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How long is the convex minorant of a one-dimensional
random walk?
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Abstract

We prove distributional limit theorems for the length of the largest convex minorant of
a one-dimensional random walk with independent identically distributed increments.
Depending on the increment law, there are several regimes with different limit distri-
butions for this length. Among other tools, a representation of the convex minorant of
a random walk in terms of uniform random permutations is utilized.

Keywords: convex minorant; random permutation; random walk.
MSC2020 subject classifications: Primary 60F05; 60G55, Secondary 60J10.
Submitted to EJP on September 26, 2019, final version accepted on July 23, 2020.
Supersedes arXiv:1909.12322v1.

1 Introduction and main results

Given a sequence (ξk)k∈N of independent and identically distributed (i.i.d.) real-
valued random variables with a generic copy ξ, consider the associated random walk
(Sn)n∈N0 , N0 := N ∪ {0}, defined by

S0 := 0 and Sn := ξ1 + ξ2 + · · ·+ ξn for n ∈ N,

and the random piecewise linear function t 7→ S(t), t ≥ 0, obtained by linear interpolation
between the values S(n) := Sn for n ∈ N0. For any fixed T > 0, let t 7→ S^T (t) and
t 7→ S_T (t) be, respectively, the convex minorant and the concave majorant of the
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How long is the convex minorant of a one-dimensional random walk?

function t 7→ S(t) on the interval [0, T ]. Let us recall that the convex minorant (concave
majorant) of a function f on an interval [a, b] is the largest convex (least concave) function
f

^

(f
_

) such that f
^

(x) ≤ f(x) (f(x) ≤ f_

(x)) for all x ∈ [a, b]. Clearly, both t 7→ S^T (t)

and t 7→ S_T (t) are piecewise linear continuous functions and have therefore well-defined
finite lengths, here denoted by L^T and L_T , respectively.

In this paper, we provide distributional limit theorems for L^n and L_n as n→∞ in
the following three regimes:

(A) Eξ2 <∞ and Eξ = 0;

(B) the law of ξ lies in the domain of attraction of an α-stable law with α ∈ (1, 2) and
Eξ = 0;

(C) the law of ξ lies in the domain of attraction of an α-stable law with α ∈ (0, 1).

The case Eξ 6= 0 in parts (A) and (B) turns out to be less intriguing and will be discussed
in Section 4.

Let us point out at the outset that it suffices to consider the length of the convex
minorant L^n because it has the same law as L_n , so

L^n
d
= L_n for all n ∈ N. (1.1)

Although nonintuitive, this follows fairly easily from the observation that the concave
majorant of (S0, . . . , Sn) for any n coincides with the negative of the convex minorant of
the reflected vector (−S0, . . . ,−Sn) in combination with a distributional representation
of L^n , stated as (2.2) and owing to Abramson et al. [1, 2], which only involves the
squares of the Sk.

Before putting our work into some context by pointing out connections with earlier
work on convex minorants and the convex hulls of random walks, we present our main
results, stated as Theorems 1.1, 1.2 and 1.3.

It is well-known that in each of the cases (A), (B) and (C), there exists a sequence
(an)n∈N of positive constants such that, with Sα = (Sα(t))t∈[0,1] denoting an α-stable Lévy
process, (

S(nt)

an

)
t∈[0,1]

n→∞
===⇒ (Sα(t))t∈[0,1] (1.2)

in the Skorokhod space D[0, 1] endowed with the standard J1-topology. Note that S2 is
just a centered Brownian motion. Throughout the paper, we always use an and Sα for the
normalization and the α-stable Lévy process such that (1.2) holds. Also, we let N (0, s2)

denote the normal distribution with mean zero and positive variance s2. The notation '
stands for asymptotic equivalence, that is, f(x) ' g(x), as x → x0, holds if and only if
limx→x0 f(x)/g(x) = 1.

In order to state our result for case (A), put

σ2
n := Var

(
ξ1{|ξ|≤√n}

)
, n ∈ N, (1.3)

and log+ x := max(log x, 0) for x > 0.

Theorem 1.1. Suppose that Eξ = 0 and Eξ2 =: σ2 = limn→∞ σ2
n <∞. Then

1√
log n

L^n − n− n∑
j=1

σ2
j

2j

 d−→
n→∞

N
(

0,
3σ4

4

)
, (1.4)

which may be simplified to
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How long is the convex minorant of a one-dimensional random walk?

1√
log n

(
L^n − n−

σ2

2
log n

)
d−→

n→∞
N
(

0,
3σ4

4

)
(1.5)

under the additional assumption Eξ2 log+ |ξ| <∞.

In view of the previous result, one could expect that in case (B) a suitable normaliza-
tion of L^n converges in law to some stable law. It may therefore be surprising that the
true answer, stated in the next theorem, looks more complicated.

Theorem 1.2. Suppose that the following assumptions hold:

(B1) The function t 7→ P{|ξ| > t} is regularly varying at infinity with index α ∈ (1, 2)

and Eξ = 0.

(B2) For p, q ∈ [0, 1] such that p+ q = 1, we have

lim
x→+∞

P{ξ > x}
P{|ξ| > x}

= p and lim
x→+∞

P{ξ < −x}
P{|ξ| > x}

= q.

Then
n

a2n
(L^n − n)

d−→
n→∞

1

2

∞∑
k=1

(S(k)α (Zk))2

Zk
,

where (Z1, Z2, . . .) is a random sequence that has a Poisson–Dirichlet distribution with

parameter θ = 1 and (S(k)α (t))t∈[0,1], k = 1, 2, . . . , are independent copies of the α-stable
process (Sα(t))t∈[0,1] appearing in (1.2).

The proofs of both theorems rely on a known representation of the convex minorant
in terms of uniform random permutations that will be described in Subsection 2.1,
followed by some explanations of the main arguments in Subsection 2.2. The main
difference between the cases (A) and (B) is that, roughly speaking, in case (A) the main
contributions to the fluctuations of L^n are due to a large number of “small” segments of
the convex minorant, whereas in case (B) they are rather due to few “large” segments.

Our third result deals with the case when ξ lies in the domain of attraction of a stable
law with index α ∈ (0, 1). This is the simplest case because rather than making use of
the connection with random permutations, a simple comparison argument applies; see
Subsection 3.4 below.

Theorem 1.3. Suppose that the following assumptions hold:

(C1) The function t 7→ P{|ξ| > t} is regularly varying at infinity with index α ∈ (0, 1).

(C2) For some p, q ∈ [0, 1] with p+ q = 1,

lim
x→+∞

P{ξ > x}
P{|ξ| > x}

= p and lim
x→+∞

P{ξ < −x}
P{|ξ| > x}

= q.

Then (
L^n
an

,
L_n
an

)
d−→

n→∞

(
Sα(1)− 2 inf

t∈[0,1]
Sα(t), 2 sup

t∈[0,1]
Sα(t)− Sα(1)

)
,

where (an)n∈N and (Sα(t))t∈[0,1] are as in (1.2).

Remark 1.4. There is an interesting connection of our results, notably Theorem 1.1,
with the work by Wade and coauthors [17, 22, 23] on the convex hulls of planar random
walks. Assuming Eξ = 0, one can regard the bivariate sequence {(n, Sn)}n∈N0 as a
degenerate walk in the plane whose increments are supported on the line orthogonal
to the mean vector (1, 0) and thus to the x-axis. Except for this degenerate case, it was
shown by Wade and Xu [23, Thms. 1.1 and 1.2] that the perimeter of the convex hull of
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the first n steps of any square-integrable planar random walk satisfies a central limit
theorem and has linearly growing variance as n→∞. But in the degenerate case, their
approach only provides that this growth is sublinear. Note that Theorem 1.1 provides
no information on the asymptotic behavior of the moments of L^n , as it does not claim
any type of uniform integrability. The moment asymptotics are specified in Theorem 1.5
below. Remarkably, the variance of L^n grows logarithmically if ξ has a finite third
moment but it may grow polynomially when E|ξ|3 =∞, see (1.8) and (1.9).

Note further that the perimeter Ln of the convex hull of {(j, Sj) : j = 0, . . . , n}
equals L^n + L_n . Under the assumptions of our Theorem 1.3 (Case (C)), we therefore
immediately infer a distributional limit result for Ln, namely

Ln
2an

d−→
n→∞

sup
t∈[0,1]

Sα(t)− inf
t∈[0,1]

Sα(t).

On the other hand and despite relation (1.1), we do not know in the other cases whether
joint convergence of (L^n , L

_
n ) holds which would give a limit theorem for the perimeter

Ln in all cases. The connection with random permutations seems to be insufficient for
this purpose and we leave this as an open problem.

Theorem 1.5. Suppose that Eξ = 0 and σ2 = Eξ2 ∈ (0,∞). Then

EL^n − n =
σ2

2
log n+ o(log n) as n→∞, (1.6)

where the term o(log n) can be replaced by O(1) if and only if Eξ2 log+ |ξ| <∞.
Furthermore, if E|ξ|p <∞ for some p ∈ [2, 3), then

VarL^n = o(n3−p) as n→∞ (1.7)

and also
VarL^n ≥ 0.02n3P(|ξ| ≥ 2n) +O(1) as n→∞. (1.8)

Finally, if E|ξ|3 <∞, then

VarL^n ' 3σ4

4
log n as n→∞. (1.9)

Corollary 1.6. If Eξ = 0 and E|ξ|p < ∞, then VarLn = o(n3−p) for p ∈ [2, 3) and
VarLn = O(log n) for p ≥ 3, as n→∞.

The asymptotics of EL^n in (1.6) have been known before and follow, for example,

from Theorem 1.8 in [17] and the fact that L^n
d
= L_n . The main results here are about

the asymptotic behavior of VarL^n and the corollary on the behavior of VarLn. A recent
weaker result, Theorem 6.2.6 in [16], asserts that VarLn grows sub-polynomially if ξ is
centered and bounded.

In view of our discussion about the joint law of (L^n , L
_
n ) in Remark 1.4, it is not clear

if, under the assumption Eξ2 <∞, (1.9) could lead to the stronger result VarLn ' c log n

for some constant c > 0 as suggested by Conjecture 1.13 in [17]. However, by (1.8),
VarL^n has non-logarithmic behavior when E|ξ|3 =∞, and the same is very plausible for
VarLn.

Remark 1.7. In view of the functional convergence (1.2), it is natural to ask whether
the above theorems can be obtained by applying the continuous mapping theorem to the
functional F^ : D[0, 1]→ (0,∞) which assigns to each function f in D[0, 1] the length of
its convex minorant. An approach of this kind has been applied in [15, 17, 22] to various
functionals of convex hulls of multidimensional random walks. As we are interested in
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the graph of a one-dimensional random walk, this functional limit approach cannot be
used here because time and space are scaled by different sequences in (1.2). In fact,
in the cases (A) and (B), the scaling in time (which is n) is stronger than the scaling in
space (which is an and thus regularly varying with index 1/α, with α = 2 in case (A)),
whereas in case (C) the scaling in space is the stronger one.

There is just one “critical” case where the two scalings coincide and the functional
limit approach does work. Assume that the law of ξ is such that(

S(nt)

an

)
t∈[0,1]

n→∞
===⇒ (S1(t))t∈[0,1] (1.10)

in the Skorokhod space D[0, 1] with the standard J1-topology, where an/n→ c ∈ (0,∞)

and (S1(t))t∈[0,1] is the standard symmetric Cauchy process. Since the functional F^

is continuous on a set of measure 1 with respect to the law of the Cauchy process, the
continuous mapping theorem implies that

L^n
n

d−→
n→∞

L^∞(c),

where L^∞(c) is the length of the convex minorant of the Cauchy process (cS1(t))t∈[0,1].
Note that the above argument does not completely cover the domain of attraction of
the symmetric Cauchy distribution. Even if we assume that there is no centering, the
sequence an in (1.10) is in general of the form an = n`(n) with some slowly varying
function `.

2 Proofs explained

2.1 Connection with uniform random permutations

Our approach relies crucially on the following representation of the convex minorant
of a random walk, observed already in 1950th by Sparre Andersen [20]. The version
presented below is borrowed from [2, Thms. 1 and 2], see also [1, Thm. 1.1], and valid
under the assumption that the law of the increment ξ is continuous.

Set [n] := {1, 2, . . . , n} and let Πn be a permutation of [n] picked uniformly at random
from the symmetric group Sn, that is

P{Πn = π} =
1

n!
, π ∈ Sn.

Denote by Zn,1, Zn,2, . . . , Zn,Kn
the nonincreasingly ranked cycle lengths of Πn, with Kn

being the total number of cycles. The convex minorant t 7→ S^n (t) being a piecewise
linear function, let Fn denote the number of intervals where it is linear. Denote by
Cn,1, . . . , Cn,Fn

the nonincreasingly ordered lengths of these intervals (on the horizontal
axis). Then the basic result we shall rely on states that

(Fn, Cn,1, . . . , Cn,Fn
, 0, 0, . . .)

d
= (Kn, Zn,1, Zn,2, . . . , Zn,Kn

, 0, 0, . . .).

Furthermore, given (Fn, Cn,1, . . . , Cn,Fn), the increments of the convex minorant over
the linearity intervals are conditionally independent and the conditional law of any such
increment over an interval of length ` equals the law of S`. In what follows, we formally
put Zn,k := 0 for k > Kn.

For j ∈ [n], let Kn,j be the number of cycles of length j in Πn, that is

Kn,j := #{k : Zn,k = j}, j = 1, . . . , n.
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Note that
n∑
k=1

Zn,k = n Kn =

n∑
j=1

Kn,j , and
n∑
j=1

jKn,j = n.

From the above observations, we immediately derive two equivalent distributional
representations for the length of the convex minorant, namely

L^n − n
d
=

n∑
k=1

(√
Z2
n,k + S2

k,Zn,k
− Zn,k

)
, (2.1)

and

L^n − n
d
=

n∑
j=1

Kn,j∑
i=1

(√
j2 + S2

i,j − j
)
, (2.2)

where the Si,j for i ∈ N and j ∈ N0 are independent random variables that are also

independent of (Zn,k)n,k∈N and satisfy Si,j
d
= Sj for all i and j. Note that the summand

−n on the left-hand side (matched by the summands −Zn,k and −j, respectively, on the
right-hand sides) corresponds to the length of the horizontal interval [0, n] and should be
viewed as a very rough first order approximation to the total length L^n in the cases (A)
and (B).

The following smoothing argument shows that (2.1) and (2.2) do not require that the
random walk has continuous increment law. In other words:

The representations (2.1) and (2.2) remain valid without the continuity assumption.

Fixing any n ∈ N, consider the random walk Sk;ε := ξε,1 + · · ·+ ξε,1 for 1 ≤ k ≤ n and
any ε > 0, where ξε,k := ξk+εNk and (Nk)k∈N are i.i.d. standard normal random variables
independent of (ξk)k∈N. Let (Sε(t))t∈[0,n] be its linear interpolation, defined the same
way as S(t) above. The distribution of ξε,1 is continuous, hence the representations (2.1)
and (2.2) hold for L^ε,n, the length of the convex minorant of (Sε(t))t∈[0,n]. As ε ↓ 0, the
process (Sε(t))t∈[0,n] converges to (S(t))t∈[0,n] weakly in the space C[0, n], and since the
functional assigning to each continuous function the length of its convex minorant is
continuous on C[0, n] (by the Cauchy–Crofton formula), the continuous mapping theorem
implies that L^n;ε converges in distribution to L^n , as ε ↓ 0. Finally, the claim follows
because the right-hand sides of (2.1) and (2.2) for (Sε(t))t∈[0,n] converge, as ε ↓ 0, to the
corresponding expressions for (S(t))t∈[0,n].

2.2 Explanation of the proofs in the cases (A) and (B)

The structure of uniform random permutations is well understood. In particular, see
Theorem 1.3. in [3], it is known that

(Kn,1,Kn,2, . . . ,Kn,n, 0, 0, . . .)
d−→

n→∞
(P1, P2, P3, . . .), (2.3)

where the Pj are mutually independent and the law of Pj is Poisson with mean 1/j.
Moreover, the convergence is fast: there exists a coupling (called the Feller coupling)
such that

E|Kn,j − Pj | ≤
2

n+ 1
, j = 1, . . . , n, (2.4)

and thus

E

n∑
j=1

|Kn,j − Pj | < 2, (2.5)
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see [3, Remark on p. 18 and Eq. (1.26)]. This coupling will be crucial for the proof in
case (A). Put

Yj :=

Pj∑
i=1

(√
j2 + S2

i,j − j
)

for j ∈ N. Formula (2.5) in conjunction with representation (2.2) strongly suggests that
the asymptotic behavior of L^n − n should be well approximated by that of the sum

Vn :=

n∑
j=1

Yj ,

which is simply a partial sum of independent (but not identically distributed) random
variables. The corresponding limit laws are usually called distributions of class L, but in
our case (A) the limit turns out to be normal.

Below we will prove Theorem 1.1 by showing that the distributions of normalized
random variables L^n −n and Vn are asymptotically close, and then checking the classical
conditions for convergence in distribution of the Vn after suitable normalization, which
are the row sums of triangular arrays whose rows consist of independent random
variables.

An interesting observation is that the above argument, based on replacing Kn,j by Pj
in representation (2.2), fails to work in the cases (B) and (C). In order to heuristically
explain our approach in case (B), we recall another classical fact from the theory of
random permutations, namely (see Vershik and Schmidt [21] or Kingman [14])(

Zn,1
n

,
Zn,2
n

, . . .

)
d−→

n→∞
(Z1, Z2, . . .) , (2.6)

where the random sequence (Z1, Z2, . . .) has a Poisson–Dirichlet distribution with param-
eter θ = 1. Furthermore, there exists a coupling such that

E

( ∞∑
k=1

∣∣∣∣Zn,kn − Zk
∣∣∣∣
)
' log n

4n
as n→∞, (2.7)

see [4, Theorem 8.10]. Put bn := a2n/n and note that regular variation of (an)n∈N with
index 1

α implies regular variation of the sequence (bn)n∈N with index 2
α − 1 > 0. In

particular, bn → ∞ if α < 2. Recalling relation (2.1), we can argue heuristically as
follows:

L^n − n
bn

d
=

n

a2n

n∑
k=1

(√
Z2
n,k + S2

k,Zn,k
− Zn,k

)

=
n

a2n

n∑
k=1

Zn,k


√√√√1 +

S2
k,Zn,k

Z2
n,k

− 1


≈ n

a2n

n∑
k=1

S2
k,Zn,k

2Zn,k

≈ 1

a2n

n∑
k=1

S2
k,[nZk]

2Zk

d−→
n→∞

1

2

∞∑
k=1

(S(k)α (Zk))2

Zk
,

where the first approximation stems from the one-term Taylor expansion, the second is
a consequence of (2.7) and the asserted convergence follows from (1.2), the S(k)α being
independent copies of Sα which are also independent of (Z1, Z2, . . .). Proposition 3.2
below will show that the series in the last line is a.s. finite. Moreover, the above heuristic
turns out to be correct and this will provide the proof of Theorem 1.2.
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3 Proofs

3.1 Proof of Theorem 1.1

Let L̃^n denote the random variable on the right-hand side of (2.2) increased by n so

that L̃^n
d
= L^n .

As discussed in Section 2.2, the first step of the proof is to show that

(L̃^n − n− Vn)/
√

log n
P−→

n→∞
0. (3.1)

We have √
j2 + S2

1,j − j =
S2
1,j

j +
√
j2 + S2

1,j

≤
S2
1,j

2j
, (3.2)

in particular

E
(√

j2 + S2
1,j − j

)
≤
ES2

1,j

2j
=

σ2

2
. (3.3)

Using the definition of Vn, this entails

E

∣∣∣L̃^n − n− Vn∣∣∣ ≤ n∑
j=1

E

∣∣∣∣∣∣
Kn,j∑
i=1

(√
j2 + S2

i,j − j
)
−

Pj∑
i=1

(√
j2 + S2

i,j − j
)∣∣∣∣∣∣

=

n∑
j=1

E|Kn,j − Pj |E
(√

j2 + S2
j − j

)
≤ σ2 < ∞,

where the penultimate inequality follows from (2.5) and (3.3). Now (3.1) follows from
the last line and the Markov inequality.

The second step is to simplify Vn. Put

Wn :=

n∑
j=1

(√
j2 + S2

1,j − j
)
1{Pj=1}, n ∈ N. (3.4)

Observe that
∞∑
j=1

1{Pj≥2} <∞ a.s.

by the Borel–Cantelli lemma. Then

0 ≤ Vn −Wn =

n∑
j=1

Pj∑
i=1

(√
j2 + S2

i,j − j
)
1{Pj≥2}

≤
∞∑
j=1

Pj∑
i=1

(√
j2 + S2

i,j − j
)
1{Pj≥2} < ∞ a.s.,

which implies that (Vn −Wn)n∈N is bounded in probability. Hence, by (3.1), it suffices to
prove the theorem for Wn instead of L^n − n.

The third step is to simplify Wn. Let us rewrite it as

Wn =

n∑
j=1

j

√1 +
S2
1,j

j2
− 1

1{Pj=1}

=

n∑
j=1

j

(
S2
1,j

2j2
−
S4
1,j

8j4
· θ

(
S2
1,j

j2

))
1{Pj=1}, (3.5)
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where θ : [0,∞) → [0, 1] is a continuous bounded function resulting from Lagrange’s
form of the remainder in the Taylor expansion of x 7→

√
1 + x at x = 0. We claim that

1√
log n

n∑
j=1

S4
1,j

j3
1{Pj=1}

P−→
n→∞

0, (3.6)

for which it obviously suffices to verify that

∞∑
j=1

S4
1,j

j3
1{Pj=1} < ∞ a.s. (3.7)

Put pj := P{Pj = 1} and note that

1

j
≥ pj = e−1/j

1

j
=

1

j
+O

(
1

j2

)
as j →∞. (3.8)

As Eξ = 0 and σ2 = Eξ2 <∞, it follows by [11, Thm. 10.2 on p. 46] (or [8, Thm. 4])
that

∞∑
j=1

1

j
P
{
|Sj | > aσ

√
j log log j

}
< ∞ (3.9)

for any a >
√

2. By combining this and the Borel–Cantelli lemma, only finitely many
events {|S1,j | > 2σ

√
j log log j, Pj = 1}, j ∈ N, occur with probability 1. Now the proof

of (3.7), which in turn implies (3.6), can be completed by using the inequality

∞∑
j=1

S4
1,j

j3
1{Pj=1} ≤

∞∑
j=1

S4
1,j

j3
1{|S1,j |>2σ

√
j log log j,Pj=1} +

∞∑
j=1

16σ4

j
(log log j)21{Pj=1}.

The first sum on the right-hand side is finite a.s. since it contains a.s. only finitely many
non-zero terms, and the second sum is finite a.s. because it has finite expectation.

In view of (3.5) and (3.6), it suffices to prove Theorem 1.1 with L^n − n replaced by

W ′n :=

n∑
j=1

S2
1,j

2j
1{Pj=1}.

Therefore, as the fourth step of the proof, we will show that

1√
log n

W ′n − n∑
j=1

σ2
j

2j

 d−→
n→∞

N
(

0,
3σ4

4

)
. (3.10)

Even though the variables W ′n are sums of independent random variables of a rather
simple structure, it is not easy to obtain a central limit theorem for W ′n without additional
moment assumptions. For example, when trying to verify the Lindeberg condition, the
fourth moment of S1,j appears, which is not assumed to be finite here.

We use a general result [18, Thm. 18 in Chap. IV, §4], which ensures convergence of
row sums in triangular arrays of random variables to a normal distribution. According to
the three conditions of the theorem, we need to check that

lim
n→∞

n∑
j=1

P

{
S2
1,j

2j
1{Pj=1} ≥ ε

√
log n

}
= 0 for every ε > 0, (3.11)

lim
n→∞

1

log n

n∑
j=1

Var

(
S2
1,j

2j
1{Pj=1,S2

1,j/(2j)<
√
logn}

)
=

3σ4

4
, (3.12)
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and

lim
n→∞

1√
log n

 n∑
j=1

E

(
S2
1,j

2j
1{Pj=1,S2

1,j/(2j)<
√
logn}

)
−

n∑
j=1

σ2
j

2j

 = 0. (3.13)

Our idea is to approximate S1,j/
√
j by σjN , where N is a standard normal variable

and σ2
j is given by (1.3). We claim that, for any γ ≥ 0 and ε > 0,

lim
n→∞

1

(log n)γ/2

n∑
j=1

1

j

[
E

(
|S1,j |2γ

jγ
1{S2

1,j/j<ε
√
logn}

)
− E

(
σ2γ
j |N |

2γ1{σ2
jN 2<ε

√
logn}

)]
= 0. (3.14)

To prove this, we first note that

E(Xγ1{X<a}) = −
∫
[0,a)

xγdP{X ≥ x} = −aγP{X ≥ a}+ γaγ
∫ 1

0

tγ−1P{X ≥ at} dt

(3.15)
for any non-negative random variable X and a, γ > 0. Upon applying this formula twice
with X = S2

1,j/j and X = σ2
jN 2, we obtain

1

aγ

∣∣∣∣E( |S1,j |2γ

jγ
1{S2

1,j/j<a}

)
− E

(
σ2γ
j |N |

2γ1{σ2
jN<a}

)∣∣∣∣
≤
∣∣∣∣P{S2

1,j

j
≥ a

}
− P

{
σ2
jN 2 ≥ a

}∣∣∣∣ + γ

∫ 1

0

tγ−1
∣∣∣∣P{S2

1,j

j
≥ at

}
− P

{
σ2
jN 2 ≥ at

}∣∣∣∣ dt.

Then, taking a = ε
√

log n, we see that for every j ≤ n,

1

j(log n)γ/2

[
E

(
|S1,j |2γ

jγ
1{S2

1,j/j<ε
√
logn}

)
− E

(
σ2γ
j |N |

2γ1{σ2
jN 2<ε

√
logn}

)]
≤ 4εγ · 1

j
sup
x∈R

∣∣∣∣P{S1,j√
j
< x

}
− P

{
σjN < x

}∣∣∣∣. (3.16)

Clearly, this bound is also valid for γ = 0. On the other hand, the dominated convergence
theorem ensures

lim
n→∞

E

[
1

j(log n)γ/2

(
|S1,j |2γ

jγ
1{S2

1,j/j<ε
√
logn} − σ

2γ
j |N |

2γ1{σ2
jN 2<ε

√
logn}

)]
= 0,

for every j ∈ N because the random variable in square brackets is bounded by 2εγ/j.
Since, furthermore, the sequence on the right-hand side of (3.16) is summable over j ∈ N,
see [8, p. 1480] and [18, p. 130],1 (3.14) follows by another appeal to the dominated
convergence theorem.

We can now finish the proof of (3.10). Recall that Pj is independent of S1,j . Using (3.8)
and then (3.14) with γ = 0, we have

lim
n→∞

n∑
j=1

P

{
S2
1,j

2j
1{Pj=1} ≥ ε

√
log n

}
= lim

n→∞

n∑
j=1

1

j
P

{
S2
1,j

2j
≥ ε
√

log n

}

= lim
n→∞

n∑
j=1

1

j
P
{
σ2
jN 2 ≥ 2ε

√
log n

}
.

1This result was actually proved in [10] but stated there without uniformity in x.
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The last limit is equal to zero since limj→∞ σ2
j = σ2 <∞ and in view of the following

simple Markov-type inequality

E
(
σ2γ
j N

2γ1{σ2
jN 2≥a}

)
≤ a−3σ2γ+6

j EN 2γ+6 <∞, (3.17)

which holds for all j ∈ N, γ ≥ 0, a > 0, and which we applied with γ = 0. This finishes
the proof of (3.11).

Furthermore, we have

n∑
j=1

Var

(
S2
1,j

2j
1{Pj=1,S2

1,j/(2j)<
√
logn}

)

=

n∑
j=1

pj E

(
S4
1,j

4j2
1{S2

1,j/j<2
√
logn}

)
−

n∑
j=1

(
pj E

(
S2
1,j

2j
1{S2

1,j/j<2
√
logn}

))2

.

The second sum on the right-hand side is increasing in n and bounded by
∑∞
j=1

σ4

4j2 <∞
in view of (3.8). Appealing once again to (3.8) and using (3.14) with γ = ε = 2, we obtain

lim
n→∞

1

log n

n∑
j=1

Var

(
S2
1,j

2j
1{Pj=1,S2

1,j/(2j)<
√
logn}

)

= lim
n→∞

1

log n

n∑
j=1

pj E

(
S4
1,j

4j2
1{S2

1,j/j<2
√
logn}

)

= lim
n→∞

1

log n

n∑
j=1

1

j
E

(
S4
1,j

4j2
1{S2

1,j/j<2
√
logn}

)

= lim
n→∞

1

4 log n

n∑
j=1

1

j
E
(
σ4
jN 41{σ2

jN 2<2
√
logn}

)
= lim

n→∞

1

4 log n

n∑
j=1

3σ4
j

j
=

3σ4

4

using that the family (σ4
jN 4)j∈N is uniformly integrable by σ2

j → σ2. This proves (3.12).
Finally, from (3.14) and (3.17) with γ = 1, ε = 2, and a = 2

√
log n,

lim
n→∞

1√
log n

 n∑
j=1

E

(
S2
1,j

2j
1{Pj=1,S2

1,j/(2j)<
√
logn}

)
−

n∑
j=1

σ2
j

2j


= lim

n→∞

1

2
√

log n

n∑
j=1

1

j

[
E
(
σ2
jN 21{σ2

jN 2<2
√
logn}

)
− σ2

j

]
= 0.

This proves (3.13). The proof of (3.10) is herewith complete. Thus, we established (1.4).
If Eξ2 log+ |ξ| < ∞, then σ2

j can be replaced by σ2 throughout the proof, imply-
ing (1.5). The key observation is that the modified sequence on the right-hand side of
estimate (3.16) remains summable over j ∈ N by Lemma 1 and the Theorems on p. 1480
in [8]. This finishes the proof of Theorem 1.1.

3.2 Proof of Theorem 1.5

We first give explicit formulae for EL^n and VarL^n and put for simplicity

ηj :=
√
j2 + S2

j − j, j ∈ N.
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Lemma 3.1. If Eξ = 0 and σ2 = Eξ2 <∞, then

EL^n − n =

n∑
j=1

Eηj
j

and VarL^n =

n∑
j=1

Eη2j
j

+ O(1) as n→∞.

Proof. It will be used that for any integers 1 ≤ j 6= k ≤ n,

EKn,j =
1

j
, E(Kn,j(Kn,j − 1)) =

1{2j≤n}
j2

and E(Kn,jKn,k) =
1{j+k≤n}

jk
; (3.18)

see [3, Lemma 1.1]. Thus, Kn,j and Kn,k are uncorrelated whenever j + k ≤ n.
The formula for EL^n follows immediately from representation (2.2) and (3.18). For

the variance of L^n , we obtain with the help of the formula for the variance of a random
sum of i.i.d. random variables:

Var

(
Kn,j∑
i=1

(√
j2 + S2

i,j − j
))

= EKn,j Var ηj + (Eηj)
2 VarKn,j

=
Eη2j
j
− (Eηj)

2

j
+ (Eηj)

2

(
j − 1{2j>n}

j2

)
=
Eη2j
j
−

(Eηj)
21{2j>n}
j2

.

Similarly, by conditioning on Kn,j and Kn,k and setting γ(n)jk := Cov(Kn,j ,Kn,k),

Cov

(
Kn,j∑
i=1

(√
j2 + S2

i,j − j
)
,

Kn,k∑
i=1

(√
k2 + S2

i,k − k
))

= γ
(n)
jk Eηj Eηk.

Combining these formulas with (2.2) and (3.18), we obtain

Var(L^n ) =

n∑
j=1

Var

(Kn,j∑
i=1

(√
j2 + S2

i,j − j
))

+
∑

1≤j 6=k≤n

γ
(n)
jk Eηj Eηk

=

n∑
j=1

Eη2j
j
−

∑
1≤j≤n:
2j>n

(Eηj)
2

j2
−

∑
1≤j 6=k≤n:
j+k>n

Eηj Eηk
jk

=

n∑
j=1

Eη2j
j
−

∑
1≤j,k≤n:
j+k>n

Eηj Eηk
jk

.

The last term on the right-hand side can be estimated by using inequality (3.3), viz.

0 ≤
∑

1≤j,k≤n:
j+k>n

Eηj Eηk
jk

≤ σ4

4

∑
1≤j,k≤n:
j+k>n

1

jk
=

σ4

4

n∑
j=1

1

j

n∑
k=n−j+1

1

k

=
σ4

4

n−1∑
j=1

1

j

n∑
k=n−j+1

1

k
+ O

(
log n

n

)

≤ σ4

4

n−1∑
j=1

1

j

n∑
k=n−j+1

∫ k

k−1

dx

x
+ O

(
log n

n

)

=
σ4

4

n−1∑
j=1

log n− log(n− j)
j

+ O

(
log n

n

)

= −σ
4

4n

n−1∑
j=1

(
j

n

)−1
log

(
1− j

n

)
+ O

(
log n

n

)

= −σ
4

4

∫ 1

0

x−1 log(1− x)dx + O

(
log n

n

)
,
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as n→∞, where the last passage follows from formula (21) in [13] with b = k = 1. This
proves the formula for VarL^n because the last integral is finite.

We are ready to prove our claims on the asymptotics of the moments of L^n .

Proof of Theorem 1.5. By the equality in (3.2), the law of large numbers and the central
limit theorem,

ηn
d−→

n→∞

1

2
N 2(0, σ2). (3.19)

Under the assumptions Eξ2 < ∞ and Eξ = 0, the family (S2
n/n)n∈N is uniformly inte-

grable [11, Thm. 1.6.3] whence, by the inequality in (3.2), the same holds for (ηn)n∈N. In
conjunction with (3.19), this yields

lim
n→∞

Eηn =
1

2
EN 2(0, σ2) =

σ2

2
. (3.20)

Combined with Lemma 3.1, this gives the asympotics of EL^n − n stated in (1.6).
For the proof of the remaining claims, let us introduce the function

g(x) := x2/2−
√

1 + x2 + 1, x ≥ 0,

which satisfies g(x) ' x4/8 as x→ 0, and is non-negative and strictly increasing for x > 0

since g′(x) > 0. We have

σ2

2
− Eηj = E

(
S2
j

2j
−
(√

j2 + S2
j − j

))
= jEg

(
|Sj |
j

)
, (3.21)

hence by Lemma 3.1,

EL^n − n =

n∑
j=1

Eηj
j

=

n∑
j=1

σ2

2j
−

n∑
j=1

Eg

(
|Sj |
j

)
.

To study convergence of the last sum, we employ [19, Thm. 1] which reads as follows:
there exist positive constants C1, C2 such that for every x > 0,

C1x
−2E(ξ21{|ξ|≥x}) ≤ F (x) :=

∞∑
j=1

P{|Sj | ≥ xj} ≤ C2x
−2E(ξ21{|ξ|≥x}). (3.22)

By Fubini’s theorem, we have

∞∑
j=1

Eg(|Sj |/j) =

∫ ∞
0

g′(x)F (x) dx.

Therefore, by (3.22) the right-hand side is finite if and only if the integrals∫ ∞
0

g′(x)

x2
E(ξ21{|ξ|≥x}) dx =

∫ ∞
0

t2
(∫ t

0

g′(x)

x2
dx

)
P{|ξ| ∈ dt} (3.23)

are finite. The function g′(x)/x2 is integrable at x = 0 since g′(x) ' x3/2 as x → 0.
On the other hand, since g′(x) = x − 1 + o(1) as x → ∞, we have

∫ t
0
(g′(x)/x2)dx =

log t + O(1) as t → ∞. Hence, by Eξ2 < ∞, the right-hand side of (3.23) is finite
if and only if Eξ2 log+ |ξ| < ∞, which is thus equivalent to the asymptotic relation
EL^n = n+ 1

2σ
2 log n+O(1) as n→∞.
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Let us now prove the claims about VarL^n . Note that, by (3.21),

Eη2j = E
(√

j2 + S2
j − j

)2
= E

(
S2
j − 2j

(√
j2 + S2

j − j
))

= 2j2Eg

(
|Sj |
j

)
.

Thus, by Lemma 3.1,

Var(L^n ) =

n∑
j=1

Eη2j
j

+ O(1) = 2

n∑
j=1

jEg

(
|Sj |
j

)
+O(1) as n→∞. (3.24)

In particular, by (3.20) and (3.21), this implies Var(L^n ) = o(n), that is, (1.7) holds for
p = 2.

From now on we assume E|ξ|p <∞ for some p ∈ (2, 3]. To prove the remaining claims
we first need to estimate truncated moments of Sj . Let us show that for every ε > 0,

E(S2
j 1{|Sj |≥εj}) = o(j3−p) as j →∞, (3.25)

and

j−2E(S4
j 1{|Sj |<εj}) =

{
o(j3−p), p ∈ (2, 3)

3σ4 + εc(j, ε), p = 3
as j →∞, (3.26)

where lim supj→∞ |c(j, ε)| is uniformly bounded in ε > 0.
To this end, we employ [18, Claim 22 in Chap. V, §5]: for every p ∈ (2, 3), j ∈ N, and

x ∈ R, ∣∣∣∣P{ Sj
σ
√
j
< x

}
− P {N < x}

∣∣∣∣ ≤ ψ(
√
j(1 + |x|))

jp/2−1(1 + |x|)p
, (3.27)

where ψ is a bounded decreasing function on [1,∞) such that ψ(x)→ 0 as x→∞. This
inequality is also valid for p = 3 with a constant function ψ, see [18, Thm. 14 in Chap. V].

Notice that for any non-negative random variable X such that EX2 < ∞ and any
a > 0,

E(X21{X≥a}) = −
∫
[a,∞)

x2 dP{X ≥ x} = a2P{X ≥ a}+ 2

∫ ∞
a

xP{X ≥ x} dx.

Using this formula twice with X =
|Sj |
σ
√
j

and X = |N |, we obtain from (3.27)

∣∣∣∣E( S2
j

σ2j
1{|Sj |≥σa

√
j}

)
− E

(
N 21{|N|≥a}

)∣∣∣∣
≤ 2a2ψ(

√
j)

jp/2−1ap
+ 2

∫ ∞
a

2xψ(
√
j)

jp/2−1xp
dx =

2pa2−pψ(
√
j)

(p− 2)jp/2−1
. (3.28)

This implies (3.25) for p ∈ (2, 3) upon taking a = ε
√
j/σ and applying (3.17) with

γ = 1 and σj replaced by σ. However, for p = 3, this gives only E(S2
j 1{|Sj |≥εj}) = O(1).

In order to replace O(1) by o(1), pick R > ε and write

E(S2
j 1{|Sj |≥εj}) ≤ R2j2P{|Sj | ≥ εj}+ E(S2

j 1{|Sj |≥Rj}).

The first summand is o(1) by a standard estimate of the rate of convergence in the law of
large numbers (see [18, Theorem 28 in Chap. IX]). The second summand is bounded by
6σψ(1)R−1 in view of (3.28) and (3.17) applied with a = R

√
j/σ. This implies (3.25) for

p = 3 since R can be arbitrarily large.
Similarly, from (3.15) and (3.27) it follows that∣∣∣∣E( S4

j

σ4j2
1{|Sj |<σa

√
j}

)
− E

(
N 41{|N|<a}

)∣∣∣∣ ≤ 2(8− p)a4−pψ(
√
j)

(4− p)jp/2−1
.
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This implies (3.26) for p ∈ (2, 3] upon taking a = ε
√
j/σ, where for p = 3, we put

c(j, ε) := ε−1
[
E

(
S4
j

j2
1{|Sj |<εj}

)
− 3σ4

]
,

which satisfies |c(j, ε)| ≤ 10σ3ψ(1) + σ4ε−1E
(
N 41{|N|≥ε√j/σ}

)
, hence lim supj→∞ |c(j, ε)|

is uniformly bounded in ε > 0, as required.
We can now prove an upper bound for Var(L^n ). Using that g(x) ≤ min(x2/2, x4/8),

we have, for every ε > 0,

jEg

(
|Sj |
j

)
≤ E

(
S4
j

8j3
1{|Sj |<εj}

)
+ E

(
S2
j

2j
1{|Sj |≥εj}

)
.

Thus, (3.25) and (3.26) yield

jEg

(
|Sj |
j

)
≤

{
o(j2−p), p ∈ (2, 3)
1
8j

(
3σ4 + εc(j, ε) + o(1)

)
, p = 3

as j →∞.

Upon summation over j and using (3.24) we derive Var(L^n ) = o(n3−p) for p ∈ (2, 3),
thereby completing the proof of (1.7). Similarly, for p = 3, summing over j, dividing by
log n, sending n→∞ and then ε→ 0, we obtain lim supn→∞

Var(L^
n )

logn ≤ 3σ4

4 .
To establish the matching lower bound for p = 3 we argue as follows. Since g(x) '

x4/8, as x→ 0, for every fixed ε1 > 0 we can find δ1 = δ1(ε1) > 0 such that

1− ε1 ≤
8g(x)

x4
for 0 < x ≤ δ1.

Therefore,

lim inf
j→∞

E

(
j2g

(
|Sj |
j

))
≥ lim inf

j→∞
E

(
j2g

(
|Sj |
j

)
1{|Sj |≤δ1j}

)
≥ (1− ε1) lim inf

j→∞
E

(
S4
j

8j2
1{|Sj |≤δ1j}

)
.

By (3.26) and upon sending ε1 to zero, this yields

lim inf
j→∞

E

(
j2g

(
|Sj |
j

))
≥ 3σ4

8
.

Thus arriving at lim infn→∞
Var(L^

n )
logn ≥ 3

4σ
4, we have completed the proof of (1.9).

It remains to prove the lower bound (1.8) for VarL^n . We note that for any j ∈ N (see
[7, Lemma 2.1] or [9, p. 290]),

P{|Sj | ≥ j} ≥ jρjP{|ξ| ≥ 2j},

where ρj := P{|Sj−1| < j}− jP{|ξ| ≥ 2j} and S0 := 0. As g is an increasing function, this
yields

Eg(|Sj |/j) ≥ g(1)P{|Sj | ≥ j} ≥ g(1)jρjP{|ξ| ≥ 2j}.

Hence, we obtain by (3.24)

Var(L^n ) = 2

n∑
j=1

jEg(|Sj |/j) +O(1) ≥ 2g(1)

n∑
j=1

j2ρjP{|ξ| ≥ 2j}+O(1)

as n → ∞. This gives the desired bound Var(L^n ) ≥ 0.02n3P{|ξ| ≥ 2n} + O(1) since
2g(1)/3 > 0.02 and limj→∞ pj = 1. The last statement holds by the assumptions Eξ2 <∞
and Eξ = 0. This finishes the proof of Theorem 1.5.
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3.3 Proof of Theorem 1.2

We start by showing that the random series representing the limit random variable in
Theorem 1.2 is finite a.s.

Proposition 3.2. Let (Z1, Z2, . . .) be a random sequence having a Poisson–Dirichlet

distribution with parameter θ = 1. Further, let S(k)α = (S(k)α (t))t∈[0,1], k = 1, 2, . . . , be
independent copies of the strictly stable process Sα with index α ∈ (1, 2). Then,

∞∑
k=1

(S(k)α (Zk))2

Zk
<∞ a.s.

Proof. Fix an arbitrary δ ∈ (0, α/2). Using that x 7→ xδ is subadditive and then the
self-similarity of the process Sα, we obtain

E

( ∞∑
k=1

(S(k)α (Zk))2

Zk

)δ
≤

∞∑
k=1

E

(
(S(k)α (Zk))2

Zk

)δ
= E|Sα(1)|2δ

∞∑
k=1

EZ
(2/α−1)δ
k .

Since E|Sα(1)|2δ <∞ (as 2δ < α), it remains to check that
∑∞
k=1EZ

(2/α−1)δ
k is finite. To

this end, formula (2.1) from [4] with φ(x) = x(2/α−1)δ can be used to see that

∞∑
k=1

EZ
(2/α−1)δ
k =

∫ 1

0

φ(x)

x
dx < ∞.

This completes the proof and we note that the same argument applies to any strictly
stable process of index α ∈ (0, 2).

Before passing to the proof of Theorem 1.2, we give an auxiliary lemma.

Lemma 3.3. If E|ξ| <∞, then

E

∣∣∣∣(√i2 + S2
i − i

)
−
(√

j2 + S2
j − j

)∣∣∣∣ ≤ (2 + E|ξ|) |i− j|

holds for any i, j ∈ N.

Proof. It is obviously enough to show that

E

∣∣∣∣√i2 + S2
i −

√
j2 + S2

j

∣∣∣∣ ≤ (1 + E|ξ|)|i− j|,

which follows from

E

∣∣∣∣√i2 + S2
i −

√
j2 + S2

j

∣∣∣∣ = E

∣∣∣∣∣∣ i2 + S2
i − j2 − S2

j√
i2 + S2

i +
√
j2 + S2

j

∣∣∣∣∣∣
≤ E

|i2 − j2|√
i2 + S2

i +
√
j2 + S2

j

+ E
|S2
i − S2

j |√
i2 + S2

i +
√
j2 + S2

j

≤ |i2 − j2|√
i2 +

√
j2

+ E
|S2
i − S2

j |√
S2
i +

√
S2
j

= |i− j|+ E||Si| − |Sj || ≤ |i− j|+ E|Si − Sj |
= |i− j|+ E|Si−j | ≤ (1 + E|ξ|)|i− j|

for any i, j ∈ N.
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Proof of Theorem 1.2. Fixing a coupling between (Zn,k) and (Zk) such that (2.7) holds,
we show first that

1

bn

∣∣∣∣∣
n∑
k=1

(√
Z2
n,k + S2

k,Zn,k
− Zn,k

)
−

n∑
k=1

(√
bnZkc2 + S2

k,bnZkc − bnZkc
) ∣∣∣∣∣ P−→

n→∞
0. (3.29)

Recall that bn = a2n/n with an given by (1.2). By Lemma 3.3 and use of the triangle
inequality, the expectation of the difference in (3.29) is bounded by a constant times

n

a2n

n∑
k=1

E|Zn,k − bnZkc| ≤
n2

a2n

∞∑
k=1

E

∣∣∣∣Zn,kn − Zk
∣∣∣∣ +

n

a2n
E

∞∑
k=1

{nZk},

where {x} denotes the fractional part of x ∈ R. Then use (2.7) to assess that the first
summand on the right is of the same order as a−2n n log n/4 and thus tending to zero as
n→∞ because (a2n)n∈N is regularly varying with index 2/α > 1. The second summand
tends to zero by the same reasoning and the fact that

E

∞∑
k=1

{nZk} '
1

2
log n as n→∞,

which can be justifed as follows: by formula (2.1) in [4] with φ(x) = {nx}, we have

E

∞∑
k=1

{nZk} =

∫ 1

0

{nx}dx
x

=

∫ n

0

{y}dy
y

=

n−1∑
k=0

∫ k+1

k

y − k
y

dy

= 1 +

n−1∑
k=1

(
1− k log

(
k + 1

k

))
' 1 +

1

2

n−1∑
k=1

1

k
' 1

2
log n

as n→∞. Now (3.29) follows by these estimates and Markov’s inequality.
In view of (3.29) and representation (2.1), it remains to prove∑n

k=1

(√
bnZkc2 + S2

k,bnZkc − bnZkc
)

bn

d−→
n→∞

∞∑
k=1

(S(k)α (Zk))2

2Zk
. (3.30)

To this end, we use Theorem 3.2 in [5] for which the following two assertions must be
verified: First, for any fixed m ∈ N,∑m

k=1

(√
bnZkc2 + S2

k,bnZkc − bnZkc
)

bn

d−→
n→∞

m∑
k=1

(S(k)α (Zk))2

2Zk
, (3.31)

and, second, for any ε > 0,

lim
m→∞

lim sup
n→∞

P

{∣∣∣∣∣
n∑

k=m

(√
bnZkc2 + S2

k,bnZkc − bnZkc
)∣∣∣∣∣ > εbn

}
= 0. (3.32)

Note that (3.31) is obviously equivalent to

m∑
k=1

S2
k,bnZkc

a2n

(√
bnZkc2 + S2

k,bnZkc + bnZkc
)
/n

d−→
n→∞

m∑
k=1

(S(k)α (Zk))2

2Zk
.

But this is true by the continuous mapping theorem and the joint convergenceS2
k,bnZkc

a2n
,

√
bnZkc2 + S2

k,bnZkc + bnZkc

n


1≤k≤m

d−→
n→∞

((S(k)α (Zk))2, 2Zk)1≤k≤m,
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which in turn holds because an = o(n) as n → ∞ and (Si,j)i,j∈N and (Zk)k∈N are
independent.

For (3.32), we argue as follows. Using formula (3.2), it is enough to check that

lim
m→∞

lim sup
n→∞

P

{
n∑

k=m

S2
k,bnZkc

2bnZkc
1{nZk≥1} > εbn

}
= 0. (3.33)

Fix δ ∈ (0, α/2). Then, using the subadditivity of x 7→ xδ and Markov’s inequality, we see
that (3.33) is a consequence of

lim
m→∞

lim sup
n→∞

1

bδn

n∑
k=m

E

(
S2
k,bnZkc

2bnZkc
1{nZk≥1}

)δ
= 0. (3.34)

By Lemma 5.2.2 in [12], there exists a constant C = Cδ,α > 0 such that

E|Sl|2δ ≤ Ca2δl , l ∈ N. (3.35)

Therefore,

E

(
S2
k,bnZkc

2bnZkc
1{nZk≥1}

)δ
=

n∑
l=1

P{bnZkc = l}E
(
S2
l

2l

)δ
≤ C2−δ

n∑
l=1

P{bnZkc = l}a
2δ
l

lδ
= C2−δ EbδbnZkc1{bnZkc≥1},

and (3.34) will follow once having shown that

lim
m→∞

lim sup
n→∞

1

bδn

n∑
k=m

E
(
bδbnZkc1{bnZkc≥1}

)
= 0. (3.36)

Fix an arbitrary δ′ ∈ (0, ( 2
α − 1)δ). Since (bδn)n∈N is regularly varying with index

( 2
α − 1)δ, we can apply Potter’s bound to the slowly varying sequence (bδn/n

(2/α−1)δ)n∈N,
see [6, Thm. 1.5.6(ii)]. In combination with bnZkc ≤ n, this gives

bδbnZkc

bδn
≤ const ·

(
bnZkc
n

)(2/α−1)δ−δ′

≤ const · Z(2/α−1)δ−δ′
k .

Moreover, by formula (2.1) in [4],

∞∑
k=1

EZ
(2/α−1)δ−δ′
k =

∫ 1

0

x(2/α−1)δ−δ
′−1dx <∞. (3.37)

Hence (3.36) follows and the proof of (3.32) is complete.

3.4 Proof of Theorem 1.3

Put
τn := arg max

0≤k≤n
Sk and κn := arg min

0≤k≤n
Sk,

(where, for the sake of definiteness, the position of the first maximum or minimum is
taken) and further,

Mn = max
0≤k≤n

Sk and mn = min
0≤k≤n

Sk,

see Figure 1.
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Mn

mn

κn
τn

Sn

n

Figure 1: The proof of Theorem 1.3. The thin black piecewise linear line is a linearly
interpolated random walk (Sk)k=0,...,n, the thick red line consisting of four line segments
is its concave majorant, the thick blue line is its convex minorant.

Our reasoning is geometric and based on a simple comparison argument. First
of all note that the concave majorant consists of two piecewise linear subparts: one
connecting the origin and the point (τn,Mn), and the other connecting (τn,Mn) and
(n, Sn). Denote their lengths by L_1,n and L_2,n, respectively, thus L_n = L_1,n + L_2,n. The
triangle inequality applied to every segment of the concave majorant provides

Mn ≤ L_1,n ≤ Mn + τn ≤ Mn + n,

and also

Mn − Sn ≤ L_2,n ≤ Mn − Sn + n− τn ≤ Mn − Sn + n.

Consequently,
2Mn − Sn ≤ L_n ≤ 2Mn − Sn + 2n.

Similarly,
Sn − 2mn ≤ L^n ≤ Sn − 2mn + 2n.

To complete he proof of Theorem 1.3, it remains to note that n/an → 0 because (an)n∈N
is regularly varying with index 1/α > 1 and(

Sn
an
,
Mn

an
,
mn

an

)
d−→

n→∞

(
Sα(1), sup

t∈[0,1]
Sα(t), inf

t∈[0,1]
Sα(t)

)
as an immediate consequence of (1.2) and the continuous mapping theorem.

4 The case of nonzero mean

Throughout this section, we assume that µ := Eξ exists and is nonzero which rules
out case (C). We are left with two possibilities:

(A′) Eξ2 <∞ and µ 6= 0;

(B′) Eξ2 =∞, µ 6= 0, and the law of ξ lies in the domain of attraction of an α-stable law
with α ∈ (1, 2].

We stress that case (B′) includes α = 2, as opposed to case (B).
The essence of the next theorem is that in both cases (A′) and (B′), the distributional

behavior of L^n as n→∞ coincides with that of Sn up to a linear centering and a scaling
as in Theorem 1.7 in [17]. We will see that the same holds for Ln, the perimeter of the
convex hull of {(j, Sj) : j = 0, . . . , n}.
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Theorem 4.1. In the cases (A′) and (B′), we have

L^n −
√

1 + µ2 n

an

d−→
n→∞

µ√
1 + µ2

Sα(1), (4.1)

where an :=
√
n, σ2 := Eξ2 − µ2, and S2(1) := N (0, σ2) in case (A′), and (an)n∈N is a

sequence and Sα(1) an α-stable random variable such that (Sn − µn)/an
d→ Sα(1).

The convergence (4.1) does also hold with L_n and Ln/2 in the place of L^n .

The result for Ln in case (A′) is a particular case of Theorem 1.2 in [23] (combined
with Theorem 1.8 in [17]), which applies because (n, Sn)n∈N0

can be regarded as a
random walk in the plane. The approach of [17, 23] is different from the one employed
here: we combine the formula Ln = L_n + L^n with the limit result (4.1) (or, to be more
precise, (4.2)) for L^n and its version for L_n , both obtained from representation (2.2).
Recall that this argument does not work when µ = 0; cf. Remark 1.4.

Proof. Having (Sn − µn)/an
d→ Sα(1) in both cases (A′) and (B′) (naturally with α = 2 in

(A′)), (4.1) follows if we can show that

1

an

∣∣∣∣∣L^n −√1 + µ2n− µ√
1 + µ2

(Sn − µn)

∣∣∣∣∣ P−→
n→∞

0, (4.2)

which in case (A′) is just a particular case of Theorem 1.7 in [17].
We use an extended version of representation (2.2), viz.

(L^n − n, Sn)
d
=

(
n∑
j=1

Kn,j∑
i=1

√
j2 + S2

i,j − j, Sn

)
. (4.3)

Defining

S̃i,j := Si,j − µj,

for i, j ∈ N, we have
n∑
j=1

Kn,j∑
i=1

S̃i,j = Sn − µn,

and

∆n := L^n −
√

1 + µ2 n− µ√
1 + µ2

(Sn − µn)

d
=

n∑
j=1

Kn,j∑
i=1

(√
j2 + (µj + S̃i,j)2 −

√
1 + µ2 j − µ√

1 + µ2
S̃i,j

)

=
√

1 + µ2

n∑
j=1

Kn,j∑
i=1

j

√1 +
S̃2
i,j + 2µjS̃i,j

(1 + µ2)j2
− 1− µ

1 + µ2

S̃i,j
j

 .

Further, we will use the inequalities

1 +
y

2
≤
√

1 + x+ y for x ≥ y2/4, x+ y ≥ −1, (4.4)

and
√

1 + z ≤ 1 +
z

2
for z ≥ −1. (4.5)
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The first one with x := S̃2
i,j/((1 + µ2)j2) and y := 2µjS̃i,j/((1 + µ2)j2) yields ∆n ≥ 0 a.s.

Then the second one with z := S̃2
i,j + 2µjS̃i,j/((1 + µ2)j2) implies

P{|∆n| > εan} ≤ P


n∑
j=1

Kn,j∑
i=1

S̃2
i,j

2
√

1 + µ2j
> εan


for every ε > 0.

Fix δ ∈ (0, α/2). Then, by subadditivity of x 7→ xδ and Markov’s inequality, it suffices
to check that

lim
n→∞

1

aδn
E

 n∑
j=1

Kn,j∑
i=1

S̃2δ
i,j

jδ

 = 0. (4.6)

We use (3.35), the independence of S̃i,j and Kn,j and the formula EKn,j = j−1 stated
in (3.18) to infer

E

 n∑
j=1

Kn,j∑
i=1

S̃2δ
i,j

jδ

 =

n∑
j=1

1

j

ES2δ
j

jδ
≤ const ·

n∑
j=1

a2δj
j1+δ

,

where the last inequality is a consequence of (3.35). Since (aj)j∈N is regularly varying
with index 1/α, the sequence (j−1−δa2δj )j∈N is regularly varying with index 2δ/α−1−δ ≥
−1 and the sum is regularly varying with index 2δ/α− δ. And since the latter is smaller
than δ/α, the index of regular variation of (aδn)j∈N for α > 1, we conclude (4.6) thus
completing the proof of (4.1).

Since the representation (4.3) is also valid for L_n instead of L^n , the conver-
gence (4.1) and the coupling (4.2) (between L^n and a normalization of Sn) remain
true for L_n in the place of L^n . By combining (4.2) for both L^n , L

_
n finally provides (4.1)

for Ln/2 = (L^n + L_n )/2.
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