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Asymptotic behavior of branching diffusion processes
in periodic media
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Abstract

We study the asymptotic behavior of branching diffusion processes in periodic media.
For a super-critical branching process, we distinguish two types of behavior for the
normalized number of particles in a bounded domain, depending on the distance of the
domain from the region where the bulk of the particles is located. At distances that
grow linearly in time, we observe intermittency (i.e., the k-th moment dominates the
k-th power of the first moment for some k), while, at distances that grow sub-linearly
in time, we show that all the moments converge. A key ingredient in our analysis is a
sharp estimate of the transition kernel for the branching process, valid up to linear in
time distances from the location of the initial particle.
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1 Introduction

Consider a collection of particles Y1(t), Y2(t), . . . in Rd that move diffusively and
independently according to

dYk(t) = b(Yk(t)) dt+ σ(Yk) dWk(t), (1.1)

where Wk denote independent Brownian motions in Rd. Each particle independently
branches into two particles or is annihilated at rates the depend on its location: a particle
at x ∈ Rd branches into two particles at rate α(x) ≥ 0, and is annihilated at rate β(x) ≥ 0.
The newly created particles starting at the location of their parent then repeat this
process independently of each other. This process is referred to as a d-dimensional
branching diffusion process. We suppose that the drift b(x), the non-degenerate diffusion
matrix σ(x), and the rates α(x) and β(x) are all C1,δ(Rd) for some δ ∈ (0, 1] and Zd
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Branching diffusion in periodic media

periodic (and thus bounded). That is, b(x + k) = b(x) for all x ∈ Rd and k ∈ Zd, and
similarly for σ, α and β.

The main topic of interest here is the limiting behavior of branching diffusion pro-
cesses in periodic media in the supercritical regime. Our main goal is to study the
distribution of the number of particles in regions whose spatial location depends on time.
With probability that tends to one, the entire population is confined to a region that
grows linearly in time (see Chapter 7.3 in the book of Freidlin [11]). The effective drift of
a branching process can be understood heuristically as the speed at which the bulk of the
particles is traveling in space. We will give a precise definition of the effective drift later
in Section 2. For a bounded region at a fixed location, assuming that the effective drift is
zero, the structure of the population is similar to that in the compact setting. See, for
example, Engländer, Harris, Kyprianou [9] and references therein. For a time dependent
region inside the linearly growing front, the normalized number of particles converges
almost surely (see, for example, Uchiyama [34] in the case of constant coefficients). The
nature of this convergence, however, depends on how distant the region is from the
location of the initial particle (assuming for simplicity that the effective drift is zero).
At linear in time distances, we will show that intermittency may occur (i.e., the k-th
moment dominates the k-th power of the first moment for some k), while, at distances
that grow sub-linearly in time, we will prove that all the moments converge. For the
case of homogeneous media and for the case of compactly supported branching term,
this question has been studied in the work of Koralov [23] as well as Koralov, Molchanov
[24].

Given a single particle initially at x ∈ Rd, the transition kernel u(t, x, y) is defined by∫
Rd
u(t, x, y)f(y) dy = Ex

[∑
k

f(Yk(t))

]
,

where f ∈ Cb(R) and the sum is over all particles alive at time t ≥ 0. The function
(t, y) 7→ u(t, x, y) satisfies

∂tu = Lxu, x, y ∈ Rd, t > 0, (1.2)

with initial condition
u(0, ·, y) = δy(·),

where L is the operator

Lu =
1

2

d∑
ij=1

aij(x)
∂2u

∂xi∂xj
+

d∑
i=1

bi(x)
∂u

∂xi
+ r(x)u, (1.3)

a(x) = σ(x)σ∗(x), and r(x) = α(x)− β(x). The operator L − r(x) is the generator of the
process (1.1). The first step in our analysis is a precise asymptotic description of the
transition kernel u(t, x, y), valid up to the large deviation scale, that is, for ‖x− y‖ = O(t).

There are two main parts in the asymptotic analysis of u(t, x, y). First, we transform
the operator L in order to alter the effective drift of the process, while simultaneously
turning the branching rate into a constant. Thus, the problem reduces to studying the
transition kernel of an altered diffusion process near the diagonal, where ‖x−y‖ = O(

√
t).

The next part is to prove a local limit theorem for the new transformed kernel at this
diffusive scale.

The ingredients we use to obtain the asymptotics of the transition kernel – exponential
change of measure, homogenization and local limit theorems for the resulting diffusion
process are fairly standard. In spite of this, the precise asymptotics of the transition
kernel that holds up to linear in time distances has not been published, as far as we know
(in 2007, Agmon gave a talk [1] where this result was announced). Here, we provide a
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Branching diffusion in periodic media

simple probabilistic proof that establishes uniform asymptotics of the transition kernel
for d-dimensional second-order parabolic operators with periodic coefficients. The
precise asymptotics in the 1-dimensional case has been obtained previously by Tsuchida
in [33].

Prior results in this direction, in d dimensions, give estimates of the heat kernel, as
opposed to precise asymptotics. The seminal work of Aronson [2] gives global estimates
on the heat kernel, while in [30] Norris proves a generalization of Aronson’s Gaussian
bounds in the case of periodic coefficients and identifies an effective drift of the heat
flow. The upper and lower bounds of Norris [30] have different constant prefactor in
front of the Gaussian term, although the logarithmic asymptotics are sharp. We provide
a stronger result that correctly identifies the main term of the asymptotic expansion
of the transition kernel, which is precise up to the domain of large deviations (up to
distances in space that are linear in time). The asymptotics of Green’s function for the
corresponding elliptic problem for different values of the spectral parameter has been
studied extensively (see, e.g., Murata, Tsuchida [29], Kuchment, Raich [25]).

The asymptotics proved in Section 2 plays a crucial role in analyzing the behavior
of the branching diffusion process in periodic media, in Section 3. The bulk of the
particles will be seen to be located around of v̄t where v̄ denotes the effective drift of
the process (defined later at (2.13)). Let ny(t, x) denote the number of particles located
in a unit d-dimensional cube containing y ∈ Rd, assuming that, initially, there is one
particle located at x ∈ Rd. In Section 3.1, for a super-critical branching process, we
study the asymptotic behavior of ny(t, x) in the domain of large deviations, that is when
‖y − v̄t‖ = O(t). We observe the effect of intermittency, that is, for each vector v ∈ Rd,
v 6= v̄, there exists k ≥ 2 such that the k-th moment of nvt(t, x) grows exponentially
faster than the k-th power of the first moment. This result was first proved in [24] in the
case of a super-critical branching diffusion process in Rd with identity diffusion matrix,
zero drift, and a positive constant potential. Here, in contrast to [24], we do not have
explicit expressions for the transition kernel, but only have asymptotic formulas. This
makes the analysis of the higher order moments more involved.

In Section 3.2, we define a sequence of periodic functions fk(x) that serve as limits
for the k-th moments of N(t, x)/E(N(t, x)), where N(t, x) denotes the total number of
particles in Rd, assuming that, initially, there is one particle located at x ∈ Rd.

In Section 3.3, we again study ny(t, x), but here we assume that ‖y − v̄t‖ = o(t).
That is, we study the distribution of particles near the region where the bulk of the
particles is located (i.e, near v̄t). In this region, we show that the k-th moment of
ny(t, x)/E(ny(t, x)) converges to the periodic function fk(x) identified in Section 3.2. In
addition, we show that there exists a real valued random variable ξx, whose distribution
is determined uniquely, such that E(ξkx) = fk(x) for each k ∈ N. The analog of this
statement (Theorem 3.4) in homogeneous media can be found in [24].

The almost sure convergence of the normalized total number of particles in periodic
media is known (see, e.g., Watanabe [35]). In homogeneous media, this was first
observed by J. Doob (see discussion on Page 13 in Harris [17]), and is also proved in the
book of Athreya and Ney [3]. We expect that in our setting of d space dimensions and
in periodic media, ny(t, x)/E(ny(t, x)) also converges almost surely. For supercritical
branching Brownian motions in homogeneous media as well as in periodic media in
one space dimension, almost sure convergence of the normalized number of particles
in a fixed bounded domain was proved by Ikeda, Kawazu, and Ogura ([21], [22], [19])
using martingale convergence techniques. Related ideas were used in Harris [16] and
Kyprianou [26] to study traveling waves in the corresponding KPP equations.

There have been several other works on different aspects of branching diffusions
in periodic media, and the topic is closely related to reaction-diffusion equations with
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Branching diffusion in periodic media

periodic coefficients. After presenting our results more precisely below, we discuss the
relation to some of these other works in Section 3.4.

2 Asymptotics of the transition kernel

Given a positive function h : Rd → R that is sufficiently smooth, the h – transform of
the operator L (given in (1.3)) is defined as

(Lhf)(x) =
1

h(x)
L(h(x)f(x)).

for each real valued C2(Rd) function f .
For each t ≥ 0 and x, y ∈ Rd, the transition kernel uh(t, x, y) corresponding to Lh

satisfies:

uh(t, x, y) =
1

h(x)
u(t, x, y)h(y), (2.1)

where u(t, x, y), satisfying (1.2), is the transition kernel corresponding to L (see Theorem
4.1.1 of [31]). We choose h from among a special family of eigenfunctions of L having
exponential growth in a given direction. For ζ ∈ Rd, let ϕζ be the principal positive
periodic eigenfunction of the operator e−ζ·xL(eζ·x·). That is ϕζ satisfies

e−ζ·xL(eζ·xϕζ) = µ(ζ)ϕζ , (2.2)

with eigenvalue µ(ζ) ∈ R. Let ϕ∗ζ denote the solution of the adjoint problem, that is,

eζ·xL∗(e−ζ·xϕ∗ζ) = µ∗(ζ)ϕ∗ζ

where µ∗(ζ) is the principal eigenvalue of the adjoint operator, and hence µ∗(ζ) = µ(ζ).
We normalize ϕζ and ϕ∗ζ by∫

[0,1)d
ϕζ(x)ϕ∗ζ(x) dx = 1 =

∫
[0,1)d

ϕ∗ζ(x) dx. (2.3)

Now we define hζ by

hζ(x) = eζ·xϕζ(x), that is, Lhζ = µ(ζ)hζ .

With this choice of h = hζ , (2.1) can be written as

u(t, x, y) =
hζ(x)

hζ(y)
uhζ (t, x, y)

= e−t(ζ·
(y−x)
t −µ(ζ))ϕζ(x)

ϕζ(y)
e−tµ(ζ)uhζ (t, x, y), (2.4)

Let us define pζ(t, x, y) := e−tµ(ζ)uhζ (t, x, y). The function pζ(t, x, y) is the transition
kernel for the operator

Kζw := (Lhζ − µ(ζ))w (2.5)

=
1

eζ·xϕζ(x)
L(eζ·xϕζ(x)w(x))− µ(ζ)w

=
1

2

∑
ij

aijwxixj +
∑
i

bi +
∑
j

aij(ζj + ∂xj logϕζ)

wxi . (2.6)
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Branching diffusion in periodic media

Compared to L, this operators Kζ has an additional periodic drift a∇ log hζ = aζ +

a∇ logϕζ , but no branching term r(x). Let ψζ and ψ∗ζ denote the principal eigenfunctions
corresponding to the principal eigenvalue (which is equal to zero) of the operator Kζ
and K∗ζ on the torus, respectively, and suppose that∫

[0,1)d
ψζ(x)ψ∗ζ (x) dx = 1 =

∫
[0,1)d

ψ∗ζ (x) dx.

It is easy to see that
ψζ(x) ≡ 1 and ψ∗ζ (x) ≡ ϕ∗ζ(x)ϕζ(x).

Now we choose the direction ζ ∈ Rd in an optimal way. Let Φ denote the Legendre
transform of µ(ζ):

Φ(c) = sup
ζ∈Rd

(ζ · c− µ(ζ)) . (2.7)

The properties of µ, from Theorem 2.10 in Chapter 8 of the book of Pinsky [31], guarantee
that Φ ∈ C2 is well-defined. In particular Φ is strictly convex. For each c ∈ Rd, the
supremum in (2.7) is attained at a unique point which will be denoted by ζ̂ = ζ̂(c), that is

Φ(c) = ζ̂ · c− µ(ζ̂).

Thus, c = ∇µ(ζ̂). In addition, for each c ∈ Rd, we have ∇Φ(c) = ζ̂(c). Now, given
(t, x, y) ∈ R+ ×Rd ×Rd, let

c = c(t, x, y) =
y − x
t

. (2.8)

Corresponding to this c, we choose the unique ζ̂ satisfying:

c = ∇µ(ζ̂) or equivalently ∇Φ(c) = ζ̂. (2.9)

Substituting ζ = ζ̂(c) in to (2.4), we obtain the identity

u(t, x, y) = e−tΦ( y−xt )
ϕζ̂(x)

ϕζ̂(y)
pζ̂(t, x, y), x, y ∈ Rd, t > 0 (2.10)

Therefore, to obtain the exact asymptotics of u(t, x, y) in the domain of large deviations,
we need to choose ζ̂ appropriately, and provide an exact asymptotics of the transition
density pζ̂(t, x, y). The reason for introducing this transformed kernel is that, momentarily

assuming y = y(t) = x+ ct, the effective drift of the process corresponding to pζ̂(t, x, y)

is c. And therefore, the problem reduces to estimating the density of the transition kernel
of the operator Kζ̂ at a diffusive scale. The following proposition, which will be proved

later, gives the exact asymptotics of the transition density pζ̂(t, x, y).

Proposition 2.1. Fix L0 > 0. For (t, x, y) ∈ R+×Rd×Rd, define ζ̂ = ζ̂(t, x, y) = ∇Φ(y−xt ).
Then

lim
t→∞

sup
‖x−y‖≤tL0

∥∥∥ 1

ϕζ̂(y)ϕ∗
ζ̂
(y)

det[D2Φ(
y − x
t

)]−1/2(2πt)d/2pζ̂(t, x, y)− 1
∣∣∣ = 0. (2.11)

From Proposition 2.1, the following theorem now follows easily, giving the exact
asymptotics of u(t, x, y). As we have mentioned, this result was announced in a talk of
Agmon [1] in 2007:

Theorem 2.2. Fix L > 0. The following asymptotic relation holds as t → ∞ for all
x, y ∈ Rd such that ‖y − x‖ ≤ Lt:

u(t, x, y) = (2πt)−d/2 det[D2Φ(
y − x
t

)]1/2e−tΦ( y−xt )ϕζ̂(x)ϕ∗
ζ̂
(y) [1 + oL(1)] , (2.12)

where ζ̂ = ζ̂(t, x, y) = ∇Φ(y−xt ).
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Branching diffusion in periodic media

Proof of Theorem 2.2. Fix L > 0. From Proposition 2.1 and (2.10), for all (t, x, y) ∈
R+ ×Rd ×Rd with ‖y−x‖t ≤ L, we obtain

u(t, x, y) = e−tΦ( y−xt )
ϕζ̂(x)

ϕζ̂(y)
pζ̂(t, x, y)

= (
√

2πt)−d[detD2Φ
(y − x

t

)]1/2
e−tΦ( y−xt )ϕζ̂(x)ϕ∗

ζ̂
(y)(1 + o(1)),

uniformly for ‖y − x‖ ≤ Lt. This concludes the proof of Theorem 2.2.

Since Φ is strictly convex, we define v̄ ∈ Rd to be the unique minimizer of Φ:

Φ(v̄) = min
v∈Rd

Φ(v) = −µ(0) (2.13)

We call this v̄ the effective drift of the branching diffusion process. The logarithmic
asymptotics in Theorem 2.2 imply that a majority of the particles are located where
|y − x− v̄t| = o(t).

The bounds (2.12) are valid at the large deviation scale, where ‖y − x‖ ≤ O(t). The
following Aronson-type estimate provides a Gausian bound on the u that holds for all
x, y ∈ Rd, although it is less precise than (2.12). It is a consequence of Theorem 1.1 from
Norris [30]:

Lemma 2.3. Let v̄ be the effective drift. There is a constant c > 0 such that

u(t, x, y + v̄t) ≤ ct−d/2 exp

(
−tΦ(v̄)− ‖y − x‖

2

ct

)
, ∀ x, y ∈ Rd, t > 0. (2.14)

Proof of Lemma 2.3. From (2.4) with ζ = 0, we have

u(t, x, y) = etµ(0)ϕ0(x)

ϕ(y)
p0(t, x, y).

where p0(t, x, y) is the transition kernel for the operator K0 in (2.6), having periodic
coefficients, but without a potential term. The effective drift for p0 is precisely v̄ = `(0) =

∇µ(0). By Theorem 1.1 from Norris [30] there exists C > 0 such that for all x, y ∈ Rd
and t > 0,

C−1t−d/2e
−C‖y−x‖2

t ≤ p0(t, x, y + v̄t) ≤ Ct−d/2e
−‖y−x‖2

Ct .

(See [32] Lemma 5.3 for an outline of the comparison of the setting in [30] to the setting
here). Recall that µ(0) = −Φ(v̄). In terms of u, this implies that

u(t, x, y + v̄t) ≤ C̃t−d/2 exp
(
− tΦ(v̄)− ‖y − x‖

2

C̃t

)
.

3 Asymptotic behavior of a super-critical branching process in
periodic media

In this section, we study the distribution of the number of particles in regions whose
spatial location depends on time. Throughout this section, we will assume that the
branching diffusion process is super-critical, meaning that

Φ(v̄) = −µ(0) < 0, (3.1)

where v̄ is the effective drift defined at (2.13). In view of Theorem 2.2, this condition
implies that the total mass

∫
u(t, x, y) dy grows exponentially fast, as t→∞.
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Branching diffusion in periodic media

Recall that ny(t, x) denotes the number of particles located in a unit d-dimensional
cube containing y ∈ Rd, assuming that, initially, there is one particle located at x ∈
Rd. We state three theorems that describe different behaviors of the distribution of
ny(t, x)/E(ny(t, x)). The main theorem in this section (Theorem 3.1) shows intermittency
(i.e., the k-th moment dominates the k-th power of the first moment for some k), at
locations with linear in time distances from the origin (recall that the bulk of the
particles is located at the origin).

3.1 Intermittency in the domain of large deviations

For y = (y1, y2, · · · , yd), let Qdy denote the d-dimensional cube:

Qdy = y + [0, 1)d = [y1, y1 + 1)× [y2, y2 + 1)× · · · × [yd, yd + 1).

Recall that ny(t, x) denotes the number of particles located in Qdy, assuming that, initially,
there is one particle located at x ∈ Rd.
Theorem 3.1. For each k ∈ N ∪ {0}, and each x ∈ [0, 1)d, the following statements hold:

(a) For each v ∈ Rd, there exists the limit,

γk(v) = lim
t→∞

lnE(ntv(t, x)k)

t
∈ R. (3.2)

For k = 1, γ1(v) = −Φ(v). For k ≥ 2,

γk(v) = sup
w∈Rd,u∈(0,1)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
. (3.3)

(b) Define Gk = {v ∈ Rd : γ1(v) ≥ 0, γk(v) = kγ1(v)} for each k ∈ N. Then the sets
{Gk}k≥1 are closed subsets of Rd and Gk+1 ⊆ Gk for all k ∈ N. There exists a
sequence of constants αk > 0 such that Bαk(v̄) ⊆ Gk, and ∩k∈NGk = {v̄}.

Jensen’s inequality implies that E(ntv(t, x)k) ≥ (E(ntv(t, x)))k for each k ∈ N and
v ∈ Rd. Therefore, as long as the limit (3.2) exists, we have, γk(v) ≥ kγ1(v) for each
k ∈ N. Thus, G1 \Gk = {v ∈ G1 : γk(v) > kγ1(v)}. Notice that Part (b) of Theorem 3.1
implies that G1 \Gk∗ is non-empty for some k∗ ≥ 2. Thus, for v ∈ G1 \Gk∗ ,

lim
t→∞

ln(E(ntv(t, x)k)))

t
= γk(v) > kγ1(v) = lim

t→∞

ln(E(ntv(t, x)))k)

t
.

This is the phenomenon of intermittency. This behavior is markedly different from the
behavior in the case when the branching rate c(x) is compactly supported in space. In
fact, for super-critical branching processes with compactly supported branching rates,
in [24], it is shown that, that ntv(t, x) converges after appropriate scaling as t→∞, and
the quantities E(ntv(t, x)k)/E(ntv(t, x))k converge to the corresponding quantities for
the limiting random variable.

Remark 3.2. Formula (3.3) essentially provides a criterion for establishing whether
intermittency occurs or not, in terms of a variational problem. To see this, we demon-
strate the case k = 2. If (w, u) = (v(1 − u), u), and u ↑ 1, then, the term inside the
supremum achieves the value 2γ1(v). This value of (w, u) lies on the boundary of the
domain Rd × (0, 1). Thus, intermittency would occur if there exists a different pair
(w, u) ∈ Rd× (0, 1) such that the value of the supremum is greater that 2γ1(v). Otherwise,
intermittency can not occur.
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Branching diffusion in periodic media

3.2 Distribution of total number of particles

Following notation introduced in Section 2, recall that ϕ0 is the principal periodic
eigenfunction of the operator L. It satisfies

L(ϕ0) = µ(0)ϕ0, (3.4)

with eigenvalue µ(0) ∈ R. The function ϕ∗0 will denote the solution of the adjoint
eigenvalue problem:

L∗(ϕ∗0) = µ∗(0)ϕ∗0,

where µ∗(0) is the principal eigenvalue of the adjoint operator, and hence µ∗(0) = µ(0).
We normalize ϕ0 and ϕ∗0 by∫

[0,1)d
ϕ0(y)ϕ∗0(y) dy = 1 =

∫
[0,1)d

ϕ∗0(y) dy. (3.5)

In this section, to simplify notation, we will denote ϕ0, ϕ
∗
0 and µ(0) by ϕ,ϕ∗ and µ. For

t > 0, x, y ∈ [0, 1)d, let %(t, x, y) denote the fundamental solution of the following PDE on
the torus:

∂t%(t, x, y) = Lx%(t, x, y), %(0, x, y) = δy(x).

Observe that there exist C0, ε > 0 such that, for every t > 0,∫
[0,1)d

%(t, x, z)dz ≤ C0e
tµ (3.6)

Let N(t, x) denote the total number of particles in Rd at time t, assuming that, at time
t = 0, there is one particle at x ∈ [0, 1)d. In the following theorem, all the moments of
the normalized total number of particles are shown to converge.

Theorem 3.3. For each k ∈ N, the following limit exists uniformly in x ∈ [0, 1)d:

lim
t→∞

E(N(t, x)k)

ekµt
= fk(x), (3.7)

where the functions fk are defined recursively as follows,

f1(x) = ϕ(x),

and, for k ≥ 2,

fk(x) =

k−1∑
i=1

βki

∫ ∞
0

∫
[0,1)d

e−kµtα(z)fi(z)fk−i(z)%(t, x, z)dzdt, (3.8)

where βki = k!/(i!(k − i)!). In addition, there exists a real valued random variable ξx,
whose distribution is determined uniquely, such that E(ξkx) = fk(x) for each k ∈ N.

The functions fk(x) defined recursively by the formulas (3.8) will be shown to be well
defined, that is, the integrals in (3.8) will be shown to be convergent.

The above theorem implies that the total number of particlesN(t, x), normalized by its
expected value behaves “regularly”. That is, the k-th moment of N(t, x) is commensurate
with the k-th power of the first moment. In the next section, we show that ny(t, x) also
exhibits the same “regular” behavior when ‖y − tv̄‖ = o(t). In contrast, in Section 3
we have shown that ntv(t, x) exhibits intermittent behavior when v 6= v̄, i.e., the k-th
moment of ntv(t, x) grows much faster than the k-th power of the first moment for some
k ∈ N.
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3.3 Distribution of the number of particles near the region where the bulk of
the particles is located

We show that, at distances that grow sub-linearly in time from the bulk of the particles,
all the moments converge. Let ny(t, x) denote the number of particles in Qdy at time
t ∈ R+, given that there was one particle at x ∈ [0, 1)d at time t = 0. Define

g(t, y) = (
√

2πt)−d det[D2Φ(v̄)]1/2e−tΦ( yt+v̄).

Since the minimum of the twice continuously differentiable convex function Φ(v) is
achieved at v = v̄, for each α ∈ (0, 1), Φ(yt + v̄)− Φ(αyt + v̄) ≥ 0. Therefore, we get

g(t, y)

g(t, αy)
= exp(−t(Φ(

y

t
+ v̄)− Φ(

αy

t
+ v̄))) ≤ 1.

That is,
g(t, αy) ≥ g(t, y). (3.9)

Theorem 3.4. Let r(t) = o(t) as t→∞. For each k ∈ N,

lim
t→∞

E(ny(t)+v̄t(t, x)k)

g(t, y(t))k
= fk(x)

uniformly in x ∈ [0, 1)d and ‖y(t)‖ ≤ r(t).

3.4 Discussion

There have been several other works on different aspects of branching diffusions
in periodic media, and the topic is closely related to reaction-diffusion equations with
periodic coefficients. In particular, many authors have studied the spreading of wave
fronts for reaction diffusion equations with periodic coefficents, having of the general
form

∂tw =
1

2

d∑
ij=1

aij(y)
∂2w

∂yi∂yj
+

d∑
i=1

bi(y)
∂w

∂yi
+ f(y, w) y ∈ Rd, t > 0, (3.10)

where f(y, w) is of KPP type, for example f(y, w) = g(y)w(1−w) with g(y) being periodic,
or f(y, w) = w(g(y)− w). See [14, 11, 36, 5, 6, 7] and references therein. In one space
dimension, the distribution of the maximal particle in the branching process, (the particle
with largest spatial coordinate) can be expressed in terms of the solution to a reaction-
diffusion equation of this KPP-type (see for example [28]), so that the asymptotic behavior
of wave fronts as t→∞ gives information about the behavior of the extremal particle in
the branching process. A similar interpretation holds in the higher-dimensional setting.
When f(y, w) = g(y)w(1 − w) and g > 0 is strictly positive, a spreading phenomenon
occurs:

lim
t→∞

w(t,vt) =

{
0 for v ∈ Rd with Φ(v) > 0

1 for v ∈ Rd with Φ(v) < 0.
(3.11)

(See Chapter 7 of [11]). Hence, the set {tv ∈ Rd | Φ(v) = 0} is understood as the
asymptotic front of the wave as t→∞. This front matches exactly the set t∂G1, where
G1 is defined in Theorem 3.1. The condition that g(y) > 0 is not necessary for such a
spreading phenomenon. Berestycki, Hamel and Roques [6], [7] proved a necessary and
sufficient condition for the spreading phenomenon (long-time survival of the branching
process), which corresponds to the super-critical condition (3.1). They also analyze
the effect of heterogeneity on the principle eigenvalue µ(0) of the associated linearized
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problem, and provide conditions under which the super-critical condition holds (see
Theorem 2.12 of [6]).

Refinements of the linear spreading rate have been obtained, even in the case of
periodic media. For example, Hamel, Nolen, Roquejoffre, and Ryzhik [15] give sharper
asymptotics for such fronts in periodic media in one space dimension, extending to the
periodic case a well-known result of Bramson [8] which shows that the front (median
of the extremal particle) moves as c1t − c2 log(t) + O(1) as t → ∞. A key part of the
analysis in [15] involves an estimate for a heat kernel analogous to pζ(t, x, y) (for the
transformed operator Kζ at (2.6)), except with Dirichlet boundary condition. This result
was extended to fronts in multiple dimensions by Shabani [32]. Lubetzky, Thornett,
and Zeitouni [27] have proved related asymptotics for the distribution of the extremal
particle of a branching diffusion in periodic media. Unlike these works mentioned above,
Theorem 3.1 pertains to the structure of the branching process behind the front, where
the population is growing.

4 Proof of Proposition 2.1

Let Xt be the diffusion process with generator Kζ (defined in (2.5)),

dXt = V (Xt)dt+ σ(Xt) dWt, X0 = x, (4.1)

with

Vi(x) = bi(x) +
∑
j

aij(x)(ζj + ∂xj logϕζ(x)).

From homogenization theory (see Freidlin [12] and the books of Bensoussan, Lions, and
Papanicolaou [4] and of Jikov, Kozlov, Oleinik [20]), it is well known that the following
result holds for diffusion processes with periodic coefficients: There exists a vector
`(ζ) ∈ Rd (called the effective drift of Xt) and a positive definite matrix Ξζ (called the
effective diffusivity of Xt) such that

Xt − `(ζ)t√
t

→ N (0,Ξζ) as t→∞,

in distribution, where N (0,Ξζ) denotes the normal random vector with mean zero and
covariance matrix Ξζ . These quantities are given by the formulas:

`(ζ) =

∫
[0,1)d

V (y)ψ∗ζ (y)dy =

∫
[0,1)d

V (y)ϕζ(y)ϕ∗ζ(y) dy, (4.2)

Ξζ =

∫
[0,1)d

(∇ηζ + I)a(y)(∇ηζ + I)ϕζ(y)ϕ∗ζ(y) dy, (4.3)

where ηζ(y) is a periodic (vector-valued) solution to

Kζηζ = `(ζ)− V (y),

which is determined uniquely up to an additive constant. These `(ζ) and Ξζ are often
called the effective drift and the effective diffusivity of the operator Kζ and hence, of the
operator Lhζ since it only differs from Kζ by a constant potential term. For the operator
L, notice that effective drift v̄, as defined at (2.13), corresponds to v̄ = `(0).

We now state the following lemma about properties of the principal eigenvalue µ(ζ).
The proof of this lemma can be found in the book of Pinsky [31] (Chapter 8, Theorem
2.10).
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Lemma 4.1. The function µ : Rd → R is twice continuously differentiable and strictly
convex. In addition, for each ζ ∈ Rd,

∇µ(ζ) = `(ζ), (4.4)

and,
D2µ(ζ) = Ξζ . (4.5)

Remark 4.2. From equation (2.8) and (2.9) we observe that corresponding to each
(t, x, y) ∈ R+ ×Rd ×Rd, we choose ζ̂ ∈ Rd such that

∇µ(ζ̂) = `(ζ̂) =
y − x
t

, or equivalently ∇Φ(
y − x
t

) = ζ̂. (4.6)

Since Φ is the Legendre transform of the function µ, we have the relation

D2µ(ζ) =
[
D2Φ(∇µ(ζ))

]−1

.

Therefore, for each ζ ∈ Rd,

[detD2Φ
(
`(ζ)

)]−1/2
=
[

det(Ξζ)
]1/2

. (4.7)

The proof of Proposition 2.1 is based on estimates of the local averages∫
[0,1)d

pζ(t, x, z + r)f(r) dr, (4.8)

for z ∈ Zd and for appropriate choice of test functions f . We will choose f ∈ B, where B
is the Banach space of Zd periodic continuous functions f : Rd → C, equipped with the
supremum norm. Observe that (4.8) has the form∫

Rd
pζ(t, x, y)f(y)g([y]− z) dy = Eζx[f(Xt)g([Xt]− z)]

with g(k) = 10(k). For parameters χ = (z, x, f, ζ) ∈ (Zd,Rd,B,Rd), we define a family of
measures on Zd:

mχ
t (k) = det(Ξζ)

1/2(
√

2πt)dEζx(f(Xt)1{k}([Xt]− z)), k ∈ Zd. (4.9)

For g : Zd → R having bounded support, we denote the action of mχ
t on g by

mχ
t (g) = det(Ξζ)

1/2(
√

2πt)dEζx(f(Xt)g([Xt]− z)). (4.10)

Let

m̄χ
t = e−

(z−`(ζ)t−[x])T Ξ
−1
ζ

(z−`(ζ)t−[x])

2t 〈ϕζϕ∗ζ , f〉,

which we also regard as a (constant) measure on Zd: m̄χ
t (g) = m̄χ

t

∑
k g(k). Let B+,r be

defined by:
B+,r = {f : f ∈ B, f ≥ 0, ‖f‖∞ < r}.

Let B0(L) = {ζ ∈ Rd | |ζ| ≤ L} denote the ball of radius L centered at 0 in Rd.

Lemma 4.3. Let g : Zd → R be any function with bounded support and χ = (z, x, f, ζ) ∈
(Zd,Rd,B+,r, B0(L)). Then

lim
t→∞

sup
χ
|mχ

t (g)− m̄χ
t (g)| = 0.

Before proving this, let us use this to finish the proof of Proposition 2.1.
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Proof of Proposition 2.1. From Lemma 4.3 above, for the function g(k) = 10(k), we have

lim
t→∞

sup
f∈C([0,1)d)
‖f‖<r

sup
x∈Rd,z∈Zd
‖ζ‖≤L

∣∣∣det(Ξζ)
1/2(
√

2πt)d
∫

[0,1)d
pζ(t, x, z + w)f(w)dw

− exp
(
−

(z − [x]− `(ζ)t)TΞ−1
ζ (z − [x]− `(ζ)t)

2t

)
〈ϕζϕ∗ζ , f〉

∣∣∣ = 0. (4.11)

To prove Proposition 2.1, we would like to be able to replace f by a delta function at
w ∈ [0, 1)d. This is easily justified if we have an appropriate bound on the derivative of
pζ(t, x, y) in the y variable. In this case, the weighted average of pζ over a small domain
approximates the value of pζ at any point inside the domain. To get such bounds on the
derivative of pζ , we observe that pζ(t, x, y) ≤ c/td/2 for all x, y ∈ Rd, since pζ(t, x, y) is the
fundamental solution of the PDE with periodic coefficients, with no potential term (see,
for example, arguments in the proof of Lemma 2.3). From the Schauder estimate (see,

Friedman [13]), it then follows that, ‖∇ypζ(t, x, y)‖ ≤ sup{pζ(s, x′, y′)
∣∣∣s ∈ (t− 1, t), x′, y′ ∈

Rd} ≤ c/(t− 1)d/2 ≤ c̃/td/2. This is enough to conclude from that

lim
t→∞

sup
x∈Rd,w∈[0,1)d,z∈Zd

‖ζ‖≤L

∣∣∣det(Ξζ)
1/2(
√

2πt)dpζ(t, x, z + w) (4.12)

− exp
(
−

(z − x− `(ζ)t)TΞ−1
ζ (z − x− `(ζ)t)

2t

)
ϕζ(y)ϕ∗ζ(y)

∣∣∣ = 0.

Writing y ∈ Rd instead of z + w with w ∈ [0, 1)d, z ∈ Zd, we obtain

lim
t→∞

sup
x,y∈Rd
‖ζ‖≤L

∣∣∣ det(Ξζ)
1/2(
√

2πt)dpζ(t, x, y)− e−
t
2

(
y−x
t −`(ζ)

)T
Ξ−1
ζ

(
y−x
t −`(ζ)

)
ϕζ(y)ϕ∗ζ(y)

∣∣∣ = 0.

(4.13)
Note that the exponent in the above formula is slightly different. But the difference is
negligible in the limit.

Now suppose that L0 > 0 is fixed, and ‖y−x‖/t ≤ L0, for all x, y ∈ Rd and t > 0. Then,
recall from (4.6) that if we choose c = (y − x)/t, we have a corresponding ζ̂ such that
`(ζ̂) = c, or equivalently, ∇Φ(c) = ζ̂. Morevoer, there is L, depending on L0, such that
|ζ̂| ≤ L holds if ‖y − x‖/t ≤ L0. Thus, (4.13) can be applied to those c and ζ̂ uniformly to
obtain

lim
t→∞

sup
‖x−y‖≤tL0

∣∣∣det(Ξζ)
1/2(
√

2πt)dpζ̂(t, x, y)− ϕζ̂(y)ϕ∗
ζ̂
(y)
∣∣∣ = 0.

We claim that for any L < ∞ fixed, the periodic eigenfunctions normalized by (2.3)
satisfy

inf
y∈[0,1]d

inf
‖ζ‖≤L

ϕζ(y)ϕ∗ζ(y) > 0. (4.14)

Therefore, substituting [detD2Φ
(
y−x
t

)]−1/2
=
[

det(Ξζ̂)
]1/2

from (4.7), we get

lim
t→∞

sup
‖x−y‖≤tL0

∣∣∣ 1

ϕζ̂(y)ϕ∗
ζ̂
(y)

[detD2Φ
(y − x

t

)]−1/2
(
√

2πt)dpζ̂(t, x, y)− 1
∣∣∣ = 0.

Finally, we establish the claim (4.14). If this is not the case, then there must be
sequences {yn}∞n=1 ⊂ [0, 1]d and {ζn}∞n=1, with ‖ζn‖ ≤ L, such that

lim
n→∞

ϕζn(yn)ϕ∗ζn(yn) = 0.
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Since ζ and y are confined to a compact set, we can extract a subsequence of the
pairs {(yn, ζn)}∞n=1 that converges to some (ȳ, ζ̄). Joint continuity of (y, ζ) 7→ ϕζ(y)ϕ∗ζ(y)

implies that ϕζ̄(ȳ)ϕ∗
ζ̄
(ȳ) = 0, although the normalization (2.3) holds for ϕζ̄ and ϕ∗

ζ̄
. This is

a contradiction, since the periodic principal eigenfunctions of elliptic operators L and L∗
have a strict sign. We conclude that (4.14) holds.

To complete the proof of Proposition 2.1, we now prove Lemma 4.3. This follows
an argument of Hennion and Hervé [18] where a very similar lemma was proved (see
Lemma VI.4 of [18]) in the discrete time one dimensional setting; we will explain the
technical differences in Remark 4.6 below.

Let us define

(S1)d = (R/(2πZ))d = {(θ1, θ2, · · · , θd) | θi ∈ R/(2πZ), i = 1, . . . , d}.

For g : Zd → R, for θ ∈ (S1)d, z ∈ Zd, we use the following definitions of Fourier
Transform and Inverse Fourier Transform:

ĝ(θ) =
1

(
√

2π)d

∑
z∈Zd

g(z)eiθz, g(z) =
1

(
√

2π)d

∫
(S1)d

ĝ(θ)e−iθzdθ.

Letting ĝ(−θ) = g̃(θ), we have

(
√

2πt)dEx[f(Xt)g([Xt])] = td/2Ex[f(Xt)

∫
(S1)d

g̃(θ)eiθ[Xt] dθ]

= td/2
∫

(S1)d
g̃(θ)Ex[f(Xt)e

iθ[Xt]] dθ. (4.15)

For θ ∈ Rd, t ≥ 0, let us define the Fourier Kernels Qζ(θ, t), acting on B, by

Qζ(θ, t)f(x) = Eζx(f(Xt)e
iθ([Xt]−[x]−`(ζ)t)). (4.16)

Now recalling the definition (4.9), observe that

mχ
t (g) = det(Ξζ)

1/2(
√

2πt)d
∫
Rd
pζ(t, x, y)f(y)g([y]− z)) dy

= det(Ξζ)
1/2(
√

2πt)dEζx(f(Xt)g([Xt]− z)). (4.17)

Using the Fourier inversion formula and Fubini’s theorem, (4.17) can be written as

mχ
t (g) = det(Ξζ)

1/2td/2
∫

(S1)d
g̃(θ)e−iθ(z−`(ζ)t−[x])(Qζ(θ, t)f)(x)dθ,

where g̃(θ) := ĝ(−θ).
The Fourier kernels {Qζ(θ, t)}t≥0 are a family of compact operators on B and

eiθ`(ζ)tQζ(θ, t) is 2πZd periodic in the parameter θ. One can show that for a fixed
θ ∈ (S1)d, the family {Qζ(θ, ·)}t≥0 forms a semigroup. That is, for each x ∈ Rd, t, s ≥ 0,

Qζ(θ, t) ◦Qζ(θ, s)f(x) = Qζ(θ, t+ s)f(x). (4.18)

Observe that, for θ = 0, Qζ(0, t) is the Markov operator corresponding to the process
Xt, which is generated by Kζ . Therefore, since zero is the principal simple eigenvalue
of the operator Kζ , 1 is the principal simple eigenvalue of the operator Qζ(0, t). By a
perturbation theorem (see, for example, Theorem III.8 in [18]), there exists a small θ0 > 0

such that, for each θ ∈ (S1)d with ‖θ‖ ≤ θ0, the principal eigenvalues of the operators
Qζ(θ, 1) are simple, for each ‖ζ‖ ≤ L. We denote these principle eigenvalues of the
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operators Qζ(θ, 1) by λ(ζ, θ) ∈ C, for ‖θ‖ ≤ θ0. Thus, from the semigroup property (4.18)
and the time homogeneity of the coefficients of the partial differential operator Kζ , we
conclude that the principal eigenvalue of the operator Qζ(θ, t) is λ(ζ, θ)t for each t ≥ 0.

The proof of Lemma 4.3 is based on the following spectral decomposition of the
operator Qζ(θ, t).

Lemma 4.4. For a fixed L > 0, there exist θ0 > 0, q > 0, and η > 0 such that, for each
t > 1, θ ∈ (S1)d with ‖θ‖ < θ0, f ∈ B, and |ζ| ≤ L we have

Qζ(θ, t)f(x) = λ(ζ, θ)t
[
〈ϕζϕ∗ζ , f〉+ (Mζ(θ, t)f)(x)

]
+ (Nζ(θ, t)f)(x), (4.19)

where the following bounds for the operator Mζ(θ, t) and Nζ(θ, t) hold:

‖Mζ(θ, t)f‖L∞ ≤ q‖f‖∞‖θ‖, ‖Nζ(θ, t)f‖L∞ ≤ qe−ηt‖f‖∞, (4.20)

Moreover, there exists a constant C1 such that for each θ ∈ (S1)d with ‖ θ√
t
‖ ≤ θ0 we have

‖λ(ζ,
θ√
t
)t − e−

θT Ξζ ·θ
2 ‖ ≤ C1√

t
‖θ‖3e

−θT Ξζ ·θ
4 , (4.21)

uniformly over |ζ| ≤ L.

Proof of Lemma (4.4). In the discrete time one dimensional setting, Lemma (4.4) is
proved in Hennion and Hervé [18] (see Proposition VI.2, therein), but the arguments
there also go through in the continuous time d-dimensional setting. The assumptions
of that Proposition, denoted by H ′′[2] in [18] (assumptions on the Banach space being
sufficiently big, Qζ(0, 1) having 1 as its simple eigenvalue corresponding to the eigen-
function f ≡ 1, and the operators Qζ(θ, 1) being sufficiently regular in the variable
θ in a small neighborhood around θ = 0) are all satisfied in our setting, uniformly
in ‖ζ‖ ≤ L. The proof of (4.21) (or, rather, its analog in [18]) relies on the fact that
∇θλ(ζ, θ)

∣∣
θ=0

= 0 and D2
θλ(ζ, θ)

∣∣
θ=0

= −Ξζ , which follows from arguments similar to
those used in proving (4.7).

To apply Lemma 4.4 in the proof of Lemma 4.3, we will need the following fact about
the eigenvalues λ(ζ, θ). For a bounded linear operator Q on Banach space B, let r(Q)

denote its spectral radius.

Lemma 4.5. For each θ0 ∈ (0, 2π), L > 0,

α(θ0, L) := sup{r(Qζ(θ, 1)) | ‖ζ‖ ≤ L, θ ∈ (S1)d, ‖θ‖ ≥ θ0} < 1.

Proof of Lemma 4.5. From the definition of the operators Qζ(θ, 1) and using the fact
that eiθ`(ζ)tQζ(θ, t) is 2πZd periodic in the parameter θ, we have, for a fixed ζ ∈ Rd, the
function r(Qζ(θ, 1)) is continuous in the variable θ ∈ (S1)d. Let us fix ζ ∈ Rd with ‖ζ‖ ≤ L.
It is clear that r(Qζ(θ, 1)) ≤ 1 for each θ ∈ (S1)d. Indeed, if f ∈ B with ‖f‖ = 1,

‖Qζ(θ, t)f‖ = ‖Ex(f(Xt)e
iθ([Xt]−[x]−`(ζ)))‖

≤ ‖Ex(|f(Xt)|)‖
= ‖ Qζ(0, t)|f | ‖ ≤ 1.

That is, if η(ζ, θ) ∈ C is any eigenvalue of the operator Qζ(θ, 1), |η(ζ, θ)| ≤ 1 for all
θ ∈ (S1)d. Now for θ ∈ (0, 2π), suppose that, there exists an eigenfunction f ∈ B of the
operator Qζ(θ, t) with ‖f‖ = 1 corresponding to the eigenvalue η(ζ, θ) ∈ C such that
|η(ζ, θ)| = 1. That is, for each x ∈ [0, 1)d,

|Ex(f(Xt)e
iθ([Xt]−[x]−`(ζ)t))| = |f(x)|. (4.22)
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We know that 1 is the simple principal eigenvalue of the operator Qζ(0, t). Thus, there
exists an eigenfunction g ∈ B of Qζ(0, t) such that g is strictly positive and

Ex(g(Xt)) = g(x), x ∈ [0, 1)d. (4.23)

Since g > 0, we can multiply g by a constant so that |f(x)| ≤ g(x) holds for all x ∈ [0, 1)d

with equality |f(x0)| = g(x0) holding at some point x0 ∈ [0, 1)d. Now,

Ex0
(
∣∣f(Xt)e

iθ([Xt]−[x]−`(ζ)t)∣∣) ≥ |Ex0
(f(Xt)e

iθ([Xt]−[x]−`(ζ)t))|
= |f(x0)| = g(x0) = Ex0

g(Xt).

This implies that,

Ex0(|f(Xt)| − g(Xt)) = Qζ(0, t)(|f | − g)(x0) ≥ 0.

Since |f | ≤ g and Qζ(0, t) is a positive operator, we conclude that

Ex0
(|f(Xt)| − g(Xt)) = 0.

That is, ∫
Rd

(|f(y)| − g(y))pζ(t, x0, y)dy = 0.

Since Xt is a non-degenerate diffusion, for a fixed x0 ∈ [0, 1)d, pζ(t, x0, y) > 0 for
all y ∈ Rd, t ≥ 0. Thus, there exists a continuous Zd periodic function h such that
f(y) = eih(y)g(y) for all y ∈ Rd. Therefore,

Ex(eih(Xt)g(Xt)e
iθ([Xt]−[x]−`(ζ)t)) = eih(x)g(x) = eih(x)Ex(g(Xt)).

Thus,

Ex

(
g(Xt)

[
ei
(
θ([Xt]−[x]−`(ζ)t)+h(Xt)−h(x)

)
− 1
])

= 0,

which implies that θ([y] − [x] − `(ζ)t) + h(y) − h(x) ∈ 2πZ, for all x, y ∈ Rd, t ≥ 0. This
is a contradiction since, taking y = x + m with m ∈ Zd, we get θ(m − `(ζ)t) ∈ 2πZ

for all m ∈ Zd, which is impossible. Thus we have shown that for each ζ ∈ Rd with
‖ζ‖ ≤ L, and each θ ∈ (S1)d, with ‖θ‖ ≥ θ0, |η(ζ, θ)| < 1. Therefore, choosing α(θ0, L) =

sup{r(Qζ(θ, 1) | ‖ζ‖ ≤ L, θ ∈ (S1)d, ‖θ‖ ≥ θ0}, we get the required result.

Proof of Lemma 4.3. From Lemma 4.4, we know that there exists a θ0 > 0 such that, for
all ‖θ‖ ≤ θ0 the decomposition (4.19) holds. Therefore, we can write

mχ
t (g) = J1

t (χ) + J2
t (χ) + J3

t (χ),

where

J1
t (χ) :=

= det(Ξζ)
1/2td/2

∫
(S1)d∩(‖θ‖<θ0)

g̃(θ)e−iθ(z−`(ζ)t−[x])λ(ζ, θ)t
[
〈ϕζϕ∗ζ , f〉+Mζ(θ, t)f(x)

]
dθ

and J2
t (χ) and J3

t (χ), are defined by

J2
t (χ) := det(Ξζ)

1/2td/2
∫

(S1)d∩(‖θ‖<θ0)

g̃(θ)e−iθ(z−`(ζ)t−[x])Nζ(θ, t)f(x)dθ,

and

J3
t (χ) := det(Ξζ)

1/2td/2
∫

(S1)d∩(‖θ‖≥θ0)

g̃(θ)e−iθ(z−`(ζ)t−[x])Qζ(θ, t)f(x)dθ.
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We claim that as t→∞,
‖J1
t (χ)− m̄χ

t (g)‖ → 0,

and
‖J3
t (χ)‖ → 0, and ‖J3

t (χ)‖ → 0,

uniformly over χ ∈ (Zd,Rd,B+,r, B0(L)). The change of variable θ = s√
t

gives

J1
t (χ) =

∫
Rd
kt(s)e

−i( s(z−`(ζ)t−[x])√
t

)[〈ϕϕ∗ζ , f〉+Mζ(
s√
t
, t)f(x)

]
ds,

where
kt(s) = det(Ξζ)

1/21(S1)d∩(‖θ‖<θ0)(
s√
t
)g̃(

s√
t
)λ(ζ,

s√
t
)t.

On the other hand, we have

m̄χ
t (g) =

∫
Rd
e
−i s(z−`(ζ)t−[x])√

t k(s)〈ϕζϕ∗ζ , f〉ds,

where,

k(s) := det(Ξζ)
1/2 g̃(0)e−

sT Ξζs

2 .

For each s ∈ (S1)d such that ‖ s√
t
‖ < θ0, from Lemma 4.4, we have that

‖Mζ(
s√
t
, t)f(x)‖ ≤ q‖f‖‖s‖√

t
.

Hence,

‖J1
t (χ)− m̄χ

t (g)‖ ≤ |〈ϕζϕ∗ζ , f〉|
∫
Rd
|kt(s)− k(s)|ds+ q‖f‖

∫
Rd
|kt(s)|

‖s‖√
t
ds.

We observe from (4.21) that the sequence {kt}t≥1 converges point-wise to k. Since the
function g has bounded support in Zd, ‖g̃‖∞ <∞. Thus, setting cg := ‖g̃‖∞, we have

‖kt(s)‖ ≤ det(Ξζ)cge
−
sT Ξζs

4 .

By defining

ε1t := ‖ϕζϕ∗ζ‖
∫
Rd
|kt(s)− k(s)|ds, ε2t := q

∫
Rd
|kt(s)|

‖s‖√
t
ds,

we get,
‖J1
t (χ)− m̄χ

t (g)‖ ≤ (ε1t + ε2t )‖f‖.

Using the Lebesgue dominated convergence theorem, lim
t→∞

ε1t = lim
t→∞

ε2t = 0, uniform over

χ ∈ (Zd,Rd,B+,r, B0(L)). Now it remains to consider the terms J2
t (χ) and J3

t (χ). For
‖θ‖ ≤ θ0, we have from Lemma 4.4 that ‖Nζ(θ, t)‖ ≤ qe−ηt, and therefore

J2
t (χ) ≤ det(Ξζ)

1/2td/2qe−ηt‖f‖
∫

(S1)d∩(‖θ‖<θ0)

|g̃(θ)|dθ =: ε3t‖f‖,

where

ε3t := det(Ξζ)
1/2td/2qe−ηt

∫
(S1)d∩(‖θ‖<θ0)

|g̃(θ)|dθ.

It is clear that lim
t→∞

ε3t = 0, uniformly over χ ∈ (Zd,Rd,B+,r, B0(L)). Let βt =

sup{‖Qζ(θ, t)‖ : θ ∈ (‖θ‖ ≥ θ0) ∩ (S1)d, ‖ζ‖ ≤ L}. From Lemma 4.5, by choosing

α(θ0, L) = sup
{
r(Qζ(θ, 1))

∣∣∣θ ∈ (S1)d, ‖θ‖ ≥ θ0, ‖ζ‖ ≤ L
}
< 1,
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we now have βt ≤ α(θ0, L)t → 0 exponentially fast, as t→∞. Now,

‖J3
t (χ)‖ ≤ det(Ξζ)

1/2td/2‖f‖βt
∫

(S1)d
g̃(θ)dθ =: ε4t‖f‖,

where

ε4t := det(Ξζ)
1/2td/2βt

∫
(S1)d

g̃(θ)dθ.

It is clear to see that lim
t→∞

ε4t = 0, uniformly over χ ∈ (Zd,Rd,B+,r, B0(L)). Combining

these estimates, we conclude that

lim
t→∞

sup
χ
‖mχ

t (g)−m′χt (g)‖ = 0.

This concludes the proof of Lemma 4.3.

Remark 4.6. As we have mentioned, the above proof of Lemma 4.3 follows very closely
the proof of Lemma VI.4 of [18]. The difference is that in Lemma VI.4 of [18] the set
{θ ∈ Rd

∣∣r(Qζ(θ, 1)) ≥ 1} was required to be {0}. This condition does not hold in our
setting since the operators Q(θ, 1)eiθ`(ζ) are 2πZd periodic in θ ∈ Rd. Instead, we have
shown in Lemma 4.5 that {θ ∈ (S1)d

∣∣r(Qζ(θ, 1)) ≥ 1} = {0}. Another difference is that,
in our setting, the operators Q also vary with respect to the additional parameter ζ ∈ Rd.

5 Proof of Theorem 3.1

The main idea of the proof is to look at the higher order correlation functions
and the corresponding PDEs they solve and then use the asymptotics of the density
function obtained in Theorem 2.2 and techniques developed in [24] to obtain logarithmic
asymptotics of the moments E(ntv(t, x)k).

Recall that v̄ = `(0) = ∇µ(0) is the effective drift of the branching process defined
at (2.13) (also see Lemma 4.1), and Φ(v̄) = −µ(0). Without loss of generality, we may
assume that v̄ = 0, which simplifies our notation. Let Bδ(y) denote a ball of radius
δ > 0 centered at y ∈ Rd. For t > 0 and x, y1, y2, ... ∈ Rd with all yi distinct, define the
particle density ρ1(t, x, y) and the higher order correlation functions ρn(t, x, y1, ...., yn) as
the limits of probabilities of finding n distinct particles in Bδ(y1), ...Bδ(yn), respectively,
divided by the n-th power of the volume of Bδ(0) ⊂ Rd. For a fixed y1, the density
satisfies

∂tρ1(t, x, y1) = Lxρ1(t, x, y1), ρ1(0, x, y1) = δy1
(x), (5.1)

where Lx is the linear operator defined at (1.3), acting on the variable x. The equations
on ρn, n > 1, are as follows

∂tρn(t, x, y1, y2, ..., yn) = Lxρn(t, x, y1, y2, ..., yn) + α(x)Hn(t, x, y1, y2, ..., yn), (5.2)

ρn(0, x, y1, y2, ..., yn) ≡ 0,

where
Hn(t, x, y1, y2, ..., yn) =

∑
U⊂Y,U 6=∅

ρ|U |(t, x, U)ρn−|U |(t, x, Y \ U),

where Y = (y1, ..., yn), U is a proper non-empty subsequence of Y , and |U | is the number
of elements in this subsequence. See Section 2 of [24], for a derivation of these equations.

Define my
k(t, x) =

∫
Qdy

....
∫
Qdy

ρk(t, x, y1, y2, ..., yk)dy1...dyk. By integrating (5.2), it fol-

lows that
∂tm

y
1(t, x) = Lxmy

1(t, x), my
1(0, x) = χQdy (x), (5.3)
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while for k ≥ 2,

∂tm
y
k(t, x) = Lxmy

k(t, x) + α(x)

k−1∑
i=1

βkim
y
i (t, x)my

k−i(t, x), my
k(0, x) ≡ 0, (5.4)

where βki = k!/(i!(k − i)!). The functions mtv
i are related to the moments E(ntv(t, x)k)

according to

E(ntv(t, x)k) =

k∑
i=1

S(k, i)

∫
Qdtv

..

∫
Qdtv

ρi(t, x, y1, y2, .., yi)dy1...dyi

=

k∑
i=1

S(k, i)mtv
i (t, x), (5.5)

where S(k, i) is the Stirling number of the second kind (the number of ways to partition
k elements into i nonempty subsets). As explained in Section 9 of [24], this follows by
partitioning Qdtv into small subdomains, and taking a limit as their diameters shrink
uniformly to zero.

5.1 Proof of part (a)

We first proof part (a) of Theorem 3.1. We will use induction to show the following:

(i) For each k ≥ 1, there exists a constant ak > 0 such that

my
k(t, x) ≤ ak exp

(
akt−

‖y − x‖2

ak(t+ 1)

)
(5.6)

for all (t, x, y) ∈ R+ ×Rd ×Rd.
(ii) For each k ≥ 1, for each L > 0, the following two limits exist uniformly for v ∈ Rd,

with ‖v‖ ≤ L and for x ∈ [0, 1)d, and satisfy

γk(v) = lim
t→∞

lnmtv
k (t, x)

t
= lim
t→∞

lnE(ntv(t, x)k)

t
. (5.7)

Moreover, γk : Rd → R is continuous for all k ∈ N.

(iii) For each L > 0, there exists M0 = M0(L, k) such that, for all M ≥M0,

γk(v) = sup
‖w−v‖≤M,u∈(0,1)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
, (5.8)

when ‖v‖ ≤ L, k ≥ 2. In addition, γk(v) ≥ γk−1(v) for k ≥ 2.

Starting with k = 1, we estimate

my
1(t, x) =

∫
Qdy

ρ1(t, x, z) dz. (5.9)

By Lemma 2.3, we know that there is c > 0, such that

ρ1(t, x, y) ≤ ct−d/2 exp

(
(−Φ(v̄))t− ‖(y − x)− v̄t‖2

ct

)
, x, y ∈ Rd, t ≥ 0. (5.10)

In view of (5.9) and the inequality −‖y − x− v̄‖2 ≤ − 1
2‖y − x‖

2 + 1
2‖v̄‖

2t2, this implies

my
1(t, x) ≤ a1 exp

(
a1t−

‖y − x‖2

a1(t+ 1)

)
, x, y ∈ Rd, t ≥ 0 (5.11)

holds for some constant a1 > 0. This proves (i) for k = 1.
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Now suppose that (i) holds up-to k − 1. From (5.4) and the Duhamel’s Formula, we
see that

my
k(t, x) =

∫ t

0

∫
Rd
α(z)

k−1∑
i=1

βkim
y
i (s, z)my

k−i(s, z)ρ1(t− s, x, z)dzds. (5.12)

Note that, since (5.6) holds up-to k − 1, it also holds for
∑k−1
i=1 β

k
im

y
i (s, z)my

k−i(s, z) (with
a different constant ãk−1). Thus there exists a constant ak > 0 such that my

k(t, x) ≤
ak exp

(
akt− ‖y−x‖

2

ak(t+1)

)
, since the convolution of two functions satisfying the estimate (5.6),

with two different constants also satisfies (5.6). That is, (i) holds for k, as well.
We next show that (ii) holds for k = 1 and k = 2, and (iii) holds for k = 2. Here is

where we will need the sharp estimate for ρ1, provided by Theorem 2.2: for any fixed
L > 0 and for all x, y ∈ Rd with ‖x− y‖ ≤ Lt, we have

ρ1(t, x, z) = (
√

2πt)−dϕ0(x)det[D2Φ(
z − x
t

)]1/2e−tΦ( z−xt )ϕ∗0(z) [1 + oL(1)] , (5.13)

where Φ, ϕ0 and ϕ∗0 are defined before Theorem 2.2. From (5.13) and (5.9), we obtain

γ1(v) = lim
t→∞

lnmtv
1 (t, x)

t
= −Φ(v), (5.14)

and γ1 is continuous since Φ is continuous. In addition, from (5.5), for each t > 0,
E(ntv(t, x)) = mtv

1 (t, x). Thus (ii) holds for k = 1.
Next we show that, for k = 2, the first limit on the right hand side of (5.7) exists and

satisfies formula (5.8). In the arguments below, we treat x and v as fixed, but all the
estimates are easily seen to be uniform in ‖v‖ ≤ L and x ∈ [0, 1)d. Let us recall that

my
2(t, x) =

∫ t

0

∫
Rd

2α(z)(my
1(s, z))2ρ1(t− s, x, z)dzds.

We will apply Laplace’s method to estimate the integral. For 0 < ε < κ < 1 and M > 0,
consider the following partition of the domain [0, t]×Rd:

[0, t]×Rd = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪R6 (5.15)

with

R1 = [0, εt)× {‖z − tv‖ > ε1/4t}

R2 = [0, εt)× {‖z − tv‖ ≤ ε1/4t}
R3 = [εt, κt]× {‖z − tv‖ > Mt} (5.16)

R4 = [εt, κt]× {‖z − tv‖ ≤Mt}

R5 = (κt, t]× {‖z − tv‖ > (1− κ)1/4t}

R6 = (κt, t]× {‖z − tv‖ ≤ (1− κ)1/4t}.

Then we write

my
2(t, x) =

6∑
j=1

Ij , Ij =

∫ ∫
Rj

2α(z)(my
1(s, z))2ρ1(t− s, x, z)dzds.

Using (5.11) in the region R1, where s < εt and ‖vt− z‖ > ε1/4t, we see that

(mvt
1 (s, z))2 ≤ a2

1 exp(2(a1ε−
√
ε

a1(ε+ 1
t )

)t), (s, z) ∈ R1,
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which can be made exponentially small (as t → ∞), with an arbitrarily large negative
exponent, by choosing ε small enough. Therefore, using the estimate on ρ1 from (5.10),
we infer that for each r > 0, for all sufficiently small ε > 0,

lim sup
t→∞

ln I1(t, x, tv)

t
≤ −r.

Similarly, considering the integral I5 over the region R5, we may exchange the roles of
(mtv

1 (s, z))2 and ρ1(t− s, z, x), to obtain for each r > 0, for all κ ∈ (0, 1) sufficiently close
to 1,

lim sup
t→∞

ln I5(t, x, tv)

t
≤ −r.

In the region R2, where s < εt, ‖vt − z‖ < ε1/4t, using (5.11), we conclude that there
exists a C1 > 0 such that

(mvt
1 (s, z))2 ≤ C1e

C1εt, ∀ (s, z) ∈ R2.

Moreover, by Theorem 2.2, there exists C2 > 0 such that

ρ1(t− s, x, z) ≤ C2(t− s)−d/2e−(t−s)Φ( z−xt−s ), ∀ (s, z) ∈ R2.

By choosing ε > 0 small enough, and choosing sufficiently large t, the value of −Φ( z−xt−s )

in this region R2 can be made arbitrarily close to γ1(v). Thus, for each δ > 0, for all
sufficiently small ε > 0,

lim sup
t→∞

ln I2(t, x, tv)

t
≤ γ1(v) + δ.

Similarly, considering the integral I6 over the region R6, we may exchange the roles of
(mtv

1 (s, z))2 and ρ1(t− s, z, x) to obtain for each δ > 0, for κ ∈ (0, 1) sufficiently close to 1,

lim sup
t→∞

ln I6(t, x, tv)

t
≤ 2γ1(v) + δ.

Now let us assume 1 > κ > ε > 0 are fixed. Consider the integral over the outer
region R3. From (5.11), it follows that, given r > 0, we can choose M large enough such
that

lim sup
t→∞

ln I3(t, x, tv)

t
< −r.

Let us now examine the asymptotics of I4 = I4(t, x, tv), the integral over R4:

I4(t, x, tv) =

∫ κt

εt

∫
‖z−tv‖≤Mt

2α(z)(mvt
1 (s, z))2ρ1(t− s, x, z)dzds

Changing variables s/t = u and z/t = w, this is equivalent to

I4(t, x, tv) = td+1

∫ κ

ε

∫
‖w−v‖≤M

2α(wt)(mvt
1 (ut, wt))2ρ1(t(1− u), x, tw)dwdu

The asymptotic behavior of m1 and ρ1 is available in (5.14) and Theorem 2.2. Observe
that α(x) is periodic, non-negative and not identically 0. Therefore, following Laplace’s
method, we have as t→∞,

1

t
ln I4(t, x, tv) ∼ 1

t
ln

(∫ κ

ε

∫
‖w−v‖≤M

(
e−tuΦ( v−w

u )
)2

e−t(1−u)Φ(
w−(x/t)

1−u )dwdu

)
(5.17)

∼ sup
‖w−v‖≤M,u∈(ε,κ)

[
2uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
. (5.18)
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Combining this with the estimates on I1, I2, I3, I5, I6, we obtain that the first limit in (5.7)
exists for k = 2, and is given by formula (5.8):

γ2(v) := lim
t→∞

ln(mtv
2 (t, x))

t
= sup
‖w−v‖≤M,u∈(0,1)

[
2uγ1

(v − w
u

)
+ (1−u)γ1

( w

1− u

)]
. (5.19)

From the formula above, since γ1(v) is continuous, we conclude that γ2 is also continuous.
Next we show that γ2(v) ≥ γ1(v) for all v ∈ Rd. This is complete the proof that (iii)

holds for k = 2. In view of (5.5), this also implies that, for k = 2, the second limit in (5.7)
exists and is equal to γ2(v). Recall that my

1(t, x) and my
2(t, x) solve the following PDEs:

∂tm
y
1(t, x) = Lxmy

1(t, x), my
1(0, x) = χQdy (x), (5.20)

∂tm
y
2(t, x) = Lxmy

2(t, x) + α(x)(my
1(t, x))2, my

2(0, x) ≡ 0. (5.21)

We will show that there exists a CL > 0 such that, for each t ≥ 1 and x, y ∈ Rd with
‖x− y‖ ≤ Lt, we have

my
2(t, x) ≥ CLmy

1(t, x).

Fix R > 0 such that [0, 1)d ∈ BR(0). Observe that, since my
1(0, x) = χQdy (x), there exists a

δ1 > 0 such that
my

1(t, x) ≥ δ1χBR(y)(x) for all t ∈ [1/8, 1/4].

Also observe that there exists a δ2 > 0 such that, for all x, y ∈ Rd with ‖x− y‖ ≤ 2R and
t ∈ [1/4, 1/2],

ρ1(t, x, y) ≥ δ2.

Now, observe that α(x) is periodic, non-negative and not identically 0. Thus, from (5.21),
using Duhamel’s Formula, for x ∈ Qdy,

my
2(1/2, x) =

∫ 1/2

0

∫
Rd

2α(z)(my
1(s, z))2ρ1(

1

2
− s, x, z)dzds

≥
∫ 1/4

1/8

∫
BR(y)

2α(z)δ2
1δ2dzds

≥1

4
δ2
1δ2

∫
[0,1)d

α(z)dz := δ3 > 0,

that is,
my

2(1/2, x) ≥ δ3χQdy (x). (5.22)

Now, comparing the PDEs (5.20) and (5.21), and taking into account (5.22), we see that
for all t ≥ 0, x, y ∈ Rd,

my
2(t+ 1/2, x) ≥ δ3my

1(t, x). (5.23)

For a fixed L > 0, for all x, y ∈ Rd with ‖x−y‖t ≤ L, t ≥ 1/2, from Theorem 2.2, there
exists c > 0 such that

my
1(t, x) ≥ cmy

1(t+ 1/2, x). (5.24)

From (5.24) and (5.23), we conclude that there exists a constant CL > 0 such that

my
2(t, x) ≥ CLmy

1(t, x), (5.25)

for all x, y ∈ Rd with ‖x−y‖t ≤ L and t ≥ 1. In particular, for each v ∈ Rd, we have

γ1(v) = lim
t→∞

lnmtv
1 (t, x)

t
≤ lim
t→∞

lnmv
2 (t, x)

t
= γ2(v) (5.26)
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Because E(ntv(t, x)2) is a linear combination of mtv
1 and mtv

2 (by (5.5)) this also implies

lim
t→∞

lnE(ntv(t, x)2)

t
= γ2(v). (5.27)

Thus (ii) and (iii) hold for k = 2. This completes the basis for induction.
Next, suppose that (ii) and (iii) hold up to k − 1 with k ≥ 3: we will now show that

(ii) and (iii) must also hold for k, completing the induction. From (5.12), there exists a
constant C1 > 0 such that

my
k(t, x) ≥ C1

∫ t

0

∫
Rd
α(z)my

1(s, z)my
k−1(s, z)ρ1(t− s, x, z)dzds =: C1I

`(t, x, y).

Since E(ntv(t, x)k) is a convex function of k, for each 1 ≤ i ≤ k − 1,

E(ntv(t, x)k−1)E(ntv(t, x)) ≥ E(ntv(t, x)k−i)E(ntv(t, x)i).

Thus, using (5.5), there exists a constant C2 > 0 such that,

my
k(t, x) ≤ C2

∫ t

0

∫
Rd
α(z)E(ntv(t, x)k−1)E(ntv(t, x))ρ1(t− s, x, z)dzds

=: C2I
u(t, x, y).

In order to prove that the first limit on the right hand side of (5.7) exists, we need to
show that,

lim
t→∞

ln I`(t, x, tv)

t
= lim
t→∞

ln Iu(t, x, tv)

t
. (5.28)

We claim that, for all sufficiently large M > 0,

γk(v) := lim
t→∞

ln(I`(t, x, tv))

t
= lim
t→∞

ln(Iu(t, x, tv))

t
= lim
t→∞

mtv
k (t, x)

t

= sup
‖w−v‖≤M
u∈(0,1)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
. (5.29)

As before, let 0 < ε < κ < 1, and partition the domain according to (5.15)-(5.16), and
define the integrals

I`j (t, x, tv) :=

∫ ∫
Rj

α(z)mvt
1 (s, z)mvt

k−1(s, z)ρ1(t− s, x, z)dzds, j = 1, . . . , 6,

so that I`(t, x, tv) =
∑6
j=1 I

`
j (t, x, tv). Using the same arguments as above, it is not

difficult to show that, for each r > 0, for each δ > 0, for all sufficiently small ε > 0, for all
κ ∈ (0, 1) sufficiently close to 1, for all sufficiently large M ,

lim sup
t→∞

ln I`1(t, x, tv)

t
≤ −r,

lim sup
t→∞

ln I`5(t, x, tv)

t
≤ −r,

lim sup
t→∞

ln I`2(t, x, tv)

t
≤ γ1(v) + δ,

lim sup
t→∞

ln I`6(t, x, tv)

t
≤ γ1(v) + γk−1(v) + δ,

lim sup
t→∞

ln I`3(t, x, tv)

t
< −r.
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Now consider integral I`4(t, x, tv)t. Changing variables s/t = u and z/t = w, as before,
this is equivalent to

I`4(t, x, tv)t = td+1

∫ κ

ε

∫
‖w−v‖≤M

α(wt)mvt
1 (ut, wt)mvt

k−1(ut, wt)ρ1(t(1− u), x, wt)dwdu.

The logarithmic asymptotics of m1, mk−1, and ρ1 are given by (5.7) and Theorem 2.2.
Therefore, following Laplace’s method, as t→∞, 1

t ln I`4(t, x, tv)t is asymptotic to

1

t
ln

(∫ κ

ε

∫
‖w−v‖≤M

α(wt)mvt
1 (ut, wt)mvt

k−1(ut, wt)ρ1(t(1− u), x, wt)dwdu

)

∼ 1

t
ln

(∫ κ

ε

∫
‖w−v‖≤M

etuγ1( v−w
u )etuγk−1( v−w

u )et(1−u)γ1(
w−(x/t)

1−u )dwdu

)
. (5.30)

Therefore,

lim
t→∞

ln I`4(t, x, tv)

t
= sup
‖w−v‖≤M
u∈(ε,κ)

[
uγ1

(v − w
u

)
+ uγk−1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
.

Combining these estimates, we conclude that

lim
t→∞

ln(I`(t, 0, tv))

t
= sup
‖w−v‖≤M
u∈(0,1)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
.

(5.31)
Now, we justify (5.28), that is, the logarithmic asymptotics of the integrals I` and Iu

are equal. The difference between I` and Iu is that E(ntv(t, x)i) in Iu replaces mtv
i (t, x)

in I`. The properties of mtv
i (t, x) that were used to derive the asymptotics of I1 included

estimate (5.6) and the uniform asymptotics of the logarithm (formula (5.7)). By the
inductive assumption, the same uniform asymptotics holds for E(ntv(t, x)i) for i ≤ k − 1.
Moreover, by formula (5.5), the analogue of (5.6) holds for E(ntv(t, x)i). That is, there
exist constants di > 0 such that

E(ntv(t, x)i) ≤ di exp

(
dit−

‖y − x‖2

di(t+ 1)

)
(5.32)

for all (t, x, y) ∈ R+×Rd×Rd, for all 1 ≤ i ≤ k−1. Therefore, the logarithmic asymptotics
of I2 are the same as that of I1 i.e., (5.28) holds. From (5.5),

lim inf
t→∞

lnE(ntv(t, x)k)

t
≥ lim
t→∞

lnmtv
k (t, x)

t
.

From the formula (5.29) which now holds for k and k − 1 and the inductive hypothesis
that γk−1(v) ≥ γk−2(v) for each v ∈ Rd, we observe that that

γk(v) = sup
‖w−v‖≤M,u∈(0,1)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
≥ sup
‖w−v‖≤M,u∈(0,1)

[
uγk−2

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
= γk−1(v).

This, along with the inductive hypothesis that γi−1(v) ≤ γi(v) for each 2 ≤ i ≤ k − 1,
by (5.5), implies that

lim sup
t→∞

lnE(ntv(t, x)k)

t
≤ lim
t→∞

lnmtv
k (t, x)

t
.

EJP 25 (2020), paper 126.
Page 23/40

https://www.imstat.org/ejp

https://doi.org/10.1214/20-EJP527
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Branching diffusion in periodic media

Therefore both the limits in (5.7) exist and are equal.
Form the inductive assumption that γi is a continuous function for 1 ≤ i ≤ k−1, using

formula (5.31), we conclude that γk is continuous. This concludes the proof of (i)-(iii)
through induction.

We have shown that, for all sufficiently large M > 0,

γk(v) = sup
‖w−v‖≤M,u∈(0,1)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
.

Therefore, letting M →∞, we obtain the formula

γk(v) = sup
w∈Rd,u∈(0,1)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
, k ∈ N.

This completes the proof of (a) in Theorem 3.1.

5.2 Proof of part (b)

Using Hölder’s inequality, it is easily seen that lnE(ntv(t, x)k) is a convex function
of k for each fixed t ∈ R+,v ∈ Rd. In addition, γ0 ≡ 0 and therefore γk(v)/k is a
non-decreasing function of k, which implies that, if γk(v) > kγ1(v), then γk+1(v) >

(k+ 1)γ1(v). Therefore, Gk+1 ⊆ Gk must hold for each k ∈ N. We will complete the proof
of Theorem 3.1 by showing that there exists a sequence of constants αk > 0 such that
Bαk(0) ⊆ Gk and that

⋂
k∈N

Gk = {0}.

Observe that, for each k ∈ N, v ∈ Rd, γk(v) ≤ kγ1(0). To justify this, we use induction.
For k = 1, the statement is obvious since γ1 achieves its maximum at 0. Now suppose
the statement holds up to k − 1. Then, from the definition of γk,

sup
w∈Rd,u∈(0,1)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
≤ (5.33)

≤
[
u(k − 1)γ1(0) + uγ1(0) + (1− u)γ1(0)

]
= kγ1(0).

We know that −Φ(0) = γ1(0) = µ(0) > 0, and Φ is continuous, therefore, the region G1 is
non-empty. Since the function v 7→ γk(v) is continuous for each k ≥ 1, the sets Gk must
be closed subsets of Rd.

Next let us show that each set Gk contains a small ball centered at the origin. As a
first step, the following lemma establishes an important property of the functions γk.

Lemma 5.1. For each k ≥ 1, v ∈ Rd and α ∈ [0, 1], γk(v) ≤ γk(αv).

Proof. We use induction for this proof. For k = 1, the statement of the lemma holds since
γ1(v) is a twice differentiable strictly concave function and v̄ = 0 is its maximizer.

Suppose the statement of the lemma holds for each 1 ≤ i ≤ k − 1. To show this for k,
we have, for 0 ≤ α ≤ 1,

γk(αv) = sup
w∈Rd,u∈(0,1)

[
uγk−1

(αv − w
u

)
+ uγ1

(αv − w
u

)
+ (1− u)γ1

( w

1− u

)]
.

Now, substituting w = αz, we have

γk(αv) = sup
z∈Rd,u∈(0,1)

[
uγk−1

(αv − αz
u

)
+ uγ1

(αv − αz
u

)
+ (1− u)γ1

( αz

1− u

)]
≥ sup
z∈Rd,u∈(0,1)

[
uγk−1

(v − z
u

)
+ uγ1

(v − z
u

)
+ (1− u)γ1

( z

1− u

)]
= γk(v).
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Now, in order to prove that each set Gk = {v ∈ Rd
∣∣∣γk(v) = kγ1(v), γ1(v) ≥ 0}

contains a small ball centered at the origin, we introduce functions fk defined below. For
each k ≥ 2, we will first show that there is a small ball centered around the origin on
which fk(v) = kγ1(v) ≥ 0. Then we will use induction to show that there is a (smaller)
ball centered around the origin on which fk(v) = γk(v).

Let us define, for k ≥ 2,

gvk (w, u) :=
[
kuγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u
)]
, w ∈ Rd, u ∈ (0, 1),

and
fk(v) := sup

w∈Rd,u∈(0,1)

gvk (w, u). (5.34)

Observe that f2 = γ2. For k > 2, the formula for function fk is similar to the formula of
γk, but with (γk−1 + γ1) replaced by kγ1. For w = v(1− u), we have

gvk (v(1− u), u) = kuγ1(v) + (1− u)γ1(v) = (1 + (k − 1)u)γ1(v)→ kγ1(v) as u ↑ 1.

Therefore, fk(v) ≥ kγ1(v) for each v ∈ Rd.
The analysis of gvk (w, u) is detailed in the following three lemmas. They show that,

for each k ≥ 2, there is a small ball centered around the origin Bβk(0), such that, for
v ∈ Bβk(0), the value of the supremum of gvk (w, u) on Rd × (0, 1) is kγ1(v) which, as
shown above, can be nearly achieved when w is close to 0 and u is close to 1.

The first of the three lemmas, Lemma 5.2, shows that the value of the supremum of
gvk (w, u) over the region where w is bounded and u is close to 1 is kγ1(v).

Lemma 5.2. There exist constants L > 0, δ, ε0 > 0 such that for all v ∈ Bδ(0),

sup{gvk (w, u)
∣∣∣‖w‖ ≤ L, u ∈ (1− ε0, 1)} = kγ1(v).

Proof. We prove the above lemma in 2 steps. In Step I, we show that there exist δ1 > 0,
M > 0 and ε1 > 0 such that, for each v ∈ Bδ1(0), for each (w, u) = (`ε, 1 − ε), with
L/ε > ‖`‖ > M , and ε ∈ (0, ε1), we have gvk (`ε, 1− ε) < kγ1(v).

In Step II, we show that there exist constants δ < δ1, ε0 ∈ (0, ε1) such that for all
v ∈ Bδ(0), for all ‖`‖ ≤M ,

d

dε

[
gvk (`ε, 1− ε)

]
≤ 0

for all ε < ε0.
Step I: Note that from Lemma 5.1,

gvk (`ε, 1− ε) = k(1− ε)γ1

(v − `ε
1− ε

)
+ εγ1(`) ≤ kγ1

(
v − `ε

)
+ εγ1(`),

where L > 0 and δ1 > 0 are such that γ1(v − `ε) > 0 for all v ∈ Bδ1(0), and ‖`ε‖ ≤ L.
Thus, in order to prove that gvk (`ε, 1− ε) < kγ1(v), it is enough to show that

ε

k
γ1(`) ≤ γ1(v)− γ1

(
v − `ε

)
.

From (5.11), we know that, for all v ∈ Rd,

γ1(v) ≤ a1 −
‖v‖2

a1
.

Therefore, we only need to show that

ε

k
(a1 −

‖`‖2

a1
) ≤ γ1(v)− γ1

(
v − `ε

)
.
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Using Taylor’s formula, we have

γ1(v)− γ1

(
v − `ε

)
= ε〈∇γ1(v), `〉 − ε2

2
〈D2γ1(v − q`ε)`, `〉

for some q ∈ (0, 1). Thus, we need to show that

1

k
(a1 −

‖`‖2

a1
) ≤ 〈∇γ1(v), `〉 − ε

2
〈D2γ1(v − q`ε)`, `〉.

That is, we need to show that

1

k
(a1 −

‖`‖2

a1
) +

ε

2
〈D2γ1(v − q`ε)`, `〉 − 〈∇γ1(v), `〉 ≤ 0. (5.35)

Let v ∈ Bδ1(0). Let C = sup{‖∂iγ1(v)‖
∣∣∣v ∈ Bδ1(0)}. Then we have the following lower

bound,
〈∇γ1(v), `〉 ≥ −C‖`‖.

Let us fix M ≥ 1 such that the following quadratic expression is positive, that is,

x2

2ka1
− Cx− a1

k
≥ 0 for all ‖x‖ ≥M.

For each v ∈ Bδ1(0), ‖`ε‖ ≤ L, q ∈ (0, 1) we have (v − εq`) ∈ Bδ1+L(0). Let

R = sup
{
‖∂i,jγ1(v)‖

∣∣∣v ∈ B(δ1+L)(0), 1 ≤ i, j ≤ d
}
.

This is a finite constant since the function γ1 is twice continuously differentiable. Choose
ε1 > 0 such that ε1R < 1

2a1k
. Then, for all L/ε ≥ ‖`‖ ≥M and ε < ε1, v ∈ Bδ1(0),

‖`‖2

a1k
+ 〈∇γ1(v), `〉 − a1

k
− ε

2
〈D2γ1(v − q`ε)`, `〉 ≥

≥ ‖`‖
2

2a1k
− ε

2
〈D2γ1(v − q`ε)`, `〉 ≥ ε1R‖`‖2 −

ε

2
〈D2γ1(v − q`ε)`, `〉 ≥ 0,

which proves (5.35).
Step II: Recall that

gvk (`ε, 1− ε) = k(1− ε)γ1

(v − `ε
1− ε

)
+ εγ1(`).

Differentiating with respect to ε we obtain,

d

dε

[
gvk (`ε, 1− ε)

]
= −kγ1

(v − `ε
1− ε

)
+
k(v − `)

1− ε
∇γ1

(v − `ε
1− ε

)
+ γ1(`).

Using the fact that the maximum of the function γ1(v) is achieved at v = 0 and the fact
that γ1(v) is strictly concave, choose δ2 ∈ (0, δ1) be such that

min{γ1(v)
∣∣∣v ∈ Bδ2(0)} > 7

4k
γ1(0).

Let ε2 ∈ (0, ε1) be such that for each v ∈ B δ2
2

(0), for all ε < ε2, and ‖`‖ ≤M , the vector(
v−`ε
1−ε

)
belongs to the Bδ2(0).

Now choose δ ∈ (0, δ2/2) such that, for each v ∈ Bδ(0), we have

k〈(v − l),∇γ1(v)〉 < 1

8
γ1(0),
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for all ‖`‖ ≤M . This is possible since γ1 achieves its maximum at 0, that is ∇γ1(0) = 0.
Choose ε0 > 0 with ε0 < (0, ε2) such that for all v ∈ Bδ(0) and for all ‖`‖ ≤M , we have

k〈 (v − `)
1− ε0

,∇γ1

(v − `ε0

1− ε0

)
〉 < 1

4
γ1(0).

Thus, for all v ∈ Bδ(0), for all ε < ε0 and for all ‖`‖ ≤M ,

d

dε

[
gvk (`ε, 1− ε)

]
< −7

4
γ1(0) +

1

4
γ1(0) + γ1(0) = −1

2
γ1(0) < 0.

Thus, we conclude that, for all v ∈ Bδ(0),

sup{gvk (w, u)
∣∣∣‖w‖ ≤ L, u ∈ (1− ε0, 1)} ≤ kγ1(v).

But we know that, if (w, u) = (v(1 − u), u) and u approaches 1, the value of gvk (w, u)

approaches kγ1(v). Therefore,

sup{gvk (w, u)
∣∣∣‖w‖ ≤ L, u ∈ (1− ε0, 1)} = kγ1(v).

The next lemma shows that the supremum of g cannot be achieved if u is close to 1,
and w is separated from the origin.

Lemma 5.3. For each L > 0, there exist δ > 0 and ε0 > 0 such that, for all v ∈ Bδ(0),

sup{gvk (w, u)
∣∣∣1− ε0 < u ≤ 1, ‖w‖ ≥ L} < kγ1(v).

Proof. Note that,

‖v − w
u
‖ ≥ L

2
> 0 for each ‖w‖ ≥ L, ‖v‖ ≤ L/2, u ∈ [1/2, 1).

Take α ∈ (0, 1) such that γ1(`) ≤ αγ1(0) for all ‖`‖ ≥ L/2. Here, we used the fact that the
maximum of the function γ1 is achieved at v = 0 and γ1(v) is continuous.

Choose an ε0 < 1/2 such that α+ ε0
k < 1. Thus,

gvk (w, u) = kuγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u
)
≤ (kα+ ε0)γ1(0),

for all v ∈ BL/2(0), ‖w‖ > L, u ∈ [1 − ε0, 1). Now we choose a δ > 0 with δ < L/2 such
that, for all v ∈ Bδ(0), we have

γ1(v) > (α+
ε0

k
)γ1(0).

We can choose such a δ > 0 since 1 > (α+ ε0
2 ) > 0, the maximum of the function γ1(v) is

achieved at v = 0, and γ1(v) is continuous.
Thus, for all v ∈ Bδ(0), we have

sup{gvk (w, u)
∣∣∣1− ε0 < u ≤ 1, ‖w‖ ≥ L} < kγ1(v).

The last of the three lemmas, Lemma 5.4, shows that there is a small ball centered
around the origin, on which the value of the supremum of gvk (w, u) in the region where
w ∈ Rd and u is away from 1 is strictly less than kγ1(v).

Lemma 5.4. For each ε > 0, there exists a δ > 0 such that, for all v ∈ Bδ(0),

sup{gvk (w, u)
∣∣∣1− ε > u ≥ 0, w ∈ Rd} < kγ1(v).
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Proof. Choose δ > 0 such that for all v ∈ Bδ(0), γ1(v) > (1− (k−1)ε
k )γ1(0). We can choose

such a δ > 0 since 1 > (1− (k−1)ε
k ) > 0, the maximum of the function γ1 is achieved at

v = 0 and γ1(v) is continuous. Then, for all v ∈ Bδ(0), for all w ∈ Rd and u ∈ [0, 1− ε),

gvk (w, s) = kuγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u
)

≤ kuγ1(0) + (1− u)γ1(0) = (1 + (k − 1)u)γ1(0)

≤ (k − (k − 1)ε)γ1(0) < kγ1(v).

Therefore, for all v ∈ Bδ(0),

sup{gvk (w, u)
∣∣∣1− ε > u ≥ 0, w ∈ Rd} < kγ1(v).

Thus, by the above three lemmas, there exists a sequence of positive constants
{βk}k≥1 such that, for all v ∈ Bβk(0),

fk(v) = lim
u↑1

gvk (v(1− u), u) = kγ1(v). (5.36)

Now let us show that there exists a sequence of positive constants {αk}k≥1 such that,
for all v ∈ Bαk(0), fk(v) = γk(v). This will be proved by induction.

For k = 2, by the definition of γ2, we have that, f2(v) = γ2(v) for each v ∈ Rd.
Now suppose there exists constants αi for 1 ≤ i ≤ k − 1 with αi ∈ (0, βi] such that
γi(v) = fi(v) = iγ1(v) for all v ∈ Bαi(0). We need to show that there exists αk ∈ (0, βk]

such that, for all v ∈ Bαk(0), we have

γk(v) := sup
w∈Rd,u∈(0,1)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
= sup
w∈Rd,u∈(0,1)

[
kuγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
=: fk(v).

To show this, it is enough to show that the supremum in the definition of γk is achieved
in the part of the space where the values of γk−1 and (k − 1)γ1 coincide. Let us define
the cone Γk(v) = {(w, u) ∈ Rd × (0, 1) : |v−w|u ≤ αk−1} ⊆ Rd × (0, 1). It remains to show

that
[
uγk−1

(
v−w
u

)
+uγ1

(
v−w
u

)
+ (1−u)γ1

(
w

1−u

)]
on the set Γk(v)c := Rd× (0, 1) \Γk(v)

is dominated by the supremum of the same expression over the set Γk(v). We will show
that there exists αk > 0 such that, for all v ∈ Bαk(0), we have

sup
(w,u)∈Γk(v)c

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
≤ sup

(w,u)∈Γk(v)

[
uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
. (5.37)

Note that, for each (w, u) ∈ Γk(v), the expression on the RHS is

sup
(w,u)∈Γk(v)

[
kuγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)]
.

This expression, as follows from (5.36), is equal to fk(v) = kγ1(v), as long as (w, u) =

(v(1− u), u) ∈ Γk(v) and ‖v‖ ≤ βk. That is, ‖v‖ ≤ min{αk−1, βk}. The inequality (5.37) is
justified by the following lemma.

Lemma 5.5. There exists 0 < αk < min{αk−1, βk} such that, for each v ∈ Bαk(0),

uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)
< kγ1(v), (5.38)

for all (w, u) ∈ Γk(v)c.
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Proof. The lemma will be proved in 2 steps. In Step I, the part of set ΓK(v)c where u is
close to 1 is considered. In this part of the set, we make use of the fact that w is bounded
from below.

In Step II, the part of set Γk(v)c where u is away from 1 is considered. In this part of
the set, the left hand side of (5.38) can be made strictly smaller than kγ1(0), while the
right hand side can be made arbitrarily close to kγ1(0) by choosing v in a small enough
ball around the origin.

Step I: Let δ1 = min{αk−1, βk}/4. For all (w, u) ∈ Γk(v)c, ‖v‖ ≤ δ1 and u ∈ [3/4, 1),
we have,

4δ1 ≤ αk−1 < ‖
v − w
u
‖ ≤ 4

3
‖v − w‖ ≤ 4

3

(
‖v‖+ ‖w‖

)
≤ 4

3

(
δ1 + ‖w‖

)
.

Therefore, ‖w‖ ≥ 2δ1. Using (5.11), there exist a > 0 and M > 0 such that, for all
‖`‖ ≥M ,

γ1(`) < −a‖`‖2. (5.39)

In addition, we choose M > 0 large enough such that δ1/M < 1/4. Observe that, from
(5.39),

(1− u)γ1

( w

1− u

)
≤ −a ‖w‖

2

1− u
≤ − 4aδ2

1

1− u
,

for all u ∈ [1 − δ1
M , 1), (w, u) ∈ Γk(v)c if ‖v‖ ≤ δ1. From (5.33), for each (v, w, u) ∈

Rd ×Rd × (0, 1), we know that

uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
≤ ukγ1(0).

Choosing ε ∈ (0, δ1/M) such that kγ1(0) < 4aδ2
1/2ε, we obtain that, for each (w, u) ∈

Rd × (1− ε, 1) \ Γk(v) for ‖v‖ ≤ δ1, the left-hand side of equation (5.38) is negative.
We now choose δ2 ∈ (0, δ) such that, for all ‖v‖ < δ2, we have kγ1(v) > 0. Thus the

inequality (5.38) holds for all ‖v‖ < δ2, for each (w, u) ∈ Rd × (1− ε, 1 ) \ Γk(v).
Step II: Let ε > 0 be fixed. Choose αk ∈ (0, δ2) such that γ1(v) > (1− ε+ ε

k )γ1(0) for
all |v| < αk. Using Lemma 5.1, for each ` ∈ Rd, u ∈ (0, 1), i ∈ N, we have γi(`) < γi(u`).
Therefore,

uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
< uγk−1(v − w) + uγ1(v − w) ≤ (k − 1)uγ1(0) + uγ1(0),

where the last inequality follows from the trivial observation that γi(`) ≤ iγ1(0), for all
i ∈ N, ` ∈ Rd. Therefore, for u ∈ (0, 1− ε), the left hand side of (5.38) can be bounded
above as follows,

uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)
≤(k − 1)uγ1(0)+uγ1(0) + (1− u)γ1(0)

≤ k(1− ε+
ε

k
)γ1(0).

From the definition of αk, for all |v| < αk, kγ1(v) > k(1−ε+ ε
k )γ1(0). Thus, we have shown

that inequality (5.38) holds for all |v| < αk, for each (w, u) ∈ Rd × (0, 1− ε) \ Γk(v).

Now we prove that
⋂
k≥1Gk = {0}. Let v ∈ G1 be fixed, with ‖v‖ > 0. Now, we show

that there exists k ∈ N, large enough, such that γk(v) > kγ1(v). That is, there exists a
pair (w, u) ∈ Rd × (0, 1) such that

uγk−1

(v − w
u

)
+ uγ1

(v − w
u

)
+ (1− u)γ1

( w

1− u

)
> kγ1(v).
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We first pick w = v. Then we need to show that there exist u ∈ (0, 1) and k ∈ N, such
that

uγ1(0) +
1− u
k

γ1

( v

1− u

)
> γ1(v). (5.40)

Let u = 1 − ε where ε > 0 small enough such that (1 − ε)γ1(0) > γ1(v). This is
possible because ‖v‖ > 0 and γ1(v) achieves its maximum value at v = 0. Define
η = (1 − ε)γ1(0) − γ1(v) > 0. Keeping v and ε fixed, we pick k ∈ N large enough such
that, ∣∣∣ ε

k
γ1

(v
ε

)∣∣∣ < η/2.

Therefore,

(1− ε)γ1(0) +
ε

k
γ1

(v
ε

)
= η + γ1(v) +

ε

k
γ1

(v
ε

)
> γ1(v) +

η

2
> γ1(v).

Thus
⋂
k≥1Gk = {0}. This concludes the proof of Theorem 3.1.

6 Proof of Theorem 3.3

Without loss of generality, we may assume that v̄ = 0, which simplifies our notation.
Observe that the functions fk are clearly positive and continuous on the d-dimensional
cube Qd0 = [0, 1)d, from their recursive definition. As in (5.5), for each k ≥ 1,

E(N(t, x)k) =

k∑
i=1

S(k, i)m̄i(t, x), (6.1)

where

m̄i(t, x) =

∫
Rd
....

∫
Rd
ρk(t, x, y1, y2, ..., yk)dy1...dyk,

where ρi’s are the particle density and higher order correlation functions, as defined
in (5.1) and (5.2). Thus, we observe that m̄i(t, x) satisfy the following PDEs on Td:

∂tm̄1(t, x) = Lxm̄1(t, x), m̄1(0, x) ≡ 1, (6.2)

while, for k ≥ 2,

∂tm̄k(t, x) = Lxm̄k(t, x) + α(x)

k−1∑
i=1

βki m̄i(t, x)m̄k−i(t, x), m̄k(0, x) ≡ 0, (6.3)

where βki = k!/(i!(k − i)!).
We will prove the following lemma after completing the proof of the theorem.

Lemma 6.1. For each k ∈ N, x ∈ [0, 1)d,

m̄k(t, x) = ekµt
[
fk(x) + qk(t, x)

]
, (6.4)

where lim
t→∞

qk(t, x) = 0 uniformly in x ∈ [0, 1)d, and fk have been defined in (3.8).

Using formula (6.4) in (6.1), we get

E(N(t, x)k)

ekµt
=

k∑
i=1

S(k, i)e−(k−i)µt
[
fi(x) + qi(t, x)

]
.

Therefore,

lim
t→∞

E(N(t, x)k)

ekµt
= fk(x) + lim

t→∞

(
qk(t, x) +

k−1∑
i=1

S(k, i)e−(k−i)µt
[
fi(x) + qi(t, x)

])
= fk(x).
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Now, we use induction to show that there exists a constant A > 0 such that, for every
x ∈ [0, 1)d, fk(x) ≤ Akk!. For k = 1, we know that the eigenfunction ϕ(x) corresponding
to the principle eigenvalue µ of the operator L on the d-dimensional torus Td is a positive
and continuous function. Therefore, there exists a constant A1 > 1 such that, for every
x ∈ (0, 1]d, ϕ(x) ≤ A1.

Suppose that for all 1 ≤ j ≤ k − 1, x ∈ [0, 1)d, fj(x) ≤ Aj1j!. Then, from the definition
of the function fk, we get

fk(x) =

k−1∑
i=1

βki

∫ ∞
0

∫
[0,1)d

e−kµtα(z)fi(z)fk−i(z)%(t, x, z)dzdt

≤ Ak1(k − 1)k!

∫ ∞
0

∫
[0,1)d

e−kµtα(z)%(t, x, z)dzdt.

Recall that the operator L − µ has principle eigenvalue zero, while the principle eigen-
function of the adjoint operator (L− µ)∗ is ϕ∗ (with

∫
[0,1)d

ϕ∗(z) dz = 1). Therefore, there

exists a constant C > 0 such that, for every x ∈ [0, 1)d, t > 0,∫
[0,1)d

e−tµα(z)%(t, x, z)dz ≤
(

sup
x∈[0,1)d

α(x)
) ∫

[0,1)d
e−tµ%(t, x, z)dz ≤ C.

Therefore,

fk(x) ≤ CAk1(k − 1)k!

∫ ∞
0

e−(k−1)µtdt ≤ k!Ak1C/µ.

If C/µ ≤ 1, we pick A = A1, and if C/µ > 1, choose A = A1C/µ. With this choice of A we
obtain that, for every x ∈ [0, 1)d, fk(x) ≤ Akk!. From the convergence of all the moments
of N(t, x)/eµt, it follows that, there exists a random variable ξx with the moments fk(x)

(see [10]). The uniqueness of the distribution of ξx follows from the bound on fk by
the Carleman theorem. Except for a proof of Lemma 6.1, this concludes the proof of
Theorem 3.3.

Proof of Lemma 6.1. We use induction to prove this lemma. The principle eigenvalue of
the operator L is µ > 0, and the corresponding eigenfunction ϕ(x) > 0. Thus, from the
theory of elliptic operators, from (6.2), there exists a function q1(t, x) such that

m̄1(t, x) = eµt
[
ϕ(x) + q1(t, x)

]
,

where
lim
t→∞

q1(t, x) = 0

uniformly in x ∈ [0, 1)d. This gives (6.4) for k = 1 with f1(x) = ϕ(x). Suppose that the
conclusion of the lemma holds up to k − 1, where k ≥ 2. From (6.3), using Duhamel’s
formula, we get

m̄k(t, x) =

∫ t

0

∫
[0,1)d

α(z)

k−1∑
i=1

βki m̄i(s, z)m̄k−i(s, z)%(t− s, x, z)dzds.

By the inductive assumption,

m̄k(t, x) =

k−1∑
i=1

βki

∫ t

0

∫
[0,1)d

ekµsα(z)fi(z)fk−i(z)%(t− s, x, z)dzds

+

k−1∑
i=1

βki

∫ t

0

∫
[0,1)d

ekµsα(z)hi(s, z)%(t− s, x, z)dzds,
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where
hi(s, z) := qi(s, z)qk−i(s, z) + qi(s, z)fk−i(z) + qk−i(s, z)fi(z).

After the change of variables u = t− s, we get

m̄k(t, x) = ekµt
k−1∑
i=1

βki

∫ t

0

∫
[0,1)d

e−ukµα(z)fi(z)fk−i(z)%(u, x, z)dzdu

+ ekµt
k−1∑
i=1

βki

∫ t

0

∫
[0,1)d

e−ukµα(z)hi(t− u, z)%(u, x, z)dzdu

= ekµtfk(x)− ekµt
k−1∑
i=1

βki

∫ ∞
t

∫
[0,1)d

e−ukµα(z)fi(z)fk−i(z)%(u, x, z)dzdu

+ ekµt
k−1∑
i=1

βki

∫ t

0

∫
[0,1)d

e−ukµα(z)hi(t− u, z)%(u, x, z)dzdu.

Define

qk(t, x) :=

k−1∑
i=1

βki

(∫ t

0

∫
[0,1)d

e−ukµα(z)hi(t− u, z)%(u, x, z)dzdu

−
∫ ∞
t

∫
[0,1)d

e−ukµα(z)fi(z)fk−i(z)%(u, x, z)dzdu
)
.

Thus, we have

m̄k(t, x) = ekµt
[
fk(x) + qk(t, x)

]
.

It remains to show that lim
t→∞

qk(t, x) = 0 uniformly in x ∈ [0, 1)d. Since the functions

c̃, fi, fk−i are non-negative and continuous on [0, 1)d, there exists a constant Ci > 0 such
that 0 ≤ α(z)fi(z)fk−i(z) < Ci for all z ∈ [0, 1)d. Therefore,∫ ∞

t

∫
[0,1)d

e−ukµα(z)fi(z)fk−i(z)%(u, x, z)dzdu ≤ Ci
∫ ∞
t

∫
[0,1)d

e−ukµ%(u, x, z)dzdu.

(6.5)
Therefore, from (3.6), the right hand side of the (6.5) goes to zero uniformly in x ∈ [0, 1)d.
To deal with the sum in the definition of qk(t, x), we break up the integral in two parts as
follows, ∣∣∣ ∫ t

0

∫
[0,1)d

e−ukµα(z)hi(t− u, z)%(u, x, z)dzdu
∣∣∣

≤
∣∣∣ ∫ t/2

0

∫
[0,1)d

e−ukµα(z)hi(t− u, z)%(u, x, z)dzdu
∣∣∣

+
∣∣∣ ∫ t

t/2

∫
[0,1)d

e−ukµα(z)hi(t− u, z)%(u, x, z)dzdu
∣∣∣

≤ sup
s∈(t/2,t),x∈[0,1)d

|α(x)hi(s, x)|
∫ t/2

0

∫
[0,1)d

e−ukµ%(u, x, z)dzdu

+ sup
s∈(0,t/2),x∈[0,1)d

|α(x)hi(s, x)|
∫ t

t/2

∫
[0,1)d

e−ukµ%(u, x, z)dzdu

From (3.6), the integral in the first term is bounded and from the inductive hypothesis,

lim
t→∞

sup
s∈(t/2,t),x∈[0,1)d

|α(x)hi(s, x)| = 0,

and therefore, the first term converges to zero uniformly in x ∈ [0, 1)d.
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Similarly, from the inductive hypothesis, the supremum in the second term is bounded,
while, from (3.6), the integral in the second term converges to zero uniformly in x ∈ [0, 1)d.
Thus, we conclude that

lim
t→∞

sup
x∈[0,1)d

qk(t, x) = 0,

which completes the proof of Lemma 6.1.

7 Proof of Theorem 3.4

Without loss of generality, we may assume that v̄ = 0, which simplifies our notation.
Recall from (5.5),

E(ny(t, x)k) =

k∑
i=1

S(k, i)my
i (t, x). (7.1)

We will show the following two statements by induction:
(i) For each r(t) = o(t), there exists the limit

lim
t→∞

m
y(t)
k (t, x)

g(t, y(t))k
= fk(x)

uniformly in x ∈ [0, 1)d and ‖y(t)‖ ≤ r(t).
(ii) Let r̄(t) = o(t) be a function satisfying r(t) = o(r̄(t)), with

√
t/r̄(t)→ 0. Then

lim
t→∞

m
ȳ(t)
k (t, x)

g(t, y(t))k
= 0

uniformly in x ∈ [0, 1)d, ‖y(t)‖ ≤ r(t), and ‖ȳ(t)‖ ≥ r̄(t).
The theorem will then immediately follow from (i) since g(t, y) → ∞ as t → ∞ for

‖y‖ ≤ r(t) and therefore, the term with i = k dominates in the sum in formula (7.1).
For k = 1, using the asymptotic formula for ρ1(t, x, y) that was given in Theorem 2.2,

we get

my
1(t, x) =

∫
Tdy

ρ1(t, x, z)dz =

= (
√

2πt)−dϕ(x)

(∫
Tdy

det[D2Φ(
z − x
t

)]1/2e−tΦ( z−xt )ϕ∗(z) dz

)
[1 + oL(1)] , (7.2)

for all x, y ∈ Rd with ‖x − y‖ ≤ Lt. Observe that the following limits exit uniformly in
x ∈ [0, 1)d, z ∈ Tdy, and ‖y(t)‖ ≤ r(t),

lim
t→∞

det[D2Φ(
z − x
t

)] = det[D2Φ(0)], lim
t→∞

e−tΦ( z−xt )+tΦ( yt ) = 1,

while
∫
Tdy
ϕ∗(z)d z = 1. Therefore, (i) holds for k = 1. To prove (ii) for k = 1, it enough to

show that
lim
t→∞

etΦ(
y(t)
t )−tΦ(

ȳ(t)
t ) = 0 (7.3)

uniformly in ‖y(t)‖ ≤ r(t), ‖ȳ(t)‖ ≥ r̄(t).
First observe that, given a small c > 0, there exists a constant m > 0 such that

−µ− Φ(v) ≤ −c for all ‖v‖ ≥ m. In addition, since y(t)
t → 0 as t→∞, there exists T1 > 0

such that |Φ
(
y(t)
t

)
+ µ| ≤ c/2 for all t ≥ T1. Therefore, whenever ‖ ȳ(t)

t ‖ ≥ m, we have

Φ
(
y(t)
t

)
− Φ

(
ȳ(t)
t

)
≤ −c/2. for all t ≥ T1. That is, if ‖ ȳ(t)

t ‖ ≥ m, then

etΦ(
y(t)
t )−tΦ(

ȳ(t)
t ) ≤ e−tc/2 (7.4)

for all t ≥ T1.
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We choose T2 > T1 such that, for all t ≥ T2, ‖y(t)
t ‖ ≤ m. Observe that there exist

constants c1, c2 > 0 such that

c1‖v‖2 ≤ |〈D2Φ (v)v,v〉| ≤ c2‖v‖2 (7.5)

for all v ∈ Rd with ‖v‖ ≤ m. Whenever ‖ ȳ(t)
t ‖ ≤ m, using Taylor’s formula, for all t ≥ T2,

there exist α1, α2 ∈ (0, 1) such that

t
(

Φ
(y(t)

t

)
− Φ

( ȳ(t)

t

))
= t
[
〈y(t)

t
,D2Φ

(
α1y(t)

t

)
y(t)

t
〉 − 〈 ȳ(t)

t
,D2Φ

(
α2ȳ(t)

t

)
ȳ(t)

t
〉
]

≤ c2
‖r̄(t)‖2

t

[∥∥∥r(t)
r̄(t)

∥∥∥2

− c1
c2

]
. (7.6)

Since
√
t/r̄(t) → 0, and r(t) = o(r̄(t)), (7.6) and (7.4) imply (7.3). This concludes the

proof of (i) and (ii) for k = 1.
Now, let us assume that (i) and (ii) hold up to k − 1, where k ≥ 2. We first prove (i)

for k. Let r̄(t) = o(t) be a function satisfying r(t) = o(r̄(t)), with
√
t/r̄(t) → 0. Recall

from (5.12),

my
k(t, x) =

∫ t

0

∫
Rd
α(z)

k−1∑
i=1

βkim
y
i (s, z)my

k−i(s, z)ρ1(t− s, x, z)dzds.

Let ε ∈ (0, 1), to be selected later. Let us define the following

Ak(t, x, y(t)) :=

∫ εt

0

∫
Rd
α(z)

k−1∑
i=1

βkim
y(t)
i (s, z)m

y(t)
k−i(s, z)ρ1(t− s, x, z)dzds,

Bk(t, x, y(t)) :=

∫ t

εt

∫
‖z−y(t)‖≥r̄(t)

α(z)

k−1∑
i=1

βkim
y(t)
i (s, z)m

y(t)
k−i(s, z)ρ1(t− s, x, z)dzds,

Ck(t, x, y(t)) :=

∫ t

εt

∫
‖z−y(t)‖≤r̄(t)

α(z)

k−1∑
i=1

βkim
y(t)
i (s, z)m

y(t)
k−i(s, z)ρ1(t− s, x, z)dzds.

By (5.6), we can choose ε > 0 small enough so that, for each 1 ≤ i ≤ k − 1,

my
i (s, z)my

k−i(s, z) ≤ ce
µt/2

for all 0 ≤ s ≤ εt and z, y ∈ Rd. For this fixed ε > 0, choosing a sufficiently large L > 0,
we use the asymptotic formula for ρ1(t, x, z) that was given in Theorem 2.2 in the region
‖z − x‖ ≤ Lt and the estimate (5.10) elsewhere, to obtain that Ak(t, x, y) ≤ c1e3µt/2, for
all x, y ∈ Rd. Therefore, there exists a constant C > 0 such that,

lim
t→∞

Ak(t, x, y(t))

g(t, y(t))k
≤ lim
t→∞

C(2πt)d/2e(3/2−k)µt = 0,

uniformly in x ∈ [0, 1)d and ‖y(t)‖ ≤ r(t), since k ≥ 2. Next we show that

lim
t→∞

Bk(t, x, y(t))

g(t, y(t))k
= 0.

Since the operator L is periodic, we first observe that my
k(t, x) = m

y−[x]
k (t, {x}) for all

k ∈ N, x, y ∈ Rd, and t ≥ 0. For all 1 ≤ i ≤ k − 1, from (ii) we have

lim
t→∞

my
i (s(t), z)

g(s(t), y(t))i
= lim
t→∞

m
y−[z]
i (s(t), {z})
g(s(t), y(t))i

= 0
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uniformly in s(t) ∈ (εt, t), ‖y(t)‖ ≤ r(t) and ‖z−y(t)‖ ≥ r̄(t) where [·] denotes the greatest
integer function in d dimensions, and {z} = z − [z]. Thus, it is enough to show that there
exists a C > 0 such that

lim
t→∞

sup
{
g(s, y(t))k

∣∣s ∈ (εt, t)}
g(t, y(t))k

∫ t

εt

∫
‖z−y(t)‖≥r̄(t)

α(z)ρ1(t− s, x, z)dzds ≤ C.

Choosing a sufficiently large L > 0, we use the asymptotic formula for ρ1(t, x, z) that was
given in Theorem 2.2 in the region ‖z − x‖ ≤ Lt and the estimate (5.10) elsewhere, to
obtain that ∫

Rd
ρ1(t− s, x, z)dz ≤ aeµ(t−s). (7.7)

Thus, it is enough to show that

lim
t→∞

sup
{
e
kt

[
Φ
(
y(t)
t

)
− stΦ

(
y(t)
s

)]
eµ(t−s)∣∣s ∈ (εt, t)

}
= 1. (7.8)

Note that e
kt

[
Φ
(
y(t)
t

)
− stΦ

(
y(t)
s

)]
eµ(t−s) = 1 when s = t. We show that, for sufficiently large

t, the supremum in the above expression is achieved when s = t, when t is large enough.
To show the claim, for s = t− δ, we will show that

kt
[
Φ
(y(t)

t

)
− Φ

( y(t)

t− δ
)]

+ kδΦ
(y(t)

t

)
+ µδ < 0.

Recall that Φ is continuous and the minimum value of the function Φ is achieved at
0, which is Φ(0) = −µ < 0. In addition, recall that r(t) = o(t). Thus, since k ≥ 2, we
conclude that there exists η > 0 such that, for all sufficiently large t,

kδΦ
(y(t)

t

)
+ µδ < −η.

Thus, it is enough to show that, for all sufficiently large t,∣∣∣kt(Φ
(y(t)

t

)
− Φ

( y(t)

t− δ
))∣∣∣ < η/2. (7.9)

Indeed, for large t, the value of ‖y(t)/t‖ is close to 0, while ‖y(t)/(t − δ)‖ = ‖y(t)/s‖ ≤
1
ε‖y(t)/t‖ is also close to 0. Thus, using the fact that ∇Φ(0) = 0 and Taylor’s formula, we
obtain that (7.9) holds. Thus, we have shown that the supremum in (7.8) is achieved
when s = t, when t is large enough. This completes the proof of (7.8). Next we show that

lim
t→∞

Ck(t, x, y(t))

g(t, y(t))k
= fk(x).

In the region ‖z − y(t)‖ ≤ r̄(t), by the inductive assumption, we can replace

k−1∑
i=1

βkim
y(t)
i (s, z)m

y(t)
k−i(s, z) by g(s, y(t)− [z])k

k−1∑
i=1

βki fi(z)fk−i(z)

in the integral. Therefore, we obtain

lim
t→∞

Ck(t, x, y(t))

g(t, y(t))k
=

= lim
t→∞

k−1∑
i=1

βki

∫ t

εt

∫
‖z−y(t)‖≤r̄(t)

(g(s, y(t)− [z])

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(t− s, x, z)dzds.
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Therefore, using a change of variable, it remains to show that, for each 1 ≤ i ≤ k − 1,

lim
t→∞

∫ (1−ε)t

0

∫
‖z−y(t)‖≤r̄(t)

(g(t− s, y(t)− [z])

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(s, x, z)dzds = (7.10)

=

∫ ∞
0

∫
[0,1)d

e−kµsα(z)fi(z)fk−i(z)%(s, x, z)dzds.

Let η > 0 be fixed. From (ii), if ‖y(t)− [z]‖/‖y(t)‖ → ∞, then,(g(t, y(t)− [z])

g(t, y(t))

)k
→∞.

Note that,

g(t− s, y(t)− [z])

g(t, y(t))
=

=
( t

t− s

)(d/2)

exp
[
t
(

Φ
(y(t)

t

)
− Φ

(y(t)− [z]

t− s

))
+ sΦ

(y(t)− [z]

t− s

)]
.

The term (t/t− s)(d/2) is bounded when 0 ≤ s ≤ (1− ε)t. Given δ > 0 small, using the fact
that ‖z − y(t)‖ ≤ r̄(t) = o(t), ‖y(t)‖ ≤ r(t) = o(t) and ∇Φ(0) = 0, from Taylor’s formula,

there exists α ∈ (0, 1) and `(t) = y(t)−[z]
t−s + α

(
y(t)
t −

y(t)−[z]
t−s

)
such that, for all sufficiently

large t, for all 0 ≤ s ≤ (1− ε)t,

t
(

Φ
(y(t)

t

)
− Φ

(y(t)− [z]

t− s

))
+ sΦ

(y(t)− [z]

t− s

)
≤ t‖∇Φ

(
`(t)
)
‖
∥∥∥ t[z]− sy(t)

t(t− s)

∥∥∥+ (−µ+ δ)s

≤ δ‖z‖+ (−µ+ 2δ)s. (7.11)

Therefore, using (5.10), we conclude that∫
‖z−y(t)‖≤r̄(t)

(g(t− s, y(t)− [z])

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(s, x, z)dz ≤

≤ C
∫
‖z−y(t)‖≤r̄(t)

exp
[
k(−µ+ 2δ)s+ kδ‖z‖

]
ρ1(s, x, z)dz ≤

≤ C̃s−d/2 exp
[
k(−µ+ 2δ)s+ µs

] ∫
‖z−y(t)‖≤r̄(t)

exp
[
kδ‖z‖ − ‖z‖

2

cs

]
dz ≤

≤ C̃s−d/2 exp
[
− (k − 1)µs+ k2δs+ csδ2k2/4

] ∫
Rd

exp
[
−
( ‖z‖√

cs
− kδ

√
cs

2

)2]
dz.

Now, by choosing δ small enough so that kδ < µ/8, and cδ2k2 < µ, we have, for all k ≥ 2,

−(k − 1)µs+ kδs+ csδ2k2/4 ≤ −µs/2.

Therefore, there exists m > 0 such that, for all t sufficiently large,

∫ (1−ε)t

m

∫
‖z−y(t)‖≤r̄(t)

(g(t− s, y(t)− [z])

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(s, x, z)dzds < η/10 (7.12)

uniformly in x ∈ [0, 1)d and ‖y(t)‖ ≤ r(t). From (3.6), we can show that∫ ∞
m

∫
[0,1)d

e−kµsα(z)fi(z)fk−i(z)%(s, x, z)dzds < η (7.13)
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uniformly in x ∈ [0, 1)d. Now it remains to show that, for each 0 ≤ s ≤ m,∫ m

0

∫
‖z−y(t)‖≤r̄(t)

(g(t− s, y(t)− [z])eµs

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(s, x, z)dzds

→
∫ m

0

∫
[0,1)d

α(z)fi(z)fk−i(z)%(s, x, z)dzds.

Observe that ρ1 is the fundamental solution of the operator L on Rd, while % is the
fundamental solution of the same operator on Td. Therefore, for each s ≥ 0, x ∈ [0, 1)d,
and each continuous Zd− periodic function h : Rd → R, we have the relation∫

Rd
h(z)ρ1(s, x, z)dz =

∫
[0,1)d

h(z)%(s, x, z)dz.

Also, if ‖z − y(t)‖ ≥ r̄(t), and ‖y‖ ≤ r(t) where r(t) = o(r̄(t)), we conclude that, for
sufficiently large t, ‖z−x‖ ≤ cr̄(t), for some c > 0. Therefore, for 0 ≤ s ≤ m, 1 ≤ i ≤ k−1,
for sufficiently large t, using (5.10), we obtain∫ m

0

∫
|z−x|≥cr̄(t)

α(z)fi(z)fk−i(z)ρ1(s, x, z)dzds < η. (7.14)

Thus, it remains to show that, 1 ≤ i ≤ k − 1,∫
‖z−y(t)‖≤r̄(t)

∣∣∣(g(t− s, y(t)− [z])eµs

g(t, y(t))

)k
− 1
∣∣∣α(z)fi(z)fk−i(z)ρ1(s, x, z)dz → 0

uniformly in s ∈ [0,m]. Let us first prove that there exists R > 0 such that, for 0 ≤ s ≤ m,
1 ≤ i ≤ k − 1,∫

‖z−y(t)‖≤r̄(t)
‖z‖≥R

∣∣∣(g(t− s, y(t)− [z])eµs

g(t, y(t))

)k
− 1
∣∣∣α(z)fi(z)fk−i(z)ρ1(s, x, z)dz < η. (7.15)

As in (7.11), and using (5.10), given δ > 0 small, for all sufficiently large t, and for
0 ≤ s ≤ m, we get,∫

‖z−y(t)‖≤r̄(t)
‖z‖≥R

(g(t− s, y(t)− [z])eµs

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(s, x, z)dz ≤

≤ C̃s−d/2 exp
[
µs+ 2kδs+ csδ2k2/4

] ∫
‖z‖≥R

exp
[
−
( ‖z‖√

cs
− kδ

√
cs

2

)2]
dz.

By choosing R > 0 large enough, the right can be made arbitrarily small uniformly for
all 0 ≤ s ≤ m. Thus, (7.15) holds. Now it remains to show that for this positive constant
R > 0, we have

lim
t→∞

sup
{∣∣g(t− s, y(t)− [z])eµs

g(t, y(t))
− 1
∣∣∣∣∣s ∈ [0,m], ‖y(t)‖ ≤ r(t), ‖z‖ ≤ R

}
= 0. (7.16)

To see this, as before, we observe that,

g(t− s, y(t)− [z])eµs

g(t, y(t))
=
( t

t− s

)(d/2)

e

[
t

(
Φ

(
y(t)
t

)
−Φ

(
y(t)−[z]
t−s

))
+s

(
µ+Φ

(
y(t)−[z]
t−s

))]
.

Given δ > 0 small, for each sufficiently large t,

t
∣∣∣Φ(y(t)

t

)
− Φ

(y(t)− [z]

t− s

)∣∣∣ < δ/2, and s
∣∣∣µ+ Φ

(y(t)− [z]

t− s

)∣∣∣ < δ/2,
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for all ‖z‖ ≤ R, ‖y(t)‖ ≤ r(t) ‖y(t)− z‖ ≤ r̄(t) and 0 ≤ s ≤ m. Therefore, we can choose
δ > 0 small enough, such that, for all sufficiently large t,∫

‖z−y(t)‖≤r̄(t)
‖z‖≤R

∣∣∣(g(t− s, y(t)− [z])eµs

g(t, y(t))

)k
− 1
∣∣∣α(z)fi(z)fk−i(z)ρ1(s, x, z)dz < η. (7.17)

Since η > 0 was arbitrary, (7.12), (7.13), (7.14), (7.15) and (7.17) complete the proof of
(i) for k.

We now prove (ii) for k. For fixed r(t) and r̄(t) as in (ii), choose p(t) such that

r(t) � p(t) � r̄(t). Again, divide the integral in the definition of mȳ(t)
k (t, x) into the

following three integrals:

Āk(t, x, ȳ(t)) :=

∫ εt

0

∫
Rd
α(z)

k−1∑
i=1

βkim
ȳ(t)
i (s, z)m

ȳ(t)
k−i(s, z)ρ1(t− s, x, z)dzds,

B̄k(t, x, ȳ(t)) :=

∫ t

εt

∫
|z−ȳ(t)|≥p(t)

α(z)

k−1∑
i=1

βkim
ȳ(t)
i (s, z)m

ȳ(t)
k−i(s, z)ρ1(t− s, x, z)dzds,

C̄k(t, x, ȳ(t)) :=

∫ t

εt

∫
|z−ȳ(t)|≤p(t)

α(z)

k−1∑
i=1

βkim
ȳ(t)
i (s, z)m

ȳ(t)
k−i(s, z)ρ1(t− s, x, z)dzds.

From the proof of (i), following the arguments used to show that

Ak(t, x, y(t))/g(t, y(t))k → 0 and Bk(t, x, y(t))/g(t, y(t))k → 0,

we can also show that

Āk(t, x, ȳ(t))/g(t, y(t))k → 0 and B̄k(t, x, ȳ(t))/g(t, y(t))k → 0,

uniformly in ‖ȳ(t)‖ ≥ r̄(t), ‖y(t)‖ ≤ r(t). Next we show that, for 1 ≤ i ≤ k − 1, the
following limit holds uniformly in ‖ȳ(t)‖ ≥ r̄(t), ‖y(t)‖ ≤ r(t)

lim
t→∞

∫ (1−ε)t

0

∫
‖z−ȳ(t)‖≤p̄(t)

(g(t− s, ȳ(t)− [z])

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(s, x, z)dzds = 0.

Following the same arguments that are detailed before (7.12), it is enough to show that,
for all 1 ≤ i ≤ k − 1,

lim
t→∞

∫ m

0

∫
‖z−ȳ(t)‖≤p̄(t)

(g(t− s, ȳ(t)− [z])

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(s, x, z)dzds = 0,

uniformly in ‖ȳ(t)‖ ≥ r̄(t), ‖y(t)‖ ≤ r(t). The idea here is that, ‖ȳ‖ as well as ‖y(t)‖ can
be bounded from above by 2‖z‖ on the domain of integration. Therefore, repeating the
arguments from (7.11), using Taylor’s formula, given δ > 0 small. since ‖z − ȳ(t)‖ ≤
p(t) = o(t), ‖y(t)‖ ≤ r(t) = o(t) and ∇Φ(0) = 0, along with the estimate (5.10), there
exists C > 0 such that, for all sufficiently large t and all 1 ≤ i ≤ k − 1,∫ m

0

∫
‖z−ȳ(t)‖≤p̄(t)

(g(t− s, ȳ(t)− [z])

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(s, x, z)dzds

≤ C
∫ m

0

e−(k−1)µs+2δs 1

sd/2

∫
‖z−ȳ(t)‖≤p̄(t)

eδ‖z‖−
‖z−x‖2
cs dzds.

Since ‖ȳ(t)‖ ≥ r̄(t) and ‖z − ȳ(t)‖ ≤ p̄(t) = o(r̄(t)), we know, for sufficiently large t,
‖z − x‖ ≥ r̄(t)/2. Thus, there exists a > 0 such that, for sufficiently large t,

δ‖z‖ − ‖z − x‖
2

cs
≤ δ‖x‖+

(
δ‖z − x‖ − ‖z − x‖

2

cs

)
≤ δ‖x‖ − ‖z − x‖

2

as
.
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Therefore, there exists a constant C̃ > 0 such that, for all 1 ≤ i ≤ k − 1,

lim
t→∞

∫ m

0

∫
‖z−ȳ(t)‖≤p(t)

(g(t− s, ȳ(t)− [z])

g(t, y(t))

)k
α(z)fi(z)fk−i(z)ρ1(s, x, z)dzds ≤

≤ C̃ lim
t→∞

∫ m

0

e−(k−1)µs+δs
( 1

sd/2

∫
‖z−x‖≥r̄(t)

e−
‖z−x‖2
as dz

)
ds = 0,

if δ is sufficiently small. This concludes the proof of (ii) for k.
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