Ω)∣∣∣ = 0 =

∣∣∣C (~V ,A)∣∣∣
if V1 6= Ω and ∣∣∣C (~V ,Ω)∣∣∣ = 1 > 0 =

∣∣∣C (~V ,A)∣∣∣
if V1 = Ω. Then for any m and n = 1, by definition we must have Vi = {1} or Ø for each i,
and we always have A = Ω. Thus∣∣∣C (~V ,Ω)∣∣∣ =

∣∣∣C (~V ,A)∣∣∣ = 2ne(
~V )
(

2m−ne(
~V ) − 1

)
,
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where ne(~V ) is the number of empty sets in V1, · · · , Vm. With the method of induction,
suppose the desired inequality is true for all n < n0 and all n = n0,m ≤ m0. Then for
n = n0,m = m0 + 1, with Lemma 2.2, we now know that there is one-to-one mapping

between each configuration in Pm
(
~V ,A

)
and its first m0 coordinates. Note that

Pm
(
~V ,A

)
=
(
Pm

(
~V ,A

)
∩ {δm0+1 = 1}

)
∪
(
Pm

(
~V ,A

)
∩ {δm0+1 = −1}

)
.

Define C1
(
~V [1 : m0], A

)
= Pm

(
~V ,A

)
∩{δm0+1 = 1}, and C2

(
~V [1 : m0], A

)
= Pm

(
~V ,A

)
∩

{δm0+1 = −1}. We have∣∣∣Pm (~V ,A)∣∣∣ =
∣∣∣C1 (~V [1 : m0], A

)∣∣∣+
∣∣∣C2 (~V [1 : m0], A

)∣∣∣ . (2.5)

Note that one may also write

C1
(
~V [1 : m0], A

)
=
{
~D′ ∈ {−1, 1}m0 ,Ø 6=

(
~D′ · ~V [1 : m0]

)c
∩
(
−Ac ∪A

)
⊆ Vm0+1

}
and

C2
(
~V [1 : m0], A

)
=
{
~D′ ∈ {−1, 1}m0 ,Ø 6=

(
~D′ · ~V [1 : m0]

)c
∩
(
−Ac ∪A

)
⊆ −Vm0+1

}
,

and that C
(
~V [1 : m0], A

)
, C1

(
~V [1 : m0], A

)
and C2

(
~V [1 : m0], A

)
are disjoint.

Moreover, we consider a new ambient environment Ω′ = V cm0+1. Within Ω′, one may
consider the arc V ′k = Vk ∩ V cm0+1 ⊆ Ω′ for each k and

~V ′ =
(
V1 ∩ V cm0+1

)
⊗
(
V2 ∩ V cm0+1

)
⊗ · · · ⊗

(
Vm0
∩ V cm0+1

)
.

Moreover, let A′ = A ∩ V cm0+1 ⊂ Ω′. Then we can similarly define

C
(
~V ′, A′

)
=
{
~D′ ∈ {−1, 1}m0 : − (Ω′ ∩A′ c) ∪A′ ⊆ ~D′ · ~V ′

}
.

We claim that

C
(
~V [1 : m0], A

)
∪ C1

(
~V [1 : m0], A

)
∪ C2

(
~V [1 : m0], A

)
⊆ C

(
~V ′, A′

)
. (2.6)

In other words, in order to be in one of the 3 disjoint subsets above, we must guarantee
that all points in Ω′ = V cm0+1 under reflection of A are covered by the configuration ~D′ of
~V [1 : m0]. To verify (2.6), one can note that for any

~D′ ∈ C
(
~V [1 : m0], A

)
∪ C1

(
~V [1 : m0], A

)
∪ C2

(
~V [1 : m0], A

)
we have

~D′ · ~V [1 : m0] ⊇
(
−Ac ∪A

)
∩
(
− V cm0+1 ∪ V cm0+1

)
which implies (

~D′ · ~V [1 : m0]
)
∩
(
− V cm0+1 ∪ V cm0+1

)
⊇
(
−Ac ∪A

)
∩
(
− V cm0+1 ∪ V cm0+1

)
.

(2.7)

In (2.7) we have the right hand side equals to

A′ ∪ −
(
Ac ∩ V cm0+1

)
= − (Ω′ ∩A′ c) ∪A′,
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and the left hand side equals to

m0⋃
k=1

(
δkVk ∩

(
− V cm0+1 ∪ V cm0+1

))
.

Noting that for each k

δkVk ∩
(
− V cm0+1 ∪ V cm0+1

)
= δk

(
Vk ∩ V cm0+1

)
,

we have
m0⋃
k=1

(
δkVk ∩

(
− V cm0+1 ∪ V cm0+1

))
= ~D′ · ~V ′

which shows that ~D′ is also in C
(
~V ′, A′

)
and thus verifies (2.6).

Specifically, when A = Ω, note that for any ~D′ ∈ C
(
~V ′,Ω′

)
, Ω′ = ~D′ ·~V ′ ⊆ ~D′ ·~V [1 : m0].

Thus
~D′ · ~V [1 : m0] ∪ Vm0

= Ω

which implies that

C
(
~V [1 : m0],Ω

)
∪ C1

(
~V [1 : m0],Ω

)
∪ C2

(
~V [1 : m0],Ω

)
= C

(
~V ′,Ω′

)
. (2.8)

Combining (2.4)-(2.8) and the induction hypothesis, we have∣∣∣C (~V ,Ω)∣∣∣ =
∣∣∣C (~V [1 : m0],Ω

)∣∣∣+
∣∣∣C (~V [1 : m0],Ω

)∣∣∣+
∣∣∣C1 (~V [1 : m0],Ω

)∣∣∣+
∣∣∣C2 (~V [1 : m0],Ω

)∣∣∣
=
∣∣∣C (~V [1 : m0],Ω

)∣∣∣+
∣∣∣C (~V ′,Ω′)∣∣∣

≥
∣∣∣C (~V [1 : m0], A

)∣∣∣+
∣∣∣C (~V ′, A)∣∣∣

≥
∣∣∣C (~V [1 : m0], A

)∣∣∣+
∣∣∣C (~V [1 : m0], A

)∣∣∣+
∣∣∣C1 (~V [1 : m0], A

)∣∣∣+
∣∣∣C2 (~V [1 : m0], A

)∣∣∣
=
∣∣∣C (~V ,A)∣∣∣ .

And thus the proof of Lemma 2.1 is complete.

3 Proof of Theorem 1.1

With the combinatorial inequality above, we can study the covering probability of
simple random walks. Let NL be the set of all nearest neighbor paths starting at 0 of
length L+ 1 and consider 2 subsets of NL as follows:

NL,1 =
{
~x ∈ NL, A0 ∪B0 ⊆ Trace

(
~x
)}
,

and
NL,2 =

{
~x ∈ NL, A0 ∪ ϕl(B0) ⊆ Trace

(
~x
)}
.

For the simple random walk {Xn}∞n=0 starting at 0, it is easy to see that for each
~x = (x0, x1, · · · , xL) ∈ NL,

P (Xn = xn, n = 1, 2, · · · , L) =

(
1

2d

)L
.

Thus in order to prove Theorem 1.1, it suffices to show that

|NL,1| ≥ |NL,2|. (3.1)
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On covering monotonic paths with simple random walk

Figure 2: Combinatorial covering argument.

To prove (3.1), we need to first partition NL into disjoint subsets, each of which serves
as an equivalence class under the equivalence relation on NL described below.

For each ~x = (x0, x1, · · · , xL) ∈ NL, let T0 = 0, T1 = inf{n : xn ∈ l}, and

Tn = inf{m > Tn−1 : xm ∈ l}

for each integer n ∈ [2, L] to be the time of the nth visit to l. Here we use the convention
that inf{Ø} =∞ and let TL+1 =∞. Then for each n = 0, 1, · · · , L, define the nth arc of ~x
as

arc
(
~x, n

)
= ~x[Tn : Tn+1) =

(
xTn , xTn+1, · · · , xTn+1−1

)
,

where we use the convention that ~x[k :∞) = ~x[k : L], and ~x[0 : 0) = ~x[∞ :∞) = Ø. I.e.,
the nth arc is the piece of the path between the (possible) nth and n+ 1st visit to l. Since
~x is a nearest neighbor path, all points in each arc must be on the same side of l. Then
for any D = (δ1, δ2, · · · , δL) ∈ {−1, 1}L we can define a mapping ϕl,D on NL so that for
any ~x

ϕl,D
(
~x
)

=

(
arc
(
~x, 0
)
, ϕ

1−δ1
2

l

(
arc
(
~x, 1
))
, ϕ

1−δ2
2

l

(
arc
(
~x, 2
))
, · · · , ϕ

1−δL
2

l

(
arc
(
~x, L

)))
.

In words, we keep the part of the path the same until it first visits l. Then for the nth arc,
we keep it unchanged if δn = 1 and reflect it around l if δn = −1. By definition, it is easy
to see that ϕl,D

(
~x
)
∈ NL. And since

ϕl,D ◦ ϕl,D
(
~x
)
≡ ~x,

ϕl,D forms a bijection on NL. Now we can introduce the equivalence relation on NL
previously mentioned. For each two ~x, ~y ∈ NL, we say ~x ∼ ~y if there exist a D ∈ {−1, 1}L
such that (see Figure 2)

ϕl,D
(
~x
)

= ~y.

Then one can immediately check that if ~x ∼ ~y and D is the configuration such that
ϕl,D

(
~x
)

= ~y, then
~x = ϕl,D

(
~y
)
⇒ ~y ∼ ~x (3.2)

and for D0 ≡ 1,
~x = ϕl,D0

(
~x
)
⇒ ~x ∼ ~x. (3.3)

Moreover, if
ϕl,D1

(
~x
)

= ~y, ϕl,D2

(
~y
)

= ~z,

let
D3 =

(
2× 1(δ1,1=δ2,1) − 1, 2× 1(δ1,2=δ2,2) − 1, · · · , 2× 1(δ1,L=δ2,L) − 1

)
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On covering monotonic paths with simple random walk

we have

ϕl,D3

(
~x
)

= ~z ⇒ ~x ∼ ~z. (3.4)

Combining (3.2)-(3.4), we have that ∼ forms a equivalence relation on NL, where each
path in NL belongs to one equivalence class. Thus all the equivalence classes are disjoint
from each other and there has to be a finite number of them, forming a partition of NL.
We denote these equivalence classes as

CL,1, CL,2, · · · , CL,J (3.5)

where each of them can be represented by its specific element ~xk,+, k = 1, · · · , J , which
is the unique path in each class that always stays on the left of l.

Then for each k, let nk,1 < nk,2 < · · · < nk,mk be all the n’s such that∣∣∣Trace
(
arc
(
~xk,+, n

)) ∣∣∣ > 1.

Note that the only case when we have
∣∣∣Trace

(
arc
(
~xk,+, n

)) ∣∣∣ = 0 is when Tn = Tn+1 =∞
and the only case when it equals to 1 is when Tn = L. Then for any ~x ∈ CL,k and any
D1, D2 such that

ϕl,D1

(
~xk,+

)
= ϕl,D2

(
~xk,+

)
= ~x,

we must have δ1,nk,i = δ2,nk,i for all i’s. So we have a well defined onto mapping f

between CL,k and {−1, 1}mk where each ~x such that

~x = ϕl,D
(
~xk,+

)
for some D is mapped to

f
(
~x
)

= (δ2,nk,1 , δ2,nk,2 , · · · , δ2,nk,mk ).

Moreover, for any two configurations D1 and D2 such that δ1,nk,i = δ2,nk,i for all i’s, we
also must have

ϕl,D1

(
~xk,+

)
= ϕl,D2

(
~xk,+

)
The reason of that is for all n not in {nk,i}mki=1,∣∣∣Trace

(
arc
(
~xk,+, n

)) ∣∣∣ ≤ 1

which means those arcs are either empty or just one point xTn right on the diagonal,
which does not change at all under any possible reflection. Thus we have proved that
the mapping f is a bijection between CL,k and {−1, 1}mk .

At this point we have the tools we need and can go back to compare the two covering
probabilities. Noting that the equivalence classes in (3.5) form a partition of NL, it
suffices to show that for each k ≤ J

|NL,1 ∩ CL,k| ≥ |NL,2 ∩ CL,k| , (3.6)

for each class CL,k. First, if

(A0 ∪B0) ∩ l * Trace(~xk,+[T1, · · · , TL])

then one can immediately see

|NL,1 ∩ CL,k| = |NL,2 ∩ CL,k| = 0.
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Otherwise, let Ωk = (A0∪B0)∩Trace(~xk,+[0, T1])c∩lc and Ak = A0∩Trace(~xk,+[0, T1])c∩lc.
And let nk = |Ωk|. We can also list all points in Ωk as ω1, · · · , ωnk and all points in ϕl(Ωk)

as ω−1, · · · , ω−nk , where ϕl(ωj) = ω−j for all j. Then it is easy to check that

NL,1 ∩ CL,k = {~x ∈ CL,k,Ωk ⊆ Trace(~x)} (3.7)

since all other points in A0 ∪ B0 are guaranteed to be visited by ~xk,+[0, T1] or
~xk,+[T1, · · · , TL] which are both shared over all paths in this equivalence class. And
we also have

NL,2 ∩ CL,k ⊆
{
~x ∈ CL,k, Ak ∪ ϕl

(
Ωk ∩Ack

)
⊆ Trace(~x)

}
(3.8)

since Ak ⊆ A0, Ωk ∩Ack ⊆ B0. Finally, define

Vk,i =
{
j : ωj ∈ Ωk ∩ Trace

(
arc
(
~xk,+, nk,i

))}
, i = 1, 2, · · · ,mk

and ~Vk = Vk,1 ⊗ Vk,2 ⊗ · · · ⊗ Vk,mk . Then by the constructions above we have for any
ωj ∈ Ωk, ωj ∈ Trace(~x) if and only if there exists some i such that j ∈ Vk,i and f(~x)[i] = 1.
And similarly ϕl(ωj) ∈ Trace(~x) if and only if there exists some i so that j ∈ Vk,i and
f(~x)[i] = −1. In combination, for any ωj ∈ Ωk ∪ ϕl(Ωk), ωj ∈ Trace(~x) if and only if
there exists some i such that j ∈ f(~x)[i]Vk,i. Then taking the intersections and letting
Ω̄k = {1, 2, · · · , nk} and

Āk = {j : ωj ∈ Ak},

we have
{~x ∈ CL,k,Ωk ⊆ Trace(~x)} =

{
~x ∈ CL,k, Ω̄k ⊆ f(~x) · ~Vk

}
(3.9)

and {
~x ∈ CL,k, Ak ∪ ϕl

(
Ωk ∩Ack

)
⊆ Trace(~x)

}
=
{
~x ∈ CL,k, −(Ω̄k ∩ Āck) ∪ Āk ⊆ f(~x) · ~Vk

}
.

(3.10)

Noting that the mapping f is a bijection between CL,k and {−1, 1}mk ,∣∣∣{~x ∈ CL,k, Ω̄k ⊆ f(~x) · ~Vk
}∣∣∣ = |C(~Vk, Ω̄k)| (3.11)

and ∣∣∣{~x ∈ CL,k, −(Ω̄k ∩ Āck) ∪ Āk ⊆ f(~x) · ~Vk
}∣∣∣ = |C(~Vk, Āk)|. (3.12)

Apply Lemma 2.1 on Ω̄k, ~Vk and Āk. The proof of this theorem is complete.

Remark 3.1. With exactly the same argument, we can also have the same reflection
theorem on reflecting over a line y = x+ n, n ≥ 1 or x = −y + n.

4 Path maximizing covering probability

We first consider the simpler (but essential important) case when d = 2. We first
outline the idea of the proof as follows:

• To apply Theorem 1.1 specifically on covering the trace of a nearest neighbor path
in P ⊂ Z2 connecting 0 and ∂B1(0, N), we can assume without loss of generality
that the last point of this path, PK ∈ ∂B1(0, N) is in the first quadrant.

• For each such path with at least one point (x, y) that is not a “neighbor” of the
diagonal, i.e. |x−y| ≥ 2, we can always reflect it as follows: (1) Consider l : x = y+1

or y = x + 1 be the axis of reflection. Then l divides Z2 into 2 parts. (2) Let A0

be the collection of points in our path that are in the same half as point 0, and let
the remaining point in our path be ϕl(B0). Then by Theorem 1.1, one may replace
ϕl(B0) with B and always increase the probability of covering.
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• Then note that, after the reflection, A0∪B0 is the trace of another nearest neighbor
path, and we can reduce the total difference∑

|xi − yi|

by at least one in each step. After a finite number of steps, we will end up with a
nearest neighbor path that stays within {|x− y| ≤ 1}.

• Finally, among all those such paths that of distance no more than one from the
diagonal, applying Theorem 1.1 for reflection over x = y, we can show that the
covering probability is maximized when we move all the “one step corners” to the
same side of the diagonal, which itself gives us a monotonic path that stays within
distance one above or below the diagonal. Thus we have the theorem as follows.

Theorem 4.1. For each integers L ≥ N ≥ 1, let P be any nearest neighbor path in
Z2connecting 0 and ∂B1(0, N). Let Xn, n ≥ 0 be a 2 dimensional simple random walk
starting at 0. Then

P
(
Trace(P) ⊆ Trace(X0, · · · , XL)

)
≤ P

(↗
P ⊆ Trace(X0, · · · , XL)

)
where

↗
P =

(
(0, 0), (0, 1), (1, 1), (1, 2), · · · , ([N/2], N − [N/2])

)
.

Proof. As outlined above, we first show that

Lemma 4.2. For each integers L ≥ N ≥ 1, let

P =
(

(x0, y0), · · · , (xK , yK)
)

be any nearest neighbor path in Z2 connecting 0 and ∂B1(0, N) with length K+1 ≥ N+1

where there is an i ≤ K such that |xi − yi| ≥ 2 and where xK ≥ 0, yK ≥ 0. Xn, n ≥ 0 be
a 2 dimensional simple random walk starting at 0. Then there exists a nearest neighbor
path P1 staying within {|x− y| ≤ 1} such that

P
(
Trace(P) ∈ Trace(X0, · · · , XL)

)
≤ P

(
Trace(P1) ∈ Trace(X0, · · · , XL)

)
.

Proof. For any path Q with lenght K + 1, define its total difference as

DT (Q) =
∑

(xi,yi)∈Trace(Q)

|xi − yi|. (4.1)

For each such path in this lemma, without loss of generality we can always assume there
is some i such that xi − yi ≥ 2. Otherwise, by definition one must have an i such that
yi − ii ≥ 2. Then applying reflection over x = y, we are back to the first case. Consider
the line of reflection l : x = y + 1 (otherwise consider l : y = x+ 1). It is easy to see that
there is at least one point along this path on the right side of l. I.e.

B′0 = Trace(P) ∩ {x > y + 1} 6= Ø.

Define A0 = Trace(P) ∩ B′ c0 , B0 = ϕl(B
′
0) ∩ Ac0, and B̂′0 = ϕl(B0) ⊆ B′0. Thus we have

Trace(P) = A0 ∪B′0 and

P
(
A0 ∪B′0 ⊆ Trace(X0, · · · , XL)

)
≤ P

(
A0 ∪ B̂′0 ⊆ Trace(X0, · · · , XL)

)
. (4.2)

Applying Theorem 1.1 on A0 and B0 gives us

P
(
A0 ∪ B̂′0 ⊆ Trace(X0, · · · , XL)

)
≤ P

(
A0 ∪B0 ⊆ Trace(X0, · · · , XL)

)
. (4.3)
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Then noting that P is a nearest neighbor path starting at 0 with length K + 1, let CK,i
be the equivalence class it belongs to under the relation ∼, and let P ′ = ~xi be the
representing element of CK,i where all arcs are reflected to the left of l. Then it is easy
to see that

Trace(P ′) = A0 ∪ ϕl(B′0) = A0 ∪B0. (4.4)

Combine (4.2)-(4.4),

P
(
P ⊆ Trace(X0, · · · , XL)

)
≤ P

(
P ′ ⊆ Trace(X0, · · · , XL)

)
. (4.5)

Then note that for any j such that xj − yj ≥ 2,

ϕl(xj , yj) = (yi + 1, xj − 1) ∈ Z2

while

‖(xj , yj)‖1 ≥ ‖(yi + 1, xj − 1)‖1

for all xi ≥ yi + 2. Since (xK , yK) is in the first quadrant, if in addition we also have
xK ≥ yK +1, then ϕl(xK , yK) remains in the first quadrant with ‖ϕl(xK , yK)‖1 = N . Thus
the new nearest neighbor path P ′ is also one connecting 0 and ∂B1(0, N). Moreover,

DT (P) =
∑

j:(xj ,yj)∈B′0

(xj − yj) +
∑

j:(xj ,yj)∈A0

|xj − yj |,

while

DT (P ′) =
∑

j:(xj ,yj)∈B̂′0

(xj − yj − 2) +
∑

j:(xj ,yj)∈A0

|xj − yj |,

which shows that DT (P ′) ≤ DT (P)− 2. Then if there is a point (x′j , y
′
j) in the new path

P ′ with |x′j − y′j | ≥ 2, we can repeat the previous process and the covering probability is
non-decreasing. Noting that for each time we decrease the total difference by at least 2
while DT (P) is a finite number, after repeating a finite number of times, we must end up
with a nearest neighbor path where no point satisfies |x− y| ≥ 2. Thus, we find a nearest
neighbor path P1 connecting 0 and ∂B1(0, N) staying within {|x− y| ≤ 1} with a higher
covering probability.

With Lemma 4.2, note that for any nearest neighbor path connecting 0 and ∂B1(0, N)

staying within {|x − y| ≤ 1}, we can always look at the part of it after its last visit to
0 and it has a higher covering probability. And note that such part has to contain a
self-avoiding path from 0 to ∂B1(0, N). Letting N0 = N − [N/2] and Ω̄ = {1, 2, · · · , N0},
we have the following lemma whose proof is elementary and is omitted here:

Lemma 4.3. For each nearest neighbor path P1 connecting 0 and ∂B1(0, N) staying
within {|x− y| ≤ 1}, we must have that

(j, j) ∈ Trace(P1), ∀j = 1, 2, · · · , [N/2]

and that

(j − 1, j) or (j, j − 1) ∈ Trace(P1), ∀j = 1, 2, · · · , N0.

This lemma guarantees that such self-avoiding path has to be monotonic as well.
Otherwise, suppose the path contains any decreasing edge, say (j, j)→ (j, j − 1). Then
vertex (j, j) has to be visited more than once, which contradict with the self-avoiding

condition. Thus it is sufficient to show that
↗
P has the highest covering probability over

all nearest neighbor monotonic paths P1 connecting 0 and ∂B1(0, N) that stay within
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{|x− y| ≤ 1}. We can show this by specifying what the trace of each such path looks like.
With the Lemma 4.3, for each such P1 define

Ā =
{
j : (j − 1, j) ∈ Trace(P1)

}
⊆ Ω̄

and
B̄ =

{
j : (j, j − 1) ∈ Trace(P1)

}
⊆ Ω̄.

Then we have Ā ∪ B̄ = Ω̄, so that

P1 ⊇ {(j, j), j = 0, 1, · · · [N/2]} ∪ {(j − 1, j), j ∈ Ā} ∪ {(j, j − 1), j ∈ Ω̄ ∩ Āc}.

Define

A0 = {(j, j), j = 0, 1, · · · [N/2]} ∪ {(j − 1, j), j ∈ Ā}, B0 = ϕl0({(j, j − 1), j ∈ Ω̄ ∩ Āc}),

where l0 is the line x = y. Then

P
(
Trace(P1) ⊆ Trace(X0, · · · , XL)

)
≤ P

(
A0 ∪ ϕl0(B0) ⊆ Trace(X0, · · · , XL)

)
.

And note that

A0 ∪B0 =
(

(0, 0), (0, 1), (1, 1), (1, 2), · · · , ([N/2], N − [N/2])
)

=
↗
P ,

which itself gives a monotonic nearest neighbor path connecting 0 and ∂B1(0, N). So
Theorem 1.1 finishes the proof.

For fixed N , the inequality in Theorem 4.1 becomes equality when L =∞ since the 2
dimensional simple random walk is recurrent and both probabilities go to one. However,
we can easily generalize the same result to higher dimensions. This will similarly give us
Theorem 1.5.

Proof of Theorem 1.5. This theorem can be proved by reflecting only on two coordinates
in Zd while keeping all the others unchanged. For any n ≥ 0, we look at, without loss of
generality, the subspace l : a1 = a2 + l0, l0 ≥ 0 when d ≥ 3, and define reflection ϕl over
l as follows: for each point (a1, · · · , ad) ∈ Zd,

ϕl(a1, · · · , ad) = (a2 + l0, a1 − l0, a3, · · · , ad).

Then for all paths in NL (all nearest neighbor paths starting at 0 of length L+ 1), we can
again define T0 = 0, T1 = inf{n : xn ∈ l}, and

Tn = inf{n ≥ Tn−1 : xn ∈ l}

for each integer n ∈ [2, L] to be the time of the nth visit to subpsace l, and divide NL into
a partition of equivalence classes under ϕl,D for all D ∈ {−1, 1}L. Then for each pair of
disjoint finite subsets A0, B0 ⊆ {x ≤ y + l0}, let

NL,1 =
{
~x ∈ NL, A0 ∪B0 ⊆ Trace

(
~x
)}
,

and
NL,2 =

{
~x ∈ NL, A0 ∪ ϕl(B0) ⊆ Trace

(
~x
)}
.

For each equivalence class CL,k as above, the exact same argument as in the proof of
Theorem 1.1 guarantees that

|NL,1 ∩ CL,k| ≥ |NL,2 ∩ CL,k| .
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So again we have
P
(
A0 ∪B0 ⊆ Trace

(
{Xn}Ln=0

))
≥ P

(
A0 ∪ ϕl(B0) ⊆ Trace

(
{Xn}Ln=0

))
.

(4.6)

Then apply (4.6) to any nearest neighbor path connecting 0 and ∂B1(0, N)

P = (P0, P1, P2, · · · , PK)

where K ≥ N . And without loss of generality we can also assume that PL ∈ (Z+ ∪ {0})d.
Let the subspace of reflection be l : a1 = a2 + 1,

A0 = Trace(P) ∩ {a1 ≤ a2 + 1}, B′0 = Trace(P) ∩ {a1 > a2 + 1}.

and

B0 = ϕl(B
′
0) ∩Ac0, B̂′0 = ϕl(B0).

Without loss of generality we can assume B′0 is not empty, note that Trace(P) = A0 ∪B′0,
and that similar to the proof of Theorem 4.1, we can again let P ′ be the representing
element in the equivalence class under ∼ that contains P, which is another nearest
neighbor path connecting 0 and ∂B1(0, N) where all the arcs are reflected to the same
side of l as 0. Then Trace(P ′) = A0 ∪B0, and Trace(P) = A0 ∪B′0 ⊇ A0 ∪ B̂′0. By (4.6) we
have

P
(
Trace(P) ∈ Trace(X0, · · · , XL)

)
≤ P

(
P ′ ∈ Trace(X0, · · · , XL)

)
. (4.7)

Moreover, define

DT (P) =
∑

Pn∈Trace(P)

∑
i,j≤d

|pn,i − pn,j |

be the total difference of P. Then note that for each n∑
i,j≤d

|pn,i − pn,j | = |pn,1 − pn,2|+ fn(pn,1) + fn(pn,2) +
∑

3≤i,j≤d

|pn,i − pn,j |

where

fn(p) =

d∑
i=3

|p− pn,i|

which is a convex function of p. Thus, we rewrite

DT (P) =
∑

Pn∈A0

∑
i,j≤d

|pn,i − pn,j |+
∑

Pn∈B′0

∑
i,j≤d

|pn,i − pn,j |

and

DT (P ′) =
∑

P ′n∈A0

∑
i,j≤d

|p′n,i − p′n,j |+
∑

P ′n∈B0

∑
i,j≤d

|p′n,i − p′n,j |

For each n such that P ′n = (pn,1, · · · , pn,d) ∈ A0, we always have∑
i,j≤d

|pn,i − pn,j | =
∑
i,j≤d

|p′n,i − p′n,j |.

Otherwise, we must have P ′n ∈ B0 and there must always be a Pn = ϕl(P
′
n) ∈ B̂′0 ⊆ B′0,

which implies that∑
i,j≤d

|p′n,i − p′n,j | = |p′n,1 − p′n,2|+ fn(p′n,1) + fn(p′n,2) +
∑

3≤i,j≤d

|pn,i − pn,j |.
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And since Pn ∈ B′0, pn,1 ≥ pn,2 + 2, so that for p′n,1 = pn,2 + 1 and p′n,2 = pn,1 − 1, we must
have

max{pn,1, pn,2} > max{p′n,1, p′n,2}, min{pn,1, pn,2} < min{p′n,1, p′n,2}, (4.8)

which implies that |p′n,1−p′n,2| < |pn,1−pn,2|. Then combining (4.8), and that p′n,1 +p′n,2 =

pn,1 + pn,2 with the fact that fn(p) is convex, we also have

fn(p′n,1) + fn(p′n,2) ≤ fn(pn,1) + fn(pn,2)

which further implies that DT (P) ≥ DT (P ′) + 1. Again, noting that DT (P) itself is finite,
so after at most a finite number of iterations, we will end up with a path P1 connecting 0
and within region

R =

{
(a1, a2, · · · , ad) ∈ Zd, max

i,j≤d
|ai − aj | ≤ 1

}
.

At the same time, note that we have assumed PL ∈ (Z+ ∪ {0})d. So by (4.8) (and its
parallel versions for other pairs of coordinates), the end point of P1 remains in (Z+∪{0})d
and thus has the same L1 norm as PL, which is N . Thus, P1 remains a path connecting 0
and ∂B1(0, N).

Moreover, it is easy to see that for each point ~a0 = (a1,0, a2,0, · · · , ad,0) in region R

and each subspace l : ai = aj , ~a′0 = ϕl(~a0) must satisfy

a′k,0 =


ak,0, if k 6= i, j

aj,0, if k = i

ai,0, if k = j.

(4.9)

Similar to the argument in the proof of Theorem 4.1, one may apply reflection over
a2 = a1 towards 0, which reflects points in {a2 = a1 + 1} to {a1 = a2 + 1}. And then
similar reflections can be applied over a3 = a1, · · · and ad = a1. We will have a sequence
of paths P2,i, i = 2, · · · d in R with covering probabilities that never decrease. Moreover,
by the definition of our reflections, for each n ≤ K and 2 ≤ j ≤ d let p2,i,n,j be the jth
coordinate of the nth vertex in P2,i. We have that {p2,i,n,1}di=2 is nondecreasing while
{p2,i,n,j}di=2 is nonincreasing, and that

p2,j,n,1 ≥ p2,j,n,j , ∀2 ≤ j ≤ d.

Thus for P2 = P2,d, we must have

p2,n,1 ≥ max
2≤j≤d

p2,n,j (4.10)

for all n ≤ K. Then we reflect P2 over a3 = a2, a4 = a2, · · · , and ad = a2 which also
gives us a sequence of paths P3,i, i = 3, · · · d in R with covering probabilities that never
decrease. Letting P3 = P3,d, similarly we must have

p3,n,2 ≥ max
3≤j≤d

p3,n,j . (4.11)

Moreover recalling the formulas of reflections within R in (4.9), all reflections over
ai = a2, i ≥ 3 will not change max2≤j≤d p2,n,j for any n. Thus, we still have (4.10) holds
for P3. Repeating this process and we will have a sequence P4,P5, · · · ,Pd with covering
probabilities that never decrease, where each of them stays within R. And finally for Pd,
we must have

pd,n,i ≥ max
i+1≤j≤d

pd,n,j , (4.12)

for all i ≤ d− 1, n ≤ N . Noting again that Pd is a nearest neighbor path, then

Trace(Pd) ⊇
↗
P

and the proof of this Theorem is complete.
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5 Proof of Theorem 1.6

With Theorem 1.5, the proof of Theorem 1.6 follows immediately from the fact that the
simple random walk on Rd, d ≥ 4 returns to the one dimensional line x1 = x2 = · · · = xd
with probability less than 1. Note that for any nearest neighbor path P = (P0, P1, · · · , PN )

and {Xn}∞n=0 connecting 0 and ∂B1(0, N) which is a d dimensional simple random walk,
letting

Q =

{
0,

d∑
i=1

ei, 2

d∑
i=1

ei, · · · , [N/d]

d∑
i=1

ei

}

be the points in
↗
P on the diagonal, we always have by Theorem 1.5,

P
(
Trace(P) ⊆ Trace

(
{Xn}∞n=0

))
≤ P

(
↗
P ⊆ Trace

(
{Xn}∞n=0

))
≤ P

(
Q ⊆ Trace

(
{Xn}∞n=0

))
.

Moreover, let {τn}∞n=1 be the sequence of stopping times of all visits to the diagonal line
` : x1 = x2 = · · · = xd. Then

P
(
Q ⊆ Trace

(
{Xn}∞n=0

))
≤ P (τ[N/d] <∞). (5.1)

To bound the probability on the right hand side of (5.1), define a new Markov process
{Yn}∞n=0 ∈ Zd−1, where

Yn = (Xn,1 −Xn,2, Xn,2 −Xn,3, · · · , Xn,d−1 −Xn,d).

Note that we can also write τn = inf{n > τn−1, Yn = 0} and that Yn itself is a d − 1

dimensional random walk with generator

Lf(y) =
1

2d

[
(

d−2∑
i=1

f(y + ei − ei+1) + f(y − ei + ei+1)

]

+
1

2d
[f(y + e1) + f(y − e1) + f(y + ed−1) + f(y − ed−1)]− f(y)

for function f on Zd−1. With d − 1 ≥ 3, we have P (τn < ∞|τn−1 < ∞) = Pd = 1 −
GY (0)−1 < 1. And thus the proof of Theorem 1.6 complete.

6 Discussions

In this section we discuss the conjectures and show numerical simulations.

6.1 Covering probabilities with repetitions

In the proof of Theorem 1.5, note that each time we apply Theorem 1.1 and get a new
path P ′ with higher covering probability, we always have

Trace(P) = A0 ∪B′0

and
Trace(P ′) = A0 ∪B0

where B0 = ϕl(B
′
0) ∩ Ac0 ⊆ ϕl(B

′
0). This, together with the fact that A0 is disjoint with

both B0 and B′0, implies that

|Trace(P)| = |A0|+ |B′0| ≥ |A0|+ |B0| = |Trace(P ′)|.
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In words, although the length of the path remains the same after reflection, the size of
its trace may decrease. In fact, for any simple path connecting 0 and ∂B1(0, N), at the
end of our sequence of reflections, we will always end up with a (generally non-simple)
path whose trace is of size N + 1.

One natural approach towards a sharper upper bound is taking the repetitions of
visits in a non-simple path into consideration. For any path

P =
(
P0, P1, · · · , PK

)
starting at 0 which may not be simple, and any point P ∈ Trace(P), we can define the
first visit to P as T1,P = inf{n : Pn = P} and

Tk,P = inf{n > Tk−1 : Pn = P}

to be the kth visit, with convention inf{Ø} = ∞. Then we can define the repetition of
P ∈ Trace(P) in the path P as

nP,P = sup{k : Tk,P <∞} (6.1)

and denote the collection of all such repetitions as NP = {nP,P : P ∈ Trace(P)}. It is to
easy to see that nP,P ≡ 1 for all P ∈ Trace(P) when P is a simple path, and that∑

P∈Trace(P)

nP,P = K + 1.

For d dimensional simple random walk {Xn}∞n=0 starting at 0 and any point P ∈ Zd,
we can again define the stopping times τ0,P = 0, τ1,P = inf{n : Xn = P} and

τn,P = inf{n > τn−1,P : Xn = P} (6.2)

with convention inf{Ø} =∞. Note that for any integer m > 0, the local time of random
walk {Xn}∞n=0 at point P and time m can be define as

ξ(m,P ) = max{n : τn,P ≤ m}.

Then we have

Definition 6.1. For each nearest neighbor path P, and d dimensional simple random
walk {Xn}∞n=0, we say that {Xn}Ln=0 covers P up to its repetitions if

ξ(L, p) ≥ nP,P ,∀P ∈ Trace(P).

And we denote such event by Trace(P)⊗NP ⊆ {Xn}Ln=0.

Our hope was, for any nearest neighbor path P and subspace of reflection like
l : xi = xj + l0, the probability of a simple random walk {Xn}Ln=0 starting at 0 covering
P up to its repetitions may be upper bounded by that of covering the path P ′ up to
its repetitions, where P ′ is the representing element in the equivalence class in NK
containing P under the reflection ϕl. In words, P ′ is the path we get by making all the
arcs in P reflected to the same side as 0.

Note that although P ′ may not be simple and the size of its trace could decrease, this
will at the same time increase the repetition on those points which are symmetric to
the disappeared ones correspondingly. In fact, under Definition 6.1, the total number of
points our random walk needs to (re-)visit is always∑

P∈Trace(P′)

nP,P′ = K + 1.
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So if our previous guess were true, then we will be able to follow the same process as
in Section 3 and 4 and end with the same path along the diagonal, but this time with a
higher probability of being covered up to its repetitions.

Unfortunately, here we present the counterexample and numerical simulations show-
ing that Theorem 4.1 and 1.5 no longer holds for of certain non-monotonic paths. The
idea of constructing those examples can be seen in the following preliminary model: Let l
be the line of reflection and suppose we have one point x on the same side of l as 0. Then
suppose there is a equivalence class CL,k with its representative element ~xk having 2n

arcs each visiting x once. Then we look at the covering probability of {x, ϕl(x)} ⊗ (n, n)

and that of its reflection {x} ⊗ 2n. For the first one, we only need to choose n of 2n arcs
in ~xk and reflect them to the other side while keeping the rest unchanged. So we have(2n
n

)
configurations. However, for the second covering probability which one may hope

to be higher, the only configuration that may give us the covering up to this repetition is
~xk itself. Thus, at least in this equivalence class, the number of configurations covering
{x, ϕl(x)} ⊗ (n, n) is larger than that of configurations covering {x} ⊗ 2n.

With this idea in mind we give the following counterexample on actual 3 dimensional
paths which shows precisely and rigorously that the covering probability is not increased
after reflection.

Counterexample 1. Consider the following points o = (0, 0, 0), y = (1, 0, 0), z =

(0, 1, 0), w = (1, 1, 0) ∈ Z3, and paths

P = (o, y, w, z)

and
P ′ = (o, y, w, y)

which is the representative element of the equivalence class containing P, under reflec-
tion over l : x2 = x1. Let {Xn}∞n=0 be a simple random walk starting at 0. Moreover, we
use the notation A = Z3 \ {y, z, w} and define stopping times τa = inf{n ≥ 1 : Xn = a}
for all a ∈ Z3, and τA = inf{n ≥ 1 : Xn /∈ A}. Thus we have

Proposition 6.2. For the paths P and P ′ defined above,

Po (Trace(P)⊗NP ⊆ {Xn}∞n=0)

= 2Po(τy = τA)[Po(τy < τw) + Po(τw < τy)]Po(τy <∞)

+ 2Po(τw = τA)Po(τy < τz)Po(τy <∞) ≈ 0.08

(6.3)

which is larger than

Po (Trace(P ′)⊗NP′ ⊆ {Xn}∞n=0)

= Po(τy < τw)[Po(τ0 < τy) + Po(τy < τ0)]Po(τy <∞)

+ Po(τw < τy)Po(τy <∞)Po(τ0 <∞) ≈ 0.065.

(6.4)

The proof of Proposition 6.2 is basically a standard application of Green’s functions
for finite subsets. So we leave the detailed calculations in Appendix B. For anyone
who believes in law of larger numbers, we recommend them to look at the following
numerical simulation which shows the empirical probabilities (which almost exactly
agree with Proposition 6.2) of covering both paths with half a million independent paths
of 3-dimensional simple random walks run up to L = 40000.

For a finite length {Xn}Ln=0 with L <∞, although it is harder to calculate the exact
covering probabilities theoretically, the following simulations on L = 4000, 400 and
40 show that the inequality in Proposition 6.2 remains robust for fairly small L (see
Figure 5).
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Figure 3: covering probabilities of path 1=P and path 2=P ′, L = 40000
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Figure 4: covering probabilities of monotonic paths starting at 0 of length 4

6.2 Monotonic path minimizing covering probability

In Conjecture 1.11, we conjecture that when concentrating on monotonic paths, the
covering probability is minimized when the path takes a straight line along some axis.
The intuition is, while all monotonic paths connecting 0 and ∂B1(0, N) have the same L1

distance, the L2 distance is maximized along the straight line, which makes it the most
difficult to cover. This conjecture is supported for small N . In the following example, we
have d = 3 and N = 3. By symmetry of simple random walk, one can easily see that for
each monotonic path of length N + 1 = 4, starting at 0, the covering probability must
equal to that of one of the following five:

path1 : (0, 0, 0)→ (1, 0, 0)→ (2, 0, 0)→ (3, 0, 0)

path2 : (0, 0, 0)→ (1, 0, 0)→ (2, 0, 0)→ (2, 1, 0)

path3 : (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (1, 2, 0)

path4 : (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (2, 1, 0)

path5 : (0, 0, 0)→ (1, 0, 0)→ (1, 1, 0)→ (1, 1, 1).

The following simulation (see Figure 4) shows that when L = 400, the covering probability
of path 1 is the smallest of them all. It should be easy to use the same calculation in
Proposition 6.2 to show the rigorous result when L =∞.
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Figure 5: covering probabilities of path 1=P and path 2=P ′, L = 4000, 400, 40
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A

A.1 Introduction

In this appendix, we find the asymptotic behavior of the returning probability (to the

diagonal line and the path
↗
P) of a d dimensional simple random walk as d → ∞. For

asymptotics of the return probability to the origin, the result is stated in [10]. To be
precise, for a d dimensional simple random walk {Xd,n}∞n=0 starting at 0 and any x ∈ Zd,
define the stopping time

τd,x = inf{n ≥ 1, Xd,n = x}.

Then the returning probability is defined by

pd = P (τd,0 <∞). (A.1)

In [10], it is stated that limd→∞ 2dpd = 1. However, we believe the proof in [10] is not
completely rigorous. Rigorous proof of the asymptotic above can be found in [6], and
then independently in [4]. Moreover, using the same method, one may also show the
higher order asymptotic of pd, which is stated in [3].

In this appendix, we apply a similar method on non-simple random walks. Particularly,
for a specific d− 1 dimensional one defined by

X̂d−1,n =
(
X1
d,n −X2

d,n, X
2
d,n −X3

d,n, · · · , Xd−1
d,n −X

d
d,n

)
where Xi

d,n is the ith coordinate of Xd,n, we can show the same asymptotic for X̂d−1,n,
which also gives us the asymptotic of the probability that a d dimensional simple random
walk ever returns to the diagonal line. To make the statement precise, consider the
diagonal line in Zd

ld = {(n, n, · · · , n) ∈ Zd, n ∈ Z} ⊂ Zd.
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Define the stopping time
τd,ld = inf{n ≥ 1, Xd,n ∈ ld},

and let
Pd = P (τd,ld <∞)

be the returning probability to ld.

Theorem A.1. For Pd defined above, we have

lim
d→∞

2dPd = 1. (A.2)

With Theorem A.1, we further look at the probability that a d dimensional simple

random walk starting from some point in Trace
(↗
P
)

will ever return to Trace
(↗
P
)
. Note

that for each point

x = (x(1), x(2), · · · , x(d)) ∈ Trace
(↗
P
)

we must have either ∀1 ≤ i, j ≤ d, x(i) = x(j) or there must be some 1 ≤ k < d and
0 ≤ n ≤ bN/dc such that

x(i) =

{
n+ 1 i ≤ k
n i > k.

Thus when looking at x̂ = (x(1) − x(2), x(2) − x(3) · · · , x(d−1) − x(d)) we must have either
x̂ = 0 or x̂ = ed−1,i for some i = 1, 2, · · · , d. In this appendix, we will use the notation
ed−1,0 = 0 and let Dd−1 = {ed−1,i : i = 0, 1, · · · , d − 1} ⊂ Zd. One can immediately see

that when simple random walk Xd,n starting from some point in Trace
(↗
P
)

returns to

Trace
(↗
P
)
, we must have that the corresponding non simple random walk X̂d−1,n starting

from Dd−1 returns to Dd−1. Thus for any simple random walk Xd,n starting at 0, define
the stopping times Td,0 = 0

Td,1 = inf

{
n ≥ 1 : Xd,n ∈ Trace

(↗
P
)}

,

and

Td,k = inf

{
n ≥ Td,k−1 : Xd,n ∈ Trace

(↗
P
)}

for all k ≥ 2 with the convention inf{n ≥ ∞} =∞. And for X̂d−1,n also starting at 0, and
any 0 ≤ i, j ≤ d− 1, define the stopping time

T
(i,j)
d−1 = inf{n ≥ 1 : X̂d−1,n = ed−1,j − ed−1,i}.

Then it is easy to see that for any k ≥ 0

P (Td,k+1 <∞|Td,k <∞) ≤ sup
0≤i≤d−1

P

(
inf

0≤j≤d−1

{
T

(i,j)
d−1

}
<∞

)
. (A.3)

With basically similar but more complicated technique as in the proof of Theorem A.1 we
have

Theorem A.2. There is a C <∞ such that for all d ≥ 4,

sup
0≤i≤d−1

P

(
inf

0≤j≤d−1

{
T

(i,j)
d−1

}
<∞

)
≤ C

d
. (A.4)

With Theorem A.2, the proof of Theorem 1.7 is imminent.
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Proof of Theorem 1.7. With (A.3) and (A.4), we can immediately have

P
(↗
P ⊂ Trace(X0, X1 · · · )

)
≤ P (Td,N <∞)

while

Px(Td,N <∞) ≤
[

sup
0≤i≤d−1

P

(
inf

0≤j≤d

{
T

(i,j)
d−1

}
<∞

)]N
≤
(
C

d

)N
.

And the proof of Theorem 1.7 is complete.

A.2 Useful facts from calculus

In this section, we list some very basic but useful facts from calculus that we are
going to use later in the proof.

1© For any function f(x) ∈ C(R) and any a ∈ R,

∫ a+2π

a

f
(

cos(x), sin(x)
)
dx =

∫ 2π

0

f
(

cos(x), sin(x)
)
dx. (A.5)

2© for any nonnegative integers m,n and

Cm,n =

∫ 2π

0

cosm(x) sinn(x)dx

we have Cm,n = 0 if at least one of m and n is odd.

3© There is a c > 0 such that 1− cos(x) ≥ cx2 for all x ∈ [−3π/2, 3π/2].

4© There is some c1 > 0 such that within [−c1, c1],

ex ≤ 1 + x+ x2.

5© For any x > 0, log(1 + x) ≤ x.

6© With 2©, we can also have that for any n ∈ Z+, integers k1, k2, · · · , kn ≥ 0 and any
a1, a2, · · · , an ∈ R, suppose

K =

n∑
i=1

kn

is a odd number. We always have

∫ π

−π

n∏
i=1

coski(θ − ai)dθ = 0.

A.3 Returning probability to the diagonal line

In this section we prove Theorem A.1. Recalling that

X̂d−1,n =
(
X1
d,n −X2

d,n, X
2
d,n −X3

d,n, · · · , Xd
d,n −Xd−1

d,n

)
we have Xd,n ∈ ld if and only if X1

d,n = X2
d,n = · · · = Xd

d,n, which in turns is equivalent to

X̂d−1,n = 0. And for the new process X̂d−1,n, one can easily check that it also forms a
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d− 1 dimensional random walk with transition probability

P (X̂d−1,1 = ±ed−1,1) =
1

2d

P (X̂d−1,1 = ±(ed−1,1 − ed−1,2)) =
1

2d

P (X̂d−1,1 = ±(ed−1,2 − ed−1,3)) =
1

2d
...

P (X̂d−1,1 = ±(ed−1,d−2 − ed−1,d−1)) =
1

2d

P (X̂d−1,1 = ±ed−1,d−1) =
1

2d

so that X̂d−1,n also forms a finite range symmetric random walk. Moreover, the charac-
teristic function of the increment of X̂d−1,n is given by

φ̂d−1(θ) =
1

d

(
cos(θ1) +

d−2∑
i=1

cos(θi+1 − θi) + cos(θd−1)

)
. (A.6)

And we also have
τ̂d−1,0 = inf{n > 1 : X̂d−1,n = 0}

together with
P (τ̂d−1,0 <∞) = 1− Ĝ−1d−1(0)

where Ĝd−1(·) is the Green’s function for X̂d−1,n. I.e.,

Ĝd−1(0) =

(
1

2π

)d−1 ∫
[−π,π]d−1

1

1− φ̂d−1(θ)
dθ. (A.7)

Then we only need to show that

lim
d→∞

2d[Ĝd−1(0)− 1] = 1. (A.8)

Moreover, using exactly the same embedded random walk argument as in Lemma 1 of
[11] on Xd,n and τd,ld , one can immediately have Pd+1 ≤ Pd, which is also equivalent to
Ĝd(0) ≤ Ĝd−1(0). So in order to show (A.8), we can without loss of generality concentrate
on even d’s.

Since
1

1− x
= 1 + x+ x2 + x3 +

x4

1− x
for all x 6= 1, we have

Ĝd−1(0) = 1 +

(
1

2π

)d−1 ∫
[−π,π]d−1

φ̂d−1(θ)dθ

+

(
1

2π

)d−1 ∫
[−π,π]d−1

φ̂2d−1(θ)dθ

+

(
1

2π

)d−1 ∫
[−π,π]d−1

φ̂3d−1(θ)dθ

+

(
1

2π

)d−1 ∫
[−π,π]d−1

φ̂4d−1(θ)

1− φ̂d−1(θ)
dθ.

(A.9)
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Note that by 1© and 2©, for any i = 1, · · · , d− 2,(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θi+1 − θi)dθ

=

(
1

2π

)2 ∫ π

−π

∫ π

−π
cos(θi+1 − θi)dθi+1dθi

=

(
1

2π

)2 ∫ π

−π

∫ π−θi

−π−θi
cos(θ)dθdθi

=

(
1

2π

)2 ∫ π

−π
0dθi = 0,(

1

2π

)d−1 ∫
[−π,π]d−1

cos2(θi+1 − θi)dθ

=

(
1

2π

)2 ∫ π

−π

∫ π

−π
cos2(θi+1 − θi)dθi+1dθi

=

(
1

2π

)2 ∫ π

−π

∫ π−θi

−π−θi
cos2(θ)dθdθi

=

(
1

2π

)2 ∫ π

−π
πdθi =

1

2
,

and (
1

2π

)d−1 ∫
[−π,π]d−1

cos3(θi+1 − θi)dθ

=

(
1

2π

)2 ∫ π

−π

∫ π

−π
cos3(θi+1 − θi)dθi+1dθi

=

(
1

2π

)2 ∫ π

−π

∫ π−θi

−π−θi
cos3(θ)dθdθi

=

(
1

2π

)2 ∫ π

−π
0dθi = 0.

And by 6©, for any 1 ≤ i < j ≤ d− 2,(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θi+1 − θi) cos(θj+1 − θj)dθ = 0

since there has to be one index within {i, i+ 1, j, j + 1} with multiplicity 1. Similar, one
also has for each 1 ≤ i ≤ d− 2(

1

2π

)d−1∫
[−π,π]d−1

cos(θi+1 − θi) cos(θ1)dθ =

(
1

2π

)d−1∫
[−π,π]d−1

cos(θi+1 − θi) cos(θd)dθ = 0.

Similarly, by 6©, for any 1 ≤ i < j ≤ d− 2,(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θi+1 − θi) cos(θj+1 − θj) cos(θ1)dθ

=

(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θi+1 − θi) cos(θj+1 − θj) cos(θd)dθ

=

(
1

2π

)d−1 ∫
[−π,π]d−1

cos2(θi+1 − θi) cos(θj+1 − θj)dθ

=

(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θi+1 − θi) cos2(θj+1 − θj)dθ = 0,
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while for all 1 ≤ i ≤ d− 2(
1

2π

)d−1 ∫
[−π,π]d−1

cos2(θi+1 − θi) cos(θ1)dθ

=

(
1

2π

)d−1 ∫
[−π,π]d−1

cos2(θi+1 − θi) cos(θd)dθ = 0.

Also, for 1 ≤ i < j < k ≤ d− 2(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θi+1 − θi) cos(θj+1 − θj) cos(θk+1 − θk)dθ = 0.

Thus one can see that the first 3 integration terms in (A.9) satisfy the followings:(
1

2π

)d−1 ∫
[−π,π]d−1

φ̂d−1(θ)dθ =

(
1

2π

)d−1 ∫
[−π,π]d−1

φ̂3d−1(θ)dθ = 0

and (
1

2π

)d−1 ∫
[−π,π]d−1

φ̂2d−1(θ)dθ =
1

2d
.

And we have

Ĝd−1(0) = 1 +
1

2d
+

(
1

2π

)d−1 ∫
[−π,π]d−1

φ̂4d−1(θ)

1− φ̂d−1(θ)
dθ. (A.10)

And we only need to show that for sufficiently large even d

Êd−1 =

(
1

2π

)d−1 ∫
[−π,π]d−1

φ̂4d−1(θ)

1− φ̂d−1(θ)
dθ = o(d−1). (A.11)

To show (A.11), we rewrite the integral above into the expectation of some function of
a sequence of i.i.d. random variables. Let X̂1, X̂2, · · · , X̂d−1 be i.i.d. uniform random
variables on [−π, π], we can define

Ŷd−1 =
1

d

(
cos(X̂1) +

d−2∑
i=1

cos(X̂i+1 − X̂i) + cos(X̂d−1)

)
∈ [−1, 1]

and

Ẑd−1 =


Ŷ 4
d−1

1− Ŷd−1
, Ŷd−1 < 1

0, Ŷd−1 = 1.

Then according to our construction and the definition of Êd, we have

Êd−1 = E[Ẑd−1]. (A.12)

Again let event Âd−1 = {|Ŷd−1| ≤ d−0.4}, then for any d ≥ 6,

E[Ẑd−1] ≤ d−1.6

1− d−0.4
P (Âd−1) + E[Ẑd−11Âcd−1

] ≤ 2d−1.6 + E[Ẑd−11Âcd−1
].

Then let

B̂d−1 =

{√
X̂2

1 + X̂2
2 + · · ·+ X̂2

d−1 ≤
1

d

}
.
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We can further have

E[Ẑd−1] ≤ 2d−1.6 + E[Ẑd−11Âcd−1∩B̂
c
d−1

] + E[Ẑd−11Acd−1∩B̂d−1
]

≤ 2d−1.6 + P (Âcd−1) max
ω∈B̂cd−1

{Ẑd−1(ω)}+ E[Ẑd−11B̂d−1
].

(A.13)

To control the third term in (A.13), note that for any d ≥ 3, and any i = 1, 2, · · · , d − 2,
within the event B̂d−1,

|Xi −Xj | ≤
2

d
≤ π.

Thus within the event B̂d−1 ∩ {Ŷd−1 6= 1}, we have by 3©

Ẑd−1 ≤
1

1− Ŷd−1
≤ d

c
(
X̂2

1 +
∑d−2
i=1 |X̂i+1 − X̂i|2 + X̂2

d−1

) . (A.14)

Moreover, for any (x1, x2, · · · , xd−1) ∈ Rd, we have

x21 +

d−2∑
i=1

|xi+1 − xi|2 + x2d−1 ≥ σ(d− 1, 1)2

(
d−1∑
i=1

x2i

)

where σ(d− 1, 1) is the smallest singular value of d− 1 by d− 1 Jordan block with λ = 1.
In [5] it has been proved that

σ(d− 1, 1) ≥ 1

d− 1
≥ 1

d
.

Thus we have

x21 +

d−2∑
i=1

|xi+1 − xi|2 + x2d−1 ≥ d−2
(
d−1∑
i=1

x2i

)
. (A.15)

Combining (A.14) and (A.15) gives us

Ẑd−1 ≤
d3

c
∑d−1
i=1 X̂

2
i

(A.16)

which implies that

E[Ẑd−11B̂d−1
] ≤

(
1

2π

)d−1 ∫
B2,d−1(0,1/d)

d3

c
∑d−1
i=1 x

2
i

dx1dx2 · · · dxd−1, (A.17)

where B2,d−1(0, 1/d) is the L2 ball in Rd−1 centered at 0 with radius 1/d. For the integral
in (A.17), use the d dimensional spherical coordinates

x1 = r cos(θ1)

x2 = r sin(θ1) cos(θ2)

x3 = r sin(θ1) sin(θ2) cos(θ3)

·
·
·
xd−2 = r sin(θ1) sin(θ2) · · · sin(θd−3) cos(θd−2)

xd−1 = r sin(θ1) sin(θ2) · · · sin(θd−3) sin(θd−2)
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where r ≥ 0, θi ∈ [0, π] for i = 1, 2, · · · , d− 3, and θd−2 ∈ [0, 2π]. Then we have(
1

2π

)d−1 ∫
B2,d−1(0,1/d)

d3

c
∑d−1
i=1 x

2
i

dx1dx2 · · · dxd−1

=
d3

c(2π)d−1

∫
(0,1/d]×[0,π]d−3×[0,2π]

rd−4
d−3∏
i=1

sind−2−i(θi)drdθ1dθ2 · · · dθd−2

≤ d3

c(2π)d−1

∫
(0,1/d]×[0,π]d−3×[0,2π]

rd−4drdθ1dθ2 · · · dθd−2

≤ d3

c2d−1

∫ 1/d

0

rd−4dr =
1

c2d−1
· d3

d− 3
· d3−d = o(d−1).

(A.18)

Combining (A.17) and (A.18), we have

E[Zd1Bd ] ≤ 1

c2d−1
· d3

d− 3
· d3−d = o(d−1). (A.19)

Then for the second term P (Âcd−1) maxω∈B̂cd−1
{Ẑd−1(ω)}, we first control the probabil-

ity P (Âcd−1) for sufficiently large even number d = 2n. Note that

Ŷd−1 ≤
2

d
+

1

d

d−2∑
i=1

cos(X̂i+1 − X̂i)

and that

Ŷd−1 ≥ −
2

d
+

1

d

d−2∑
i=1

cos(X̂i+1 − X̂i).

So we have for sufficiently large even number d = 2n

P (Ŷd−1 ≥ d−0.4) ≤ P

(
1

d

d−2∑
i=1

cos(X̂i+1 − X̂i) ≥
d−0.4

2

)
and

P (Ŷd−1 ≤ −d−0.4) ≤ P

(
1

d

d−2∑
i=1

cos(X̂i+1 − X̂i) ≤
d−0.4

2

)
.

Moreover note that for d = 2n we have

1

d

d−2∑
i=1

cos(X̂i+1 − X̂i) =
n− 1

2n
(Ŷ1,d−1 + Ŷ2,d−1)

where

Ŷ1,d−1 =
1

n− 1

n−1∑
i=1

cos(X̂2i+1 − X̂2i)

and

Ŷ2,d−1 =
1

n− 1

n−1∑
i=1

cos(X̂2i − X̂2i+1).

Noting that Ŷ1,d−1 and Ŷ2,d−1 are again sampled means of i.i.d. random variables with
expectation 0 and variance 1/2. Although now we have Ŷ1,d−1 and Ŷ2,d−1 are correlated,
we can still have the upper bound

P

(
1

d

d−2∑
i=1

cos(X̂i+1 − X̂i) ≥
d−0.4

2

)
≤ P (Ŷ1,d−1 ≥

d−0.4

2
) + P (Ŷ2,d−1 ≥

d−0.4

2
)
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and

P

(
1

d

d−2∑
i=1

cos(X̂i+1 − X̂i) ≤ −
d−0.4

2

)
≤ P (Ŷ1,d−1 ≤ −

d−0.4

2
) + P (Ŷ2,d−1 ≤ −

d−0.4

2
).

Apply Cramér’s Theorem on Ŷ1,d−1 and Ŷ2,d−1, we have that there is some u, U ∈ (0,∞)

(actually we can use u = 1/16 and U = 2) such that

P (Âcd−1) ≤ U exp(−ud0.2). (A.20)

Lastly for maxω∈B̂cd−1
{Ẑd−1(ω)}, note that the range of X̂i+1 − X̂i is [−2π, 2π] which is no

longer a subset of [−3π/2, 3π/2], we will not be able to use 3© directly to find an upper
bound. to overcome this issue, we have the following lemma:

Lemma A.3. For any d, consider the following two subsets of Rd−1:

D1(d) = [−π, π]d−1 ∩

{
1− cos(x1)

d
+

d−2∑
i=1

1− cos(xi+1 − xi)
d

+
1− cos(xd−1)

d
≤ d−7

}

and

D2(d) =

{
(x1, · · · , xd−1) : |xi| ≤

i√
cd3

, ∀i = 1, 2, · · · , d− 1

}
where c is the constant in 3©. Then there is some d0 < ∞ such that for all d ≥ d0,
D1(d) ⊆ D2(d).

Proof. Let d0 be a positive integer such that
√
cd20 > 1. Then for any d ≥ d0 and any

(x1, · · · , xd−1) ∈ D1(d), by the definition of D1(d) and the fact that x1 ∈ [−π, π], we must
have

cx21
d
≤ 1− cos(x1)

d
≤ d−7

which implies that

|x1| ≤
1√
cd3

. (A.21)

Now suppose there is a (x1, · · · , xd−1) ∈ D1(d) ∩ D2(d)c. Let k = inf{i : |xi| > i√
cd3
}.

Then (A.21) ensures that k > 1. Then for xk−1,

|xk−1| ≤
k − 1√
cd3
≤ d√

cd3
≤ 1√

cd20
< 1.

Thus we must have |xk−1 − xk| ≤ 3π/2, which gives that

1− cos(xk − xk−1)

d
≥ c

d
|xk − xk−1|2 ≥

c

d
(|xk| − |xk−1|)2 >

1

d7
.

And now we have a contradiction.

Moreover, we have that for any (x1, · · · , xd−1) ∈ D2(d),

x21 + · · ·+ x2d−1 ≤
∑d−1
i=1 i

2

cd6
= O(d−3) = o(d−2).

Thus there is another d1 <∞ such that for all d ≥ d1,

D1(d) ⊂ D2(d) ⊂ B2,d(0, 1/d). (A.22)
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This means for any d ≥ d1, and any (x1, · · · , xd−1) ∈ B2,d(0, 1/d)c,

1

1− 1
d

(
cos(x1) +

∑d−2
i=1 cos(xi+1 − xi) + cos(xd−1)

) ≤ d7, (A.23)

which gives us
max

ω∈B̂cd−1

{Ẑd−1(ω)} ≤ d7. (A.24)

Thus combine (A.20) and (A.24) we finally have

P (Âcd−1) max
ω∈B̂cd−1

{Ẑd−1(ω)} ≤ Ud7 exp(−ud0.2) = o(d−1) (A.25)

and the proof of Theorem A.1 is complete.

A.4 Proof of Theorem A.2

With the asymptotic of the return of {X̂d−1,n}∞n=0 obtained in the previous section,
we are able to use a similar but more complicate argument to show the same asymptotic
for the probability that {X̂d−1,n}∞n=0 returns to the set Dd−1. First using again exactly
the same embedded random walk argument as in Lemma 1 of [11], it is easy to note that
each time {X̂d−1,n}∞n=0 returns to Dd−1 is also a time when {X̂d−2,n}∞n=0, the embedded
Markov chain tracking the changes of the first d− 2 coordinates of {X̂d−1,n}∞n=0, which
is also a d− 2 dimensional version of the non simple random walk of interest, returns to
Dd−2. This implies

sup
0≤i≤d−1

P

(
inf

0≤j≤d−1

{
T

(i,j)
d−1

}
<∞

)
≤ sup

0≤i≤d−2
P

(
inf

0≤j≤d−2

{
T

(i,j)
d−2

}
<∞

)
and we can without loss of generality again concentrate on even numbers of d’s. Then
for each i, one can immediately have

P

(
inf

0≤j≤d−1

{
T

(i,j)
d−1

}
<∞

)
≤
d−1∑
j=0

P
(
T

(i,j)
d−1 <∞

)
.

Thus, in order to prove Theorem A.2, it is sufficient to show that for all sufficiently large
even d’s, there is a C <∞ such that for any 0 ≤ i ≤ d− 1

d−1∑
j=0

P
(
T

(i,j)
d−1 <∞

)
<
C

d
. (A.26)

Then for any 0 ≤ i 6= j ≤ d− 1, by strong Markov property

P
(
T

(i,j)
d−1 <∞

)
=
Ĝd−1(ej − ei)
Ĝd−1(0)

.

and

P
(
T

(i,i)
d−1 <∞

)
=
Ĝd−1(0)− 1

Ĝd−1(0)
.

In Theorem A.1, we have already proved that Ĝd−1(0) = 1 + (2d)−1 + o(d−1). Thus now it
is sufficient to show that for any i

d−1∑
j=0

Ĝd−1(ej − ei)− 1 ≤ C

d
. (A.27)
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For any 0 ≤ i, j ≤ d− 1, we have

Ĝd−1(ej − ei) = Ĝd−1(ei − ej) =

(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θj − θi)
1− φ̂d−1(θ)

dθ. (A.28)

Thus, we will concentrate on controlling

G
(i,j)
d−1 =

(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θj − θi)
1− φ̂d−1(θ)

dθ

with 0 ≤ i < j ≤ d− 1. Using the same technique as in the proof of Theorem A.1, and
noting that ∫

[−π,π]d−1

cos(θj − θi)dθ = 0

we first have

G
(i,j)
d−1 =

(
1

2π

)d−1 5∑
p=1

(∫
[−π,π]d−1

cos(θj − θi)φ̂pd−1(θ)dθ

)

+

(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θj − θi)φ̂6d−1(θ)

1− φ̂d−1(θ)
dθ

(A.29)

and we call

Ê(i,j)d =

(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θj − θi)φ̂6d−1(θ)

1− φ̂d−1(θ)
dθ (A.30)

to be the tail term. For any 0 ≤ i 6= j ≤ d− 1, let d(i, j) be their distance up to mod(d).
I.e.,

d(i, j) = min{|j − i|, d− |j − i|} ≥ 1.

The reason we want to have the distance under mod(d) is that our non simple random
walk {X̂d−1,n}∞n=0 has some “periodic boundary condition” where we need one transition
to move from ed−1,d−1 to ed−1,0. Then we have the following lemma which implies that

for all but a finite number of (i, j)’s, the tail term Ê(i,j)d is actually all we get for G(i,j)
d−1 .

Lemma A.4. For any k ∈ Z+ and any 0 ≤ i 6= j ≤ d− 1 such that d(i, j) > k,∫
[−π,π]d−1

cos(θj − θi)φ̂kd−1(θ)dθ = 0. (A.31)

Proof. By symmetry we can without generality assume that j > i. Recalling that

φ̂d−1(θ) =
1

d

(
cos(θ1) +

d−2∑
i=1

cos(θi+1 − θi) + cos(θd−1)

)
,

we have

φ̂kd−1(θ) =
1

dk

∑
0≤i1,i2,··· ,ik≤d−1

k∏
h=1

cos(θih − θih+1),

where we use the convention that θ0 = θd = 0. For each term in the summation above,
it is easy to see that there is some nonnegative integers k0, · · · , kd−1 with

∑d−1
h=0 kh = k

such that we can rewrite the term as

d−1∏
h=0

coskh(θh − θh+1). (A.32)
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Thus, it is sufficient to show that for any nonnegative integers k0, · · · , kd−1 with∑d−1
h=0 kh = k ∫

[−π,π]d−1

cos(θj − θi)

(
d−1∏
h=0

coskh(θh − θh+1)

)
dθ = 0. (A.33)

First, if i = 0 then we have j > k and d − j > k. Thus we can separate the product in
(A.32) as

d−1∏
h=0

coskh(θh − θh+1) = Π[0 : j − 1] ·Π[j : d− 1]

where

Π[0 : j − 1] =

j−1∏
h=0

coskh(θh − θh+1), Π[j : d− 1] =

d−1∏
h=j

coskh(θh − θh+1).

Thus Π[0 : j− 1] is a product of j terms while Π[j : d− 1] is a product of d− j terms. Note
that

cos(θj)

(
d−1∏
h=0

coskh(θh − θh+1)

)

= cos(θj) coskj−1(θj − θj−1) coskj (θj − θj+1)

 ∏
h∈{0,··· ,d−1}\{j−1,j}

coskh(θh − θh+1)

 .

If kj−1 + kj is an even number, integrate over θj and 6© gives us (A.33). If kj−1 + kj is
odd, without loss of generality we can assume kj−1 is odd. Noting that

j−1∑
h=0

kh ≤ k < j,

by the pigeon hole principle we must have at least one of those kh’s to be zero, which
is even. Thus, let h0 = suph≤j−1{kh is even}. Then h0 ∈ [0, j − 2], where we use the
standard convention that sup{Ø} = −∞ and inf{Ø} =∞. By definition kh0+1 is odd, and
thus

cos(θj)

(
d−1∏
h=0

coskh(θh − θh+1)

)

= coskh0 (θh0+1 − θh0) coskh0+1(θh0+1 − θh0+2)

cos(θj)
∏

h∈{0,··· ,d−1}\{h0,h0+1}

coskh(θh − θh+1)

 .

Note that kh0 + kh0+1 is odd, so we integrate over θh0+1 and 6© again gives us (A.33).

Symmetrically, if we have kj is odd, then we can look at h1 = infh≥j{kh is even} and
have h1 ∈ [j + 1, d− 1]. This in turn implies that kh1

+ kh1−1 is odd, so we integrate over
θh1

and use 6©. We use the same argument in the following discussions.

Similarly if i > 0, with d(i, j) > k implying j − i > k as well as d+ i− j > k, we can
also have

d−1∏
h=0

coskh(θh − θh+1) = Π[0 : i− 1] ·Π[i : j − 1] ·Π[j : d− 1]
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where

Π[0 : i− 1] =

i−1∏
h=0

coskh(θh − θh+1)

Π[i : j − 1] =

j−1∏
h=i

coskh(θh − θh+1)

Π[j : d− 1] =

d−1∏
h=j

coskh(θh − θh+1).

And again note that

cos(θj − θi)

(
d−1∏
h=0

coskh(θh − θh+1)

)

= cos(θj − θi) coskj−1(θj − θj−1) coskj (θj − θj+1)

 ∏
h∈{0,··· ,d−1}\{j−1,j}

coskh(θh − θh+1)


and that

cos(θj − θi)

(
d−1∏
h=0

coskh(θh − θh+1)

)

= cos(θi − θj) coski−1(θi − θi−1) coski(θi − θi+1)

 ∏
h∈{0,··· ,d−1}\{i−1,i}

coskh(θh − θh+1)

 .

So if either ki−1 + ki or kj−1 + kj is a even number, 6© again gives us (A.33).
Now suppose both ki−1 + ki and kj−1 + kj are odd. If either ki or kj−1 is odd, we can

without loss of generality assume the odd one is kj−1. Note that

j−1∑
h=i

kh ≤ k < j − i.

Let h0 = suph≤j−1{kh is even}. Then h0 ∈ [i, j − 2]. Then again we have that kh0
+ kh0+1

is odd, so we can integrate over θh0+1 and 6© again gives us (A.33).
Otherwise, we must have both ki−1 and kj are odd numbers. Again note that

i−1∑
h=0

kh +

d−1∑
h=j

kh ≤ k < d+ i− j.

At least one of the kh’s above must be 0, and let’s say again without loss of generality it is
in [0, i− 1]. Once more let h0 = suph≤i−1{kh is even}. Then h0 ∈ [0, i− 2], and kh0

+ kh0+1

is odd so we can once again integrate over θh0+1 to use 6© to gives us (A.33). Combining
all the possible situations together, the proof of this lemma is complete.

With Lemma A.4, one can immediately see that for any 0 ≤ i ≤ d− 1 and any j such
that d(i, j) ≥ 6,

G
(i,j)
d−1 = Ê(i,j)d =

(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θj − θi)φ̂6d−1(θ)

1− φ̂d−1(θ)
dθ
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which immediately implies that

∣∣∣G(i,j)
d−1

∣∣∣ ≤ ( 1

2π

)d−1 ∫
[−π,π]d−1

φ̂6d−1(θ)

1− φ̂d−1(θ)
dθ. (A.34)

Then recalling that in the proof Theorem A.1 we have X̂1, X̂2, · · · , X̂d−1 be i.i.d. uniform
random variables on [−π, π] and

Ŷd−1 =
1

d

(
cos(X̂1) +

d−2∑
i=1

cos(X̂i+1 − X̂i) + cos(X̂d−1)

)
∈ [−1, 1].

And we define

Z̄d−1 =


Ŷ 6
d−1

1− Ŷd−1
, Ŷd−1 < 1

0, Ŷd−1 = 1.

Then again we have for any i, j
Ê(i,j)d ≤ E[Z̄d−1]. (A.35)

Recall the event Âd−1 = {|Ŷd−1| ≤ d−0.4}, then for any d ≥ 6,

E[Z̄d−1] ≤ d−2.4

1− d−0.4
P (Âd−1) + E[Z̄d−11Âcd−1

] ≤ 2d−1.6 + E[Z̄d−11Âcd−1
].

Then recall

B̂d−1 =

{√
X̂2

1 + X̂2
2 + · · ·+ X̂2

d−1 ≤
1

d

}
.

We can similarly have

E[Z̄d−1] ≤ 2d−2.4 + E[Z̄d−11Âcd−1∩B̂
c
d−1

] + E[Z̄d−11Acd−1∩B̂d−1
]

≤ 2d−2.4 + P (Âcd−1) max
ω∈B̂cd−1

{Z̄d−1(ω)}+ E[Z̄d−11B̂d−1
].

(A.36)

Noting that in (A.14)-(A.23) and (A.24), we find upper bounds for Ẑd−11B̂d−1
and

maxω∈B̂cd−1
{Z̄d−1(ω)} using 1/(1 − Ŷd−1) which is also an upper bound for the smaller

corresponding terms with Z̄d−1. Thus (A.19) and (A.25) give us that the second and
third terms of (A.36) are also o(d−2.4). Which implies there is a C1 < ∞ such that for
sufficiently large even number d, ∣∣∣G(i,j)

d−1

∣∣∣ ≤ C1d
−2.4

whenever d(i, j) ≥ 6, and that

Ê(i,j)d ≤ C1d
−2.4

for all 0 ≤ i, j ≤ d − 1. Combining the observation here with Lemma A.4, we have for
sufficiently large d any i

d−1∑
j=0

Gd−1(ej − ei)− 1=

d−1∑
j=0

Ê(i,j)d +
∑

j:d(i,j)≤5

5∑
p=1

( 1

2π

)d−1(∫
[−π,π]d−1

cos(θj − θi)φ̂pd−1(θ)dθ

)

≤ C1d
−1.4 +

∑
j:d(i,j)≤5

5∑
p=1

( 1

2π

)d−1(∫
[−π,π]d−1

cos(θj − θi)φ̂pd−1(θ)dθ

)
.

(A.37)
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Note that for any n > 0, |{j : d(i, j) = n}| ≤ 2. So the second term in (A.37) is just a finite
summation of no more than 55 terms. When p = 1, if d(i, j) = 0,(

1

2π

)d−1 ∫
[−π,π]d−1

cos(θj − θi)φ̂d−1(θ)dθ =

(
1

2π

)d−1 ∫
[−π,π]d−1

φ̂d−1(θ)dθ = 0.

And if d(i, j) = 1,(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θj − θi)φ̂d−1(θ)dθ =
1

4π2d

∫
[−π,π]2

cos2(θj − θi)dθjdθi =
1

2d
.

For d(i, j) ≥ 2, by Lemma A.4(
1

2π

)d−1 ∫
[−π,π]d−1

cos(θj − θi)φ̂d−1(θ)dθ = 0.

And for p ≥ 2 and any i, j∣∣∣∣∣
(

1

2π

)d−1 ∫
[−π,π]d−1

cos(θj − θi)φ̂pd−1(θ)dθ

∣∣∣∣∣ =

∣∣∣∣∣
(

1

2π

)d−1 ∫
[−π,π]d−1

φ̂2
d−1(θ) cos(θj − θi)φ̂p−2

d−1(θ)dθ

∣∣∣∣∣
≤
(

1

2π

)d−1 ∫
[−π,π]d−1

φ̂2
d−1(θ)dθ =

1

2d
.

Thus we have shown that all terms in this finite summation is either 0 or O(d−1). Take
C = 28 and the proof of Theorem 1.7 is complete.

Remark A.5. It is clear that the upper bound C = 28 we find here is not precise since
here we only want the right order and are actually having very weak upper bounds for
those 55 terms in the summation. Actually, any C > 3/2 will be a good upper bound
for sufficiently large d. Among the 55 terms in the summation, one can easily see that
the term j = i, p = 2 and the two terms with d(i, j) = 1, p = 1 are the only ones ∼ d−1

and each of them is 1/(2d) + o(d−1). All the other terms are either 0 or o(d−1). The
calculation is trivial calculus but very tedious, especially for someone who is reading (or
writing) this not too short paper.

B

In this appendix we prove that the monotonicity fails when considering covering
probability with repetitions.

Proof of Proposition 6.2. To show the first part of Equation (6.3) and (6.4), note that
{Trace(P)⊗NP ⊆ {Xn}∞n=0} is a subset of event {τA < ∞}. Thus by strong Markov
property and symmetry of simple random walk

P (Trace(P)⊗NP ⊆ {Xn}∞n=0)

= Pw(τy <∞, τz <∞)P (τw = τA) + Pz(τy <∞, τw <∞)P (τz = τA)

+ Py(τz <∞, τw <∞)P (τy = τA)

= 2Po(τy = τA)[Po(τy < τw) + Po(τw < τy)]Po(τy <∞)

+ 2Po(τw = τA)Po(τy < τz)Po(τw <∞).

(B.1)

Similarly, note that {Trace(P ′)⊗NP′ ⊆ {Xn}∞n=0} is a subset of {τA1 <∞}, where A1 =

Z3 \ {y, w}

P (Trace(P ′)⊗NP′ ⊆ {Xn}∞n=0)

= Py(τy <∞, τw <∞)P (τy = τA1
) + Pw(τ2,y <∞)P (τw = τA1

)

= Po(τy < τw)[Po(τo < τy) + Po(τy < τo)]Po(τy <∞)

+ Po(τw < τy)Po(τy <∞)Po(τ0 <∞)

(B.2)
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where τ2,y is defined in (6.2). To calculate the probability we have in (B.1) and (B.2), one
may first note that

Po(τy <∞) =
G(y)

G(o)
, Po(τw <∞) =

G(w)

G(o)
,

where G(·) is the Green’s function of 3-dimensional simple random walk. I.e.,

G(x) =
1

(2π)3

∫
[−π,π]3

1

1− φ(θ)
e−iy·θdθ

with

φ(θ) =
1

3
[cos(θ1) + cos(θ2) + cos(θ3)].

Thus

G(o) =
1

(2π)3

∫
[−π,π]3

1

1− 1
3 [cos(θ1) + cos(θ2) + cos(θ3)]

dθ ≈ 1.5153, (B.3)

G(y) =
1

(2π)3

∫
[−π,π]3

cos(θ1)

1− 1
3 [cos(θ1) + cos(θ2) + cos(θ3)]

dθ ≈ 0.5153, (B.4)

G(2y) =
1

(2π)3

∫
[−π,π]3

cos(2θ1)

1− 1
3 [cos(θ1) + cos(θ2) + cos(θ3)]

dθ ≈ 0.2563, (B.5)

G(w) =
1

(2π)3

∫
[−π,π]3

cos(θ1 + θ2)

1− 1
3 [cos(θ1) + cos(θ2) + cos(θ3)]

dθ ≈ 0.3301, (B.6)

Po(τy <∞) =

∫
[−π,π]3

cos(θ1)

1− 1
3 [cos(θ1)+cos(θ2)+cos(θ3)]

dθ∫
[−π,π]3

1
1− 1

3 [cos(θ1)+cos(θ2)+cos(θ3)]
dθ
≈ 0.3401, (B.7)

Po(τo <∞) = Po(τy <∞) ≈ 0.3401, (B.8)

Po(τ2y <∞) =

∫
[−π,π]3

cos(2θ1)

1− 1
3 [cos(θ1)+cos(θ2)+cos(θ3)]

dθ∫
[−π,π]3

1
1− 1

3 [cos(θ1)+cos(θ2)+cos(θ3)]
dθ
≈ 0.1691, (B.9)

and

Po(τw <∞) =

∫
[−π,π]3

cos(θ1+θ2)

1− 1
3 [cos(θ1)+cos(θ2)+cos(θ3)]

dθ∫
[−π,π]3

1
1− 1

3 [cos(θ1)+cos(θ2)+cos(θ3)]
dθ
≈ 0.2178. (B.10)

Then for A2 = Z3 \ {z}, we have

Po(τy < τz) = Po(τy < τA2) =
GA2

(o, y)

GA2(y, y)

where GA2(·) is the Green’s function for set A2, see Section 4.6 of [7] for reference. Then
by Proposition 4.6.2 of [7],

GA2(o, y) = G(y)− Po(τy <∞)G(w), GA2(y, y) = G(o)− Po(τw <∞)G(w),

which gives

Po(τy < τz) = Po(τz < τy) =
G(y)− Po(τy <∞)G(w)

G(o)− Po(τw <∞)G(w)
≈ 0.2792. (B.11)

Similarly, for A3 = Z3 \ {y, z} we have

Po(τw = τA) = Po(τw < τA3
) =

GA3
(o, w)

GA3
(w,w)

,
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where
GA3

(o, w) = G(w)− [Po(τy < τz) + Po(τz < τy)]G(y)

and
GA3(w,w) = G(o)− [Po(τy < τz) + Po(τz < τy)]G(y)

which gives

Po(τw = τA) =
G(w)− 2Po(τy < τz)G(y)

G(o)− 2Po(τy < τz)G(y)
≈ 0.0344. (B.12)

Then for A4 = Z3 \ {w},

Po(τy < τw) = Po(τy < τA4) =
GA4(o, y)

GA4
(y, y)

where

GA4(o, y) = G(y)− Po(τw <∞)G(y), GA4(y, y) = G(o)− Po(τy <∞)G(y).

Thus

Po(τy < τw) = Po(τz < τw) =
G(y)− Po(τw <∞)G(y)

G(o)− Po(τy <∞)G(y)
≈ 0.3008. (B.13)

And for A5 = Z3 \ {y},

Po(τw < τy) = Po(τw < τA5) =
GA5(o, w)

GA5
(w,w)

,

where

GA5(o, w) = G(w)− Po(τy <∞)G(y), GA4(w,w) = G(o)− Po(τy <∞)G(y).

Thus

Po(τw < τy) = Po(τw < τz) =
G(w)− Po(τy <∞)G(y)

G(o)− Po(τy <∞)G(y)
≈ 0.1155. (B.14)

And for A6 = Z3 \ {z, w},

Po(τy = τA) = Po(τy < τA6) =
GA6(o, y)

GA6
(y, y)

,

where
GA6(o, y) = G(y)− Po(τw < τy)G(y)− Po(τy < τw)G(w)

and
GA6

(y, y) = G(o)− Po(τw < τy)G(w)− Po(τy < τw)G(y).

Thus we have

Po(τy = τA) =
G(y)− Po(τw < τy)G(y)− Po(τy < τw)G(w)

G(o)− Po(τw < τy)G(w)− Po(τy < τw)G(y)
≈ 0.2696 (B.15)

which by symmetry also equals to Po(τz = τA). Finally for Po(τo < τy) and Po(τo < τy),
using one step argument at time 0,

Po(τo < τy) =
2

3
Po(τy < τw) +

1

6
Po(τy < τ2y)

and

Po(τy < τo) =
1

6
+

2

3
Po(τw < τy) +

1

6
Po(τ2y < τy).
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So again for A7 = Z3 \ {2y}, we have

Po(τy < τ2y) =
GA7

(o, y)

GA7(y, y)
,

where
GA7(o, y) = G(y)− Po(τ2y <∞)G(y)

and
GA7

(y, y) = G(o)− Po(τy <∞)G(y).

Thus

Po(τo < τy) =
2

3
Po(τy < τw) +

1

6

G(y)− Po(τ2y <∞)G(y)

G(o)− Po(τy <∞)G(y)
≈ 0.2538. (B.16)

And for Po(τ2y < τy), recalling that A5 = Z3 \ {y} we have

Po(τ2y < τy) =
GA5

(o, 2y)

GA5(2y, 2y)
,

where

GA5
(o, 2y) = G(2y)− Po(τy <∞)G(y), GA5

(2y, 2y) = G(o)− Po(τy <∞)G(y).

Thus

Po(τy < τo) =
1

6
+

2

3
Po(τw < τy) +

1

6

G(2y)− Po(τy <∞)G(y)

G(o)− Po(τy <∞)G(y)
≈ 0.2538. (B.17)

At this point, we finally have all the variables needed calculated, apply (B.3-B.17) to (B.1)
and (B.2), the proof of Proposition 6.2 is complete.
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