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Abstract

The dynamics of a Markov process are often specified by its infinitesimal generator
or, equivalently, its symbol. This paper contains examples of analytic symbols which
do not determine the law of the corresponding Markov process uniquely. These
examples also show that the law of a polynomial process in the sense of [4, 5, 11]
is not necessarily determined by its generator if it has jumps. On the other hand,
we show that a combination of smoothness of the symbol and ellipticity warrants
uniqueness in law. The proof of this result is based on proving stability of univariate
marginals relative to some properly chosen distance.
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1 Introduction

Consider a system whose state at time t is represented by a vector X(t) in Rd.
In applications the dynamics of such a system are often described by specifying how
X(t) changes as a function of the current state X(t). In a deterministic setup this is
typically expressed in terms of an ordinary differential equation. If, on the other hand,
X(t) is random, it may be viewed as a Markov process whose local dynamics can be
specified in terms of a stochastic differential equation, its infinitesimal generator, its
local semimartingale characteristics, or its symbol. As in the deterministic case, this
immediately leads to the question of existence and uniqueness of a stochastic process
exhibiting the given local dynamics.

This can be rephrased in terms of existence and uniqueness of the solution to a
corresponding martingale problem. Existence is known to hold under relatively weak
continuity conditions, see, for example, [9, Theorem 4.5.4], [16, Theorem 3.15], [3,
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On unique solutions to martingale problems

Theorem 3.24], [23, Corollary 3.2], [24, Theorem 1.1], [8, Theorem 5.36], and Theorem
2.7 below. The solution can often be chosen as a strong Markov process, see once more
[24, Theorem 1.1] and Theorem 2.7, which both rely on the general sufficient conditions
in [9, Theorems 4.5.11(b) and 4.5.19].

For continuous processes uniqueness holds for Lipschitz- resp. Hölder-continuous
coefficients or under some ellipticity condition, cf. e.g. [27]. The situation is less obvious
for processes with jumps, which are the main focus of this paper. Lipschitz conditions
only help for generators which have a natural representation as an SDE, which often is
not the case. Ellipticity, on the other hand, requires a continuous martingale part to be
present, which often is not the case either.

This piece of research is motivated by the desire to come up with a general uniqueness
result for Markov processes that may not have a continuous martingale part or a natural
representation as a SDE. In this context we share the point of view of [16, 20, 3] that it is
natural to study Markov processes through their symbol. Indeed, e.g. weak convergence
of a sequence of Levy processes corresponds to pointwise convergence of their symbols.

From the analogy to ODE’s one may expect uniqueness to hold if the symbol of the
process depends smoothly on the state X(t). Unfortunately, smoothness alone does not
seem to suffice in order to warrant uniqueness. In Section 3 we present two examples of
even analytic symbols where uniqueness in law of the corresponding Markov process
does not hold. This is the first main result of this paper. These examples also show
that the law of a polynomial process in the sense of [4, 5, 11] is not in general uniquely
determined by its generator. This complements a positive result by [10, Theorem 5.3],
which states that uniqueness does in fact hold for univariate continuous polynomial
processes.

Section 4 contains a positive result, which is the second main contribution of this
paper. It is shown that the combination of sufficient smoothness and ellipticity warrants
uniqueness in law. In contrast to [30, Theorem 4.3] and related results, the continuous
martingale part may vanish. The probably closest relative to our Theorem 4.4 below is
[2, Theorem 2.8] which also relies on smoothness and ellipticity of the symbol. However,
Böttcher requires a certain boundedness for derivatives of any order while we need
this condition only for finitely many derivatives. Nevertheless, [2, Theorem 2.8] is not a
special case of our Theorem 4.4 below. Another closely related result is [16, Theorem
5.24] which, however, requires the symbol to be real.

Uniqueness results have been obtained by a number of different approaches, cf. [20]
for an overview. From a very rough perspective, the most commonly used techniques are

• SDE methods where uniqueness is often obtained from fixed-point arguments,

• construction of a solution to the backward equation, i.e. construction of solutions
for the associated abstract Cauchy problem, and

• so-called interlacing techniques which allow to add finitely many jumps.

By contrast, our approach is based on establishing stability of the univariate marginals
relative to a properly chosen distance. This kind of reasoning seems to be new and it
constitutes the third main contribution of this paper.

The paper is structured as follows. In Section 2 we recall various notions and
properties concerning symbols and martingale problems. Moreover, we prove the
existence of a Markovian solution under continuity conditions, making use of general
results in [9, Chapter 4]. Subsequently, we present examples showing that smoothness
of the symbol does not imply uniqueness of the solution to a martingale problem. In
Section 4 a uniqueness result under smoothness and some mild ellipticity of the symbol
is stated. Section 5 contains proofs. In the appendix, we recall some facts on complex
measures.
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1.1 Notation

d ∈ N generally denotes the dimension of the space under consideration. We denote
the trace of a matrix C ∈ Rd×d by Tr(C). For any two vectors x, y ∈ Cd we define the
standard bilinear form xy :=

∑d
j=1 xjyj . Moreover, we set Cx := (

∑d
k=1 Cjkxk)j=1,...,d

and yCx := y(Cx) for any matrix C ∈ Cd×d and vectors x, y ∈ Cd. The set of positive
semidefinite d×d-matrices is denoted by Sd. We fix a truncation function χ : Rd → Rd, i.e.
χ is measurable, bounded and it equals the identity in a neighbourhood of zero. W.l.o.g.
we suppose that χ(x) = x for |x| ≤ 1, where |x| := (

∑d
j=1 |xj |2)1/2 denotes the Euclidean

norm on Rd. We write B(x, r) := {y ∈ Rd : |x− y| < r} for the open ball with radius r > 0

centered at x ∈ Rd. We denote the gradient of f ∈ C1(Rd,C) by ∇f(x) := (∂1f, . . . , ∂df),
x ∈ Rd, the Hessian of f ∈ C2(Rd,C) by Hf(x) := (∂2

jkf(x))dj,k=1, x ∈ Rd, and the

Laplacian of f ∈ C2(Rd × Rd,C) by ∆f(x) :=
∑d
j=1 ∂

2
j f(x), x ∈ Rd. For functions

f : Rd ×Rd → C we write ∇1f(x, y) := (∇f(·, y))(x), x, y ∈ Rd if f is differentiable with
respect to the first coordinate and ∆1f(x, y) := (∆f(·, y))(x), x, y ∈ Rd for sufficiently
smooth f . If f is smooth enough in the second coordinate, ∇2f(x, y) and H2f(x, y) are
defined accordingly. By Ĉ(Rd) (resp. Ĉ(Rd,C)) we denote the set of real-valued (resp.
complex-valued) continuous functions on Rd that vanish in∞. Similarly, C(Rd) stands for
the set of bounded continuous functions on Rd. The Skorokhod space of càdlàg functions
is denoted as D := DRd [0,∞) := {α : R+ → Rd : α càdlàg}. The greatest integer less or
equal x ∈ R is written as [x]. Further unexplained notation is used as in [9, 21].

2 The symbol and the existence theorem

We start by recalling the notion of the symbol and its associated martingale problem,
cf. [20, 3]. A systematic theory for symbols was first developed by Hoh [14, 15, 17].
Other important references include [18], which is more in view of strongly continuous
semigroups, and [1], who developed a theory for symbols on nuclear separable spaces.

Definition 2.1. 1. A measurable function q : Rd × Rd → C is a symbol if q(x, ·) is a
Lévy exponent for all x ∈ Rd, i.e. there are functions b : Rd → Rd, c : Rd → Sd, and
F : Rd × B(Rd)→ Rd such that F (x, ·) is a Lévy measure and

q(x, u) = iub(x)− 1

2
uc(x)u+

∫ (
eiuy − 1− iuχ(y)

)
F (x, dy) (2.1)

for any x, u ∈ Rd. We call a symbol q : Rd ×Rd → C (f -)Hölder continuous if there
is a continuous bounded function f : Rd → R+ such that

|q(x, u)− q(y, u)| ≤ f(x− y)(1 + |u|2), x, y, u ∈ Rd.

2. If q denotes a symbol, an adapted càdlàg Rd-valued stochastic process X on some
filtered probability space (Ω,F , (Ft)t≥0, P ) is called solution to the q-martingale
problem if the process

Mu(t) := exp(iuX(t))−
∫ t

0

q(X(s), u) exp(iuX(s))ds

is a local martingale for any u ∈ Rd. Uniqueness for the q-martingale problem
means that any two solutions X,Y to the q-martingale problem with the same initial
law (i.e. X(0) has the same law as Y (0)) have the same distribution. Finally, we say
that existence holds for the q-martingale problem if, for any probability measure µ,
there is a solution X to the q-martingale problem with initial law PX(0) = µ.
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Remark 2.2. The functions b, c in the Lévy-Khintchine representation (2.1) are measur-
able and F is a transition kernel from Rd to Rd, which can e.g. be derived from the
construction in [21, Lemma II.2.44]. As opposed to c and F , the drift coefficient b depends
on the choice of χ, cf. [29, Theorem 8.1]. We call (b(x), c(x), F (x, ·)) Lévy-Khintchine
triplet of the Lévy exponent q(x, ·).

For further use we make the following observation.

Remark 2.3. Let q be a symbol. A simple Taylor approximation argument shows that for
any x ∈ Rd there exists Cx <∞ such that |q(x, u)| ≤ Cx(1 + |u|2), u ∈ Rd. Hence∫

|f(u)q(x, u)|du <∞

for any Schwartz function f in the sense of [12, Definition 2.2.1] and any x ∈ Rd.
In order to relate a symbol to a martingale problem in the sense of [9, Section 4.3],

we define an operator corresponding to the symbol.

Definition 2.4. Let q be a symbol. The operator A associated with q is defined as

Af(x) :=

∫
q(x, u)f̌(u)eiuxdu

where x ∈ Rd, f is any real-valued Schwartz function, and

f̌ : Rd → C, u 7→ 1

(2π)d

∫
f(x)e−iuxdx,

denotes the inverse Fourier transform of f .

This operator can be expressed in terms of the Lévy-Khintchine triplet.

Lemma 2.5. Let q be a symbol, A the operator associated with q, and (b, c, F ) the triplet
of q. Then

Af(x) = ∇f(x)b(x) +
1

2
Tr(Hf(x)c(x)) +

∫
(f(x+ y)− f(x)−∇f(x)χ(y))F (x, dy)

for any real-valued Schwartz function f and any x ∈ Rd.

Proof. This follows from [12, Proposition 2.3.22].

Let q be a symbol with associated operator A. Moreover, denote by B the restriction
of A to the set of real-valued Schwartz functions f such that Af is bounded. The
following lemma shows that any solution X to the q-martingale problem is a solution to
the martingale problem in the sense of [9, Section 4.3] for B. Under suitable conditions
the converse is also true, cf. Theorem 2.7(2) below.

Lemma 2.6. Let X be a solution to the q-martingale problem, f a real-valued Schwartz
function such that Af is bounded, and

Mf (t) := f(X(t))−
∫ t

0

Af(X(s))ds

for any t ≥ 0. Then Mf is a martingale.

Proof. Proposition 5.1 states that X is a semimartingale. Furthermore, its local charac-
teristics is given by (b(X−), c(X−), F (X−, ·)). Thus Itō’s formula for the local characteris-
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tics [22, Proposition 2.5] together with Lemma 2.5 yield that

G(t, A) :=

∫
1A(f(Xt− + x)− f(Xt−))Ft(dx), A ∈ B with 0 /∈ A,

γ(t) := ∇f(X(t−))c(X(t−))∇f(X(t−)),

β(t) := Af(X(t−)) +

∫
(h(y)− y)G(t, dy),

is a version of the local characteristics of f(X) relative to the truncation function h. By
[21, Theorem II.2.42]

f(X(t))−
∫ t

0

Af(X(s))ds

is a local martingale. However, Mf is bounded on compact time intervals and hence it is
a martingale.

We now state an essentially well-known existence result which follows from [9,
Theorems 4.5.4, 4.5.11, 4.5.19]. The boundedness assumption on the function g in the
following theorem amounts to saying that b and c are bounded and that F has bounded
second moment.

Theorem 2.7 (Existence). Let q be a continuous symbol with associated operator A and
triplet (b, c, F ). Assume that

g : Rd → R ∪ {∞}, x 7→ |b(x)|+ Tr(c(x)) +

∫
|y|2F (x, dy)

is bounded by some finite constant. Then the following statements hold.

1. For any probability measure µ on Rd there is a solution X to the q-martingale
problem with PX(0) = µ.

2. A stochastic process X is a solution to the q-martingale problem if and only if

Mf (t) := f(X(t))−
∫ t

0

Af(X(s))ds, t ∈ R+

defines a martingale for any real-valued Schwartz function f (or, equivalently, any
smooth function with compact support), i.e. if and only if X is a solution to the
martingale problem A in the sense of [9, Section 4.3].

3. The operator A has the following properties:

(a) its range is contained in Ĉ(Rd),
(b) it satisfies the positive maximum principle in the sense of [9, p. 165], i.e.

0 ≤ f(x0) = sup
x∈Rd

f(x)

implies Af(x0) ≤ 0 for any real-valued Schwartz function f and any x0 ∈ Rd,
and

(c) it is conservative, i.e. there is a bounded sequence of real-valued Schwartz
functions (fn)n∈N which converges pointwise to 1 such that (Afn)n∈N is a
bounded sequence which converges pointwise to 0.

4. It is possible to choose measures (Px)x∈Rd on the Skorokhod space such that the
canonical process X is a solution to the q-martingale problem with X(0) = x a.s.
under Px, x ∈ Rd and such that x 7→ Px(X(t) ∈ A) is measurable for any t ≥ 0 and
any Borel set A ⊂ Rd. Moreover, (X, (Px)x∈Rd) is strong Markov.
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5. If the q-martingale problem has several solutions for some initial law PX(0) = µ,
then there are several families of measures (Px)x∈Rd as in (4).

6. Finally,

q(x, u) = lim
t↓0

Ex(eiu(X(t)−x))− 1

t
, x, u ∈ Rd,

where Ex denotes expectation relative to Px.

The proof is to be found in Section 5.1.

Remark 2.8. 1. Provided that uniqueness holds, the boundedness condition in Theo-
rem 2.7 can be relaxed by localisation, i.e. by applying [9, Theorems 4.6.2 or 4.6.3].
Without assuming uniqueness, the existence of a Markovian solution has recently
and independently been shown in [24, Theorem 1.1]. Instead of boundedness of g
in Theorem 2.7 Kühn requires

sup
|x|≤R

sup
|u|≤1

|q(x, u)| <∞, R ∈ R+, (2.2)

lim
R→∞

sup
|x|≤R

sup
|u|≤1/R

|q(x, u)| = 0. (2.3)

A straightforward calculation shows that boundedness of g actually implies (2.2,
2.3).

2. For his related existence result [16, Theorem 3.15] (cf. also [3, Theorem 3.24]),
Hoh requires slightly weaker conditions. However, he focuses on statement (1),
i.e., the existence of a Markovian solution is not considered. The same is true for
[8, Theorem 5.36].

3. Statement (6) of Theorem 2.7 means that −q is a symbol in the sense of [20].

The assumption on the triplet in Theorem 2.7 can be replaced by a smoothness
condition on the symbol:

Corollary 2.9. Let q be a continuous symbol such that u 7→ q(x, u) is twice differen-
tiable with bounded gradient x 7→ ∇2q(x, 0) and bounded Hessian x 7→ H2q(x, 0). Then
statements (1–6) in Theorem 2.7 hold.

Proof. W.l.o.g. |χ(y)| = 0 for |y| > 1. Fix x ∈ Rd and define the finite measure Fx(A) :=

F (x,A\B(0, 1)), A ∈ B(Rd) as well as F x := F (x, ·)−Fx. We denote the Fourier transform
of Fx by

F̂x(u) :=

∫
eiuyFx(dy), u ∈ Rd.

Observe that

F̂x(u) = q(x, u)− iub(x) +
1

2
uc(x)u−

∫ (
eiuy − 1− iuy

)
F x(dy) + F̂x(0).

Dominated convergence and
∫
|y|2F x(dy) < ∞ yield that F̂x is twice differentiable

in 0. By [7, Lemma A.1], this implies that Fx has finite second moments given by∫
y2
jFx(dy) = −F̂ ′′x (0), j = 1, . . . , d. Again by dominated convergence we obtain

(H2q(x, 0))jj = −c(x)jj −
∫
y2
jF x(dy)−

∫
y2
jFx(dy)

= −c(x)jj −
∫
y2
jF (x, dy), j = 1, . . . , d.

Boundedness of H2q(·, 0) now yields that Tr(c(·)) and
∫
|y|2F (·, dy) are bounded as well.
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Once more from dominated convergence we conclude

∇2q(x, 0) = i

(
b(x) +

∫
(y − χ(y))F (x, dy)

)
.

Since
∫

(y − χ(y))F (·, dy) is a bounded function, b is bounded as well. Theorem 2.7 now
yields the assertion.

A remarkable result by van Casteren indicates that uniqueness almost implies the
Feller property, cf. [25, Theorem 3.1] or [16, Proposition 5.18]. A missing growth
condition along with a complete proof has been provided by Kühn [23, Theorem 1.1].
Applied to our context it reads as follows.

Proposition 2.10 (Feller property). Let q be a symbol satisfying the requirements of
Theorem 2.7. If uniqueness holds for the q-martingale problem, then there is a closed
extension C of A which generates a strongly continuous positivity preserving contraction
semigroup on Ĉ(Rd). In other words, any solution to the martingale problem A is a
Feller process.

Proof. Boundedness of g in Theorem 2.7 implies that A maps Schwartz functions on
a subset of Ĉ(Rd). Since boundedness of g also implies the growth conditions in [23,
Lemma 3.1(i–iii)], the claim follows from [23, Theorem 1.1].

3 Counterexamples

In this section we provide an example of a real-valued analytic symbol which fails
to have the uniqueness property in the sense of Definition 2.1. Moreover, we present a
closely related example. Both correspond to polynomial processes in the sense of [4, 5],
i.e. the extended operator A in the sense of [5, Definition 2.3] maps polynomials on
polynomials of at most the same degree.

Example 3.1. There is an analytic symbol, namely

q : R×R→ R, (x, u) 7→

{
cos(xu)−1

x2 for x 6= 0,

−u
2

2 otherwise,
(3.1)

satisfying the requirements of Theorem 2.7 and having an entire extension to C × C
where, however, uniqueness does not hold for the q-martingale problem.

Moreover, there are solutions X,Y to the q-martingale problem with X(0) = 0 = Y (0)

and PX(t) 6= PY (t) for any t > 0. More generally, there are strong Markov processes X,
Y on Rd with the above symbol which do not have the same law. Moreover, X, Y are
polynomial processes in the sense of [5, Definition 2.1] or [11, Definition 2.1]. Starting
in X(0) = 0 = Y (0), their n-th moment at time t is given by

E0(Xn(t)) = E0(Y n(t)) = 1N(n/2)
tn/2

(n/2)!

n/2∏
k=1

(
22k−1 − 1

)
, t ≥ 0, n ∈ N.

Proof. Suppose that the truncation function χ is continuous and anti-symmetric. Define
q as in (3.1). The function q has an obvious entire extension. Define

b(x) = 0,

c(x) = 1{x=0},

F (x, ·) := 1{x 6=0}
δx + δ−x

2x2
. (3.2)
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Figure 1: The picture shows simulated paths from three different Markov processes with
symbol (3.1). All of them are based on the approximate generator Ak,n in the proof of
Example 3.1 with n = 10 and k = 1 (black line), k = 3

√
2 (red line) resp. k = 3

√
4 (green

line).

Then (b, c, F ) is the corresponding triplet in the sense of Remark 2.2. For any n ∈ N, k > 0

we also define

qk,n(x, u) :=

{
q(x, u) if |x| ≥ k2−n,

4n cos(uk2−n)−1
k2 otherwise.

(3.3)

Then qk,n is a continuous symbol and the associated linear operator is given by

Ak,nf(x) =

{
f(2x)−2f(x)+f(0)

2x2 if |x| ≥ k2−n,

4n f(x+k2−n)−2f(x)+f(x−k2−n)
2k2 otherwise.

The symbol qk,n satisfies the requirements of Theorem 2.7 whence there is a solution
Xk,n to the martingale problem (Ak,n, δ0) in the sense of [9, Section 4.3]. Since

Xk,n(t) = Xk,n(0) +

∫ t

0

b(Xk,n(s))ds+Xc
k,n(t)

+ (x− χ(x)) ∗ µXk,n(t) + χ(x) ∗ (µXk,n − νXk,n)(t)

= x ∗ µXk,n(t) =
∑
s≤t

∆Xk,n(s)

and since ∆Xk,n(t) ∈ {±Xk,n(t−),±k2−n} by (3.2, 3.3), we conclude that Xk,n takes
values only in the closed set Mk := k{±2z : z ∈ Z} ∪ {0}. Moreover, for any real-valued
Schwartz function f we have uniform convergence Ak,nf → Af for n → ∞, where A
denotes the operator associated with q. Using the proof of Lemma 5.2 and Chebyshev’s
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inequality, we have that the sequence (Xn) satisfies inequality (5.2) in [9, Remark 4.5.2].
The set of Schwartz functions is an algebra which separates points. By [9, Lemma 4.5.1,
Remark 4.5.2] there is a subsequence of (Xk,n)n∈N which converges weakly to a solution
Xk of the martingale problem (A, δ0). Note that Xk takes values only in Mk.

Both X1, X√2 are solutions to the martingale problem related to A and initial law δ0,
where X1 takes values only in M1 and X√2 only in M√2. Their extended generator in
the sense of [5, Definition 2.3] is defined for all polynomials. Polynomials are mapped
to polynomials of at most the same degree, which means that X1, X√2 are polynomial
processes by [5, Theorem 2.10]. [5, Theorem 2.7] and its proof yields the moments. In
particular, E(X1(t)2) = E(X√2(t)2) > 0 for any t > 0, which means that X1(t), X√2(t)

are not concentrated in zero. Since M1 ∩M√2 = {0}, this implies that X1, X√2 cannot
have the same law.

We now turn to a related example with analytic symbol where uniqueness fails. It
corresponds to an increasing process. It is once more polynomial in the sense of [5,
Definition 2.1] or [11, Definition 2.1]. However, since its state space equals R+, it is not
perfectly in line with the setup of this paper.

Example 3.2. Let

q : R+ ×R→ C, (x, u) 7→

{
eiux−1
x for x 6= 0,

iu otherwise.

This function clearly has an entire extension to C× C. There are solutions X,Y to the
q-martingale problem which start in 0 and are singular in the same sense as in the
previous example. More generally, there are strong Markov processes X and Y with
values in R+ and symbol q, which do not have the same law. Once more X, Y are
polynomial processes. Starting in 0, their n-th moment at time t is given by

E0(Xn(t)) = E0(Y n(t)) =
tn

n!

n∏
k=1

(
2k − 1

)
, t ≥ 0, n ∈ N.

Exponent q(x, ·) has Lévy-Khintchine triplet (χ(x)/x, 0, δx/x) for x > 0 and (1, 0, 0) for
x = 0. Finally, observe that the continuous continuation given by

q̃(x, u) := 1{x≥0}q(x, u) + 1{x<0}iu, x, u ∈ R

on state space R yields the same process.

Proof. For any n ∈ N, k ∈ R+ and x, u ∈ R we define the approximation

qk,n(x, u) :=


q(x, u) for x ∈ [k2−n, k2n],

q(k2−n, u) for x < k2−n,

q(k2n, u) for x > k2n.

of the symbol q. The claim follows now similarly as in Example 3.1.

4 The symbol and the uniqueness problem

The obvious question to ask is what conditions are needed to ensure uniqueness of
the q-martingale problem for a given symbol q. For continuous processes the situation is
well understood, The fact that SDE’s have unique solutions under Lipschitz conditions
directly yields uniqueness for C2-symbols without jump part.
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Figure 2: The picture shows simulated paths from three different Markov processes.
Each of them uses the approximate generator Ak,n appearing in the proof of Example
3.2 with k = 1 (black line), k = 3

√
2 (red line) resp. k = 3

√
4 (green line) and n = 10 for all

of them.

Proposition 4.1 (no jumps). Let q ∈ C2(Rd × Rd,C) be a symbol which has the rep-
resentation q(x, u) = iub(x) − 1

2uc(x)u for functions b : Rd → Rd, c : Rd → Rd×d. Then
uniqueness holds for the q-martingale problem.

Proof. Observe that c takes actually values in the set of positive semidefinite matrices.
Let σ(x) be the positive square root of c(x) for all x ∈ Rd. Then [28, Theorem V.12.12]
implies that σ is Lipschitz. [28, Theorem V.12.1 and Section V.22] applied to (b, σ) yields
the claim.

As Example 3.1 indicates, the previous theorem does not hold for processes with
jumps. One could express q-martingale problems for general symbols q in terms of
an SDE, but it is not clear what conditions on q warrant Lipschitz continuity of the
corresponding coefficients. Stroock-Varadhan type results, however, require the diffusion
part of the symbol to be non-singular. A systematic study of existence and uniqueness
property has been undertaken by Hoh in a number of papers. In [16, Theorem 5.7] he
shows that a real-valued symbol satisfying similar conditions as in Theorem 4.4 below
belongs to a unique strong Markov process. Hoh’s result [15, Theorem 5.7] requires the
likewise real-valued symbol to be infinitely smooth in both variables and an ellipticity
condition to hold. His extension [17, Theorem 1.1] shows that uniqueness still holds if
a state-depend power is applied to a symbol as in [15, Theorem 5.7]. Finally, see the
related article [18, Theorem 9.4].

One of the main contributions of the present paper is the following uniqueness result.
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Theorem 4.2 (Uniqueness). Let q ∈ C(Rd × Rd,C) be a Hölder-continuous symbol
satisfying the requirements of Theorem 2.7. Moreover, suppose that there are K ∈ R+

and complex measures (Pt,u)t∈[0,1],u∈Rd such that

1. P̂t,u(x) :=
∫
eivxPt,u(dv) = etq(x,u) for all x ∈ Rd,

2.
∫ 1+|u+v|2

1+|u|2 |Pt,u|(dv) ≤ 1 +Kt.

Then existence and uniqueness holds for the q-martingale problem. In particular, there
is a unique Feller process starting in any given distribution and having symbol q.

Proof. The proof is to be found in Section 5.2.

Example 4.3. Let q(x, u) := (1 − cos(x))ψ(u), x, u ∈ R where ψ is a real-valued Lévy

exponent on R which satisfies the requirements of Theorem 2.7, e.g. ψ(u) = −u2

2 . In
particular, q(0, u) = 0 for any u ∈ R. Then existence and uniqueness for the q-martingale
problem hold.

Proof. Instead of verifying the conditions in the previous theorem directly, we refer to
Lemma 5.14 below, which follows from Theorem 4.2.

If the measure Pt,u in Theorem 4.2 happens to be nonnegative as in Example 3.1, we
have ∫

1 + |u+ v|2

1 + |u|2
Pt,u(dv) ≤ 1 +

2|u|
1 + |u|2

∣∣∣∣∫ vPt,u(dv)

∣∣∣∣+
1

1 + |u|2

∫
|v|2Pt,u(dv).

In this case condition (2) in Theorem 4.2 can be interpreted as first and second moment
condition on Pt,u, which can be vaguely viewed as a “smoothness” condition on q.
However, in particular for complex Pt,u it is less obvious how restrictive condition (2)
is and how one can verify it. We therefore provide a second uniqueness result which
follows from Theorem 4.2, but which is stated directly in terms of q.

Theorem 4.4. Let q be a continuous symbol with q(·, u) ∈ C [d/2]+3(Rd,C) for all u ∈ Rd
and such that q satisfies the requirements of Theorem 2.7, cf. also Corollary 2.9. Let
ϕ : Rd → C be a characteristic exponent satisfying the following conditions

|Re(q(x, u))| ≥ g1(x)|ϕ(u)|, (4.1)

|∂αx q(x, u)| ≤ g2(x)|ϕ(u)| (4.2)

for some bounded functions g1, g2 : Rd → (0,∞) and any α ∈ Nd with |α| ≤ [d/2] + 3.
Then existence and uniqueness holds for the q-martingale problem.

Proof. The proof is to be found in Section 5.2.

Condition (4.2) is a uniform smoothness requirement. Condition (4.1), however,
means that the symbol is bounded from below in an appropriate sense. Such an ellipticity
condition occurs in the Stroock-Varadhan existence and uniqueness result, cf. [30,
Theorem 4.3]. The advantage of the result in [30] is that continuity suffices and no
extra smoothness is needed. Moreover, the drift only needs to be measurable. However,
Stroock requires an ellipticity condition with respect to the explicit symbol ϕ(u) = − 1

2u
2,

which means that a continuous diffusion part is present everywhere. His proof also uses
some extra regularity for the jump measure which, however, could be relaxed.

Since Stroock and Varadhan have published their result, some variants of the Stroock-
Varadhan theorem with a more general ellipticity condition have been established by
several authors, i.e. with a more general function ϕ than for the original result, cf.
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[20] for an overview. A recent result is due to Böttcher, cf. [2, Theorem 2.8], who
requires equations (4.1, 4.2) for arbitrary α and, moreover, a certain boundedness for
the derivatives with respect to u. Theorem 4.4 may be easier to apply in practice because
it involves only finitely many derivatives and no smoothness in u.

5 Proofs

5.1 Proof of the existence theorem

The proof of Theorem 2.7 relies on the general statements [9, Theorem 4.5.4] and
[9, Theorem 4.5.19], which yield existence of a solution and its strong Markov property,
respectively. In order for the solution to be conservative we need to verify that explosion
cannot happen. This is done with the help of Lemma 5.2, which yields finite second
moments. These finite second moments are also needed for the verification of the
conditions in [9, Theorems 4.5.11(b), 4.5.19], which are stated as Lemma 5.3 in our
context.

We start with the semimartingale property of solutions, cf. [31, Corollary 2.6] for a
more general setup.

Proposition 5.1 (Semimartingale characteristics). Let q be a symbol and X a solution
to the q-martingale problem. Then X is a semimartingale which allows for local or
differential characteristics in the sense of [22, Definition 2.2]. Moreover, X is quasi-left
continuous, i.e. ∆XT = 0 almost surely for any finite predictable stopping time T . If q is
represented by triplet (b, c, F ) as in Definition 2.1, then

(ω, t) 7→ (b(X(t−)), c(X(t−)), F (X(t−), ·)) (ω) (5.1)

is a version of the local characteristics of X relative to truncation function χ.

Proof. Except for quasi-left continuity this follows from the definition and [21, Theorem
II.2.42]. Quasi-left continuity is obtained from [21, Proposition II.2.9(i)].

We continue with a lemma which yields a sufficient condition for the existence of
second moments.

Lemma 5.2. Let q be a symbol which satisfies the requirements of Theorem 2.7. More-
over, let X be a solution to the q-martingale problem. Then E(sups∈[0,t] |X(s)−X(0)|2) <

∞ for any t ∈ R+.

Proof. Proposition 5.1 implies that X is a semimartingale with local characteristics of
the form (5.1). Boundedness of g implies that it is a special semimartingale, cf. e.g.
[21, Proposition II.2.29(a)]. The finite variation part A in its canonical decomposition
X = X(0) +M +A is of the form

A(t) =

∫ t

0

(
b(X(s−)) +

∫
(x− χ(x))F (X(s−), dx)

)
ds

and hence bounded on any compact interval. For the local martingale part M we have

〈Mi,Mi〉(t) =

∫ t

0

(
cii(X(s−)) +

∫
x2
iF (X(s−), dx)

)
ds, i = 1, . . . , d,

which is bounded on any compact interval as well. Doob’s inequality yields that

E

(
sup
s∈[0,t]

|Mi(s)|2
)
≤ 4E([Mi,Mi](t)) = 4E(〈Mi,Mi〉(t)) <∞, i = 1, . . . , d

for any t ∈ R+, which yields the claim.
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Lemma 5.3. We assume that the requirements of [9, Theorems 4.5.11(b) and 4.5.19]
hold in our setup. Specifically, letA0 ⊂ C(Rd)×C(Rd) and denote by Γ the set of solutions
to the martingale problem for A0, i.e. all laws on the Skorokhod space D such that
f(X(t))−

∫ t
0
g(X(s))ds is a martingale for any (f, g) ∈ A0, where X denotes the canonical

process. Writing D(A0) := {f : (f, g) ∈ A0 for some g ∈ A0}, suppose that the closure
D(A0) contains an algebra that separates points and vanishes nowhere. Moreover, we
assume Γν 6= ∅ for any probability measure ν on Rd, where Γν := {P ∈ Γ : PX(0) = ν}.
Finally, suppose that for any compact set K ⊂ Rd and any ε, T ∈ (0,∞) there exists a
compact set K ′ ⊂ Rd such that

P
(
X(t) ∈ K ′ for all t < T,X(0) ∈ K

)
≥ (1− ε)P (X(0) ∈ K)

for any P ∈ Γ.
Then there are measures (Px)x∈Rd in Γ with X(0) = x a.s. under Px, x ∈ Rd and such

that x 7→ Px(X(t) ∈ A) is measurable for any t ≥ 0 and any Borel set A ⊂ Rd. Moreover,
(X, (Px)x∈Rd) is strong Markov. Finally, if the q-martingale problem has several solutions
for some initial law PX(0) = ν, then there are several such families of measures (Px)x∈Rd .

Proof. Step 1: Let A be an extension of A0 as in [9, Theorem 4.5.19(a)]. Moreover,
let Px ∈ Γδx for x ∈ Rd such that Px solves the A-martingale problem, which exists
by [9, Theorem 4.5.19(c)]. We define the law P (x, t, dy) := Px(X(t) ∈ dy) for x ∈ Rd,
t ≥ 0. Then P (x, 0, ·) = δx. Let f : Rd → R be continuous and bounded, which
implies that t 7→ f(X(t)) is right-continuous and bounded. By dominated convergence
we have that t 7→ Exf(X(t)) is right-continuous as well. Since x 7→ Ex(f(X(t))) is
measurable, (x, t) 7→ Exf(X(t)) is measurable by [21, I.1.21 and I.1.26], applied to
the right-continuous process Y (x, t) := Exf(X(t)). Since this holds for any continuous
bounded f , we conclude that (x, t) 7→ P (x, t, A) = Px(X(t) ∈ A) is measurable for any
A ∈ B(Rd).

Let s, t ≥ 0. [9, Theorem 4.5.19(d)] yields

P (t+ s, x,A) = Px(X(s+ t) ∈ A)

= Ex(Ex(1A(X(s+ t))|Ft))

= Ex(PX(t)(X(s) ∈ A))

=

∫
Py(X(s) ∈ A)PX(t)

x (dy)

=

∫
P (y, s, A)P (x, t, dy)

and hence P is a transition function in the sense of [9, Page 156].
Step 2: From [9, Theorem 4.5.19(d)] we also get that X is a strong Markov process

in the sense of [9, Page 158] with transition function P . Indeed, let P be a solution
to the A-martingale problem, τ a finite stopping time and C ∈ B(D). Then we have
E(1{X((τ∧n)+·)∈C}|Fτ∧n) = PX(τ∧n)(C) for any n ∈ N by [9, Theorem 4.5.19(d)] because
τ ∧ n is bounded. For the strong Markov property we have to show that equality holds
for τ instead of τ ∧ n. Clearly, PX(τ∧n)(C)→ PX(τ)(C) pointwise for n→∞. Moreover,
Yn := 1{X((τ∧n)+·)∈C} → Y∞ := 1{X(τ+·)∈C} pointwise and hence in L2(P ) for n→∞. We
obtain

E(Yn − Y∞|Fτ∧n) + E(Y∞|Fτ∧n) = E(Yn|Fτ∧n)→ PX(τ)(C)

and E(Yn − Y∞|Fτ∧n)→ 0 in L2(P ) as n→∞ because

E(|E(Yn − Y∞|Fτ∧n)|2) ≤ E(|Yn − Y∞|2)→ 0.
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Moreover, E(Y∞|Fτ∧n) = E(E(Y∞|Fτ )|Fτ∧n) → E(Y∞|Fτ ) in L2(P ) when n → ∞.
Consequently,

PX(τ)(C) = E(Y∞|Fτ ).

Step 3: Now we turn to the last part of the claim. Here, we assume that Γν contains
more than one element for some Borel measure ν on Rd. The proof of [9, Lemma 4.5.19]
actually constructs extensions A 6= B given in [9, Lemma 4.5.19(b)] which are maximal
in the sense that any further extension of A or B does not meet [9, Lemma 4.5.19(c)] any
more.

Then, B 6⊆ A due to maximality. Thus there is (f, g) ∈ B with (f, g) /∈ A. Assume
by contradiction that M(t) := f(X(t))−

∫ t
0
g(X(s))ds is a Px-martingale for any x ∈ Rd.

Then
A+ := {(h+ λf, k + λg) : (h, k) ∈ A, λ ∈ R}

is a strict extension of A which is a linear operator and such that the canonical process
X solves the A+-martingale problem under Px for any x ∈ Rd. [9, Proposition 4.3.5]
yields that A+ is dissipative. This contradicts the maximality of A. We conclude that
there is x ∈ Rd such that M is not a Px-martingale. However, M is a Qx-martingale if the
canonical process X is a solution to the B-martingale problem under Qx for any x ∈ Rd.
Consequently, Px 6= Qx.

Proof of Theorem 2.7. Step 1: Let f be a real-valued Schwartz function and ε > 0.
Boundedness of g implies

sup
x∈Rd

F (x, {y ∈ Rd : |y| ≥ a}) < ε

for some sufficiently large a > 0 such that the support of χ is contained in B(0, a). Lemma
2.5 yields

|Af(x)| ≤ |∇f(x)|
∣∣∣∣b(x) +

∫ (
y1B(0,a)(y)− χ(y)

)
F (x, dy)

∣∣∣∣
+

1

2
sup

y∈B(x,a)

|Hf(y)|

(
Tr(c(x)) +

∫
B(0,a)

|y|2F (x, dy)

)

+

∫
B(0,a)c

|f(x+ y)− f(x)|F (x, dy)

≤

(
|∇f(x)|+ sup

y∈B(x,a)

|Hf(y)|

)
g(x) + 2 sup

y∈Rd

|f(y)|ε

→
x→∞

2 sup
y∈Rd

|f(y)|ε

for any x ∈ Rd. Hence Af(x)→ 0 for x→∞.
Define c̃(x) := c(x) +

∫
χ(y)χ(y)>F (x, dy). [21, Theorem VII.2.9] yields continuity of

b, c̃ and of x 7→
∫
h(y)F (x, dy) for any bounded continuous function h : Rd → R which

vanishes in a neighbourhood of zero. Lemma 2.5 and linearity of the trace imply

Af(x) = ∇f(x)b(x) +
1

2
Tr(Hf(x)c̃(x))

+

∫ (
f(x+ y)− f(x)−∇f(x)χ(y)− 1

2
Tr(Hf(x)χ(y)χ(y)T )

)
F (x, dy)

for any x ∈ Rd. Thus x 7→ Af(x) is continuous. Together, this yields statement (3a).
Moreover, the indirect implication of statement (2) follows from Lemma 2.6.
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Step 2: Let f be any real-valued Schwartz function with maximum attained at
x0 ∈ Rd, i.e. supx∈Rd f(x) = f(x0). Then ∇f(x0) = 0 and Hf(x0) is negative semidefinite.
Therefore

Af(x0) =
1

2
Tr(Hf(x0)c(x0)) +

∫ (
f(x0 + h)− f(x0)

)
F (x0, dh) ≤ 0,

i.e., A satisfies the positive maximum principle in the sense of [9, p. 165], whence
statement (3b) holds. Moreover, it is defined on a dense subset of Ĉ(Rd) because its
domain are the real-valued Schwartz functions.

Step 3: Let ϕ : Rd → [0, 1] be an infinitely differentiable function which is constantly
1 on the unit ball in Rd and whose support is contained in the centered ball with radius 2.
For any n ∈ N define the real-valued Schwartz function

fn : Rd → R, x 7→ ϕ(x/n).

Then fn → 1 pointwise and the second derivatives of fn are bounded by k/n2, where k is
a common bound for the first two partial derivatives of ϕ. Step 2 yields

Afn(x) =

∫
(fn(x+ y)− 1)F (x, dy)

for x ∈ Rd and n > |x|. Due to a remainder estimate for the Taylor series we have

|fn(x+ y)− 1| ≤ k|y|2

2n2
.

Thus the dominated convergence theorem yields

|Afn(x)| ≤
∫
k|y|2

2n2
F (x, dy)→ 0, n→∞,

whence Afn(x)→ 0 pointwise. Similar arguments yield |Afn(x)| ≤ Kg(x) for any x ∈ Rd,
n ∈ N and some constant K > 0 which does not depend on x and n. Thus we have fn → 1

and Afn → 0 for n→∞, where the convergence holds relative to the bp-topology, cf. [9,
p. 111]. This implies statement (3c). [9, Theorem 4.5.4 and Remark 4.5.5] yield that for
any probability measure µ on Rd there is a solution to the martingale problem (A, µ) in
the sense of [9, Section 4.3].

Step 4: In order to show that there are solutions to the q-martingale problem, let µ
be a probability measure and X a solution to the martingale problem (A, µ) in the sense
of [9, Section 4.3]. Moreover, let u ∈ Rd and ϕ : Rd → [0, 1] as in Step 3. Define

fn(x) := eiuxϕ(x/n), x ∈ Rd, n ∈ N.

Similarly as in Step 3 one shows that there is a bound B < ∞ such that |fn(x)| ≤ 1,
|Afn(x)| ≤ B for any x ∈ Rd, n ∈ N, and

fn(x)→ eiux,

Afn(x)→ q(x, u)eiux

for any x ∈ Rd. Thus

Mfn(t)
n→∞−→ Mu(t) := eiuX(t) −

∫ t

0

eiuX(s)q(X(s), u)ds

a.s. for any t ∈ R+. By dominated convergence, Mu is a martingale which shows that X is
a solution to the q-martingale problem. Altogether, we obtain both the direct implication
of statement (2) and statement (1).
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Step 5: The set of real-valued Schwartz functions is an algebra that separates points.
Lemma 5.2 yields that that [9, (4.5.33)] holds for all choices of K, ε and T where K ′ can
be chosen according to Chebyshev’s inequality. Thus [9, Theorem 4.5.11(b)] implies that
the requirements of [9, Theorem 4.5.19] are met for Γ := {Pµ : Pµ solves (A, µ) for some
probability measure µ on Rd}. Lemma 5.3 now yields statements (4) and (5).

Step 6: Let x, u ∈ Rd and (Px)x∈Rd measures on the canonical space such that the
canonical process X is a solution to the q-martingale problem with X(0) = x Px-a.s. for
any x ∈ Rd. Then

Ex(eiuX(t)) = eiux + Ex

(∫ t

0

eiuX(s)q(X(s), u)ds

)
, t ≥ 0.

Hence right-continuity of X in 0 yields

Ex(eiu(X(t)−x))− 1

t
=

1

t

∫ t

0

Ex(eiu(X(s)−x)q(X(s), u)ds

→ Ex(eiu(X(0)−x)q(X(0), u)

= q(x, u)

for t ↓ 0, which is statement (6).

5.2 Proof of the uniqueness theorems

The remainder of the paper is devoted to the proof of Theorems 4.2 and 4.4. The
idea is as follows. We aim at proving uniqueness of univariate marginals in the Fourier
domain, i.e. we show that for two solutions X,Y the characteristic functions ϕX(t), ϕY (t)

coincide. This will be done by a Grönwall argument. We proceed in two steps. First
we show that any solution can be approximated locally by a conditional Lévy process,
cf. Lemmas 5.7, 5.8. Secondly we try to find bounds for the deviation rate of two
piecewise Lévy processes, which leads to Theorem 4.2. In order to derive Theorem
4.4, the conditions are first verified for simple symbols. Moreover, the set of symbols
meeting the requirements has a certain closedness property, cf. Lemma 5.11. Then
we can deduce Lemma 5.14 which states that uniqueness holds if the symbol can be
locally approximated with a Fourier series satisfying some positivity condition. Finally,
we construct such a Fourier series for elliptic symbols, cf. Lemma 5.15.

The localisation procedure for martingale problems reveals that uniqueness is a local
property, cf. [9, Section 4.6] and [3, Theorem 3.28]. We restate a localisation theorem
suitable for our applications with slightly different assumptions than the very related [3,
Theorem 3.28]; the proof however is basically the same.

Proposition 5.4. Let q be a symbol such that existence holds for the q-martingale
problem. Let U be an open covering for Rd and for all U ∈ U let qU be a symbol such that

1. q(x, u) = qU (x, u) for any x ∈ U, u ∈ Rd,
2. existence and uniqueness holds for the qU -martingale problem,

3. q(·, u) is bounded for any u ∈ Rd and

4. qU (·, u) is bounded for any u ∈ Rd, U ∈ U .

Then existence and uniqueness hold for the q-martingale problem.

Proof. W.l.o.g. we may assume that U is countable. Let µ be a probability measure on
Rd and U ∈ U . Define

B := {(eiu·, q(·, u)eiu·) : u ∈ Rd},
BU := {(eiu·, qU (·, u)eiu·) : u ∈ Rd}
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for any U ∈ U . Observe that a stochastic càdlàg process is a solution to the B-martingale
problem if and only if it is a solution to the q-martingale problem. In particular, existence
holds for the B-martingale problem. Let U ∈ U and observe that a stochastic process is a
solution to the stopped martingale problem (B, µ, U) if and only if it is a solution to the
stopped martingale problem (BU , µ, U) in the sense of [9, Page 216].

Moreover, [9, Theorem 4.6.1] yields that the stopped martingale problem (BU , µ, U)

has unique solutions. Hence (B, µ, U) has unique solutions for any U ∈ U . [9, Theorem
4.6.2] yields uniqueness for the martingale problem (B, µ). Since µ was arbitrary, we
have uniqueness for the q-martingale problem.

The next result is a Grönwall-type theorem with perturbation which will be useful
later.

Lemma 5.5. Let I = [0, T ], c ∈ (0,∞), and β : R+ → R+ such that limt→0 β(t)/t = 0. Let
ϕ : R+ → R+ such that for all s, t ∈ I with s < t we have

ϕ(t) ≤ (1 + (t− s)c)ϕ(s) + β(t− s).

Then ϕ(t) ≤ ϕ(0)ect for all t ∈ I. In particular, ϕ = 0 if ϕ(0) = 0.

Proof. Let t ∈ R+ and N ∈ N. The inequality above yields

ϕ

(
t
n+ 1

N

)
≤ (1 + tc/N)ϕ

(
t
n

N

)
+ β(t/N)

for n = 0, . . . , N − 1. Hence

ϕ(t) ≤ (1 + tc/N)Nϕ(0) +

N−1∑
k=0

(1 + tc/N)kβ(t/N).

Since (1 + tc/N)N ≤ exp(tc), we have

ϕ(t) ≤ exp(tc)ϕ(0) +

N−1∑
k=0

(1 + tc/N)kβ(t/N).

The geometric series sums up to

N−1∑
k=0

(1 + tc/N)k =
(1 + tc/N)N − 1

tc/N
≤ N etc − 1

tc
.

However, Nβ(t/N) converges to 0 for N →∞. Hence

N−1∑
k=0

(1 + tc/N)kβ(t/N)→ 0.

We conclude ϕ(t) ≤ exp(tc)ϕ(0) as desired.

In the sequel we will work with the norm

‖ · ‖ : Ĉ(Rd,C)→ R+, ϕ 7→ sup

{
|ϕ(u)|

1 + |u|2
: u ∈ Rd

}
.

Remark 5.6. A sequence of characteristic functions which converges with respect to
‖ · ‖, converges uniformly on compact sets. Lévy’s continuity theorem [19, Theorem
19.1] yields weak convergence of the corresponding sequence of random variables.
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As mentioned above, the proof of Theorem 4.2 is based on local comparison to condi-
tional Lévy processes. If we consider a symbol q, a solution X to the q-martingale prob-
lem, s ≥ 0, and an Fs-conditional Lévy process L with Lévy exponent ψ(u) = q(X(s), u),
i.e. E(eiu(L(t2)−L(t1))|Fs) = exp((t2 − t1)ψ(u)), then the following lemma measures the
difference E(Γ(t, s, u)) between the characteristic functions of X(t) and L(t)−L(s)+X(s)

in terms of an expected path integral over q(X,u). However, the conditional Lévy process
L appears in the statement and proof only through its characteristic funtion.

Lemma 5.7 (Comparison to conditional Lévy process I). Let q be a continuous symbol
such that q(·, u) is bounded for all u ∈ Rd. Moreover, let X be a solution to the q-
martingale problem and for s ≥ 0 let Qs be a regular version of the conditional law of X
given Fs, i.e.

• Qs : Ω× B(DRd [0,∞))→ [0, 1] is a transition kernel from (Ω,Fs, P ) to D and

• E(f(X)|Fs) =
∫
f(ρ)Qs(dρ) for any bounded measurable function f : D→ C.

Define

Γ(t, s, u) :=

∫ t

s

e(t−r)q(X(s),u)

∫
D

eiuρ(r)(q(ρ(r), u)− q(ρ(s), u))Qs(dρ)dr

for s, t ∈ R+, u ∈ Rd. Then we have

ϕX(t, u) = E (exp((t− s)q(X(s), u) + iuX(s))) + E(Γ(t, s, u))

for any t, s ∈ R+, u ∈ Rd with s < t, where ϕX(t, u) := E(eiuX(t)). Moreover,

|EΓ(t, s, u)| ≤
∫ t

s

E|q(X(r), u)− q(X(s), u)|dr

for any x, u ∈ Rd, 0 ≤ s ≤ t <∞.

Proof. Let s ∈ R+, u ∈ Rd. For all t ∈ [s,∞) we have

ϕs(t, u) :=

∫
D

eiuρ(t)Qs(dρ)

= Mu(s) +

∫
D

∫ t

0

q(ρ(r), u) exp(iuρ(r))drQs(dρ)

= Mu(s) +

∫ s

0

q(X(r), u) exp(iuX(r))dr

+

∫ t

s

∫
D

q(ρ(r), u) exp(iuρ(r))Qs(dρ)dr

= eiuX(s) +

∫ t

s

∫
D

q(ρ(r), u) exp(iuρ(r))Qs(dρ)dr.

We can see that t 7→ ϕs(t, u) is P -a.s. continuous. Thus the canonical process on
(D,B(D), Qs(ω, ·)) is weakly continuous for P -almost every ω ∈ Ω. Consequently,

r 7→
∫
D

q(ρ(r), u) exp(iuρ(r))Qs(ω, dρ)

is continuous for P -almost every ω ∈ Ω. This shows that t 7→ ϕs(t, u) is continuously
differentiable for P -almost every ω ∈ Ω.

The fundamental theorem of calculus yields

∂tϕs(t, u) =

∫
D

q(ρ(t), u) exp(iuρ(t))Qs(dρ)

= ϕs(t, u)q(X(s), u) + g(s, t)
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for all t > s P -a.e. where

g(s, t) :=

∫
D

exp(iuρ(t))(q(ρ(t), u)− q(ρ(s), u))Qs(dρ).

Moreover, we have ϕs(s, u) = eiuX(s). The variation of constants formula [13, Satz 98.5]
implies

ϕs(t, u) = e(t−s)q(X(s),u)+iuX(s) +

∫ t

s

e(t−r)q(X(s),u)g(s, r)dr

= e(t−s)q(X(s),u)+iuX(s) + Γ(t, s, u).

Thus we obtain

E(eiuX(t)) = E(ϕs(t, u))

= E
(
e(t−s)q(X(s),u)+iuX(s)

)
+ E(Γ(t, s, u)).

Finally, we have

|E(Γ(t, s, u))| ≤ E
(∫ t

s

∫
D

|(q(ρ(r), u)− q(ρ(s), u))|Qs(dρ)dr

)
=

∫ t

s

E (|(q(X(r), u)− q(X(s), u))|) dr

for any t ≥ s.

Lemma 5.8 (Comparison to conditional Lévy process II). Let q be a Hölder continuous
symbol. Moreover, let I ⊂ R+ be a bounded interval and X a solution to the q-martingale
problem. Then there is a function β : R+ → R+ such that limt→0 β(t)/t = 0 and∫ t

s

E|q(X(r), u)− q(X(s), u)|
1 + |u|2

dr ≤ β(t− s)

for all s, t ∈ I, u ∈ Rd with s < t.

Proof. Let f be a bounded and continuous function such that

|q(x, u)− q(y, u)| ≤ f(x− y)(1 + |u|2), x, y, u ∈ Rd.

Then
E|q(X(r), u)− q(X(s), u)|

1 + |u|2
≤ E(f(X(r)−X(s))).

Proposition 5.1 states that X is quasi-left continuous. Hence

H : R+ ×R+ → R+, (r, s)→ E(f(X(r)−X(s)))

is continuous and H(s, s) = 0 for all s ∈ R+. The mean value theorem theorem yields the
claim for β(t) := t sup{H(r, s) : r, s ∈ I and |r − s| ≤ t}.

We can now show that the univariate marginals of solutions to the martingale problem
are uniquely determined under certain conditions.

Lemma 5.9. Let q ∈ C(Rd × Rd,C) be a continuous and Hölder-continuous symbol.
Moreover, let K ∈ R+ and I = [0, t0] for some t0 > 0. Assume that for any t ∈ I, u ∈ Rd
there is a complex measure Pt,u such that

EJP 25 (2020), paper 95.
Page 19/33

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP494
http://www.imstat.org/ejp/


On unique solutions to martingale problems

1. P̂t,u(x) = etq(x,u) for all x ∈ Rd and

2.
∫ 1+|u+v|2

1+|u|2 |Pt,u|(dv) ≤ 1 +Kt.

If X,Y are solutions to the q-martingale problem with the same initial distribution, then
X(t) and Y (t) have the same distribution for all t ∈ I.

Proof. Observe that condition (2) implies that the total variation measure |Pt,u| is finite.
Define d(t) := ‖ϕX(t, ·) − ϕY (t, ·)‖ for all t ∈ R+ where ϕX(t, ·) and ϕY (t, ·) denote the
characteristic functions of X(t) resp. Y (t). Let gt,u(x) := etq(x,u)+iux. Lemmas 5.7, 5.8
yield

d(t) ≤ sup

{
|E (gt−s,u(X(s)))− E (gt−s,u(Y (s))) |

1 + |u|2
: u ∈ Rd

}
+ β(t− s)

for all s, t ∈ I with s < t, where β is a function as in Lemma 5.8 with limt→0 β(t)/t = 0.
Moreover, condition (1) and Fubini’s theorem imply

E (gt−s,u(X(s))) =

∫∫
eivX(s)Pt−s,u(dv)eiuX(s)dP

=

∫
ϕX(s, u+ v)Pt−s,u(dv)

and likewise for Y . We obtain

d(t) ≤ d(s) sup

{∫
1 + |u+ v|2

1 + |u|2
|Pt−s,u|(dv) : u ∈ Rd

}
+ β(t− s)

≤ d(s)(1 +K(t− s)) + β(t− s).

By Lemma 5.5 we have d(t) = 0 for all t ∈ I. Thus the characteristic functions of X(t)

and Y (t) coincide, whence they have the same law.

Corollary 5.10. Assume that the requirements of Lemma 5.9 are fulfilled and that
existence holds for the q-martingale problem. Then uniqueness holds for the q-martingale
problem.

Proof. Let X,Y be solutions with the same initial law and let T ∈ [0,∞] be maximal
such that X(t), Y (t) have the same law for all t ∈ [0, T ). By Proposition 5.1 X and Y are
quasi-left continuous, which implies that X(T ) and Y (T ) have the same law. Assume by
contradiction that T 6=∞. Then X̃(t) := X(T + t), Ỹ (t) := Y (T + t) are solutions to the
q-martingale problem with the same initial law. Lemma 5.9 yields that X̃, Ỹ have the
same one-dimensional distribution up to t0 and hence X, Y have the same univariate
marginals up to T + t0. This contradicts the maximality of T . Hence [9, Theorem 4.4.2]
yields the claim.

Proof of Theorem 4.2. Theorem 2.7 implies existence and Corollary 5.10 yields unique-
ness. The second statement follows from Proposition 2.10.

We now turn to the proof of Theorem 4.4.

Lemma 5.11. Let q be a symbol. Consider qn : Rd ×Rd → C, complex measures Pt,u,n
on Rd, and Kn ≥ 0 such that

1. P̂t,u,n(x) = exp(tqn(x, u)),

2. |Pt,u,n|(Rd) ≤ 1,

3.
∫
v|Pt,u,n|(dv) = 0,

4.
∫
|v|2|Pt,u,n|(dv) ≤ tKn(1 + |u|2),

5. q(x, u) =
∑
n∈N qn(x, u), and
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6. K :=
∑∞
n=1Kn <∞

for any n ∈ N, x, u ∈ Rd, t ∈ [0, 1]. Then there are complex measures Pt,u on Rd such
that

1. P̂t,u(x) = exp(tq(x, u)),

2.
∫ 1+|u+v|2

1+|u|2 |Pt,u|(dv) ≤ 1 +Kt

for any x, u ∈ Rd, t ∈ [0, 1].

Proof. Let t ∈ [0, 1], u ∈ Rd. Observe that (⊗ln=1|Pt,u,n|((Rd)l))l∈N is a decreasing
sequence and denote its limit by c ∈ [0, 1]. Note that

c = lim
l→∞

l∏
n=1

|Pt,u,n|(Rd)

≥
∣∣∣∣ lim
l→∞

l∏
n=1

Pt,u,n(Rd)

∣∣∣∣
=

∣∣∣∣ lim
l→∞

exp
(
t

l∑
n=1

qn(x, u)
)∣∣∣∣

= exp(tRe(q(x, u)))

> 0.

For an := Pt,u,n(Rd) = exp(tqn(0, u)), assumption (5) yields Π∞n=1an = exp(tq(0, u)) ∈ C.

By (4), (6) and Proposition B.6 the infinite convolutions Pt,u of (Pt,u,n)n∈N and Qt,u of
(|Pt,u,n|)n∈N exist and we have |Pt,u| ≤ Qt,u in the sense that the density is bounded by
one. Moreover, ∫

eivxPt,u(dv) = lim
l→∞

∫
eivx (Pt,u,1 ∗ · · · ∗ Pt,u,l) (dv)

= lim
l→∞

exp

(
t

l∑
n=1

qn(x, u)

)
= exp(tq(x, u))

for any x ∈ Rd. Hence, Pt,u satisfies (1).

By Proposition B.4 the infinite product measure P t,u of (Pt,u,n)n∈N exists. Let πn :

(Rd)N → Rd, (xl)l∈N 7→ xn. Then we have∣∣∣∣∫ |πn|2dP t,u∣∣∣∣ ≤ ∫ |πn|2d|P t,u|
=

c

|Pt,u,n|(Rd)

∫
v2|Pt,u,n|(dv)

≤ tKn(1 + |u|2)

and ∫
πnπmd|P t,u| =

c

|Pt,u,n|(Rd)|Pt,u,m|(Rd)

∫
v|Pt,u,n|(dv)

∫
w|Pt,u,m|(dw)

= 0,
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where we used (3) and (4). We conclude that∫ ∣∣∣∣ l∑
n=1

πn

∣∣∣∣2d|P t,u| = ∫ l∑
n=1

|πn|2d|P t,u|

≤
l∑

n=1

tKn(1 + |u|2)

≤ tK(1 + |u|2).

This implies ∫
v2Qt,u(dv) = lim

l→∞

∫ ( l∑
n=1

πn

)2

d|P t,u| ≤ tK(1 + |u|2).

Similar arguments show that Qt,u(Rd) ≤ 1 and
∫
vQt,u(dv) = 0. Thus we have∫

1 + |u+ v|2

1 + |u|2
|Pt,u|(dv) ≤

∫
1 + |u+ v|2

1 + |u|2
Qt,u(dv)

≤ 1 + tK

as desired.

Recall from Theorem 4.2 that uniqueness holds for symbol q in Lemma 5.11 if it
satisfies the requirements of Theorem 2.7. The functions qn will later be chosen from
the following lemma.

Lemma 5.12. Let n ∈ Rd, a, b ∈ C, k ∈ R such that Re(a) ≥ |b|. Then there is a complex
measure Pt for any t ∈ [0, 1] such that

1. P̂t(x) = exp(t(b cos(knx)− a)),

2. |Pt|(Rd) ≤ 1,

3.
∫
v|Pt|(dv) = 0,

4.
∫
|v|2|Pt|(dv) ≤ t|b||kn|2.

Moreover, there is a complex measure Qt such that

1. Q̂t(x) = exp(t(b sin(knx)− a)),

2. |Qt|(Rd) ≤ 1,

3.
∫
v|Qt|(dv) = 0,

4.
∫
|v|2|Qt|(dv) ≤ t|b||kn|2.

Proof. Let µ be a complex measure on Rd with total variation less or equal 1. Moreover,
let Pt := exp(−ta) exp(tbµ), cf. Appendix A. Then we have for all x ∈ Rd

P̂t(x) = exp(−ta) exp(tbµ̂(x)),

|Pt| ≤ exp(−tRe(a)) exp(t|b||µ|), (5.2)

|Pt|(Rd) ≤ exp(t(|b| − Re(a))) ≤ 1,∫
|v|2|Pt|(dv) ≤ t|b|

(∫
|v|2|µ|(dv) +

∣∣∣∣ ∫ v|µ|(dv)

∣∣∣∣2
)

for any x ∈ Rd, where (5.2) means that the measure on the left is absolutely continuous
with density at most one relative to the measure on the right. The last inequality follows
from Lemma A.4. For the specific choice µ = 1

2 (δnk + δ−nk), Lemma A.2 yields∫
v|Pt|(dv) = 0,
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which shows the first assertion. For the specific choice µ = 1
2i (δnk − δ−nk), Lemma A.3

implies ∫
v|Pt|(dv) = 0

and hence the second claim.

Lemma 5.13. Let q ∈ C(1,0)(Rd × Rd,C) be a symbol such that (x, u) 7→ q(x,u)
1+|u|2 and

(x, u) 7→ ∇1q(x,u)
1+|u|2 are bounded. Then q is (f -)Hölder continuous for

f(x) := min

{
2 sup
y,u∈Rd

|q(y, u)|
1 + |u|2

, |x| sup
y,u∈Rd

|∇1q(y, u)|
1 + |u|2

}
, x ∈ Rd.

In particular, if q satisfies the requirements of Theorem 4.4 for some ϕ, then q is Hölder-
continuous.

Proof. We have

|q(x, u)− q(y, u)| ≤ 2 sup
z,v∈Rd

|q(z, v)|
1 + |v|2

, x, y, u ∈ Rd.

Moreover, the fundamental theorem of calculus yields

|q(x, u)− q(y, u)| ≤ |x− y| sup
z,v∈Rd

|∇1q(z, v)|
1 + |v|2

, x, y, u ∈ Rd

and hence

|q(x, u)− q(y, u)| ≤ f(x− y), x, y, u ∈ Rd

as claimed.
Now assume that q satisfies the requirements of Theorem 4.4. Equation (4.2) yields

that |q(x, u)| ≤ g2(x)ϕ(u) for some continuous function g2 : Rd → R+ which is bounded
by some constant C1 < ∞. Since |ϕ(u)| ≤ C2(1 + |u|2) for some constant C2 < ∞, we
get |q(x, u)| ≤ C1C2(1 + |u|2). Moreover, we have |∂xjq(x, u)| ≤ g2(x)ϕ(u) and hence

(x, u) 7→ ∇1q(x,u)
1+|u|2 is bounded by C where C := C1C2d.

Lemma 5.14 (Fourier conditions). Let q ∈ C(1,0)(Rd × Rd,C) be a symbol with the
following properties.

1. q satisfies the requirements of Theorem 2.7.

2. There is a constant c > 0 such that |q(x, u)|+|∇1q(x, u)| ≤ c(1+|u|2) for all x, u ∈ Rd.
3. It has Fourier series representation, i.e. there are an(u), bn(u) ∈ C for all n ∈ Zd

and a constant k > 0 such that

q(x, u) =
∑
n∈Zd

(an(u) cos(knx) + bn(u) sin(knx)) (5.3)

and the family (an, bn)n∈Zd satisfies:

(a) the real part of −a0(u) dominates the absolute sum of the other coefficients,
i.e.

− Re(a0(u)) ≥
∑

n∈Zd\{0}

(|an(u)|+ |bn(u)|) (5.4)

for all u ∈ Rd and
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(b)

K := |k|2 sup

∑
n∈Zd

|n|2
(
|an(u)|
1 + |u|2

+
|bn(u)|
1 + |u|2

)
: u ∈ Rd

 <∞. (5.5)

Then existence and uniqueness holds for the q-martingale problem.

Proof. Lemma 5.13 states that q is Hölder continuous.
Since the coefficient b0 does not play any role in the representation of q we may

assume b0 = 0. Let u ∈ Rd, t ∈ [0, 1]. Then the Fourier series can be rewritten as

q(x, u) = ã0(u) +
∑

n∈Zd\{0}

(
(an(u) cos(knx)− |an(u)|) + (bn(u) sin(knx)− |bn(u)|)

)
,

where ã0(u) := a0(u) +
∑
n∈Zd\{0}(|an(u)|+ |bn(u)|) and Re(ã0(u)) ≤ 0. By Lemma 5.12

there are complex measures Pt,u,n, Qt,u,n, such that

1. P̂t,u,n(x) = exp(t(an(u) cos(knx)− |an(u)|)),
2. |Pt,u,n|(Rd) ≤ 1,

3.
∫
v|Pt,u,n|(dv) = 0,

4.
∫
|v|2|Pt,u,n|(dv) ≤ t|an(u)||kn|2

and

1. Q̂t,u,n(x) = exp(t(bn(u) sin(knx)− |bn(u)|)),
2. |Qt,u,n|(Rd) ≤ 1,

3.
∫
v|Qt,u,n|(dv) = 0,

4.
∫
|v|2|Qt,u,n|(dv) ≤ t|bn(u)||kn|2

for all n ∈ Zd \ {0}. Moreover, the measure Pt,u,0 := exp(tã0(u))δ0 satisfies

1. P̂t,u,0(x) = exp(tã0(u)),

2. |Pt,u,0|(Rd) = exp(tRe(ã0(u))) ≤ 1,

3.
∫
v|Pt,u,0|(dv) = 0,

4.
∫
|v|2|Pt,u,0|(dv) = 0.

Lemmas 5.11 and 5.9 yield uniqueness of the solution to the q-martingale problem.

The Fourier conditions in Lemma 5.14 might seem hard to verify. However, ellipticity
and Fourier ellipticity are almost equivalent as can be seen from the proof of the next
lemma.

Lemma 5.15. Let q be a continuous symbol such that q(·, u) ∈ C [d/2]+3(Rd,C) for all
u ∈ Rd and such that

1. q satisfies the requirements of the existence theorem 2.7 and

2. for every x0 there is a neighbourhood V of x0 and L < ∞ such that ψ := q(x0, ·)
satisfies

|∂βx q(x, u)| ≤ L|Re(ψ(u))|, (5.6)

|∂αx q(x, u)| ≤ L(1 + |u|2) (5.7)

for all x ∈ V, u ∈ Rd, β, α ∈ Nd with |β| ≤ [d/2] + 1 and |α| ≤ [d/2] + 3.

Then existence and uniqueness hold for the q-martingale problem.
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Proof. Step 1: Set m := [d/2] + 1 and let u ∈ Rd. W.l.o.g. we may assume that V is open,
convex, and bounded. The first inequality together with the mean value theorem implies

|q(x, u)− q(x0, u)| ≤ L|x− x0||Re(ψ(u))|

for all x ∈ V . Let ϕ ∈ C∞([0, 1]d, [0, 1]) such that it is constant 1 on [1/4, 3/4]d and
compactly supported in (0, 1)d. Set

Cϕ := sup{|∂αϕ(x)| : α ∈ Nd, |α| ≤ m+ 2, x ∈ Rd},

let ` ≥ 1 be large enough such that the cube centered at x0 of radius 1/` is contained in
V , and define

q` : [0, 1]d ×Rd → C, (y, u) 7→ ϕ(y)(q(γ`(y), u)− ψ(u)) + ψ(u),

where γ` : [0, 1]d → V, y 7→ y−h
` + x0 and h := ( 1

2 , . . . ,
1
2 ).

Step 2: For s ∈ {1, . . . ,m} we have

sup{|∂βy q`(y, u)| : y ∈ [0, 1]d, β ∈ Nd, |β| = s}
≤ sup{|q(γ`(y), u)− ψ(u)||∂βyϕ(y)| : y ∈ [0, 1]d, β ∈ Nd, |β| = s}

+2mCϕ sup{|∂βy (q(γ`(y), u)− ψ(u))| : y ∈ [0, 1]d, β ∈ Nd, 1 ≤ |β| ≤ s}
≤ LCϕ sup{|γ`(y)− x0| : y ∈ [0, 1]d}|Re(ψ(u))|

+2mCϕ
1

`
sup{|∂βx (q(x, u)− ψ(u))| : x ∈ V, β ∈ Nd, 1 ≤ |β| ≤ s}

≤ K1
|Re(ψ(u))|

`

with K1 := (1 + 2m)LCϕ. By [12, Theorem 3.2.16] there is another constant K2 < ∞
such that

‖q`(·, u)‖A(T ) ≤ K2
|Re(ψ(u))|

`

where ‖q`(·, u)‖A(T ) =
∑
n∈Zd\{0} |cn(u)| is the absolute sum of the Fourier coefficients

cn(u) :=

∫
[0,1]d

q`(x, u)e−2πinxdx, n ∈ Zd

except for the coefficient a0(u) := c0(u), which appears to be missing in the statement of
[12, Theorem 3.2.16]. Thus there is ` ≥ 2L such that

‖q`(·, u)‖A(T ) ≤
|Re(ψ(u))|

4
.

We also have

|Re(a0(u))− Re(ψ(u))| ≤ |a0(u)− ψ(u)|

≤
∫

[0,1]d
|q`(y, u)− ψ(u)|dy

≤ L|Re(ψ(u))|
∫

[0,1]d
|γ`(y)− x0|dy

≤ L
|Re(ψ(u))|

`

≤ |Re(ψ(u))|
2

,
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which implies |Re(ψ(u))| ≤ 2|Re(a0(u))|. For n ∈ Zd\{0} set

an := e2πin(h−`x0)cn,

bn := ie2πin(h−`x0)cn.

Then ∑
n∈Zd\{0}

(|an(u)|+ |bn(u)|) ≤ 2
∑

n∈Zd\{0}

|cn(u)|

= 2‖q`(·, u)‖A(T )

≤ |Re(ψ(u))|
and, h2

≤ |Re(a0(u))|
= −Re(a0(u)),

which implies (5.4).

Step 3: (5.5) can be deduced by applying [12, Proposition 3.1.2(10)] and the same
arguments as in Step 2 to ∆1q and using (5.7) instead of (5.6).

Step 4: Let U be the cube centered at x0 with radius 1/(4`). For x ∈ U with
y := γ−1

` (x) we have y ∈ [1/4, 3/4]d and

q`(y, u) = ϕ(y)(q(γ`(y), u)− ψ(u)) + ψ(u) = q(x, u).

Define q̃x0,`(x, u) := q̃`(γ
−1
` (x), u), x ∈ Rd, where q̃`(·, u) denotes the periodic continuation

of q`(·, u) to Rd. The inversion formula [12, Proposition 3.1.14] yields

q̃x0,`(x, u) = q̃`(y, u)

=
∑
n∈Zd

cn(u)e2πiny

=
∑
n∈Zd

cn(u)e2πin(h−`x0)e2πi`nx

=
∑
n∈Zd

(an(u) cos (2π`nx) + bn(u) sin (2π`nx))

=
∑
n∈Zd

(an(u) cos(knx) + bn(u) sin(knx))

where k := 2π`. Thus (5.3) holds for q̃x0,`.

Moreover, q̃`(·, u) satisfies the requirements of Theorem 2.7 and, together with Steps
2, 3, those of Lemma 5.14. The localisation theorem 5.4 yields that existence and
uniqueness holds for the q-martingale problem.

Proof of Theorem 4.4. q satisfies the requirements in Lemma 5.15.

A Convolutions and total variation

In this appendix we recall various properties of the total variation and the convolution
of complex measures on B(Rd). A complex measure on Rd is a function µ : B(Rd)→ C

such that µ(∪A∈ZA) =
∑
A∈Z µ(A) for any countable family Z ⊂ B(Rd) of pairwise

disjoint sets, cf. [6, Section §3.4]. We denote the set of complex measures on Rd by
C(Rd). A decomposition of a measurable set A is a finite system Z of pairwise disjoint
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measurable sets such that ∪B∈ZB = A. The total variation measure of µ is the measure
defined by

|µ|(A) := sup

{∑
B∈Z
|Q(B)| : Z is a decomposition of A

}
, A ∈ B(Rd).

The total variation of µ is defined by ‖µ‖ := |µ|(Rd). The product measure of complex
measures µ, ν on Rd resp. Rn is the complex measure µ⊗ ν on Rd ×Rn given by

(µ⊗ ν)(A×B) = µ(A)ν(B), A ∈ B(Rd), B ∈ B(Rn).

The convolution of complex measures µ, ν on Rd is the complex measure µ ∗ ν on Rd

defined by

(µ ∗ ν)(A) =

∫
µ(A− x)ν(dx), A ∈ B(Rd).

Complex measures µ, ν on Rd are called orthogonal if there is A ∈ B(Rd) such that
µ(B) = 0 for any Borel set B ⊂ A and ν(C) = 0 for any Borel set C ⊂ Rd\A. The Dirac
measure concentrated in a ∈ Rd is denoted by δa. The Fourier transform of a complex
measure µ on Rd is the function µ̂ : Rd → C given by

µ̂(u) :=

∫
ei〈u,x〉µ(dx).

A complex measure µ on Rd is symmetric (resp. anti-symmetric) if µ(A) = µ(−A) (resp.
µ(A) = −µ(−A)) for any A ∈ B(Rd).

Let us recall several properties of complex measures, which can be found or easily
derived from results in [6].

Lemma A.1. Let µ, ν be complex measures on Rd and η a complex measure on Rn. Then
the following statements hold.

1. |µ| is an R+-valued (and hence finite) measure.

2. |µ(A)| ≤ |µ|(A) for any A ∈ B(Rd).

3. µ is a regular measure in the sense of [6, Definition §15.2.1].

4. ‖ · ‖ is a complete norm on C(Rd).
5. (Hahn-Jordan decomposition) There are R+-valued measures µ1, µ2, µ3, µ4 such

that
µ = (µ1 − µ2) + i(µ3 − µ4),

where µ1, µ2 are orthogonal and µ3, µ4 are orthogonal.

6. A measurable function f : Rd → C is µ-integrable if and only if it is |µ|-integrable
and in that case ∣∣∣∣∫ fdµ∣∣∣∣ ≤ ∫ |f |d|µ|.

7. Any bounded measurable function f : Rd → C is µ-integrable.

8. For any µ ∗ ν-integrable function f we have∫
f(v)(µ ∗ ν)(dv) =

∫ ∫
f(v + w)µ(v)ν(w).

9. |µ ∗ ν| is absolutely continuous with respect to |µ| ∗ |ν| with density bounded by 1.

10. ‖µ ∗ ν‖ ≤ ‖µ‖‖ν‖
11. |µ⊗ η| = |µ| ⊗ |η|
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12. If µ and ν are orthogonal, then |µ+ ν| = |µ|+ |ν|.
13. (C(Rd),+, ∗, ‖ · ‖) is a complex commutative Banach algebra with unit δ0.

14. The Fourier transform ˆ is a one-to-one homomorphism of algebras which is contin-
uous with respect to the total variation norm and the uniform norm, respectively.

15. µ is symmetric resp. anti-symmetric if its Fourier transform is a symmetric resp.
anti-symmetric function.

For an introduction to analytic functional calculus see e.g. [26, Definition 3.3.1]. For
a complex measure µ and a function f : C→ C which is holomorphic on a neighbourhood
of the spectrum σ(µ) := {z ∈ C : zδ0 − µ is ∗-invertible} of µ we write f(µ) for the
complex measure obtained by the analytic functional calculus applied to µ and f .

Lemma A.2. Let µ be a complex measure on Rd. If µ is symmetric or anti-symmetric,
then |µ| is symmetric. If f : C→ C is holomorphic on a neighbourhood of the spectrum
of µ and µ is symmetric, then f(µ) is symmetric. If f is an odd entire function and µ

is anti-symmetric, then f(µ) is anti-symmetric. If f is an even entire function and µ is
anti-symmetric, then f(µ) is symmetric.

Proof. Let µ be symmetric or anti-symmetric and A ∈ B(Rd). Let ε > 0 and Z be a
decomposition of A such that

|µ|(A) ≤ ε+
∑
B∈Z
|µ(B)|.

Then

|µ|(A)− ε ≤
∑
B∈Z
|µ(−B)| ≤ |µ|(−A).

Hence |µ|(A) ≤ |µ|(−A) ≤ |µ|(A), which implies symmetry.

Let µ be symmetric, f an entire function and z ∈ C. Then zδ0 − µ is symmetric. If z is
not in the spectrum of µ, then the measureR(z, µ) with the property (zδ0−µ)∗R(z, µ) = δ0
is symmetric as well. Thus

f(µ) =
1

2πi

∫
Γ

f(z)R(z, µ)dz

is symmetric as well, where Γ is a suitable integration path.

Now let µ be anti-symmetric and z ∈ C outside of the spectrum of µ. Then

(R(z, µ)−R(−z, µ))̂ (u) =
1

z + µ̂(u)
+

1

z − µ̂(u)
, u ∈ Rd.

By Lemma A.1(15) αz := R(z, µ)−R(−z, µ) is symmetric. Similar arguments yield that
βz := R(z, µ) +R(−z, µ) is anti-symmetric and we obviously have R(z, µ) = 1/2(αz + βz).
Let Γ be a symmetric path around the spectrum of µ. Then

f(µ) =
1

4πi

∫
Γ

f(z)αzdz +
1

4πi

∫
Γ

f(z)βzdz. (A.1)

Observe that the first summand is symmetric and the second summand is anti-symmetric.
If f is even, then the first summand vanishes and hence f(µ) is symmetric. If f is odd,
then the second summand vanishes and hence f(µ) is anti-symmetric.

Lemma A.3. Let µ = z(δa − δ−a) for some a ∈ Rd, z ∈ C. Then | exp(µ)| is symmetric.
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Proof. For w ∈ C with |w| > 2|z| define

αw := R(w, µ)−R(−w, µ),

βw := R(w, µ) +R(−w, µ),

where R(w, µ) is the complex measure such that R(w, µ) ∗ (wδ0 − µ) = δ0. From their
Fourier transforms we conclude that that αw is supported on O := {ka : k ∈ Z, k is odd}
and βw is supported on E := {ka : k ∈ Z, k is even}. By (A.1) and the subsequent
observation, sinh(µ) is concentrated on O while cosh(µ) is concentrated on E. Proposition
A.1 yields

| exp(µ)| = | sinh(µ)|+ | cosh(µ)|.

Lemma A.2 yields that | exp(µ)| is the sum of symmetric measures and hence symmetric.

Lemma A.4. Let µ be a complex measure on Rd such that
∫
|v|2|µ|(dv) <∞. Then

exp(µ)(Rd) = exp(µ(Rd)),∫
v exp(µ)(dv) =

∫
vµ(dv) exp(µ(Rd)), (A.2)∫

|v|2 exp(µ)(dv) =

(∫
|v|2µ(dv) +

∣∣∣∣∫ vµ(dv)

∣∣∣∣2
)

exp(µ(Rd)) (A.3)

where existence of the integral on the left hand side of the third equality is implied by
assumption.

Proof. The first claimed equality follows from Lemma A.1(8).
In order to show (A.3), we start by verifying that

∫
|v|2| exp(µ)|(dv) < ∞, which

implies that the integral on the left-hand side of (A.3) exists. To this end let a := |µ|(Rd),
b :=

∫
v|µ|(dv) and c :=

∫
|v|2|µ|(dv) be the zeroth, first, and second moment of the total

variation measure |µ|. We have∫
|v|2| exp(µ)|(dv) ≤

∫
|v|2 exp(|µ|)(dv)

=

∞∑
n=0

1

n!

∫
|v|2|µn|(dv)

=

∞∑
n=0

1

n!

∫
· · ·
∫ ( n∑

i=1

|vi|2 +

n∑
i,j=1

i6=j

〈vi, vj〉

)
|µ|(dv1) . . . |µ|(dvn)

=

∞∑
n=0

1

n!

(
nan−1c+ n(n− 1)an−2|b|2

)
= (c+ |b|2) exp(a)

<∞.

Repeating the equalities and defintions of a, b, c with µ instead of |µ| yields (A.3).
Equation (A.2) follows easily similarly.

B Infinite product measures and convolutions

In this section we recall the definition and properties for infinite product measures
and infinite convolution for complex Borel measures on Rd. Denote by B(Rd)N the
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σ-algebra on (Rd)N which is generated by the mappings

πn : (Rd)N → Rd, (xk)k∈N 7→ xn.

It is also generated by the algebra

R :=
⋃
n∈N

σ(π1, . . . , πn).

Definition B.1. Let (µn)n∈N be a sequence of complex Borel measures on Rd and define
an := µn(Rd), n ∈ N. Assume that a := Π∞n=1an exists in C. A complex Borel measure µ
on ((Rd)N,B(Rd)N) is the infinite product measure of (µn)n∈N if∫

f(π1, . . . , πn)dµ =
a

Πn
j=1aj

∫
· · ·
∫
f(x1, . . . , xn)µ1(dx1), . . . , µn(dxn) (B.1)

for any n ∈ N and any bounded measurable function f : (Rd)n → R.

If it exists, the infinite product measure is unique because it is unique on R. It is
denoted by ⊗∞n=1µn. The following existence statement is classical.

Proposition B.2. Let (Pn)n∈N be a sequence of probability measures on Rd. Then there
is a unique probability measure P on ((Rd)N,B(Rd)N) such that (πn)n∈N is a sequence
of independent random variables with Pπn = Pn.

This can be easily lifted to finite measures as long as the product of their total mass
converges to a finite non-zero number.

Lemma B.3. Let (µn)n∈N be a sequence of finite Borel measures on Rd and define
an := µn(Rd) for any n ∈ N. Assume that a := Π∞n=1an ∈ (0,∞). Then the infinite product
measure of (µn)n∈N exists.

Proof. Define Pn := µn/an. Then (Pn)n∈N satisfies the requirements of Proposition B.2
and, hence, there is a probability measure P as in Proposition B.2. The measure µ := aP

has the required property.

Proposition B.4. Let (µn)n∈N be a sequence of complex Borel measures on Rd and
define an := µn(Rd) and cn := |µn|(Rd) for any n ∈ N. Assume that c := Π∞n=1cn ∈ (0,∞)

and that a := Π∞n=1an exists in C. Then the infinite product measure (µn)n∈N exists and
we have | ⊗∞n=1 µn| = ⊗∞n=1|µn|.

Proof. By Lemma B.3 the infinite product measure ν of (|µn|)n∈N exists. Define a
mapping µ̃ : R → C via

µ̃((π1, . . . , πn)−1(A)) =
a

Πn
j=1aj

∫
· · ·
∫

1A(x1, . . . , xn)µ1(dx1), . . . , µn(dxn) (B.2)

for A ∈ B(Rd)n, n ∈ N. It is easy to verify that µ̃ is a well-defined finitely additive
measure on R. Since ν is σ-additive and hence continuous in ∅, this also holds for µ̃.
Carathéodory’s extension theorem yields that µ̃ can be extended to a measure µ on
B(Rd)N. Equation (B.2) implies that (B.1) holds and hence µ is the product measure of
(µn)n∈N. From Lemma A.1(11) it follows that |µ| coincides with ⊗∞n=1|µn| on R and hence
on B(Rd)N = σ(R).

Now we turn to infinite convolutions which roughly coincide with pushforward
measures of infinite sums of independent random variables.
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Definition B.5. Let (µn)n∈N be a sequence of complex Borel measures on Rd. A complex
Borel measure η on Rd is the infinite convolution of (µn)n∈N if∫

f(x)η(dx) = lim
n→∞

∫
f(x)(∗nk=1µk)(dx)

for any bounded continuous f : Rd → R.

Observe that the infinite convolution is uniquely defined by the limiting property if it
exists. It is denoted as ∗∞n=1µn. We give a simple criterion for its existence.

Proposition B.6. Let (µn)n∈N be a sequence of complex Borel measures on Rd and
define cn := |µn|(Rd) and an := µn(Rd) for any n ∈ N. Assume that c := Π∞n=1cn ∈
(0,∞), that a := Π∞n=1an ∈ C, that

∑∞
n=1

∫
|v|2|µn|(dv) < ∞, and that

∫
v|µn|(dv) = 0,

n ∈ N. Then the infinite convolutions of (µn)n∈N as well as (|µn|)n∈N exist. Moreover,
| ∗∞n=1 µn| ≤ ∗∞n=1|µn|.

Proof. The measure P := | ⊗∞n=1 µn|/c is a probability measure and πn is a sequence of
independent random variables relative to P . Since limn→∞ cn = 1, we have

∞∑
n=1

∫
|πn|2dP =

∞∑
n=1

c−1
n

∫
|v|2|µn|(dv) <∞

and hence (
∑n
k=1 πk)n∈N converges in L2((Rd)N,B(Rd)N, P ) and hence in probability to

some random variable S. Set η := (⊗∞n=1µn)S . For any bounded continuous function
f : Rd → R we obtain∣∣∣∣∣

∫ (
f(S)− f

( n∑
k=1

πk

))
d(⊗∞n=1µn)

∣∣∣∣∣ ≤
∫ ∣∣∣∣f(S)− f

( n∑
k=1

πk

)∣∣∣∣d| ⊗∞n=1 µn|

= c

∫ ∣∣∣∣f(S)− f
( n∑
k=1

πk

)∣∣∣∣dP
→ 0

for n→∞ and hence∫
f(x)η(dx) =

∫
f(S)d(⊗∞n=1µn)

= lim
n→∞

∫
f

( n∑
k=1

πk

)
d(⊗∞n=1µn)

= lim
n→∞

a∏n
k=1 ak

∫
· · ·
∫
f

( n∑
k=1

xk

)
µ1(dx1) · · ·µn(dxn)

= lim
n→∞

∫
f(x)(∗nk=1µk)(dx)

as desired for the infinite convolution. The existence of ∗∞n=1|µn| follows along the same
lines by setting γ := | ⊗∞n=1 µn|S .

The last statement follows from |(⊗∞n=1µn)S | ≤ | ⊗∞n=1 µn|S .
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[10] D. Filipović, and M. Larsson. Polynomial diffusions and applications in finance. Finance and
Stochastics, 20:931–972, 2016. MR-3551857
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