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Abstract

Plaquette models are short range ferromagnetic spin models that play a key role in
the dynamic facilitation approach to the liquid glass transition. In this paper we study
the dynamics of the square plaquette model at the smallest of the three critical length
scales discovered in [7]. Our main results are estimates of the spectral gap and mixing
time for two natural boundary conditions. As a consequence, we observe that these
time scales depend heavily on the boundary condition in this scaling regime.
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Mixing of the square plaquette model

1 Introduction

In this paper we consider the dynamics of the square plaquette model (SPM) at low
temperature. Spin plaquette models were originally associated with glassy behaviour
in [13, 20], where it was argued that they have more physically-realistic dynamics and
thermodynamic properties than kinetically-constrained models, while remaining math-
ematically tractable. These models have also recently been generalised to quantum
systems, called fracton models, which show extremely similar relaxation behaviour
[3, 19]. Plaquette models are defined over an integer lattice Λ ⊆ Zd, and configurations
of the plaquette model correspond to ±1-valued labellings of the lattice Λ. Every config-
uration of the SPM has an associated energy given by certain short range ferromagnetic
interactions that are defined in terms of the plaquettes, a collection of subsets of Z2

denoted by P.

More formally, plaquette models are families of probability distributions with state
space {−1,+1}Λ. Every configuration σ ∈ {−1,+1}Λ has an associated energy value,
given by the Hamiltonian

H(σ) = −1

2

∑
P∈P

∏
x∈P

σx .

For any fixed inverse-temperature β > 0, we then associate to this Hamiltonian the
probability distribution πβΛ on {−1, 1}Λ given by πβΛ(σ) ∝ exp(−βHΛ(σ)). In the case of
the SPM, we always take Λ ⊂ Z2 and the plaquettes are exactly the collection of unit
squares contained in Λ. There are several natural Markov chains associated with these
probability distributions, many of which have very similar behaviour. In this paper we
study the most popular of these Markov chains, the continuous-time single-spin Glauber
dynamics (also known as the Gibbs sampler). Roughly speaking, this Markov chain
evolves from a configuration σ by choosing a random site x ∈ Λ at unit rate and then
updating the value σ(x) conditional on {σ(y)}y∈Λ\{x} according to the measure πβΛ.

Despite the relatively simple form of the Hamiltonian, the thermodynamics of these
measures is non trivial [7]. Although there is no phase transition in the SPM (i.e. there
is a unique infinite volume Gibbs measure for each β), static correlation lengths grow
extremely quickly as the temperature tends to zero (β →∞). Furthermore, the ground
states (configurations σ that minimise H(σ)) depend on the boundary conditions, and are
often highly degenerate. It turns out that this plays an important role for the dynamics of
the process. In this paper we consider the dynamics of the SPM in the low temperature
regime, i.e. as β →∞, on the smallest of the critical length scales in [7].

Plaquette spin models, under single spin-flip Glauber dynamics, have recently at-
tracted a great deal of attention in the physics literature in the context of glassy materials
(see e.g. [17] and references therein). Understanding the liquid-glass transition and the
dynamics of amorphous materials remains a significant challenge in condensed matter
physics (for a review see [1]). One particularly successful approach to studying such
systems, known as dynamic facilitation, supposes that local relaxation events facilitate
further relaxation events in neighbouring regions, but in the absence of such events
the system is locally unable to change state (transitions are blocked ). This idea led to
the introduction of a class of interacting particle systems called kinetically constrained
models (KCMs), which feature trivial stationary measures but complicated dynamics.
These models display many of the key features of glassy systems, such as aging [10]
and dynamical heterogeneity [4], and have been extremely well studied in both the
mathematical and physics literature (see [14] for a review). There are two crucial diffi-
culties in justifying KCMs as models for the liquid glass transition: it is not clear how
kinetic constraints emerge from the microscopic dynamics of many-body systems, and,
since KCMs have trivial thermodynamics, KCMs cannot account for the growth of static
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Mixing of the square plaquette model

correlations. It turns out that plaquette spin models address both these issues, and in
particular their dynamics are effectively constrained [13, 20].

The dynamics of plaquette spin models has been the focus of several works in the
physics literature. Initial simulations clearly indicate the occurrence of glassy dynamics
(extremely slow relaxation) at low temperature [16, 20]. The products

∏
x∈P σx of the

spins over the individual plaquettes P ∈ P play an important role in studying these
dynamics. These products are called the plaquette variables, and a plaquette variable
equal to −1 is said to be a defect. In the SPM, we note that the plaquettes can be
naturally identified with their lower-left corner, and so the plaquette variables also form
a spin system on an integer lattice.

At low temperature, it is natural to describe the dynamics of the SPM via the locations
of the defects, which are effectively constrained. Indeed, flipping a single spin will flip
the value of all the plaquette variables whose plaquettes contain the corresponding site –
in the SPM, this means flipping the four adjoining plaquette variables. If the plaquette
variables associated to the four plaquettes containing a given spin are currently all
+1 (i.e. there are no defects) then the spin flips at an extremely slow rate of e−4β; if
there is currently one defect associated with the spin and the other plaquette variables
are positive then the spin flips with rate e−2β; finally, if there are two or more defects
associated with a spin, then it flips with rate 1 (see Figure 1). For this reason, defects are
infrequently created, and isolated defects move extremely slowly, while paired defects
can move quickly.

Simulations, and heuristic analysis based on this observation, suggest that for the
SPM the relaxation time scales like ecβ (Arrhenius scaling), and that the dynamics are
closely related to those of the Fredrickson-Andersen KCM for which mixing properties
have been well studied (see [23, 24, 2] and references therein). On the other hand, in a
related model called the triangular plaquette model the relaxation time is expected to
scale like ecβ

2

(super-Arrhenius scaling) [13]. These dynamics are closely related to a
particularly KCM known as the East model which has been widely studied (see [5, 11, 12]
and references therein). This difference between Arrhenius and super-Arrhenius scaling
is fundamental due to the nature of the energy barriers that should be overcome to bring
isolated defects together and annihilate them. Despite their importance, as far as we are
aware this work represents the first rigorous results related to the dynamics of plaquette
spin models.

Our main results are on the dynamics of the SPM in boxes Λ = {1, 2, . . . , L}2 with
side length L given by what physicists call the critical length scale – the correlation
length for the product of spin variables in the infinite volume Gibbs measure. In [7],
this critical length scale was shown to satisfy L ≈ e

β
2 as β → 0. Our results show that

the relaxation time (inverse spectral gap) and total variation mixing times indeed have
Arrhenius scaling on this critical length scale. We also show that, on this length scale,
the relaxation time has a dramatic dependence on the boundary conditions, a phenomena
that has been previously observed for certain kinetically constrained models [6].

Our first result is that, for the SPM in boxes of side length L ≈ e
β
2 with all plus

boundary conditions, the relaxation time scales as e3.5β up to polynomial factors in β as
β →∞. Furthermore, the total variation mixing time in this case is between e3.5β and
e4β (See Theorem 3.1). Our second main result is on the same length scale for periodic
boundary conditions. We find that with periodic boundary conditions on the critical
length scale the relaxation time and total variation mixing time both scale as e4β up to
polynomial corrections in β (see Theorem 3.2).

It turns out that these different time scales are caused by the structure of the ground
states. In particular, with all plus boundary conditions there is a unique ground state
(all sites have spin +1), and the low temperature dynamics are dominated by the time
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to reach the ground state. On the other hand with periodic boundary conditions there
are 22L−1 ground states, where L is the side length of the box, which correspond to
flipping all the spins in any set of rows and columns with respect to the all plus state. In
this case the dynamics are dominated by an induced random walk on the ground states.
It is possible to construct boundary conditions such that there are a small number of
very well separated ground states (see Remark 3.5). In this case we conjecture that the
relaxation time is at least e4.5β . In a companion paper [8], we give Arrhenius bounds on
the mixing time and spectral gap for all boundary conditions for length L� e

β
2 .

The main tools used in the proof of the upper bounds will be detailed canonical path
bounds using multi-commodity flows [25], combined with the spectral profile method
introduced in [15]. Rather surprisingly, it turns out that a lot of effort is required to
construct flows which do not have very bad congestion on edges connecting certain low-
probability configurations with many defects. The main difficulty, informally sketched in
Section 2.5 and near the beginning of Section 5.3, is common to plaquette models and
other models for which mixing is greatly facilitated by the exchange of small, short-lived,
and rapidly-moving configurations of interacting particles (see Figure 1). In particular
we believe that much of the effort in constructing the multi-commodity flows will be
useful also for the study of other plaquette models. To prove the upper bounds in the
case of periodic boundary conditions we compare the trace of the process on the ground
states with the simple random walk on the hypercube, and use several times the result
that mixing times are related to the hitting times of large sets [21, 22].

1.1 Guide to paper

We begin by setting basic notation for the paper in Section 2. This section also
includes a heuristic description of the dynamics of the SPM near stationarity. This
heuristic guides our proof strategy and also suggests the final results, and we suggest
that readers fully digest this heuristic before reading the more precise proofs. Section
3 includes a precise statement of our main results. Section 4 gives some important
basic results that will be used frequently throughout the paper, including a description
of all possible plaquette configurations and a concentration result for the number of
defects under the stationary measure. Section 5 is the bulk of the paper. It describes the
canonical path method, derives some specific forms of these bounds that will be used in
this paper, constructs two families of canonical paths that will be used to analyze the
SPM, and gives detailed bounds on the properties of these paths. The start of this section
includes a more detailed guide to its contents. Finally, Sections 6 and 7 contain the
proofs of our main results: bounds on the mixing and relaxation time for the all-plus and
periodic boundary conditions respectively. Both sections rely heavily on the canonical
path arguments for their upper bounds, and use ad-hoc constructions of special test
functions for their lower bounds.

2 Notation and background

2.1 Basic conventions

We denote the two canonical basis vectors of Z2 by e1 = (1, 0) and e2 = (0, 1). For
x ∈ Z2 we denote its projection on e1 and e2 by x1 and x2 respectively. We define the
shorthand [a :b] = {a, a+ 1, . . . , b} when b− a ∈ N.

Given Λ ⊆ Z2 we will denote by ΩΛ the state space of the plaquette model, given by
{−1, 1}Λ, endowed with the product topology. We let Ω = ΩZ2 . Given A ⊂ Λ ⊆ Z2 and a
configuration σ ∈ ΩΛ we define σ|A as the restriction of σ to A. We define the plaquette
at site x ∈ Z2 by the set of four sites Bx = {x, x+ e1, x+ e2, x+ e1 + e2}. For short we
also write Bx = Bx−e1−e2 = {x, x− e1, x− e2, x− e1 − e2}.
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For functions f, g : R+ 7→ R+ we write f = O(g) if there exists 0 < C,X <∞ so that
f(x) 6 C g(x) for all x > X. We also write f = o(g) if limx→∞

f(x)
g(x) = 0, and we write

f = Ω(g) if g = O(f). Finally, we write f = Θ(g) if both f = O(g) and g = O(f). To save
space, we also write f . g for f = O(g), we write f & g for f = Ω(g), and we write
f � g for f = Θ(g). Similarly, to save space, all inequalities should be understood to hold
only for all β > β0 sufficiently large. For example, we may write eβ > β + 25 without
additional comment. Since all of our results are asymptotic as β goes to infinity, this
convention will not cause any difficulties. For any function f : A → B, we denote the
image of f by f(A).

Finally, we define two orders on Z2. For x 6= y ∈ Z2, we say that x is less than y in
lexicographic order1 if and only if one of the two following conditions hold:

1. x2 > y2, or

2. x2 = y2 and x1 < y1.

Similarly, we say that x is less than y in anti-lexicographic order if and only if one of the
two following conditions hold:

1. x2 > y2, or

2. x2 = y2 and x1 > y1.

By a small abuse of notation, we say that a set S1 is less than a set S2 in lexicographic
order if every element of S1 is less than every element of S2.

2.2 Equilibrium Gibbs measures

We will define the finite volume Gibbs measures on Λ ⊂ Z2 with fixed and periodic
boundary conditions. Let B(Λ) = {x ∈ Z2 : Bx ∩ Λ 6= ∅} be the set of plaquettes which
intersect Λ, indexed by their bottom left site, and let B−(Λ) = {x ∈ Z2 : Bx ⊂ Λ} (if Λ

is a rectangle, then B−(Λ) is just Λ without the left most column and bottom row). For
a boundary condition τ ∈ Ω we will denote by ΩτΛ = {σ ∈ Ω : σ|Λc ≡ τ |Λc}. Finally we
denote the external boundary of Λ by ∂(Λ) = ∪x∈B(Λ)Bx \ Λ.

For fixed boundary conditions τ , the plaquette variables associated with a spin
configuration are defined by the map pτ : ΩτΛ → ΩB(Λ) which is given by the formula

pτx(σ) =
∏
y∈Bx

σy = σ(x1,x2)σ(x1+1,x2)σ(x1,x2+1)σ(x1+1,x2+1) , for x ∈ B(Λ) . (2.1)

Similarly, for periodic boundary conditions on a box Λ = [0:L1 − 1]× [0 :L2 − 1], define
pper : ΩΛ → ΩΛ by

pper
x (σ) =

∏
y∈Bx

σy = σ(x1,x2)σ(x1+1,x2)σ(x1,x2+1)σ(x1+1,x2+1) , for x ∈ Λ , (2.2)

where the sums x1+1 and x2+1 above are taken modulo L1 and L2 respectively. We
say there is a defect in σ at x ∈ B(Λ) if pτx(σ) = −1 (similarly for periodic boundary
conditions). By a small abuse of notation, we consider “per” to be a boundary condition.

For σ ∈ ΩΛ or ΩτΛ let |σ| = |{x ∈ Λ : σx = −1}| denote the number of minus spins and
|pτ (σ)| = |{x ∈ B(Λ) : pτx(σ) = −1}| the number of defects (similarly for |pper(σ)|). We
define a partial order on plaquette variables with respect to defects by

pτ (σ) 6 pτ (η) ⇐⇒ {x ∈ B(Λ) : pτx(σ) = −1} ⊂ {x ∈ B(Λ) : pτx(η) = −1} , (2.3)

1There are several different “lexicographic” orders in the literature. The order in this paper corresponds to
the order in which words are read in English if the Cartesian plane is drawn in the usual way.
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similarly for periodic boundary conditions.
We define the Hamiltonian Hτ

Λ : ΩτΛ → R with boundary condition τ by

Hτ
Λ(σ) = −1

2

∑
x∈B(Λ)

pτx(σ) , (2.4)

and similarly for periodic boundary condition. The finite volume Gibbs measure on Λ

with boundary condition τ is then denoted by πτΛ and given by

πτΛ(σ) =
e−βH

τ
Λ(σ)

ZτΛ(β)
, (2.5)

where ZτΛ(β) =
∑
σ∈ΩτΛ

e−βH
τ
Λ(σ) is the partition function. The analogous formula gives

the finite volume Gibbs measure πper
Λ for periodic boundary conditions. For brevity,

if τ ≡ ±1 we will replace τ with ±; for example we write H+
Λ , π+

Λ for plus boundary
conditions. Also, where there is no confusion, we denote by + ∈ Ω the configuration of
all +1 spins. When the boundary conditions and lattice are clear from the context, we
may drop the boundary condition superscript and the lattice subscript.

It follows from (2.4), (2.5) and Lemmas 4.1 and 4.2 in Section 4, that the measure
induced by πτΛ on the plaquette variables satisfy

πτΛ(pτ (σ) = p) ∝ e−β|p|1pτ (ΩτΛ)(p), for p ∈ ΩB(Λ) . (2.6)

Also, since |p+(+)| = |pper(+)| = 0, we will frequently use

πτΛ(σ) = πτΛ(+)e−β|p
τ (σ)| , for σ ∈ ΩτΛ, and τ ∈ {+,per} . (2.7)

2.3 Finite volume Glauber dynamics

For a set S ⊂ Λ and σ ∈ ΩΛ, denote by σS the configuration obtained by flipping all
the spins of σ that lie in S. With slight abuse of notation, we define σx = σ{x} for x ∈ Λ.

Given a finite region Λ and boundary condition τ , we consider the continuous time
Markov process determined by the generator

LτΛf(σ) =
∑
x∈Λ

cτΛ(x, σ)(f(σx)− f(σ)) =
∑
x∈Λ

cτΛ(x, σ)∇xf(σ) , (2.8)

where we define ∇xf(σ) = (f(σx) − f(σ)), and where the Metropolis spin-flip rates
cτΛ(x, σ) are given by the formula

cτΛ(x, σ) =

{
e−β(HτΛ(σx)−HτΛ(σ)) if Hτ

Λ(σx) > Hτ
Λ(σ) ,

1 otherwise.
(2.9)

With a slight abuse of notation, we denote the elements of the associated transition rate
matrix by by LτΛ(σ, η), for σ, η ∈ ΩτΛ. The process is reversible with respect to the finite
volume equilibrium measure πτΛ.

Remark 2.1. All our results hold equally well for the standard heat-bath dynamics, since(
1 + eβ(HτΛ(σx)−HτΛ(σ))

)−1 � min{e−β(HτΛ(σx)−HτΛ(σ)), 1} for large β.

Since Hτ
Λ(σ) only depends on the plaquette variables, the spin dynamics also induce

a dynamics on these “defect” variables which is Markov. The generator of the defect
dynamics is given by

QτΛf(p) =
∑
x∈Λ

kτΛ(x, p)
(
f(pBx)− f(p)

)
, (2.10)
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where we recall

pBxz =

{
−pz if z ∈ Bx = {x− e1 − e2, x− e1, x− e2, x} ,
pz otherwise.

From (2.9), the transition rates for this process are given by

kτΛ(x, p) = min
{

exp
[
β
(
|p| − |pBx |

)]
, 1
}
. (2.11)

2.4 Measures of mixing rate

We set notation for some common notions related to mixing rates. The Dirichlet form
associated with LτΛ is denoted by DτΛ(f) = −πτΛ(fLτΛf), and it satisfies the formula

DτΛ(f) =
1

2

∑
η∈Ω

∑
x∈Λ

πτΛ(η)cτΛ(x, η) (∇xf(η))
2
. (2.12)

Define VarτΛ(f) to be the variance of f with respect to πτΛ.

Definition 2.2 (Relaxation time). The smallest positive eigenvalue of −LτΛ is called the
spectral gap and it is denoted by gap(LτΛ). It satisfies the Rayleigh-Ritz variational
principle

gap(LτΛ) := inf
f : ΩΛ 7→R

f non constant

DτΛ(f)

VarτΛ(f)
. (2.13)

The relaxation time T τrel(Λ) is defined as the inverse of the spectral gap:

T τrel(Λ) =
1

gap(LτΛ)
. (2.14)

If Λ = [1 : L]2 we simply write T τrel(L).

Definition 2.3 (Total Variation Distance). We denote the total variation distance between
two measures µ, ν on a common σ-algebra F by:

‖µ− ν‖TV = sup
A∈F
|µ(A)− ν(A)|.

Definition 2.4 (Mixing time). We denote by

T τmix(Λ) = inf{s > 0 : max
σ∈ΩΛ

‖esLτΛ(σ, ·)− πτΛ(·)‖TV < 1/4}

the mixing time of LτΛ. If Λ = [1, L]2 we simply write T τmix(L).

We define the critical scale as the correlation length for the product of spin variables
in the infinite volume Gibbs measure, see [7] for further details and other important
length scales.

Definition 2.5 (The critical scale). We define the critical length scale by Lc = be β2 c.

2.5 Heuristics for mixing with + boundary

Call a configuration (other than the ground state) metastable if no plaquette has
more than one defect, and unstable otherwise. As the unstable states are short-lived, we
concentrate on the transitions between “nearby” low-energy metastable states.

Due to parity constraints (see Lemma 4.1), the lowest-energy metastable configura-
tions have exactly four defects, placed at the vertices of a rectangle. Starting the SPM
process in such a “rectangular” configuration, with height and width of the associated
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Figure 1: The spin configuration is represented by + (red) and − (blue) on the lattice.
The black circles represent defects (−1 plaquette variables), which are associated with
the site at the bottom left of the corresponding plaquette. Dashed lines separate regions
of + and − spins. The labeled arrows indicate the associated transition rates. An isolated
defect creates two defects at rate e−2β, subsequently a pair of defects is emitted and
moves along an edge of the rectangle according to a simple random walk, and is then
annihilated upon colliding with another defect (possibly the defect that emitted the
pair). Right: the only type of transition not included on the left is to add or remove four
neighbouring defects.

rectangle at least four, it is overwhelmingly likely that the next metastable configuration
will be another “rectangular” configuration, with either height or width changed by
exactly one. The typical intermediate dynamics between such metastable states are
shown in Figure 1.

Note that the “rectangular” configurations are entirely determined by the upper-
left and lower-right vertices. Following the heuristic of Figure 1, these corner defects
perform nearly-independent simple random walks as shown in Figure 2. A routine SRW
calculation says that this rectangle will collapse to the unique ground state in a time
that scales like Θ

(
e3.5β

)
. Since typical configurations have few defects, it is natural to

guess that the relaxation time of these simple configurations will be very close to the
relaxation time of the full process. This turns out to be correct, and will guide our proof.
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Figure 2: The defects at the corners of a box perform random walks at different rates:
they move left-right at rate H−1e−2β and up-down at rate W−1e−2β, where H is the
height of the box and W is its width. These random walks are close to independent for β
large.
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Mixing of the square plaquette model

The canonical path method (see Section 5.1) can be used to extend this heuristic
argument to configurations with many defects. If we restrict our attention to configu-
rations whose defects form non-overlapping rectangles, the following canonical path
construction would again give an O(e3.5β) bound on the relaxation time:

1. Pick a rectangle uniformly at random.

2. Follow a minimal-length path that collapses this rectangle without ever adding
more than 2 defects to the initial configuration, as given by the heuristic in Figures
1 and 2.

3. If any defects remain, go back to step (1).

In other words, if the rectangles don’t overlap, we can essentially treat them as
evolving independently. Unfortunately, configurations with overlapping rectangles are
possible. Allowing for overlaps, this simple path has very high congestion and so gives
very poor bounds (see Figure 5). This problem occurs essentially becase the pairs of
short-lived particles in Figure 2 can “interact” in this situation, and a similar problem
is expected to occur in other plaquette models. In Section 5.3 we will show that it is
possible to salvage our heuristic calculations by choosing rectangles according to a
much more complicated rule. This rule is governed by a “soft” selection process that
focuses on the most “prominent” rectangles. We use this to show that, on average,
these interactions between short-lived defect pairs don’t contribute significantly to
the congestion. We suspect that this basic approach can be used to analyze similar
interacting-particle systems (in particular other plaquette models).

3 Main results

We give bounds on the mixing and relaxation time of the square plaquette model on
the critical scale:

Theorem 3.1 (Mixing and Relaxation Times for Plus Boundary Conditions). The square
plaquette process with all plus boundary conditions, on the critical scale, satisfies

e3.5β . T+
rel(Lc) . β6e3.5β . (3.1)

Furthermore,

e3.5β . T+
mix(Lc) . β9e4β . (3.2)

Theorem 3.2 (Mixing and Relaxation Times for Periodic Boundary Conditions). The square
plaquette process with periodic boundary conditions, on the critical scale, satisfies

e4β . T per
rel (Lc) . β4e4β . (3.3)

Furthermore,

e4β . T per
mix(Lc) . β9e4β . (3.4)

Remark 3.3. With some extra technical effort in the canonical paths argument, the
upper bound on the mixing time with plus boundary conditions can be improved (see [9]
where it is shown that T+

mix(Lc) . β7e3.75β). We conjecture that the lower bound given
here is correct up to polynomial factors in β.

Remark 3.4. We recall that the fundamental reason for the different scaling of the
relaxation and mixing time with all plus and periodic boundary conditions is the structure
of the ground states. With all plus boundary conditions there is a unique ground state (in
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Figure 3: Two well separated ground states (top left and bottom right), with a typical
path between them, as described in Remark 3.5. The shaded blue region indicates the −
spins, and the empty regions are + spins.

which all sites have spin +1), and the low temperature dynamics are dominated by the
time to reach the ground state. On the other hand, with periodic boundary conditions,
there are 22L−1 ground states, and the low temperature dynamics are dominated by the
behaviour of the induced random walk among these ground states. There is a natural
bijection between these ground states and the vertices of the (2L − 1)-dimensional
hypercube (see Definition 7.1), and it turns out that the induced random walk is quite
closely related to the usual simple random walk on the hypercube {−1,+1}2L−1 with
edge set

E = {(x, y) ∈ {−1,+1}2L−1 × {−1,+1}2L−1 :
∑
i

1x[i] 6=y[i] = 1 or x = −y}.

Remark 3.5. For certain special choices of boundary conditions, there exist a small
number of ground states that are well separated, in the sense that it takes an extremely
long time to switch between them. In the case of the boundary conditions given in Figure
3 we conjecture

e4.5β . T τbad

rel (Lc).

The heuristic behind this bound is as follows. Typical paths between the two ground
states are of the form described in the figure. Initially two new defects are created, at
one of the existing defects, which occurs with rate e−2β . Subsequently, with probability
1/L, a pair of defects is not immediately re-absorbed, and travels a distance of order
L. At some point during this excursion (top right frame of Figure 3) the process may
generate two new defects, with probability ≈ e−2βL2. Subsequently, with probability 1/L

again, these defects reach one of the isolated defects before being re-absorbed, leading
to the stable configuration in the bottom middle Figure 3. Finally the defect marked with
a square box makes a two dimensional random walk following the same mechanism as
given in Figure 2. The projection of the position of this defect onto the diagonal (bottom
left to top right) is a martingale, and so with probability O(1/L) this defect will travel a
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distance Ω(L) before being re-absorbed in the previous ground state. Putting all these
factors together gives the heuristic bound.

4 Preliminary calculations and notation

In this section, we make some simple observations about which configurations are
possible and likely at stationarity. We first observe that only defect configurations
satisfying certain parity constraints are possible, and these depend on the boundary
conditions (Lemmas 4.1, and 4.2). These parity conditions immediately imply some rough
bounds on the number of configurations with a given number of defects (Lemma 4.3),
which in turn implies that the ground state has high probability under the stationary
measure (Lemma 4.4).

In the case Λ = [1 : `1] × [1 : `2], we have B(Λ) = [0 : `1] × [0 : `2]. In this case we
denote all the sites belonging to the ith column of B(Λ) by Ci = {i} × [0 : `2], and the jth

row by Rj = [0 : `1]× {j}. For x, y ∈ B(Λ) we write y � x if y1 < x1 and y2 < x2.

Lemma 4.1 (τ -b.c. parity constraints). If Λ = [1:`1]× [1 :`2] then for boundary condition
τ ∈ Ω

pτ (ΩτΛ) = {p ∈ ΩB(Λ) : p satisfies (4.1) and (4.2) below} ,

where the parity constraints are given by∏
x∈Ci

px = τ(i,0)τ(i+1,0)τ(i,`2+1)τ(i+1,`2+1) , ∀ i ∈ [0 : `1] and, (4.1)

∏
x∈Rj

px = τ(0,j)τ(0,j+1)τ(`1+1,j)τ(`1+1,j+1) , ∀ j ∈ [0 : `2] . (4.2)

Furthermore, pτ : ΩτΛ → pτ (ΩτΛ) is bijective, and the inverse may be written as

(pτ )−1(p)x = στ (p)x :=

{
τ(0,0)τ(x1,0)τ(0,x2)

∏
y�x py if x ∈ Λ,

τx otherwise,
(4.3)

for p ∈ pτ (ΩτΛ).

Lemma 4.2 (Periodic b.c. parity constraints). If Λ = [0 : `1] × [0 : `2] then for periodic
boundary conditions

pper(ΩΛ) = {p ∈ ΩΛ : p satisfies (4.4) } ,

where the parity constraints are given by∏
x∈Ci

px =
∏
x∈Rj

px = 1 , ∀ i ∈ [0 : `1 − 1] and ∀ j ∈ [0 : `2 − 1] . (4.4)

and for any fixed τ ∈ {−1, 1}C0∪R0 , we have pper : {σ ∈ ΩΛ : σC0∪R0 ≡ τ} → pper(ΩΛ) is
bijective.

Proof. The proof relies on the following observation; for σ ∈ {−1, 1}Λ′ , for some Λ′ finite,
and A,B ⊂ Λ′ we have ∏

x∈A
σx
∏
y∈B

σy =
∏

x∈A4B

σx , (4.5)

where A4B denotes the symmetric difference of A and B. It follows that for σ ∈ ΩτΛ and
i ∈ [0 : `1] ∏

x∈Ci

pτx(σ) =
∏
x∈Ci

∏
y∈Bx

σy = τ(i,0)τ(i+1,0)τ(i,`2+1)τ(i+1,`2+1) ,
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and similarly for rows, i.e. pτ (ΩτΛ) ⊂ {p ∈ ΩB(Λ) : p satisfies (4.1) and (4.2)}.
To prove the opposite inclusion, fix ζ ∈ {p ∈ ΩB(Λ) : p satisfies (4.1) and (4.2)}, then

στ (ζ) ∈ ΩτΛ by the definition given in (4.3). Furthermore, using (2.1) and (4.5),

pτ (στ (ζ))x =
∏
y∈Bx

στ (ζ)y =
∏
y�x

ζy
∏

z�x+e1

ζz
∏

y′�x+e2

ζy′
∏

z′�x+e1+e2

ζz′ = ζx

This completes the proof of Lemma 4.1, since |ΩτΛ| = |{p ∈ ΩB(Λ) : p satisfies (4.1) and
(4.2)}| = 2|Λ|. The proof of Lemma 4.2 follows the same arguments.

These parity considerations imply the following bounds on the number of configura-
tions with a given number of defects:

Lemma 4.3. Fix k ∈ N. If Λ = [1 : L]2, then with all plus boundary conditions

|{σ ∈ Ω+
Λ : |p+(σ)| = 2k}| 6 min{(ek)2kL2k, L3k} . (4.6)

If Λ = [0 : L]2, then with periodic boundary conditions

|{σ ∈ ΩΛ : |pper(σ)| = 2k}| 6 22L+1 min{(ek)2kL2k, L3k} . (4.7)

Proof. We begin with the + boundary conditions. By Lemma 4.1 we have, for each k ∈ N,

|{σ ∈ Ω+
Λ : |p+(σ)| = 2k}| = |{p ∈ p+(Ω+

Λ) : |p| = 2k}|

and |{p ∈ p+(Ω+
Λ) : |p| = 2k}| is exactly the number of configurations in {0, 1}Λ, where

we identify defects with 1’s, which have even row and column sums and the total number
of defects is 2k. Since any row which contains at least one defect must also contain at
least two, the total number of rows which have at least one defect is clearly bounded
above by k (similarly for columns). It follows that the number of configurations which
satisfy the row and column parity constraint is at most the number of ways of firstly
choosing k rows and k columns (with replacement), and then arranging the 2k defects
anywhere on the sub-lattice defined by these rows and columns. The number of ways of
arranging the former is L2k, and the number of ways of arranging the latter is clearly

bounded above by
(
k2

2k

)
. Using

(
n
k

)
< (e n)k/kk and taking the product gives the first

upper bound. The second upper bound follows by using only the row parity, which
implies that the defects may be grouped into k disjoint pairs, such that defects belonging
to the same pair occupy the same row. There are then at most L3 ways to arrange each
pair on Λ and the upper bound L3k follows immediately.

We next consider periodic boundary conditions. By the above argument, for every
choice of τ ∈ {−1, 1}C0∪R0 we have

|{σ ∈ ΩΛ : |pper(σ)| = 2k, σ|C0∪R0 = τ}| 6 min{(ek)2kL2k, L3k}.

Applying the bijection in Lemma 4.2 and noting that |{−1, 1}C0∪R0 | = 22L+1 completes
the proof.

For a given boundary condition τ , define the collection of ground states by:

G = Gτ = {σ ∈ ΩτΛ : Hτ
Λ(σ) = min

η∈ΩτΛ

Hτ
Λ(η)}. (4.8)

Lemma 4.4 (Domination of Ground States). Let τ ∈ {+,per} and L = Lc, then

π(G) > 1−O(e−2β) . (4.9)
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Proof. By Lemmas 4.1 and 4.2, we note that all possible configurations have an even
number of defects, and also that no configurations can have exactly 2 defects. When
τ = +, there is a unique ground state + ≡ (+1, . . . ,+1). In this situation, Lemma 4.3
gives

1− π(+) =
∑
k > 2

π(+)|{σ ∈ Ω+
Λ : |p+(σ)| = 2k}|e−2k β . π(+)e−2β .

Thus π(+) = 1 − O(e−2β), completing the proof of the lemma for τ = +. For the case
of periodic boundary conditions, observe that there are exactly 22L+1 ground states, so
π(G) = 22L+1π(+) and the same argument holds.

5 Construction and analysis of canonical paths

Our arguments for the upper bounds in Theorems 3.1 and 3.2 will be based on the
method of “canonical paths.” The idea in this method is to construct a family of (possibly
random) paths between any pairs of configurations σ, η, such that the paths do not use
any one edge too much. In this section, we construct the canonical paths that will be
used for those proofs, and also give some initial analysis of their properties. As a guide
to the remainder of this section:

• In Section 5.1, we state generic bounds on relaxation and mixing times of a Markov
chain in terms of canonical paths. These are small variants of well-known results,
but may be useful in the study of other Markov chains.

• In Section 5.2, we give preliminary notation related to canonical paths.

• In Section 5.3, we construct and analyze the main “building block” of our canonical
path construction. This building block determines the entire path for any initial
configuration σ with O(βL) defects.

• In Section 5.4, we construct a “building block” that may be used when σ has many
more than L defects. We also combine our two building blocks to construct the
main canonical path used throughout this paper.

• In Section 5.5, we give simple bounds on various quantities related to combining
the building blocks into a longer canonical path.

• In Section 5.6, we combine the results in this section to obtain final bounds on the
properties of the canonical paths we have defined.

5.1 Canonical path bounds

In this section we describe the use of canonical path arguments to bound the spectral
gap and spectral profile of a Markov process on finite state space. We first set some
standard notation for this subsection only. For a general Markov chain with transition
rate matrix K on state space Ω, denote by E = {(η, σ) ∈ Ω2 : K(η, σ) > 0} the collection
of transitions allowed by K. We recall the notion of paths in such a Markov chain:

Definition 5.1 (Path). A sequence γ = (η(0), η(1), . . . , η(m)) ∈ Ω is called a path from η(0)

to η(m) if (η(i−1), η(i)) ∈ E for all 1 6 i 6 m. We say that this path has length |γ| ≡ m.
For 1 6 i 6 m, we call the pair (η(i−1), η(i)) the i’th edge of γ. For η, σ ∈ Ω, we
denote by Γη,σ the collection of all paths from η to σ. Similarly we let Γη = ∪σΓη,σ be the
collection of all paths starting at η and Γ = ∪η,σ∈ΩΛ

Γη,σ be the collection of all paths.
For a path γ = (η(0), . . . , η(m)), we denote by γ(init) = η(0) and γ(fin) = η(m) the initial

and final elements of γ. If γ1, γ2 are two paths with γ(fin)
1 = γ

(init)
2 , we denote by γ1 • γ2

the concatenation of γ1 and γ2 with the repeated element γ(fin)
1 , γ

(init)
2 removed. With

some abuse of notation, we define ∅ • γ = γ • ∅ = γ for any path γ.
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When applying the results in this Section, we will always use the process given by
(2.8).

For the remainder of this section, assume that K has a unique reversible measure µ
and let µ∗ = minη∈Ω µ(η). For S ⊂ Ω, define c0(S) to be the non-constant functions on Ω

with support contained in S. For S ⊂ Ω, also define

λ(S) = inf
f∈c0(S)

DK(f)

Varµ(f)
, (5.1)

where DK is the Dirichlet form associated with K,

DK = −µ(f Kf) =
1

2

∑
η,σ∈Ω

µ(η)K(η, σ)(f(η)− f(σ))2 . (5.2)

Lemma 5.2 (Multicommodity Flows for Bounding the Spectral Profile). Let S ( Ω. For
η ∈ S, let Fη be a probability measure on paths γ = (γ0, . . . , γm) in Ω that have starting
point γ0 = η and final point γm ∈ Sc. Then

λ(S) > A−1,

where the constant

A ≡ 2 max
e∈E

∑
η∈S

∑
γ3e

Fη(γ) |γ| µ(η)

µ(e−)K(e−, e+)
(5.3)

is the cost of the flow {Fη}η∈S for the set S.

Remark 5.3. We will use this with S = ΩΛ\{+} when bounding the spectral gap of the
SPM with + boundary conditions. The more general bound is useful for bounding the
spectral profile, which we will need to obtain a more refined mixing time bound.

Proof. We begin by reducing to the case of paths with no repeated edges. Consider a
path γ and configuration η ∈ S with Fη(γ) > 0. We note that excising all cycles from γ

can only reduce the associated term |γ| µ(η)
µ(e−)K(e−,e+) appearing in (5.3), possibly to zero

if the path without cycles does not use the edge e. Thus, we can assume without loss of
generality that Fη is supported on paths with no cycles, for all η ∈ S.

Next, fix f ∈ c0(S) with Eµ[f ] = 0. By the Cauchy-Schwarz inequality and the fact
that f(η) = 0 for all η ∈ Sc,

Varµ(f) =
∑
η∈Ω

µ(η)f(η)2 =
∑
η∈S

µ(η)
∑
γ

Fη(γ)(

|γ|∑
i=1

(f(γi−1)− f(γi)))2

6
∑
η∈S

∑
γ

µ(η)Fη(γ) |γ|
|γ|∑
i=1

(f(γi−1)− f(γi))2

=
∑
η∈S

∑
γ

µ(η)Fη(γ) |γ|
|γ|∑
i=1

µ(γi−1)K(γi−1, γi)

µ(γi−1)K(γi−1, γi)
(f(γi−1)− f(γi))2.

Comparing this to the formula for the Dirichlet form, this gives

Varµ(f)

DK(f)
6 2 max

e∈E

∑
η∈S

∑
γ3e

Fη(γ) |γ| µ(η)

µ(e−)K(e−, e+)
,

completing the proof of the lemma.
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This bound is all that we will require to bound the spectral gap of the SPM model
with + boundary conditions. In order to bound the mixing time of both chains, as well as
the spectral gap of the SPM with periodic boundary conditions, we will use the spectral
profile method introduced in [15]. We quickly recall the main results of that paper:

Definition 5.4 (Spectral Profile Bounds.). For r > 0, define

Λ(r) = inf
µ∗ 6 µ(S) 6 r

λ(S).

Theorem 1.1 of [15] states that the mixing time Tmix of K satisfies

Tmix 6
∫ 16

4µ∗

2

xΛ(x)
dx. (5.4)

In our application, the spectral profile Λ(r) is defined as an infimum over a very
large collection of subsets S ⊂ ΩτΛ; we will find it easier to work with a much-reduced
collection of subsets. For fixed r > 0, let

k(r) = min{k : π(+) e−βk 6 r}. (5.5)

For fixed k ∈ N, let

Sk = {σ ∈ ΩτΛ : |pτ (σ)| > k}. (5.6)

We observe that, for fixed r > 0 and S ⊂ ΩΛ with π(S) 6 r, we have

S ⊂ Sk(r). (5.7)

Thus, we have

Λ(r) = inf
µ∗<µ(S)<r

inf
f∈c0(S)

DL(f)

Varπ(f)
(5.8)

> inf
f∈c0(Sk(r))

DL(f)

Varπ(f)
= λ(Sk(r)).

Thus, to bound the mixing time, it is enough to bound inff∈c0(S)
DL(f)

Varπ(f) below, for sets of
the form S = Sk and some k ∈ N.

5.2 Preliminary notation

We will use the following notation for defects frequently:

Definition 5.5 (Neighbouring Defects). Let Λ = [`1 : `2] × [`3 : `4]. Fix p ∈ ΩB(Λ) and
define

D(p) = {x ∈ ΩB(Λ) : px = −1}.

For p ∈ ΩB(Λ) and x = (x1, x2) ∈ D(p), define the left row neighbour, right row
neighbour, down column neighbour and up column neighbour of the defect at x by

`(x) = (max{x′1 < x1 : (x′1, x2) ∈ D(p)}, x2) (5.9)

r(x) = (min{x′1 > x1 : (x′1, x2) ∈ D(p)}, x2)

d(x) = (x1,max{x′2 < x2 : (x1, x
′
2) ∈ D(p)})

u(x) = (x1,min{x′2 > x2 : (x1, x
′
2) ∈ D(p)})

when they exist; otherwise by ∅ as appropriate. Finally, by a small abuse of notation we
define D(σ) = D(p+(σ)) for σ ∈ Ω+

Λ .
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Figure 4: Left: an initial configuration σ, with defects D(σ) indicated by black circles.
The thick-black box shows the rectangle R, the sites inside the dashed box correspond to
B−(R) which are flipped. Right: An example of a configuration η ∈ γσ,R, the next spin to
be flipped in the path is marked by a solid box. Open circles denote absent defects (with
respect to σ), dashed circles denote defect variables which are also flipped with respect
to σ. In this example the top row of the rectangle R, bottom row, and the two rows
containing defect variables which differ from D(σ), are all distinct; it is also possible for
the rows to intersect (see Equation (5.20) for an explicit list of these cases - the example
above shows a mid-type edge).

We now define a simple “base path” that flips all the spins in a rectangle R ⊂ Z2 in a
sensible order. Typically in application, the rectangle R in the following definition will
have at least three defects at its vertices in the initial configuration σ, and this “base
path” removes two or four of them without ever adding more than two in intermediate
stages:

Definition 5.6 (Rectangle-Removal Path). Let Λ = [`1 :`2]× [`3 :`4]. Given σ ∈ ΩΛ and a
rectangle R = [x1 : x2] × [y1 : y2] ⊂ B(Λ) we define a path γσ,R, starting at σ, that flips
all the spins at all the sites in B−(R). We construct the path according to the following
cases:

1. If (x1, y1), (x1, y2), (x2, y2) ∈ D(σ), or fewer than 3 of the four corners of the rect-
angle are in D(σ), we define γσ,R to be the path that flips all spins in B−(R) in
lexicographic order.

2. (x2, y2), (x1, y2), (x2, y1) ∈ D(σ) but (x1, y1) /∈ D(σ), we define γσ,R to be the path
that that flips all spins in B−(R) in anti-lexicographic order.

3. Otherwise, denote by M : ΩΛ 7→ ΩΛ the “mirror reflection” map

M(σ)i,j = σi,`4+`3−j (5.10)

which flips the lattice in the x-axis. Note that M(R) is now in one of the two
previous cases, and we define γσ,R = M−1(γM(σ),M(R)).

Although a spin configuration η ∈ γσ,R can be very different from σ, their associated
defect configurations D(η), D(σ) can only differ in a few locations, as illustrated in
Figure 4.

Denote by RΛ the collection of rectangles in the lattice Λ. For R = [x1 : x2] × [y1 :

y2] ∈ RΛ, we informally call y2 − y1 the “height” and x2 − x1 the “width” of R. Denote by
E = {(σ, η) ∈ Ω2

Λ : L+
Λ(σ, η) > 0} the collection of edges associated with the generator

L+
Λ . Finally, For any set S, denote by P(S) the power set of S.

5.3 Path construction: initial segment

In this section, we give a description of the main building block of our canonical
path. The basic heuristic for these paths was presented in Section 2.5: pick a random
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rectangle with at least three defects in its corners, then “squish” the rectangle using
the path in Definition 5.6. For reasons discussed shortly, picking a rectangle uniformly
at random leads to very poor bounds. In this section we show that the heuristic can be
saved with a small tweak: rather than choosing uniformly at random, we make a very
careful choice of “good” rectangles at each stage.

Throughout, we will denote by F a function which maps a configuration to a collection
of “good” rectangles, and F (pt)

σ a measure on paths associated with this function F . In
order to upper-bound the congestion in Equation (5.3) (i.e. the total weight of paths
using a given edge), we define a recovery function G:

G(e) = {σ ∈ ΩΛ : ∃ γ 3 e, s.t. F (pt)
σ (γ) > 0} ,

(see Equation (5.19) at the start of Definition 5.19 for an equivalent definition). Our
goal in the following definitions is to make |G(e)| small (without too badly increasing the
length of the associated paths or decreasing the minimum probability of any configuration
along them). Given both an observed edge e contained in a path and the rectangle R
that is being “squished” by a path, we can uniquely identify the initial configuration in
G(e). So, in order to bound |G(e)|, it is enough to bound the number of rectangles we
might be flipping when we observe the edge e.

The details of the functions F and G are a bit complicated, and so for the reader’s
convenience we do not make explicit reference to them outside of this section. The
only results required from this section are the notation for the path measure F (pt)

σ (see
Definition 5.16), and our final estimates in Proposition 5.20.

We now give a rough description of our path construction, followed by the full details.
The main problem with the heuristic of Section 2.5 is illustrated in Figure 5. In this
figure, we see an edge e = (e−, e

x
−) in a path γσ,R for which the row containing the

spin x that is being flipped by e has very many defects. In this case, the edge could
appear in an enormous number of paths of the form in Definition 5.6. As a result, the
congestion of our path is large and the canonical path method gives a very poor bound
on the relaxation time.

Figure 5: The middle display shows an edge (e−, e+); the defects in e− are marked
by black circles, and the spin that is flipped in e+ is marked with a square (the corre-
sponding defect variables that are flipped are contained in the dot-dashed box). If this
edge occurs along the path in Definition 5.6, the top-left and top-right defects in the
initial configuration could have appeared anywhere marked by red and green defects
respectively, such that they are both in the same row. Two representative possible initial
configurations which both go through this same edge are shown left and right. Only part
of the lattice Λ is shown; the configurations do not satisfy the parity constraint, Equation
4.2, on this part of the lattice.

There is a conceptually-simple fix to the problem illustrated in Figure 5: if no row has
“too many” defects, select rectangles uniformly at random among all rectangles with at
least three defects at vertices; otherwise, choose uniformly at random among rectangles
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with top on the high-density row. This definition doesn’t quite work, but leads to the
following more careful strategy:

1. If no row contains more than βΘ(1) defects, choose any rectangle with defects at
three or more corners.

2. Otherwise, letK be the maximal number of defects in any row and, for 1 6 k 6 K,
let #(k) be the collection of rows with k defects. The “fix” above tells us to choose
any rectangle that has defects at three or more corners and whose top edge is in
#(K). However, in this case |G(e)| may still be large.

To see this, imagine we observe an edge in which the maximal number of defects in
any row is K. Then it is possible that the top edge of the rectangle being flipped is
in a row in #(K), but it is also possible that the top edge is in a row in #(K− 2). In
particular, if |#(K − 2)| is much larger than |#(K)|, the set G(e) may be too large
in comparison to the number of rectangles with top edges in #(K).

Fortunately, this turns out to be almost the only obstacle: roughly, we can choose
k to be the largest number that satisfies |#(k)| & β−1|#(j)| for each j in some
bounded interval near k. We then choose any rectangle that has defects at three or
more corners and whose top edge is in #(k). It turns out this allows us to make
a sufficiently good estimate of which row the top of the rectangle was in, having
observed the edge e.

If we were only interested in bounding the relaxation time for + boundary conditions,
it would suffice to choose a rectangle uniformly at random from the subset constructed
above. However, in order to obtain a bound on the mixing time, and on the relaxation
time for the periodic boundary conditions, we need to get a much tighter bound for
initial configurations that have very many defects. This tighter bound gives us better
control on the constant appearing in (5.3) when the initial set S appearing in that lemma
is small.

It turns out that we need a tighter bound exactly when the initial configuration, σ,
has many more than L defects. To obtain a better bound in this case, we will “split” the
lattice Λ into roughly n(σ) ≈ |D(σ)|

L pieces, each of which contains O(L) defects. It will
turn out that our main congestion bounds will apply to each “piece” of the split, and so
this splitting analysis will give us a “free” improvement to our final bound on the order
of n(σ). This improvement is critical for obtaining a good bound on the mixing time of
the process, since it will imply that defects can disappear much more quickly when there
are very many of them. We don’t know of any simple way to obtain this improvement by
a factor of n(σ) by other small modifications of our main argument.

The picture presented by this construction is quite simple, but we require quite a
large amount of notation to describe it precisely. The main difficulties are that (i) we
must also be able to reconstruct the part i ∈ [1 : L] of the split by observing an edge
in a sample path, and (ii) the strategy used to define the collection of good rectangles
in each split depends on comparing certain rough statistics of σ to certain threshold
values, and it is not possible to use a single threshold value for all σ ∈ ΩΛ. We resolve
this by partitioning the state space ΩΛ into a small number of parts indexed by the
choice of threshold. This type of threshold argument, and associated partitioning of the
configuration space, seems to be useful for similar path arguments.

We now give some notation which is necessary to construct the functions F discussed
above. We begin by introducing some notation for the rectangles that will be chosen by
these functions. When three sites x, y, z in a lattice are corners of a rectangle, we denote
this rectangle by R(x, y, z). We then introduce some special collections of rectangles:
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Definition 5.7 (Marked Rectangles). We follow the notation of Definition 5.5, assuming
again that Λ is of the form Λ = [`1 : `2] × [`3 : `4]. For x, y ∈ Λ, define Top(x, y) and
Bottom(x, y) to be the maximum and minimum of x and y with respect to lexicographical
order (respectively).

For a defect configuration p ∈ ΩB(Λ) and x = (x1, x2), y = (y1, y2) ∈ D(p), we define
the associated extended “down-” and “up-” rectangles of x and y by setting

Td(x, y) = R(x, y,Top(d(x), d(y))) if x2 = y2 and at least one of d(x), d(y) exist,

Tu(x, y) = R(x, y,Bottom(u(x), u(y))) if x2 = y2 and at least one of u(x), u(y) exist,

otherwise, say Td(x, y) = ∅ or Tu(x, y) = ∅ respectively.

We denote by

Tp = {Ta(x, y) : x, y ∈ D(p), and a ∈ {u, d}} (5.11)

the collection of extended rectangles of p. For i ∈ N, define

Tp(i) = {Ta(x, y) : x, y ∈ D(p), i = y2 = x2, a ∈ {u, d}} (5.12)

to be the collection of extended rectangles with two defects in row i. When the lattice Λ

is not clear from the context, we use the notation Tp,Λ and Tp,Λ(i) for Equations (5.11)
and (5.12).

Finally, by a small abuse of notation we define Tσ = Tp+(σ) and Tσ(i) = Tp+(σ) for
σ ∈ Ω+

Λ .

We will split the lattice Λ into roughly max(1, |D(σ)|
L ) pieces, each of which is a union

of adjacent columns. Recall, if we consider spin configurations σ ∈ ΩΛ for some box
Λ = [1: L]2 then the associated defect configurations, p(σ) ∈ ΩB(Λ), are on the slightly
larger box B(Λ) = [0: L]2.

Definition 5.8 (Splits). Let Λ̄ = B([1 : L]2) and

Λ̄(i, j) = {i, i+ 1, . . . , j} × [0 : L], for 0 6 i < j 6 L .

For σ ∈ ΩΛ set s1(σ) = 0, then inductively define

si+1(σ) = min{j > si(σ) : |D(σ) ∩ Λ̄(si(σ), j − 1)| > 100L}, if this is finite, (5.13)

si+1(σ) = L+ 1, otherwise,

for 1 6 i 6 m(σ) ≡ min{j : sj+1(σ) = L + 1}. When σ is clear from context we
write si for si(σ). Finally, define S(σ) = {si}m+1

i=1 to be this splitting of [0 : L], and
Si(σ) = Λ(si, si+1 − 1).

The following definition gives some notation for counting the number of defects in a
row of a sublattice:

Definition 5.9 (Occupancy). Fix a subset Λ = [`1 :`2]× [1 :L] ⊂ [1 :L]2, and fix p ∈ ΩB(Λ).
For 0 6 i 6 L, define the occupancy of row i by

Ni(p) = |D(p) ∩ ([`1 − 1 : `2]× {i})| , (5.14)

the number of defects in row i. When the lattice is not clear from the context, we use
the extended notation Ni,Λ(p) for Ni(p). Again, by a slight abuse of notation, for σ ∈ Ω+

Λ

we let Ni(σ) = Ni(p
+(σ)).
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We give some basic facts about splits. Recall that we view p as a defect configuration,
even if it is not in the image of Equation (2.1) for any configuration σ. In particular p
may not satisfy the parity condition, for example the parity condition in a part of the
split are satisfied in each column but not necessarily in each row. We now show that any
piece of a split must have many extended rectangles, relative to the number of defects
which are in the piece:

Lemma 5.10 (Splits Contain Many Rectangles). Let Λ = [1 : L]2, for any σ ∈ Ω+
Λ ,

|Tσ| >
1

4
|D(σ)| , (5.15)

and for 1 6 i 6 m− 1, letting p = p+(σ)|Si(σ), then

|Tσ,Si(σ)| >
1

4
(|D(p)| − L− 1) . (5.16)

Furthermore, for any j with Nj,Si(σ)(σ) > 1,

|Tσ,Si(σ)(j)| >
1

2
(Nj,Si(σ)(σ)− 1)2. (5.17)

Proof. For σ ∈ Ω+
Λ , for each defect in p+(σ) there is at least one defect in the same row

and at least one in the same column by the parity constraint. It follows that each defect
belongs to at least one rectangle in Tσ, and can be located at one of at most four vertices
of any such rectangle. Inequality (5.15) follows directly.

Note that, for any fixed j ∈ [0 : L], the set

{x = (x1, x2) ∈ D(p) : x2 = j, r(x) = ∅ and `(x) = ∅}

of defects in row j, of part Si(σ), with no left or right-partners cannot have more than
one element, and hence the total number of defects without left or right-partners is
bounded by L+ 1. Every other defect also has at least one up or down-partner by the
parity constraint, and the same argument as above implies Inequality (5.16). Essentially
the same considerations also imply Inequality (5.17): any pair of defects in the same row
must have at least one associated extended rectangle.

We observe that each piece of a split has at least 100L defects (except possibly the last
piece), and splits associated with a high-defect configuration σ will have m(σ) & |D(σ)|

L

pieces:

Lemma 5.11 (Counting Split Components). Fix σ ∈ ΩB(Λ), and let S(σ) = {si}m+1
i=1 be as

in Definition 5.8. Then ⌊ |D(σ)|
101L

⌋
6 m(σ) 6 |D(σ)|

100L
+ 1.

Proof. By inspection,

100L 6 |D(σ) ∩ Si(σ)| 6 101L

for all 1 6 i 6 m− 1, where the upper bound also holds for i = m. The result follows
immediately.

To reduce notation in the rest of this section we define the occupancy vector of the
splits.
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Definition 5.12 (Occupancy vector). Let Λ = [1 : L]2, we define the row occupation
vector function, r : ΩΛ × [1 : L]→ [0 : L]L+1, by

rk(σ, i) = Nk,Si(σ)(σ) , for k ∈ [0 : L] ,

so that rk(σ, i) is the number of defects in row k of part i of the split.

For any vector v ∈ [0 : L]L+1 we write #v(k) = |{i ∈ [0 : L] : vi = k}| and, with a slight
abuse of notation, vmax = maxk∈[0:L] vk, for short.

We now partition the set of possible occupation vectors in order to define our choice
of good rectangles. The parameter θ will allow us to approximate which row we started
from, having observed an edge, without loosing more than a factor of O(β).

Definition 5.13 (Good Partition). Let Θ = [0 : β], define V0 = {v ∈ [0 : L]L : vmax 6 β2}
and for θ ∈ Θ \ {0}

V̄θ = {v ∈ [0 : L]L : vmax > β2 , ∀k ∈ [−32, 32] β#v(vmax − θ) > #v(vmax − θ − k)} .

For θ > 1, define recursively Vθ = V̄θ \
⋃θ−1
i=0 Vi.

Lemma 5.14. For all β sufficiently large, the sets V0,V1, . . . ,Vβ , partition [0 : Lc]
Lc .

Proof. The sets V0,V1, . . . ,Vβ are mutually disjoint by construction. Fix v ∈ [0 : Lc]
Lc .

If vmax 6 β2 then v ∈ V0. Otherwise, when vmax > β2, we claim that v ∈ ⋃βi=1 Vi. We
prove this by contradiction: If not, there exists n ∈ [0 : vmax] such that #v(n) > ββ/32,
which is greater than L for all sufficiently large β.

The configurations with row occupancy vectors in V0 are called sparse and will be
treated differently from the other configurations. We note that the following definition
is stated for general L, but makes use of the partition which is guaranteed to exist by
Lemma 5.14. This is not a problem, since any L is equal to the critical length Lc for some
value of β.

Definition 5.15 (Reconstructable Rectangles). Fix Λ = [1 : L]2, for σ ∈ ΩΛ let S(σ) =

{si}m+1
i=1 be the split associated with σ. For i /∈ [1 : m(σ)], set F (σ, i) = ∅. For i ∈ [1 : m(σ)],

let v = r(σ, i) ∈ [0 : L]L, and define the set of good rectangles by

F (σ, i) =

{
Tσ,Si(σ) if v ∈ V0 ,⋃
j : vj=vmax−θ(v) Tσ,Si(σ)(j) otherwise,

where we define θ(v) to be the unique value of θ such that v ∈ Vθ.
In the definition above, if the max row occupation in split i is small then just take

all rectangles in split i with defects in at least three vertices. Otherwise, select only
rectangles with two vertices containing a defect in a row with occupation vmax − θ(v)

and at least one other vertex containing a defect.

We note that if |D(σ)| is sufficiently large, so that the associated split has more than
one part, then the last part of the split (the m(σ)th) may contain no good rectangles (i.e.
F (σ,m(σ)) may be empty). For this reason we avoid choosing this part of the split in the
next definition.

We will say that σ ∈ ΩΛ is sparse in Si(σ) if v ∈ V0 and θ-dense if v ∈ Vθ for θ > 0. We
now define the short paths which are used to construct the initial part of the full random
paths. In words, we pick uniformly a part i of the split from 1 to n(σ) := 1 ∨ (m(σ)− 1),
and then independently and uniformly choose a good rectangle to flip from split i.
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Definition 5.16 (Partial Random Path). For σ ∈ Ω[1:L]2 , define the “partial path” proba-

bility measure F (pt)
σ by

F (pt)
σ (γ) =

1

n(σ) |F (σ, i)| ,

if γ = γσ,R for some R ∈ F (σ, i) with i ∈ [1 : n(σ)], and 0 otherwise.2 Recall, here
n(σ) := 1 ∨ (m(σ)− 1).

It is necessary to identify the index of the split initially chosen given an edge.

Definition 5.17 (Identifying the split index). For e = (e−, e+) ∈ E let x(e) = (x1, x2) ∈ Λ

be the single site that is flipped by e, so that e+ = e
x(e)
− , then define I : E 7→ [1 : L] by

I(e) = i s.t. (x1 − 1, x2) ∈ Si(e−) , (5.18)

which is unique since {Sj(e−)}mj=1 partitions B(Λ).

The function I always correctly identifies the index of the initial split chosen, made
precise in the following sense.

Lemma 5.18. For each edge e ∈ E and path γ 3 e such that F (pt)
σ (γ) > 0 for some

σ ∈ ΩΛ, we have γ = γσ,R for some R ∈ F (σ, I(e)).

Proof. Fix e ∈ E, let x = (x1, x2) ∈ Λ be the single site that is flipped by e, and fix

σ and a path γ such that e ∈ γ and F
(pt)
σ (γ) > 0. By Definition 5.16 there exists an

i ∈ [1, n(σ)] and an R ∈ F (σ, i) such that γ = γσ,R. By Definition 5.20 we have R ⊂ Si(σ).
Without loss of generality suppose that the top two corners of R are in D(σ) (otherwise
we flip the configurations according to the mirror map M ). Label the columns of Λ

containing the left edge of R, the site x and the right edge of R by `, x1, r respectively.
By construction of γσ,R the defect configurations p(σ) and p(e−) are equal outside of the
columns `, x1 − 1, r (See Figure 4). It follows that Sj(σ) = Sj(e−) for j < i. Furthermore,
the number of defects in columns ` and r in p(e−) are less than or equal to the number
of defects in the same columns of p(σ), see Definition 5.6 and Figure 4. In particular
|D(e−) ∩ Λ̄(si(e−), x1 − 2)| 6 |D(σ) ∩ Λ̄(si(σ), x1 − 2)|, and hence si+1(e−)− 1 > x1 − 1

which implies (x1 − 1, x2) ∈ Si(e−) as required.

For bounding the congestion of out paths it will be convenient to introduce the initial
configurations which are compatible with a given edge.

Definition 5.19 (Compatible Initial Configurations). For each edge e ∈ E we define the
set of all initial configurations σ ∈ ΩΛ such that F (pt)

σ gives positive weight to a path that
use the edge e

G(e) = {σ ∈ ΩΛ : ∃R ∈
n(σ)⋃
i=1

F (σ, i) s.t. e ∈ γσ,R} . (5.19)

We partition G(e) in terms of the edge type and parameter θ. Consider σ ∈ ΩΛ and a
rectangle R with at least three of its four corners in D(σ). Assume for now that both of
the top two corners of R are in D(σ). In this case, set

TYPE(e,R, σ) =



none, e /∈ γσ,R ,
init, e ∈ γσ,R and x is in the top row of B−(R) and

B−(R) has more than 1 row ,

fin, e ∈ γσ,R and x is in the last row of B−(R) ,

mid, otherwise.

(5.20)

2Note that F (σ, i) ∩ F (σ, j) = ∅ for i 6= j since F (σ, i) only contains rectangles for which all vertices are
inside the ith part of the split, so this is a probability measure.
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When the top two corners of R are not both in D(σ), define the type by flipping all
elements according to the mirror reflection map M given in Definition 5.6. Then

G
(U)
θ (e) = {η ∈ G(e) : ∃R ∈ F (η, I(e)) s.t. TYPE(e,R, η) = U and θ

(
v(η, I(e))

)
= θ} .

We now summarize the required congestion and energy bounds that will be used in
the final analysis for the complete paths.

Proposition 5.20. Consider β, L > 0 with L = Lc(β) and set Λ = [1 : L]2. Then:

1. Covering Property: For all e ∈ E

G(e) =
⋃
θ∈Θ

(
G

(init)
θ (e) ∪G(mid)

θ (e) ∪G(fin)
θ (e)

)
. (5.21)

2. Small Congestion: For all e = (e−, e+) ∈ E and θ ∈ Θ,

∑
σ∈G(U)

θ (e)

∑
γ3e

F (pt)
σ (γ) . β4 L

|D(e−)| , U ∈ {init,mid}, (5.22)

∑
σ∈G(fin)

θ (e)

∑
γ3e

F (pt)
σ (γ) . β2 L2

|D(e−)| .

3. Many Options: We have

F (σ, i) 6= ∅ , for all σ ∈ ΩΛ\G, i ∈ [1 : n(σ)] and (5.23)

n(σ) & |D(σ)|
L

, for all σ ∈ ΩΛ .

4. Energy Bound: For all σ ∈ ΩΛ, θ ∈ Θ and e ∈ E,

π(e−)L(e−, e+) > e−2βπ(σ), σ ∈ G(init)
θ (e) ∪G(mid)

θ (e) (5.24)

π(e−)L(e−, e+) > π(σ), σ ∈ G(fin)
θ (e).

To give the congestion bounds above we will use the following preliminary results
related to the row occupancy vectors.

Lemma 5.21. Fix e ∈ E, and let I = I(e−) as in Definition 5.17, define u ∈ [0 : L]2 by
u = r(e−, I), then

sup
σ∈G(e)

‖r(σ, I)− u‖∞ 6 8 ,

where r(σ, I) is given in Definition 5.12.

Proof. Fix e ∈ E and σ ∈ G(e), then there exists a rectangle R such that e ∈ γσ,R. Any
Rectangle-Removal Path (see Definition 5.6) can change the number of defects in any
row of the lattice by at most two, i.e. |Nk(e−)−Nk(σ)| 6 2 for k ∈ [0 : L]. Furthermore
the total number of defects can differ by at most six,

∣∣|D(e−)| − |D(σ)|
∣∣ 6 6. By

the same argument as in the proof of Lemma 5.18 we have sI(e−) = sI(σ), and since∣∣|D(e−)| − |D(σ)|
∣∣ 6 6 we know that SI(e−)4SI(σ) contains at most six columns which

contain defects in e−. Therefore, the difference in the number of defects in any row of
the Ith split is bounded above by 2 + 6 = 8.

The following lemma will be used, in the θ-dense case, to bound the number of rows
a rectangle removal path could have started from.
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Lemma 5.22. Consider β, L > 0 with L = Lc(β). For each u ∈ [0 : L]L and θ ∈ Θ \ {0},
let

∆θ
u = {v ∈ Vθ : ‖v − u‖∞ 6 8} ,

and

Hθ(u) := {i ∈ [1 : L] : ∃ v ∈ ∆θ
u s.t. vi = vmax − θ} , (5.25)

then

|Hθ(u)| . β inf
v∈∆θ

u

#v(vmax − θ) . (5.26)

Proof. Fix u ∈ [0 : L]L and θ ∈ Θ \ {0}. We first show that

Hθ(u) ⊆ {i ∈ [1 : L] : ∃ δ ∈ [−16 : 16] s.t. ui = umax − θ + δ} .

Fix j ∈ [1 : L] and suppose there exists a v ∈ ∆θ
u such that vj = vmax − θ, then

uj = vmax− θ+ δ′ for some δ′ ∈ [−8 : 8] by definition of ∆θ
u. Similarly umax = vmax + δ′′ for

some δ′′ ∈ [−8 : 8], and putting these together uj = umax − θ + δ for some δ ∈ [−16 : 16],
proving the claim. We now show that the set on the right hand side of the display above
is not too large. Observe that

|{i ∈ [1 : L] : ∃ δ ∈ [−16 : 16] s.t. ui = umax − θ + δ}| =
∑

δ∈[−16:16]

#u(umax − θ + δ) ,

and by the same argument as above, for any v ∈ ∆θ
u we have

#u(umax − θ + δ) 6
∑

δ′∈[−16:16]

#v(vmax − θ + δ + δ′) .

Hence∣∣{i ∈ [1 : L] : ∃ v ∈ ∆θ
u s.t. vi = vmax − θ}

∣∣ 6 256 sup
k∈[−32:32]

#v(vmax − θ + k)

. β#v(vmax − θ) ,

where the last inequality follows from the definition of Vθ.

We now give the main bounds on the sizes of G(init)
θ , G(mid)

θ and G
(fin)
θ used for

bounding the congestion in Proposition 5.20. We give bounds in two cases, corresponding
to initially sparse configurations and initially dense configurations.

Lemma 5.23 (Number of Sparse Preimages). Consider β, L > 0 with L = Lc(β) and the
original lattice [1 :L]2. Fix an edge e = (e−, e+) ∈ E. Let x = (x1, x2) be the spin that is
flipped by edge e, so that e+ = ex−. Let I = I(e). We have:

|{(σ,R) ∈ G(fin)
0 (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}| . β2L2 (5.27)

and

|{(σ,R) ∈ G(init)
0 (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}| . β4L (5.28)

|{(σ,R) ∈ G(mid)
0 (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}| . β4L .

Proof. Before giving a proof, we note that our reconstruction possibilities are illustrated
in Figure 6. The following proof is essentially a detailed explanation of the figure, and
the heuristic appearing in the figure’s caption does not hide any important details.
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≤ L

. β defects. β defects

≤ L

≤ L . β green defects

Figure 6: The defects in D(e−) are indicated by black circles, the site x which is flipped
in the edge e is marked by a solid box, the dashed box shows the associated defects
which are flipped. Left: As in Figure 5, the red and green circles indicate where the
initial top defects of the rectangle R in D(σ) are allowed to be, for mid or int type. Right:
Type fin; the top right corner of R must be above one of the defects of e−, in row x2 − 1,
to the right of x (marked by green), the bottom left corner must be to the left of x, in
row x2 − 1 (marked by red circles), and the top right corner must be in one of at most L
sites above the bottom left corner.

We begin by proving Inequality (5.27). Let

P = {(σ,R) ∈ G(fin)
0 (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0} . (5.29)

It is clear from Definition 5.6 that, for any fixed edge e and rectangle R, there is at
most one σ satisfying e ∈ γσ,R; denote it σ = σ(e,R). Based on this observation, we
will find an upper bound on |P | by reconstructing all candidate rectangles R such that
(σ(e,R), R) ∈ P .

Set S ′I(e) = Λ(sI(e−), s′I+1(e−)), where

s′I+1(e−) = min{j > sI(σ) : |D(e−) ∩ Λ̄(sI(e−), j − 1)| > 100L+ 6}. (5.30)

Then for any σ ∈ G(e) with e ∈ γσ,R, we have SI(σ) ⊂ S ′I(e) and B−(R) ⊂ S ′I(e). To
reduce notation let Λ = S ′I(e) for the remainder of this proof.

For a rectangle R, denote by (R(u,`), R(u,r), R(d,r), R(d,`)) the 4 corners of R in the
usual clockwise order, starting at the upper-left hand corner. Note that it is possible to
reconstruct all of R if you know the location of the opposite corners R(u,`) and R(d,r).

We next introduce notation that is meant to mimic the usual notation for conditional
probability. Denote R(a,b) = (R

(a,b)
1 , R

(a,b)
2 ) where a ∈ {u, d} and b ∈ {`, r}. For

A,B ⊂ {(a, b, c)}a∈{u,d},b∈{`,r},c∈{1,2}
some subsets of the 8 parameters specifying the coordinates of vertices of R, denote by
N [(R

(a,b)
c )(a,b,c)∈A | (R(a,b)

c )(a,b,c)∈B ] the total number of possible values of the collection

{R(a,b)
c }(a,b,c)∈A such that (σ(e,R), R) ∈ P , given that {R(a,b)

c }(a,b,c)∈B are fixed. Note that
N [·|·] depends on the edge e and the type, but we do not emphasize this in the notation.
By a small abuse of notation, set N [·] = N [· | ∅].

Note that the configuration σ determined by e and R must have defects in at least
three corners of R; we assume for the remainder of the proof that it has defects in the
upper-left, upper-right, and bottom-left corners. Note that this assumption under-counts
the number of valid rectangles by at most a factor of 4, and so it will not affect the order
of the final estimate of |P |.
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We begin with the trivial bound

N [R(u,`)] 6 L2, (5.31)

since there are at most L2 elements of Λ. Given R(u,`), we know that R(d,`)
1 = R

(u,`)
1 and

R
(d,`)
2 = (x2 − 1), since TYPE(e,R, σ) = fin, so

N [R(d,`)|R(u,`)] 6 1. (5.32)

Since R(d,r)
2 = R

(d,`)
2 and R(d,r) ∈ D(e−),

N [R(d,r)|R(d,`)] 6 max
(σ,R)∈P

max
j∈N

Nj,SI(σ)(σ) + 2 . β2, (5.33)

where the last inequality follows from the fact that θ(v(σ, I)) = 0 for (σ,R) ∈ P . Combin-
ing Inequalities (5.31), (5.32) and (5.33), we conclude in this case that

|P | 6 N [(R(u,`), R(d,r))] . β2L2.

We now prove Inequality (5.28) following the same strategy. We now define P

analogously to Equation (5.29) for type init or mid. We begin with the trivial bound
N [R

(u,`)
2 ] 6 L, since the height of Λ is L. Next, note that the column containing R(u,`)

must intersect the row (x2 − 1) at either a defect of e− or at (x1 − 1, x2 − 1). Since there
are at most maxj∈NNj,SI(σ)(σ) + 2 . β2 defects in any row of e− for any (σ,R) ∈ P , this

observation implies N [R
(u,`)
1 |R(u,`)

2 ] . β2, and so

N [R(u,`)] . β2L. (5.34)

Inequality (5.32) also holds in this case, though the argument is slightly different, as
follows. Inspecting Equation (5.11) from Definition 5.7, we see that if p̂ ∈ Ω[`1:`2]×[`3×`4]

is a defect configuration and R̂ is a rectangle with three corners in Tp̂, then p̂ has no
defects in the line between R̂(u,`) and R̂(d,`). Therefore, R(d,`) must be the highest defect
of p that is in the same column as R(u,`) and below the row (x2 − 1), and so Inequality
(5.32) holds. Inequality (5.33) holds in this case as well, thus combining Inequalities
(5.34), (5.32) and (5.33) we have

|P | 6 N [R(u,`), R(d,r)] . β4L.

This completes the proof of Inequality (5.28).

We now prove the analogous result for the remaining configurations:

Lemma 5.24 (Number of Dense Preimages). Consider β, L > 0 with L = Lc(β) and the
original lattice [1 : L]2. Fix θ ∈ Θ \ {0} and an edge e = (e−, e+) ∈ E, let x = (x1, x2)

be the spin that is flipped by edge e, and let u = r(e−, I(e−)) with umax = maxk∈[0:k] uk.
Then we have:

|{(σ,R) ∈ G(init)
θ (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}| . u2
max |Hθ(u)| , (5.35)

|{(σ,R) ∈ G(mid)
θ (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}| . u2
max |Hθ(u)| ,

and

|{(σ,R) ∈ G(fin)
θ (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}| . Lumax |Hθ(u)| . (5.36)
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Proof. The proof will be very similar to the proof of Lemma 5.23, and the overall picture
is somewhat similar to Figure 6. The main difference is that, in the previous lemma and
figure, we bounded the number of locations for the top row of the rectangle R using
the trivial upper bound of L. Here, we use the much better bound |Hθ(u)|. Since any
nontrivial dense configuration is quite complicated, we do not include a new figure in
this case.

We begin by proving Inequality (5.35). We set notation, fixing U ∈ {mid, init} and
then:

P = {(σ,R) ∈ G(U)
θ (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0} .

Again, we bound the number of elements (σ,R) ∈ P by counting the number of ways to
reconstructing a suitable rectangle R from our knowledge of e.

Set Λ = S ′I(e) as defined in the proof of Lemma 5.23. Also, define R,N [·|·] as in the
proof of Lemma 5.23. By the same argument as in Lemma 5.23, leading to Inequality
(5.34), we know that R(u,`) has to be in a column that either

1. is x1 − 1, or

2. contains some y = (y1, y2) ∈ D(e−) with y2 = x2 − 1.

Since no row of Λ contains more than umax + 8 defects in e−, this implies

N [R
(u,`)
1 ] . umax. (5.37)

On the other hand, by the definition of F (σ, I) together with Lemmas 5.21 and 5.22, the
row containing R(u,`) must be in Hθ(u). Thus,

N [R
(u,`)
2 |R(u,`)

1 ] . |Hθ(u)|. (5.38)

Combining Inequalities (5.37) and (5.38), we have

N [R(u,`)] . umax |Hθ(u)|. (5.39)

Next, R(u,r) must be in the same row as R(u,`), and must be in either

1. column x1, or

2. a column containing an element y = (y1, y2) ∈ D(e−) with y2 = x2.3

Thus,

N [R(u,r)|R(u,`)] . umax . (5.40)

Finally, Inequality (5.32) holds by the same arguments as in the previous lemma
(recall that this inequality had two proofs – one if U = fin, another if U ∈ {mid, init}).
Thus, combining Inequalities (5.39), (5.40) and (5.32),

|P | 6 N [R(u,`), R(d,r)] . u2
max |Hθ(u)|.

This completes the proof of Inequality (5.35).
Next, we prove Inequality (5.36) using a similar argument, again we redefine P

accordingly. Inequality (5.37) does not hold in this case, since we have already removed

3It is not an accident that the value of y2 is off-by-one from our analysis of the location of R(u,`); see Figure
6.
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the defect that was originally in the bottom left corner of R, so we use instead the weaker
trivial bound

N [R
(u,`)
1 ] 6 L,

since there are at most L columns in Λ. Next, noting that Inequality (5.38) holds with
the same argument as above, this implies

N [R(u,`)] . L |Hθ(u)|. (5.41)

Inequalities (5.40) and (5.32) hold by the same arguments given above. Thus, combining
Inequalities (5.41), (5.40) and (5.32), we conclude

|P | 6 N [R(u,`), R(d,r)] . Lumax |Hθ(u)|.

This completes the proof of the lemma.

As our final preliminary congestion estimate, we bound the number of choices given
by the function F . Recall n(σ) = 1 ∨ (m(σ)− 1) is the number of parts of the split which
contain at least 100L defects if there are two or more parts.

Lemma 5.25. Consider β, L > 0 with L = Lc(β), let Λ = [1 : L]2, and fix σ ∈ ΩΛ. Let
p = p+(σ), fix i ∈ [1 : n(σ)] and define v = r(σ, i). Then we have the following bounds on
|F (σ, i)|:

1. If θ(v) = 0, then

|F (σ, i)| & |D(p|Si(σ))|. (5.42)

2. If θ(v) ∈ Θ \ {0}, then

|F (σ, i)| & (vmax − θ(v))2 #v(vmax − θ(v)) . (5.43)

Proof. In the case n(σ) = 1, Inequality (5.42) follows immediately from Inequality
(5.15) in Lemma 5.10. When n(σ) > 1, then |D(p|Si(σ))| > 100L for each i ∈ [1 :

n(σ)], so Inequality (5.42) follows from (5.16) in Lemma 5.10. Inequality (5.43) follows
immediately from (5.17) in Lemma 5.10.

Having completed the preliminary congestion bounds we now prove Proposition 5.20:

Proof of Proposition 5.20. Properties (1), and (3) are almost immediate. Property (1),
given in (5.21), follows immediately from Definition 5.19. Property (3), given in Equation
(5.23), follows from the definition of F in Definition 5.15 and Lemma 5.11. Thus, it only
remains to prove Properties (2) and (4).

We prove the last line of Inequality (5.22). Fix e ∈ E and let x = (x1, x2) be the spin

that is flipped by edge e (so that e+ = ex−) and fix θ ∈ Θ \ {0} such that G(fin)
θ is not empty,

finally let i = I(e) and u = r(e−, i). Recalling (5.27) of Lemma 5.23 and Inequality (5.36)
of Lemma 5.24,

|{(σ,R) ∈ G(fin)
0 (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}| . β2L2 , (5.44)

|{(σ,R) ∈ G(fin)
θ (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}| . Lumax |Hθ(u)| .

On the other hand, consider σ ∈ G(fin)
0 (e). By Lemma 5.25, the fact that first m(σ) − 1

splits each contain at least 100L defects, and the fact that the only split contains |D(σ)|
defects if m(σ) = 1, we have

|F (σ, i)| & min(L, |D(e−)|), σ ∈ G(fin)
0 (e) ; (5.45)
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we have used the observation |D(σ)| � |D(e−)|, since any rectangle-removal path creates

or removes at most six defects and |D(e−)| > 4. When σ ∈ G(fin)
θ (e) with θ ∈ [1 : β], we

have

|F (σ, i)|
Lemma 5.25

& (vmax − θ)2 #v(vmax − θ) & u2
max #v(vmax − θ) (5.46)

Ineq. (5.26)

& u2
max β

−1|Hθ(u)| ,

where in the second inequality we used vmax > β2, vmax > umax − 16 and θ 6 β.
We consider the initially sparse and θ-dense cases separately:

1. Sparse initial configurations. Fix τ ∈ G(fin)
0 (e), in this case, Inequalities (5.44)

and (5.45) give

|{(σ,R) ∈ G(fin)
0 (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}|
F (τ, i)

6 β2L2

min(L, |D(e−)|) .

2. θ-dense initial configurations. Fix τ ∈ G(fin)
θ (e), in this case, Inequalities (5.44)

and (5.46) give

|{(σ,R) ∈ G(fin)
θ (e)×R[1:L]2 : e ∈ γσ,R and F (pt)

σ (γσ,R) > 0}|
|F (τ, i)| . Lumax |Hθ(u)|

β−1u2
max |Hθ(u)|

. β−1L

6 β2L2

min(L, |D(e−)|) .

Combining these two cases,∑
σ∈G(fin)

θ (e)

∑
R : e∈γσ,R

1

|F (σ, i)| 6
∑

σ∈G(fin)
0 (e)

∑
R : e∈γσ,R

1

|F (σ, i)| +
∑

σ∈G(fin)
θ (e)

∑
R : e∈γσ,R

1

|F (σ, i)|

. β2L2

min(L, |D(e−)|) .

If we consider initial configurations σ such that |D(σ)| . L and apply the trivial bound

n(σ) > 1 we get the desired result by the definition of F (pt)
σ . Finally considering the

initial configurations σ such that |D(σ)| & L, in this case we apply (3) proved above to
get the desired bound. This completes the proof of the last line of Inequality (5.22).

The proof of the other two inequalities in (5.22) is essentially identical, with the
following simple changes to the two cases:

1. Replace references to Inequality (5.27) of Lemma 5.23 with references to Inequality
(5.28) of Lemma 5.23 (the upper bound is better by a factor of β2L−1).

2. Replace references to Inequality (5.36) of Lemma 5.24 with references to Inequality
(5.35) of Lemma 5.24 (in this case the upper bound is better by a factor of L−1umax).

Finally, we prove Property (4), the energy bound. Inequality (5.24) can be observed
directly from the definition of the rectangle-removal paths in Definition 5.6. We find it
easiest to see this by simply following along in Figure 4; we now give a short description
of what can occur. Begin by assuming there are no defects in the interior of the rectangle.
In this case the first spin that is “flipped” in any row besides the last one will create a
new pair of vertically adjacent defects that travel across the row, and the last spin that
is “flipped” in the row will delete both elements of this pair. This proves the first line of
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Inequality (5.24) in this case. The second line of Inequality (5.24) follows in this case
from noticing that the last row of the rectangle will already have a pair of vertically
aligned defects, and so no new defects are created. Finally, it is straightforward to see
that any defects in the interior of the rectangle can only decrease the number of excess
defects created during a rectangle-removal path. This completes the proof of Proposition
5.20.

5.4 Path construction: high density

The first path in this section will be appended to previously-defined paths after
roughly L defects have been removed, as it allows us to give a good bound on the total
path length (at the cost of an enormous penalty to both congestion and energy). The
path simply flips all −1 spins to +1 spins, in order:

Definition 5.26 (Naive Paths). For fixed σ ∈ Ω[1:L]2 , we define a ({0, 1}-valued) probabil-

ity mass F (na)
σ on Γσ,+ by giving an explicit algorithm for sampling from the measure.

Let z(1), z(2), . . . be all points of [1 : L]2 in lexicographic order.

1. Initialize by setting γ = {σ} and i = 0.

2. While γ(fin) 6= +, do the following:

(a) Set i = i+ 1.
(b) If γ(fin)

z(i) = −1, do the following:

i. Set σ = γ(fin).
ii. Set γ = γ • (γ(fin), σz

(i)

).

3. Return the path γ.

We then define the complete measure on paths that will be analyzed in the remainder
of this paper:

Definition 5.27 (Full Random Path). For fixed σ ∈ Ω[1:L]2 , we define a probability mea-
sure Fσ on Γσ,+ by giving an explicit algorithm for sampling from this measure:

1. Initialize by setting γ = {σ} and i = 1.

2. While D(γ(fin)) 6= ∅, iteratively sample subpaths γ1, γ2, . . . according to the following
loop.

(a) If i 6 βL, sample γi ∼ F (pt)

γ(fin) .

(b) If i > βL, sample γi ∼ F (na)

γ(fin) , according to Definition 5.26.
(c) In both of these cases, set γ = γ • γi and then i = i+ 1.

3. Once γ satisfies D(γ(fin)) = ∅, return the path γ.

When bounding the mixing time, it is useful to consider truncated paths as follows.
Fix a truncation level 0 6 k 6 L2. We define the measure F (k)

σ on Γ by the following
algorithm:

1. Sample the path (σ(0), . . . , σ(m)) ∼ Fσ.

2. Let imin = min{i : |D(σ(i))| 6 k}.
3. Return the path γ = (σ(0), . . . , σ(imin)).
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5.5 Path analysis: bounds on congestion and path length

We analyze the random path constructed in Definition 5.27. We begin by bounding
the congestion associated with the subpath given in Definition 5.26. We will then bound
the congestion associated to entire paths.

Definition 5.28 (Compatible Naive Paths). Fix an edge e = (e−, e+) ∈ E. We now define
the set G(na)(e) ⊂ Γ of compatible naive paths associated with edge e as follows. Say
γ ∈ G(na)(e) if it satisfies both of the following:

1. e ∈ γ, and

2. there exists a configuration σ ∈ Ω[1:L]2 so that F (na)
σ (γ) > 0.

We now bound the sizes of these sets of compatible paths. Recall the naive paths are
deterministic, so F (na)

σ (γ) > 0 for exactly one path γ.

Lemma 5.29 (Number of Compatible Naive Paths). Fix an edge e ∈ E and integer k ∈ N.
With notation as above,

|{γ ∈ G(na)(e) : |D(γ(init))| = |D(e−)|+ k}| 6 22L
k+2L∑

m=(k−2L)+

(
L2

m

)
, (5.47)

where (k − 2L)+ = max{k − 2L, 0}.

Proof. Figure 7 and its caption give an informal proof; a formal proof follows.

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+

+ + + + + + + + ++

+

+

+

+

+

+

++ + +

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−

−−

Figure 7: Reconstruction of σ from an observed edge e. Defects in e− are shown by
black circles. The small black square indicates the site x where the spin is flipped in e.
The four defects that are flipped by the edge e are contained in the dot-dashed box. The
region above the thick dashed line is all + under e− (and in particular has no defects),
and could have had any values in the initial configuration σ (so that the total number of
defects is |D(e−)|+ k). The e− and σ have the same spin configuration below the dashed
line, and in particular have the same number of defects in this region excluding those on
the dashed line, so there are no choices here. The dashed line intersects at most (L+ 2)

plaquettes, and in principle any of these could contain defects in e− that do not appear
in σ (in particular there may be up to (L+ 2) extra defects here and thus 2L+2 choices).

More formally, let z(1), z(2), . . . be the elements of Λ = [1 : L]2 in lexicographic order.

Recall that e− = ez
(i)

+ for some z(i) = (z
(i)
1 , z

(i)
2 ) ∈ Λ and 1 6 i 6 |Λ|. Let γ ∈ G(na)(e),

and let σ = γ(init). We note that γ is determined entirely by σ (since the measure F (na)
σ

puts all mass on a single path). Thus, it is enough to bound the possible choices of σ. We
note the following about the possible choices for σ:
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1. We must have σ(z(j)) = e−(z(j)) for all j > i.

2. Knowledge of e gives no obvious restrictions on σ(z(j)) for j < i.

This gives rise to the following restrictions on the locations of the defects of σ,

1. They must agree with the defects of e− for all sites {z(k) : k > i+ L+ 1}. These
are the sites below the boundary “strip” in Figure 7.

2. The defects in the set {z(k) : k < i− 1} of sites above the boundary “strip” can be
in any position.

There are also some complicated restrictions on the strip {z(k) : i−1 6 k 6 i+L+1}
itself, but we will ignore these restrictions (at the cost of over-counting the true number
of possible configurations σ). Thus, to create a candidate compatible path starting at
ancestor configuration σ with |D(σ)| = |D(e−)|+ k, we can:

1. Place defects in the set {z(k) : k > i + L + 1} below the horizontal strip so that
they agree with e− (there is one way to do this).

2. Place defects on the horizontal strip {z(k) : i − 1 6 k 6 i + L + 1} in any way
(there are (L+ 2) sites on the strip, so at most 2L+2 6 22L ways to do this).

3. Place the remaining defects anywhere in the set {z(k) : k < i − 1} above the
strip (there are between (k − 2L)+ and k + 2L defects to place after choosing the

configuration on the strip, and so at most
∑k+2L
m=(k−2L)+

(
L2

m

)
ways to do this).

Not all candidate ancestors are in fact possible ancestors, but this gives the desired
upper bound on the number of possible ancestors (and thus the same upper bound on
the number of possible compatible paths).

Next, we bound the number of compatible paths associated with a full path segment
γσ,R obtained from the function F in Proposition 5.20. We note that any such allowed

path γσ,R will certainly have |D(γ
(fin)
σ,R )| = |D(γ

(init)
σ,R )| − k for k ∈ {2, 4}, motivating the

definition:

Definition 5.30 (Long Compatible Non-Naive Paths). Fix η ∈ Ω[1:L]2 and k ∈ {2, 4}. We
now define the set G(long)(k, η) ⊂ Γ of long compatible typical paths associated with η as
follows. Say γ ∈ G(long)(k, η) if it satisfies all of the following:

1. γ(fin) = η, and

2. |D(γ(init))| = |D(η)|+ k, and

3. There exists σ ∈ Ω[1:L]2 such that F (pt)
σ (γ) > 0.

We now bound the number of compatible paths for a given configuration:

Lemma 5.31 (Number of Long Compatible Non-Naive Paths). For fixed η ∈ Ω[1:L]2 , we
have the inequalities

|G(long)(2, η)| 6 |D(η)| (L2 − |D(η)|) 6 L4

4
(5.48)

|G(long)(4, η)| 6 (L2 − |D(η)|)2 6 L4

Proof. Let γ ∈ G(long)(2, η). Note that, to reconstruct γ from η, it is enough to reconstruct
the rectangle R ⊂ [1 : L]2 that satisfies γ = γσ,R for some σ ∈ Ω[1:L]2 (note that knowledge
of R and η allows you to reconstruct σ uniquely). Let r(init), r(fin) be, respectively, the
first and last elements of R that are flipped while traversing γ. Since only two defects are
removed over the course of γ, we must have that r(fin) ∈ D(η) and r(init) /∈ D(η). Thus,
there are at most (L2 − |D(η)|) choices for r(init) and at most |D(η)| choices for r(fin).
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Since the choice of two opposite corners of R determines R completely, this completes
the proof of the first line of Inequality (5.48). The proof of the second line is essentially
identical.

Having bounded the congestion of the path types, we bound the path lengths.

Lemma 5.32 (Path Length). Fix σ ∈ Ω[1:L]2 and let γ ∈ Γσ,+ satisfy Fσ(γ) > 0. Then the
path length is bounded by

|γ| 6 L2 min

(
βL+ 1,

|D(σ)|
2

)
.

Proof. Recall that the (non-truncated) paths constructed in Definition 5.27 are given in
terms of a decomposition of each path γ into subpaths:

γ = γ1 • . . . • γ`

for some `. Note that for all i < `, we have γi is of the form γ
γ

(fin)
i−1 ,Ri

for some rectangle

Ri (with the convention γ
(fin)
0 = σ). Recalling that |D(γ

(fin)
i )| 6 |D(γ

(init)
i )| − 2, this

implies ` 6 |D(σ)|
2 . Recalling from Definition 5.27 that we start a naive path of the form

in Definition 5.26 after at most βL rectangle-removal paths of the form Definition 5.6,
this implies ` 6 min(βL+ 1, |D(σ)|

2 ).
Recalling that each path component γi consists of flipping all the spins in a single

rectangle Ri ⊂ [1 : L]2 at most once, we have |γi| 6 |Ri| 6 |[1 : L]2| = L2. Thus,

|γ| 6
m∑
i=1

|γi| 6 mL2 6 L2 min

(
βL+ 1,

|D(σ)|
2

)
.

5.6 Final bounds on canonical paths

In this section, we put together our main bounds on the canonical paths studied
in this paper. The calculation is somewhat lengthy, so we remind the reader of some
conventions that are used throughout this section:

1. Throughout this section, we consider β, L > 0 with L = Lc(β) and let Λ = [1 : L]2.

2. In this section only, we fix the constant M = bβLc+ 1, one more than the number
of path components taken before using the “naive” path, i.e. an upper bound on
the total number of sub-paths used to construct each path to the ground state.

3. All paths that have positive measure under Definition 5.27 will consist of a sequence
of paths

γ1 • . . . • γm, (5.49)

where each element γi has positive measure under Definition 5.16, possibly followed
by a path of the form given in Definition 5.26. We will always write our paths in
terms of this decomposition. When a single path has several decompositions of this
form, we sum over all of these representations.

4. The measures {F (pt)
σ } are as in Definition 5.16, the measures {Fσ}, {F (k)

σ } are as

in Definition 5.27, and the measures {F (na)
σ } are as in Definition 5.26. We note that

F
(na)
σ assigns full mass to a single path, which we denote γσ,na.

5. For σ ∈ Ω and e = (e−, e+) ∈ E, we define the energy associated with a path started
at σ on edge e as Q(σ, e) = π(σ)/

(
π(e−)L(e−, e+)

)
.
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We fix an edge e ∈ E and calculate a bound on the sum that appears in Lemma 5.2,
with sets S = Sk of the form (5.6) for some k ∈ [0 :L2]. Although in principle we could
take advantage of the fact that paths from Sk that are truncated when they enter Sck are
shorter than paths which go all the way from Sk to {+}, we will not do so. However,
we will use the fact that the initial state of any path from Sk to Sck will have at least k
defects.

Recalling M . βL, we have:∑
σ∈Sk

∑
γ3e

F (k)
σ (γ)|γ|Q(σ, e)

Lemma 5.32

.
∑
σ∈Sk

∑
γ3e

F (k)
σ (γ)L2 min(|D(σ)|, βL)Q(σ, e)

Eq. (5.49)
=

M∑
m=1

m∑
j=1

∑
γ=γ1•...•γm

γ(init)∈Sk ,γj3e

F
(k)

γ(init)(γ)L2 min(|D(γ(init))|, βL)Q(γ(init), e)

= L2
M∑
m=1

min(m,M−1)∑
j=1

∑
γ=γ1•...•γm

γ(init)∈Sk ,γj3e

F
(k)

γ(init)(γ) min(|D(γ(init))|, βL)Q(γ(init), e)

+ L2
∑

γ=γ1•...•γM
γ(init)∈Sk ,γM3e

F
(k)

γ(init)(γ) min(|D(γ(init))|, βL)Q(γ(init), e)

≡ L2Sinit + L2Snaive. (5.50)

We bound these last two terms separately, starting with Sinit. As the subscripts in
the following sums will become somewhat complicated, we introduce some short-term
notation to reduce the visual clutter. In the following definitions, we always think of η
as the configuration in γ that appears “just before” the part of the path containing the
edge e, and 2u as the number of defects removed in going from γ(init) to η in excess of
the minimal number.

Γ(i)(m) = {γ1 • . . . • γm ∈ Γ : γi 3 e, γ(init)
1 , . . . , γ

(init)
i ∈ Sk} for i 6 m,

Γ(m) = Γ(m)(m) = {γ1 • . . . • γm ∈ Γ : γm 3 e, γ(init)
1 , . . . , γ(init)

m ∈ Sk},
Γ(m,u) = {γ1 • . . . • γm ∈ Γ(m) : |D(γ(init))| = |D(γ(init)

m )|+ 2(m− 1 + u)},
∆(η) = {γ ∈ Γη : γ 3 e},
h(m) = min(|D(e−)|+ 4m, βL).

In this notation, we have omitted the dependence on many variables (e.g. the edge e and
starting level k) that do not change in the calculation. We compute:

Sinit =

M∑
m=1

min(m,M−1)∑
i=1

∑
γ∈Γ(i)(m)

F
(k)

γ(init)(γ) min(|D(γ(init))|, βL)Q(γ(init), e) (5.51)

=

M−1∑
m=1

∑
γ∈Γ(m)

 m∏
j=1

F
(pt)

γ
(init)
j

(γj)

 min(|D(γ(init))|, βL)Q(γ(init), e) ,

where in the second line we took the marginal distribution of the first i segments of the
path γ that is being summed over (integrating out the remaining segments from index
i+ 1 to m, which are not relevant to the other terms in the sum). Denote the inner sum
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by:

S(m, e) ≡
∑

γ∈Γ(m)

 m∏
j=1

F
(pt)

γ
(init)
j

(γj)

 min(|D(γ(init))|, βL)Q(γ(init), e) . (5.52)

We now decompose S(m, e) over the possible values of u and factor out the term
which is due to the final part of the path, and observe that min(|D(γ(init))|, βL) 6 h(m),
to get

S(m, e) =

m−1∑
u=0

∑
γ∈Γ(m,u)

 m∏
j=1

F
(pt)

γ
(init)
j

(γj)

 min(|D(γ(init))|, βL)Q(γ(init)
m , e)e−2(m+u−1)β

6
m−1∑
u=0

∑
η∈Sk

∑
γ∈∆(η)

F (pt)
η (γ)h(m)Q(η, e)e−2(m−1+u)β ·

∑
γ∈Φ(m,u,η)

(
m−1∏
i=1

F
(pt)

γ
(init)
i

(γi)

)
,

(5.53)

where

Φ(m,u, η) = {γ1 • . . . • γm−1 : F
(pt)

γ
(init)
i

(γi) > 0 ∀ i ∈ [1 : (m− 1)], γ
(init)
1 ∈ Sk, γ(fin)

m−1 = η,

|D(γ(init))| = |D(η)|+ 2(m− 1 + u)} .

To continue, we bound the inner part of the sum,
∑
γ∈Φ(m,u,η)

(∏m−1
i=1 F

(pt)

γ
(init)
i

(γi)

)
, in two

cases:

1. |D(η)| 6 β−1L2. In this case we begin with the trivial bound
∏m−1
i=1 F

(pt)

γ
(init)
i

(γi) 6 1.

Thus, it is enough to bound the size of the set Φ(m,u, η). Let Bin(u) = {s ∈
{0, 1}m−1 :

∑m−1
i=1 si = u}; for s ∈ Bin(u) define

Φs(m,u, η) = {γ1 • . . . • γm−1 ∈ Φ(m,u, η) :

∀ i ∈ [1 : (M − 1)], |D(γ
(init)
i )| = |D(γ

(fin)
i )|+ 2(1 + si)}.

Since each component γi of a path in Φ(m,u, η) satisfies |D(γ
(init)
i )| − |D(γ

(fin)
i )| ∈

{2, 4}, the sets {Φ(u, η, s)}s∈Bin(u) in fact partitions Φ(u, η):

Φ(m,u, η) = ts∈Bin(u)Φs(m,u, η). (5.54)

Since m 6 βL and |D(η)| 6 β−1L2 we have |D(γ
(fin)
i )| . β−1L2 for each

i ∈ [1 : m− 1]. So applying the first bounds in Lemma 5.31 we have

|Φs(m,u, η)| . L4(m−1)β−m+1+u (5.55)

for all s ∈ Bin(u). Combining these bounds,

∑
γ∈Φ(m,u,η)

(
M−1∏
i=1

F
(pt)

γ
(init)
i

(γi)

)
6 |Φ(m,u, η)|

(5.54)
6

∑
s∈Bin(u)

|Φs(m,u, η)|

(5.55)

. L4(m−1)β−m+1+u

(
m− 1

u

)
.

2. |D(η)| > β−1L2. The bound in this case is essentially the same. Since |D(η)| >
β−1L2 is large, we can improve the trivial bound

∏M−1
i=1 F

(pt)

γ
(init)
i

(γi) 6 1, by applying
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(5.23), to the (still very weak) bound
∏m−1
i=1 F

(pt)

γ
(init)
i

(γi) 6 β−m+1 (in fact the upper

bound is closer to (L/β)
−m+1 but we don’t use this additional strength). On the

other hand, since |D(η)| is large, applying Lemma 5.31 gives only the bound

|Φ(u, η, s)| 6 L4(m−1), (5.56)

so our upper bound is larger by a factor of βm−(u+1) relative to Inequality (5.55).

Since we have improved by β−m+1 and worsened by a smaller factor of βm−(u+1),
the conclusion ∑

γ∈Φ(m,u,η)

(
m−1∏
i=1

F
(pt)

γ
(init)
i

(γi)

)
6 L4(m−1)β−m+1+u

(
m− 1

u

)
(5.57)

holds in this case as well.

Thus, Inequality (5.57) holds in both cases. Substituting Inequality (5.57) into (5.53)
and continuing:

S(m, e) .
m−1∑
u=0

(
m− 1

u

)
β−(m−1−u)L4(m−1)

∑
η∈Sk

∑
γ∈∆(η)

F (pt)
η (γ)h(m)Q(η, e)e−2(m−1+u)β

(5.58)

. β−(m−1)
∑
η∈Sk

∑
γ∈∆(η)

F (pt)
η (γ)h(m)Q(η, e)

m−1∑
u=0

(
m− 1

u

)
(βe−2β)u

. β−(m−1)h(m)
∑

η∈Sk∩G(e)

∑
γ∈∆(η)

F (pt)
η (γ)h(m)Q(η, e) ,

where on the second line we used L4(m−1)e−2(m−1)β . 1.
Next, we apply the congestion and energy bounds in Proposition 5.20. We note there

are effectively two cases: η ∈ ∪θ∈ΘG
(init)
θ (e) ∪G(mid)

θ (e) or η ∈ ∪θ∈ΘG
(fin)
θ (e). In the first

case, the congestion bound is slightly stronger while the energy bound is slightly weaker;
in the second case, the congestion bound is slightly weaker while the energy bound is
much stronger. Thus, in both cases, we continue from Inequality (5.58) to find:

S(m, e) . |Θ|β4 e2.5ββ−(m−1) h(m)

|D(e−)| . (5.59)

Combining Inequalities (5.51) and (5.59), and noting that h(m) 6 min(|D(e−)|, βL)+4m,

Sinit .
M−1∑
m=1

S(m, e) . β6 e2.5β min(1,
βL

|D(e−)| ). (5.60)

We now bound the term Snaive by a similar factorisation as we did for Sinit. We replace
the previous simplifying notation with the following,

Γinit(η) = {γ1 • . . . • γM−1 ∈ Γ : γ
(init)
1 , . . . , γ

(init)
M−1 ∈ Sk, γ

(fin)
M−1 = η}, (5.61)

Ωna = {η ∈ Sk : γη,na 3 e},
Ω(v) = {η ∈ Sk : |D(η)| = |D(e−)|+ 2v, γη,na 3 e} .

In the following we now think of η as the configuration in γ that appears at the beginning
of the naive part of the path (which contains e), and 2v as the number of defects removed
from η to e−, which could be negative.

Snaive =
∑

γ=γ1•...•γM
γ(init)∈Sk ,γM3e

F
(k)

γ(init)(γ) min(|D(γ(init))|, βL)Q(γ(init), e) (5.62)
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=
∑
η∈Ωna

∑
γ∈Γinit(η)

(
M−1∏
i=1

F
(pt)

γ
(init)
i

(γi)

)
min(|D(γ(init))|, βL)Q(γ(init), e)

Now, defining Γinit(η, x) = {γ1 • . . . • γm−1 ∈ Γ : γ
(init)
1 ∈ Sk, γm−1 3 (ηx, η)}, we observe

that Γinit(η) ⊂ ∪x∈ΛΓinit(η, x). Furthermore, using reversibility and that the rates are
bounded by 1, we have

Q(γ(init), e)/Q(γ(init), (ηx, η)) 6 Q(η, e) ,

it follows that

Snaive 6
∑
η∈Ωna

Q(η, e)
∑
x∈Λ

∑
γ∈Γinit(η,x)

(
M−1∏
i=1

F
(pt)

γ
(init)
i

(γi)

)
min(|D(γ(init))|, βL)Q

(
γ(init), (ηx, η)

)
︸ ︷︷ ︸

,

where the under-braced term is exactly S
(
M, (ηx, η)

)
defined in Eq. (5.52). Applying

Ineq. (5.59) and summing over the possible number of defects removed in going from η

to e−,

Snaive . β6e8ββ−(M−1)
∑

v > −L−2

∑
η∈Ω(v)

e−2vβ ,

where we applied the bounds h(m)/|D(e−)| 6 βL and L(e−, e+) > e−4β. Finally,
applying Lemma 5.29

Snaive . β6e8ββ−(M−1)
∑

2v > −2L

22L
2v+2L∑

k=(2v−2L)+

(
L2

k

)
e−2vβ

6 β6e8ββ−(M−1)
∑

2v > −2L

22L(4L+ 1)
L2(2v+2L)

(2v − 2L)+!
e−2vβ

. β6e8.5ββ−(M−1)22Le2Lβ
∑
n > 0

(L2e−β)n

(n− 4L)+!

L2e−β≈1

. β6e9ββ−(M−1)22Le2Lβ . (5.63)

Since M = Θ(βL) and L = Θ(e0.5β), we observe that the term L2Snaive is negligible
compared to L2Sinit.

Summarizing the calculations in this section, we have by Inequalities (5.50), (5.63)
and (5.60)

∑
σ∈Sk

∑
γ3e

F (k)
σ (γ)|γ| π(σ)

π(e−)L(e−, e+)
. L2(Sinit + Snaive) (5.64)

. L2
(
β6 e2.5β min(1,

βL

|D(e−)| ) + L4M+1e(9−2M)β22Lβ−M
)

. β6 e3.5β min(1,
βL

|D(e−)| ) ,

for any edge e with e− ∈ Sk.
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6 Analysis of all-plus boundary condition: proof of Theorem 3.1

6.1 Upper bounds

Applying Lemma 5.2 with S = {σ ∈ ΩΛ : |D(σ)| = 0} and the usual variational
characterization of the spectral gap given in Equation (2.13),

T+
rel(Lc) 6 A,

where A is defined as in Equation (5.3). By Inequality (5.64),

A . β6 e3.5β .

Combining these two bounds completes the proof of the upper bound in Inequality (3.1).
Next, we prove the upper bound on the mixing time. Define the function k : [0, 1] 7→ N

as in Equality (5.5), and for r > 0 let Sk(r) be as in Equation (5.6). Applying Inequality
(5.8), we have by Lemma 5.2 and the bound on A given in Inequality (5.64) that

λ−1(Sk(r)) . β6 e3.5β , e−βLc < r , (6.1)

λ−1(Sk(r)) . β8 e4β −1

log(r)
, 0 < r < e−βLc ,

where we recall from Lemma 4.4 that π(+) ≈ 1, and |D(e−)| > k(r) for any edge e with
e− ∈ Sk(r). Applying Inequality (5.4) with the bound from Inequality (6.1), we conclude

T+
mix(Lc)

Ineq (5.4)

6
∫ 16

4 minσ π(σ)

2

xΛL+
Λ

(x)
dx

Ineqs (5.7),(6.1)

. 2β8 e4β

∫ e−Lcβ

4e−L
2
cβ

1

x log(1/x)
dx+ 2β6e3.5β

∫ 16

e−Lcβ

1

x
dx . β9 e4β ,

completing the proof of the upper bound in Inequality (3.2).

6.2 Lower bound on relaxation time

We give a lower bound on the relaxation time by choosing an explicit test function
that relaxes to equilibrium quite slowly, and explicitly bounding the two terms in the
ratio (2.13). We choose a test function motivated by the heuristic that the relaxation
time is dominated by the time it takes for 4 initially well seperated defects, at the corners
of a rectangle, to annihilate. As illustrated in Figure 2, these opposite corners perform
nearly-independent symmetric random walk until they are in adjacent columns or rows,
and so our test function will be quite similar to the optimal test function for symmetric
random walk in [0 : Lc]

2.
Throughout the proof, to reduce notation we use π = π+

Λ , c = c+Λ , p = p+, L = Lc and
Λ = [1 : L]2. Let f : Ω+

Λ → R+ be given by

f(σ) = g

( |σ|
L2

)
, (6.2)

where g : [0, 1]→ [0, 1] is defined for x ∈ [0, 1/2] by
g(x) = 0 if x ∈ [0, 1/4] ,

g(x) = 12x− 3 if x ∈ (1/4, 1/3)

g(x) = 1 if x ∈ [1/3, 1/2] ,

(6.3)

and g(x) = g(1− x) for x ∈ [1/2, 1].
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To estimate Var+
Λ(f) from below, it will turn out to be enough to compare the +

configuration to configurations consisting of exactly 4 defects at the corners of a rect-
angle (i.e. configurations with a single rectangular region of −1 spins, and all +1 spins
outside). Informally, there are Θ(L4) = Θ(e2β) rectangles of area Ω(L2), and by Lemma
4.4 and Equality (2.7) the probability of any particular such configuration is Θ(e−4β). It
will follow from these estimates on the number and probability of the “large-rectangle”
configurations that the Var+

Λ(f) & e−2β , as shown below.

More formally, let B be the collection of rectangles R ⊂ [1 : L]2 with areas L2

3 6
|R| 6 2L2

3 , and define

C = {σ ∈ Ω+
Λ : ∃R ∈ B s.t. σx ≡ 1− 21x∈R}

to be the rectangles with spin (−1) exactly on a rectangle in B.
Observe that |C| > cL4 for some c > 0. Since f(σ) > 1 for all σ ∈ C and f(+) = 0,

our bound on |C| > cL4 gives the following bound on Var+
Λ(f):

Var+
Λ(f) =

1

2

∑
σ,η∈ΩΛ

π(σ)π(η) (f(σ)− f(η))
2

> 1

2
π(+)

∑
σ∈C

π(σ)f2(σ) > 1

2
π(+)2

∑
σ∈C

e−4β & e−2β .

To estimate the Dirichlet form from above, we consider various cases defined by the
number of defects present in the initial and final configuration. Let

An = {η ∈ ΩΛ : |D(η)| = n} ,
Bn = An ∪ An−2 ∪ An−4 ,

where An is non-empty only for n = 0 or n > 4 and n even. By reversibility, we may
consider transitions which only remove defects (reducing the number by 0, 2 or 4), or
leave the number of defects the same, so

D+
Λ (f) 6

∑
σ∈Ω

∑
x∈ΩΛ :

|D(σ)| > |D(σx)|

π(σ)c(x, σ) (∇xf(σ))
2

=

L2/2∑
k=2

∑
σ∈A2k

∑
x :

σx∈B2k

π(σ)c(x, σ) (∇xf(σ))
2
. (6.4)

It remains to bound this sum from above. We divide the contributions to the sum in (6.4)
into 5 cases. In the Cases 1, 4 and 5 we will use the following general bound on ∇xf(σ).
For all σ ∈ ΩΛ, we have 4

(∇xg(σ))
2

=

(
g

( |σ|
L2

)
− g

( |σ| ± 1

L2

))2

= g′
( |σ|
L2

)2
1

L4
+ o

(
1

L4

)
. e−2β .

Case 1 (σ ∈ ⋃L2/2
k=4 A2k): We will show that the contribution to the sum in (6.4) due to

configurations σ with 8 or more defects are negligible. For σ ∈ A2k we have π(σ) =

4Note that g′(x) does not exist at some isolated points x. To ensure that the following calculation still holds,
we define g′(x) = limy↑x g

′(y) at these points. Note that essentially any sensible choice for these isolated
points will not change the final estimate.
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π(+)e−2kβ, also c(x, σ) 6 1 and |{x ∈ Λ : σx ∈ B2k}| 6 8k. Combining these bounds
with Lemma 4.3, it follows that

∞∑
k=4

∑
σ∈A2k

∑
x :

σx∈B2k

π(σ)c(x, σ) (∇xf(σ))
2 .

(
L8e−8β + L12e−12β +

∞∑
k=8

kL3ke−2kβ

)
e−2β

.
(
e−4β + e−4β

(
8− 7e−β/2

))
e−2β . e−6β ,

where we use the bound |A2k| 6 (ek)2kL2k from Lemma 4.3 to bound the two terms
corresponding to k = 4 and k = 6, and we use the bound |A2k| 6 L3k from the same
lemma to bound the remaining terms with k > 8.
Case 2 (σ ∈ A4 and σx ∈ A0): If a single spin flip at x removes all defects, then σx = −1

and σy = 1 for y ∈ Λ \ {x}. Therefore (∇xf(σ))
2 6

(
g(1/L2)

)2
= 0 for L > 2 by (6.3). It

follows that there is no contribution to the sum in (6.4) from this case.
Case 3 (σ ∈ A4 and σx ∈ A4): By a similar argument as in Case 2, these transitions do
not contribute to the sum for L > 4. Observe that, if σ and σx have the same number of
defects, this means that there must be exactly two defects in the plaquette associated
with x – that is, |D(σ) ∩ {x, x − e1, x − e2, x − e1 − e2}| = 2. Since σ ∈ A4, this fact
(and the parity Lemma 4.1) implies that the collection {y ∈ [1 : L]2 : σy = −1} of sites
with spin −1 must be a rectangle of width or height 1. In particular, |σ| 6 L and so
(∇xf(σ))

2 6 4 (g(1/L))
2

= 0 for L > 4 by (6.3).
Case 4 (σ ∈ A6 and σx ∈ A4): The only spin flips which remove 2 defects are those in
which the initial state has 3 neighboring defects which are replaced by a single defect
(see the first transition in Figure 1, which is a generic transition in this sense). It follows
that |{σ ∈ A6 : ∃x ∈ Λ with σx ∈ A4}| . |A4|. By Lemma 4.3, |A4| . L4. Also for any
σ ∈ A6 the number of sites at which a spin flip will reduce the number of defects is
trivially bounded from above by 24 (the total number of sites that can contain a defect in
any of their associated plaquettes). It follows that∑

σ∈A6

∑
x :

σx∈A4

π(σ)c(x, σ) (∇xf(σ))
2 . e2βe−8βπ(+) . e−6β . (6.5)

The following case is the only one which gives a non-negligible contribution to our
upper bound on the Dirichlet form.
Case 5 (σ ∈ A6 and σx ∈ A6): As in Case 3, σ has at least two neighbouring defects. By
the same argument as in Lemma 4.3, we have |{σ ∈ A6 : ∃x ∈ Λ with σx ∈ A6}| . L5.
Furthermore, any spin flip at a site which is not a neighbour of a defect must change the
number of defects, so |{x ∈ Λ : |p(σ)| = |p(σx)|}| 6 24. Finally for σ ∈ A6 and σx ∈ A6

we have π(σ) = π(+)e−6β and c(x, σ) = 1, it follows that∑
σ∈A6

∑
x :

σx∈A6

π(σ)c(x, σ) (∇xf(σ))
2 . e−2βe(5/2)βe−6βπ(+) ≈ e−2β e−(7/2)β . (6.6)

Combining the bounds from Cases 1–5 above with Inequality (6.4) we have,

T+
rel(Lc) > Var+

π (f)

D+
Λ (f)

& e(7/2)β . (6.7)

7 Analysis of periodic boundary condition: proof of Theorem 3.2

Throughout this section, we often reserve subscripts for a time index and use the
“bracket” notation x[i] ≡ xi to indicate an element of a vector x = (x1, . . . , xk). In this
section, we have many explicit probabilistic calculations related to Markov processes
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{Xt}t > 0 running according to some generator and with starting points X0 = x. When
we wish to emphasize the starting point of a process in such a calculation, we use
subscripts, as in e.g. Px[Xt ∈ S], Ex[f(Xt)].

7.1 Lower bound

We prove the lower bound in Theorem 3.2 by constructing and analyzing a test
function.

We begin by giving the heuristic that guides our proof of this inequality. Roughly
speaking, we expect the relaxation time of the dynamics of the spin model {Xt}t > 0 to be
bounded below by the relaxation time of the dynamics of the trace {X̂t}t > 0 of {Xt}t > 0

on the set G = {X ∈ ΩΛ : Hper
Λ (X) = minη∈ΩΛ

Hper
Λ (η)} of ground states. Furthermore,

this “trace walk” {X̂t}t > 0 behaves very much like simple random walk on the hypercube
{−1,+1}2L−1. This can be made precise in the following way: there is a natural bijection
w : G 7→ {−1,+1}2L−1 (see Definition 7.1 below) under which the dynamics of the trace
walk {w(X̂t)}t > 0 are a very small perturbation of the usual simple random walk on the
hypercube {−1,+1}2L−1, with one added transition that flips all signs. Thus, we expect
that a test function based on an eigenfunction for the kernel of simple random walk on
the hypercube with largest eigenvalue, the usual “Hamming weight” function, should be
able to pick out the slowest mixing behaviour of {Xt}t > 0.

We now make this heuristic precise. We begin by defining the bijection w : G 7→
{−1,+1}2L−1, used to identify the ground states, as well as a collection of functions that
will allow us to extend a test function on G to a test function on all of ΩΛ. Note, that to
avoid excessive subscripts we use the notation σ[i, j] to denote the (i, j)th component
of σ, previously denoted σ(i,j). In words, w assigns a −1 to all the rows and columns
of a ground state that are flipped with respect to the + configuration, and +1 to all
the others, where the columns are labeled 1 to L (left to right), and the rows L + 1 to
2L− 1 (bottom to top). The top row of spins are fully specified by all the other rows and
columns.

We give the full notation required to define our test function in the following defini-
tion; the informal description of this notation in Remark 7.2 is sufficient to follow the
remainder of the argument:

Definition 7.1 (Preliminary Notation for Test Function). We define a bijection w : G 7→
{−1,+1}2L−1 between the collection of ground states and the (2L− 1)-hypercube by the
following formula for its inverse:

w−1(v)[i, j] = v[i]v[L+ j], i ∈ [1 : L], j ∈ [1 : (L− 1)] (7.1)

w−1(v)[i, L] = v[i], i ∈ [1 : L].

For v ∈ {−1, 1}2L−1, define |v| = ∑2L−1
i=1 1v[i]=1 to be the Hamming weight of v. We

also denote by ≺ some fixed total order on {−1,+1}2L−1 that extends the usual Hamming
partial order.

For m ∈ [1 : L], k ∈ [1 : L], and σ, η ∈ G with w(σ), w(η) differing at the single index
` ∈ [1 :L] and with w(σ) ≺ w(η), define the configuration R(σ, η,m, k) by

R(σ, η,m, k)[`, j] = η[`, j], j ∈ [m : (m+ k − 1)]

R(σ, η,m, k)[i, j] = σ[i, j], all other entries,

where in this case the “interval” [m : (m+ k − 1)] is defined modulo L (so that, if L = 9,
we have [7 :2] = {7, 8, 9, 1, 2}).

Similarly, for σ, η with w(σ), w(η) differing at the single index ` ∈ [(L+ 1) : (2L− 1)]

and with w(σ) ≺ w(η), define the configuration R(σ, η, k,m) by

R(σ, η,m, k)[i, `] = η[i, `− L], i ∈ [m : (m+ k − 1)]

EJP 25 (2020), paper 89.
Page 41/53

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP487
http://www.imstat.org/ejp/


Mixing of the square plaquette model

R(σ, η,m, k)[i, j] = σ[i, j], all other entries.

Finally, for σ, η with w(σ) = −w(η) and w(σ) ≺ w(η), define the configuration R(σ, η,m, k)

by

R(σ, η,m, k)[i, L] = η[i, L], i ∈ [m : (m+ k − 1)]

R(σ, η,m, k)[i, j] = σ[i, j], all other entries.

For convenience, when w(σ) ≺ w(η) we let R(σ, η,m, 0) = σ, and when w(η) ≺ w(σ) we
define R(σ, η,m, k) ≡ ∅ for each k ∈ [0 : L].

We note that, if you restrict the range of k to the set [1 : L], then R is an injective
map5 – that is, if R(σ, η,m, k) = R(σ′, η′,m′, k′) for k, k′ ∈ [2 : L− 1], then σ = σ′, η = η′,
m = m′ and k = k′. For k ∈ [1 : L], let

Rk = {ζ ∈ Ω[1:L]2 : ∃σ, η, m s.t. ζ = R(σ, η,m, k)}, (7.2)

so that R ≡ ∪Lk=1Rk is the collection of points along these minimal-length and -energy
paths between ground states. Note that, for k, k′ ∈ [2 : (L− 2)], Rk ∩Rk′ = ∅. Thus, for
ζ ∈ ∪L−1

k=2Rk, let σ(ζ), η(ζ),m(ζ), k(ζ) be the unique elements that satisfy

ζ = R(σ(ζ), η(ζ),m(ζ), k(ζ)). (7.3)

When ζ ∈ R1∪RL−1, there may be several choices that satisfy Equation (7.3), since these
configurations have a single spin flipped relative to an element of the ground state; this
single spin might be the first or last spin to be flipped in a path that is flipping a row or col-
umn; in total there can be up to four choices. Denote by φ(ζ) the number of these choices,
and denote the choices themselves by (σ1(ζ), . . . , k1(ζ)), . . . , (σφ(ζ)(ζ), . . . , kφ(ζ)(ζ)), in any
arbitrary but fixed order.

Remark 7.2. For fixed m ∈ L, the sequence {R(σ, η,m, k)}Lk=0 gives one of many
minimal-length paths from σ to η: that is, R(σ, η,m, 0) = σ, R(σ, η,m,L) = η, and
R(σ, η,m, k) is obtained by flipping k adjacent spins of the column on which σ, η disagree.
Roughly speaking: m identifies where in the column we start “flipping” from σ to η, and
k tells us “how far” we are in the path from σ to η. See Figure 8 for a sample pair of
ground states and an element along the path between them.

We will see that the paths of the form (R(σ, η,m, k))Lk=0 describe the only high-
probability paths between pairs of “neighboring” ground states (differ by one coordinate
of w). This allows us to lift test functions from {−1,+1}2L−1 to similar test functions on
Ω[1:L]2 . We can now define a simple test function:

Definition 7.3 (Test Function). Define ĝ : {−1,+1}2L−1 7→ R by

ĝ(u) =

∣∣∣∣ |u| − 2L− 1

2

∣∣∣∣ .
Define g : ΩΛ 7→ R by

g(ζ) =


ĝ(w(ζ)), ζ ∈ G,
k(ζ)
L ĝ(w(η(ζ))) + (1− k(ζ)

L )ĝ(w(σ(ζ))), ζ ∈ ∪L−2
k=2Rk,

k1(ζ)
L ĝ(w(η1(ζ))) + (1− k1(ζ)

L )ĝ(w(σ1(ζ))), ζ ∈ R1 ∪RL−1,

0, ζ /∈ R.
5Note that obtaining this injectivity is the reason we insist that w(σ) ≺ w(η).
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Figure 8: A minimal-length path {R(σ, η,m, k)}Lk=0 between two ground states σ =

w−1(u) and η = w−1(v), where u and v are given in the first and final frames.

This is well-defined for L > 4, since R1 ∪RL−1 is disjoint from ∪L−2
k=2Rk (the former

are obtained by flipping exactly 1 spin from a ground state; the latter all differ from
any ground state by at least 2 spins). Note that this test function essentially ignores the
behaviour of {Xt}t > 0 except on the collection of ground states and minimal-length paths
between ground states. On the minimal-length paths between ground states, g linearly
interpolates the values of ĝ, with the possibility of an error of 2

L for configurations that
are the first or last configuration along a minimal-length path.

We are primarily interested in the following property of g: if ζ1, ζ2 ∈ R and
Lper

Λ (ζ1, ζ2) 6= 0, then

|g(ζ1)− g(ζ2)| 6 3

L
; (7.4)

note that we require a factor of 3 (rather than 1) in this inequality to deal with the
possibility that ζ1 or ζ2 are in the set R1 ∪RL−1.

We now compare the Dirichlet form and variance of the test function g given in
Definition 7.3, restricting our attention to pairs β, L with L = Lc(β). We begin with
a lower bound on the variance. If X ∼ πper

Λ (·), and Y ∼ πper
Λ (· |Y ∈ G) is distributed

uniformly on the ground states, then

Varper
Λ (g) = E[g(X)2]− E[g(X)]2 (7.5)

> π(G)× (E[g(Y )2]− E[g(Y )]2)

& (E[g(Y )2]− E[g(Y )]2) & L,

where the second-last inequality uses the fact that π(G) & 1 from Lemma 4.4 and the
last inequality uses the fact that g(Y ) ∼ Bin(2L− 1, 0.5).

We next calculate an upper bound on the Dirichlet form, still restricting our attention
to the case L = Lc. We observe that if σ, η are two ground states with w(σ) = −w(η), then
g(σ) = g(η), and so these minimal-length transitions do not contribute to the following
calculation. Using reversibility of Lper

Λ and the fact that Lper
Λ (σ, η) = 0 for all pairs σ ∈ G,

EJP 25 (2020), paper 89.
Page 43/53

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP487
http://www.imstat.org/ejp/


Mixing of the square plaquette model

η /∈ R, we have

2Dper
Λ (g) =

∑
σ,η∈ΩΛ

(g(σ)− g(η))2πper
Λ (σ)L(σ, η) (7.6)

6
∑
σ∈G

∑
η∈R

(g(σ)− g(η))2πper
Λ (σ)Lper

Λ (σ, η) +

L−1∑
k=1

∑
σ∈Rk

∑
η∈Rk±1

(g(σ)− g(η))2πper
Λ (σ)L(σ, η)

+
∑
σ∈R

∑
η/∈R

(g(σ)− g(η))2πper
Λ (σ)L(σ, η)

≡ S1 + S2 + S3,

where the inequality is there because the sets {Rk}L−1
k=1 are not quite disjoint. We

calculate these three terms separately. Using the estimate πper
Λ (G) = 1 − o(1) from

Lemma 4.4, the bound (7.4), and the fact that L(σ, η) ∈ {e−4β , 0} for σ ∈ G, η /∈ G, we
have

S1 =
∑
σ∈G

∑
η∈R

(g(σ)− g(η))2πper
Λ (σ)L(σ, η) (7.7)

.
∑
σ∈G
|{η ∈ R : L(σ, η) > 0}|L−2 |G|−1 e−4β

. |G| × L2 × L−2 × |G|−1 × e−4β

= e−4β .

Next, note that an element ζ ∈ Rk is uniquely determined by a choice of σ ∈ G, η ∈ G
s.t. |w(σ)− w(η)| = 1, and m ∈ [1 : L]. Multiplying these three factors,

|Rk| 6 |G| × (2L)× (L).

Using this bound, the trivial bound L(σ, η) 6 1 for any configurations σ, η, and applying
Lemma 4.4 and Inequality (7.4) as above, we have:

S2 =

L−1∑
k=1

∑
σ∈Rk

∑
η∈Rk±1 :L(σ,η)>0

(g(σ)− g(η))2πper
Λ (σ)L(σ, η) (7.8)

. L× (|G| × L2)× (1)× L−2 × (e−4β × 1

|G| )× (1)

= Le−4β . e−
7
2β .

Finally, we note that for σ ∈ R and η with L(σ, η) > 0, we must have |D(η)| 6
|D(σ)|+ 4 6 8. Furthermore, if |D(η)| = 6, |D(σ)| = 4, and η = σx for some x ∈ [1 : L]2,
then the single flipped spin x must share a plaquette with one of the O(1) defects in
D(σ). In particular, for each fixed σ ∈ R,

|{η /∈ R : L(σ, η) > 0, |D(η)| = 6}| = O(1).

Finally, we use the trivial bound g(σ) 6 L. Then, applying Lemma 4.4 and Inequality
(7.4) as above, we have:

S3 =
∑
σ∈R

∑
η/∈R

(g(σ)− g(η))2πper
Λ (σ)L(σ, η) (7.9)

=
∑
σ∈R

∑
η/∈R, |D(η)|=6

(g(σ)− g(η))2πper
Λ (σ)L(σ, η)
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+
∑
σ∈R

∑
η/∈R, |D(η)|=8

(g(σ)− g(η))2πper
Λ (σ)L(σ, η)

. (L2 × |G|)× (1)× L2 × (
1

|G| e
−4β)× e−2β + (L2 × |G|)× L2 × L2 × (

1

|G| e
−4β)× e−4β

= L4e−6β + L6e−8β . e−4β .

Combining Inequality (7.6) with Inequalities (7.7), (7.8) and (7.9), we have

Dper
Λ (g) . e−

7
2β . (7.10)

Combining Inequalities (7.5) and (7.10), the variational characterization of the spectrum
in (2.13) gives

Trel(Lc,+) > sup
Varπ(f)6=0

Varper
Λ (f)

Dper
Λ (f)

> Varper
Λ (g)

Dper
Λ (g)

& L× e 7
2β = e4β .

This completes the proof of the lower bound of Theorem 3.2.

7.2 Upper bound

We now prove the upper bound in Theorem 3.2. Throughout this section, we restrict
our attention to pairs β, L with L = Lc(β).

As in the lower bound, the main heuristics are that the trace {X̂t}t > 0 of {Xt}t > 0 on
G should determine the mixing time, and that this trace is very similar to simple random
walk on the hypercube. Roughly speaking, our argument has the following steps:

1. We show that the dynamics of the trace process can be compared to simple random
walk on the hypercube, and conclude that it has a similar mixing time of order
O(L log(L)2) (Lemma 7.5 and Corollary 7.7).

2. Using the characterization of mixing times in terms of hitting times of large sets
(see Theorem 1 of [22]), we conclude from step 1 that the hitting time of any large
set (for the trace process) is bounded by O(L log(L)2).

3. We show, for the original process, that the expected hitting time of the set G is
O
(
β9e4β

)
. (Lemma 7.8).

4. We show, for the original process, that the expected transition time between
elements of G is O

(
β8e3.5β

)
(Lemma 7.9).

5. Putting these bounds together, and recalling that πper
Λ (G) = 1− o(1), we conclude

that the hitting time of any large set (for the original process) cannot be much
more than O(L× β8e3.5β + β9e4β) = O(β9e4β). We conclude the argument by again
using the characterization of [22].

The main ingredient in Step 3 is relating the defect dynamics in the case of periodic
boundary conditions to the defect dynamics in the case of all-plus boundary conditions.
This relation is a consequence of the following three simple observations:

1. By Lemma 4.1, the sets p+(Ω[1:L]2) and pper(Ω[0:L]2) are the same.

2. Let {X(+)
t }t > 0, {X(per)

t }t > 0 be Markov chains evolving according to the generators

L+
[1:L]2 and L(per)

[0:L]2 respectively, as defined in Equation (2.8). Then {p+(X+
t )}t > 0

and {pper(X
(per)
t )}t > 0 are both themselves Markov chains, on the common space
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p+(Ω[1:L]2) = pper(Ω[0:L]2), and they have the same stationary distribution. We

denote their generators by Q+
[1:L]2 and Q(per)

[0:L]2 respectively.

3. For all x, y ∈ p+(Ω[1:L]2),

Q(per)
[0:L]2(x, y) > Q+

[1:L]2(x, y). (7.11)

Note that this inequality is really not an equality, as there are transitions in the
periodic boundary condition case that are not possible in the all-plus boundary
condition case.

There is an important sequence of observations that makes most of the following
calculation quite straightforward, even if some of the details are messy: First, almost
all “excursions” between elements of the ground state G remain within the low-energy
set R. Furthermore, each excursion from G can be decomposed into its first jump into
R1∪Rk−1, and the remaining excursions into sets of the form {R(σ, η,m, k)}L−2

k=2 for some
fixed σ, η ∈ G and starting point m ∈ [1 : L]. As long as these longer excursions remain
within a set {R(σ, η,m, k)}L−2

k=2 , they follow exactly the law of a simple random walk on
[2 : (L− 2)], with the obvious bijection between {R(σ, η,m, k)}L−2

k=2 and [2 : (L− 2)] (see
Figure 8). In particular, essentially all of the following calculations will be written in
terms of simple random walk with killing, combined with simple 1-step analyses of what
occurs between excursions.

Continuing more formally, we introduce the following definition for the discrete-time
trace of a continuous-time Markov chain:

Definition 7.4 (Non-Lazy Trace Chain). Let {Xt}t > 0 be a càdlàg Markov process on
finite set Ω, and let S ⊂ Ω. Define two sequences of times {ti}i∈N, {si}i∈N by the
following recursions:

t1 = inf{t > 0 : Xt ∈ S}
si = inf{t > ti : Xt /∈ S}

ti+1 = inf{t > si : Xt ∈ S, Xt 6= Xti}.

Then define the trace process {X̂k}k∈N, on S, by the equation

X̂k ≡ Xtk .

We denote by Qper
G the transition kernel associated with the trace of {Xt}t > 0 on the set

G.

Denote by Qhyp the following discrete-time transition kernel on {−1,+1}2L−1:

Qhyp(u, v) =
1

2L− 1
, if |u− v| = 1,

Qhyp(u, v) = 0, otherwise.

Recall | · | is the Hamming distance, i.e. |u − v| = 1 iff u and v differ at exactly one
coordinate.

The following estimate allows us to make very strong conclusions about the mixing of
Qper
G in terms of Qhyp:

Lemma 7.5. For Qper
G , Qhyp as above, and the function w as in Definition 7.1, we have

Qper
G (w−1(u), w−1(v)) & Qhyp(u, v) (7.12)
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uniformly in u, v ∈ {−1,+1}2L−1. Furthermore, for {Xt}t > 0 a copy of the plaquette
dynamics started at X0 = σ ∈ G, let

τstart = inf{t > 0 : Xt 6= σ} (7.13)

τend = inf{t > τstart : Xt ∈ G or |D(Xt)| > 4}

be the times at which the first excursion from G starts and ends. Then

Pσ[|D(Xτend)| > 4] . L2e−2β (7.14)

1− Pσ[Xτend = σ] ≈ L−1.

Remark 7.6 (Coupling to Simple Random Walks). The proof of Lemma 7.5 (and the rest
of this section) relies heavily on the following simple observation: every configuration
ζ ∈ R\(G ∪ R1 ∪ RL−1) consists of two pairs of adjacent defects, and these two pairs
each exactly undergo independent random walk until the first time they are adjacent or
new defects are added (again, see Figure 8).

More formally, fix m ∈ [1 : L] and k ∈ [2 : (L − 2)], and let {Lt, Ut}t > 0 be two
independent simple random walks on Z with rate 1 and starting points L0 = m, U0 =

m+ k. Let {Xt}t > 0 be the usual defects process, started at a point X0 = R(σ, η,m, k).
Finally, let

τ1 = inf{s > 0 : Xs /∈ ∪m∈[1:L] ∪k∈[2:(L−1)] R(σ, η,m, k)}
τ2 = inf{s > 0 : Us = Ls + 1 or Us = Ls + L− 1}.

Then, inspecting the generators of these processes, it is possible to couple
{(Xt, Lt, Ut)}t > 0 so that

Xt = R(σ, η, Lt, Ut − Lt)

for all 0 6 t 6 τ1 6 τ2.
This coupling gives a complete description of the excursions of {Xt}t > 0 in sets of the

form {R(σ, η,m, k)}L−2
k=2 for some fixed σ, η ∈ G and starting point m ∈ [1 : L]. We use this

coupling, and its immediate consequences, extensively in the remainder of this section to
“translate” well-known facts about simple random walk to our setting. Most of the proof
simply consists of applying this coupling to excursions on the set R\(G ∪ R1 ∪RL−1).

The behaviour of the process outside of these excursions on R\(G ∪ R1 ∪ RL−1) is
fairly simple. Some excursions end by exiting R, and we will see that this is quite rare.
The remaining excursions will end at R1 ∪RL−1 ∪ G; since each element σ ∈ R1 ∪RL−1

has at most 4 neighbours η with high transition probability L(σ, η) = 1 (again, see Figure
8), it is straightforward to analyze all transitions from within the set R1 ∪RL−1 ∪ G that
have non-negligible probability.

Proof. Fix u, v ∈ {−1,+1}2L−1 that differ at a single index ` and let σ = w−1(u), η =

w−1(v). Assume for now that 1 6 ` 6 L; the other cases will be essentially identical.
Recalling notation from Definition 7.1, which will be used heavily throughout this proof,
we assume without loss of generality that u ≺ v.

We study {Xt}t > 0 by charting its movement from a ground state, to an adjacent
non-ground state with exactly 4 adjacent defects, to moving along minimal-energy paths
between ground states; we stop keeping track of {Xt}t > 0 as soon as it either returns to
a ground state or enters a state with 6 or more defects.

Let {Xt}t > 0 be a copy of the plaquette dynamics started at X0 = σ ∈ G and recall
τstart = inf{t > 0 : Xt 6= σ}. By symmetry we have

Pσ[Xτstart ∈ ∪Lm=1(R(σ, ξ,m, 1) ∪R(ξ, σ,m,L− 1))] =
1

L
(7.15)
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for all ξ ∈ G such that |w(σ)− w(ξ)| = 1 or w(σ) = −w(ξ). Note that this means all other
transition probabilities are 0.

Define the event Estart = {Xτstart
∈ ∪Lm=1R(σ, η,m, 1)}. Next, let τ (1)

exc = inf{t > τstart :

Xt 6= Xτstart
}. Then define a sequence of successive return and excursion times by the

following formulae, with i ∈ N:

τ
(i)
ret = inf{t > τ

(i)
exc : Xt /∈ ∪Lm=1 ∪L−2

k=2 R(σ, η,m, k)}
τ

(i+1)
exc = inf{t > τ

(i)
ret : Xt 6= X

τ
(i)
ret
}.

The reader may note that this formula looks slightly different from e.g. (7.15) in that it
contains only unions over R(σ, η,m, k), with none over R(η, σ,m, k); this is because we
have assumed that η ∈ Ω[1:L]2 satisfies w(σ) ≺ w(η), so that e.g. R(η, σ,m, k) = ∅ for all
m, k.

We keep track of the behaviour of {Xt}t > 0 in the excursions from ∪Lm=1(R(σ, η,m, 1)∪
R(σ, η,m,L− 1)) by using the following families of indicator functions:

φ
(i)
G = 1{X

τ
(i)
exc
∈ G}, φ(i)

R = 1{|D(X
τ

(i)
exc

)| = 4}, φ(i)
∆ = 1− φ(i)

G − φ
(i)
R

and

ψ
(i)
1 = 1{X

τ
(i)
ret

= X
τ

(i)
exc
}, ψ(i)

∆ = 1{|D(X
τ

(i)
ret

)| > 4}, ψ(i)
L−1 = 1− ψ(i)

0 − ψ
(i)
∆ .

In the family associated with the letter φ, the first indicates that the i’th excursion begins
with {Xt}t > 0 immediately returning to a ground state; the second indicates that the
excursion begins by moving along a minimal-energy path between neighbouring ground
states; the third indicates that something else has happened. In the family associated
with the letter ψ, the first indicates that the i’th excursion ended where it started; the
second indicates that the i’th excursion involves moving off of a minimal-energy path;
the third indicates that the i’th excursion involves travelling along a minimal-energy
path until a point that is adjacent to a different ground state.

Let KSRW be the transition kernel on state space [1 : (L− 1)] ∪ {∆} with holding at
{1, L− 1,∆} and other nonzero transitions rates:

KSRW(i, i± 1) = 2

KSRW(i,∆) = 8e−2β + (L2 − 12)e−4β .

Let {Zt}t > 0 be a Markov process with this transition kernel started at 2, and let
τ̂ = inf{t > 0 : Zt ∈ {1, L− 1,∆}}. By the discussion in Remark 7.6 and simple counting
of the states adjacent to ∪k∈[2:(L−2)] ∪m∈[1:L] R(σ, η,m, k) with 6 or more defects, on the

event {φ(i)
R = 1}, we can couple {Zt}t > 0 to {Xt}τ

(i)
ret

τ
(i)
exc

so that the following hold:

τ̂ = τ
(i)
ret − τ

(i)
exc (7.16)

1{Zτ̂ = z} = ψ(i)
z , z ∈ {1, L− 1,∆}.

This correspondence allows us to analyze excursions using well-known properties
of KSRW, which is simple random walk on the path with killing at constant rate. Recall
the definition of τend from Equality (7.13), and let I ∈ N be the unique (random) integer
satisfying

τend ∈ {τ (I)
exc , τ

(I)
ret };

that is, the first time that the walk either enters a ground state or a state with 6 or more
defects.
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Combining Equalities (7.15) and (7.16), and using standard facts about hitting proba-
bilities for simple random walk on the path, we have

Pσ[Xτend = η] & Pσ[Estart]Pσ[Xτend = η|Estart]

& L−1
∑
i∈N

Pσ[Xτend = η|Estart, I = i]Pσ[I = i|Estart]

& L−1
∑
i∈N

(L−1 − Le−2β)Pσ[I = i|Estart] ≈ L−2.

By essentially the same calculation, we have

Pσ[|D(Xτend)| > 4] . L2e−2β

1− Pσ[Xτend = σ] ≈ L−1.

This completes the proof of (7.14) in the case that 1 6 ` 6 L and w(σ) ≺ w(η).
Combining these two inequalities, and using symmetry,

Pσ[Xτend = η|Xτend 6= σ] & L−1 Pσ[Xτend = η]

Pσ[Xτend ∈ G\{σ}] + P[|D(Xτend)| > 4]

& L−2

L−1 + L2e−2β
≈ L−1.

This completes the proof of Inequality (7.12), and thus the lemma, in the case that
1 6 ` 6 L and w(σ) ≺ w(η). The other cases are essentially identical by symmetry.

This comparison implies the mixing bound:

Corollary 7.7. The mixing time of the transition kernel 1
2 (Id +Qper

G ) is O(L log(L)2).

Proof. This follows immediately from the well-known fact that the mixing time of 1
2 -

lazy simple random walk on {−1,+1}2L−1 is O(L log(L)), the comparison of Qper
G to the

transition kernel for simple random walk on {−1,+1}2L−1 given in Lemma 7.5, and
Theorem 1 of [18].

Fix σ ∈ Ω[1:L]2 and let {Xt}t > 0 be a copy of the original Markov process started at
point X0 = σ. For A ⊂ Ω[1:L]2 , denote by

τA = inf{t > 0 : Xt ∈ A}

the hitting time of the set A. Using the upper bound on the mixing time in Theorem 3.1,
we have:

Lemma 7.8. The hitting time τG satisfies

Eσ[τG ] . β9e4β ,

uniformly in σ ∈ ΩΛ.

Proof. Denote by τper
mix,d and τ+

mix,d the mixing times of the defect dynamics given by the

generators Q(per)
[0:L]2 and Q+

[1:L]2 respectively. Since the defect dynamics are a deterministic
function of the spin dynamics, it is clear that

τ+
mix,d 6 τ+

mix, τper
mix,d 6 τper

mix.

By the tightness of the spectral profile (as stated in Theorem 1 of [18]) and Inequality
(7.11), we also have

τper
mix,d . βτ+

mix,d.
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Combining these two bounds with Theorem 3.1,

τper
mix,d . βτ+

mix,d . β9e4β . (7.17)

Recalling that π(G) = 1− o(1) (by Lemma 4.4), Inequality (7.17) and Theorem 1 of [22]
immediately imply the result.

For σ ∈ G, we have the improved bound on the expected hitting time:

Lemma 7.9. Let σ ∈ G. Then

Eσ[τG\{σ}] . β9 e3.5β .

Proof. Let {Xt}t > 0 be a copy of the original Markov process with starting point X0 = σ.
Define inductively the sequence of times

t1 = inf{t > 0 : Xt 6= σ}
si = inf{t > ti : Xt ∈ G}

ti+1 = inf{t > si : Xt 6= Xsi}.

Denote by

Bi = { max
ti 6 t 6 si

|D(Xt)| > 4}

the event that {Xt}t > 0 escapes from the collection of minimal-energy paths during the
i’th excursion. Define

J = min{j ∈ N : Xsj 6= σ},

so that τG\{σ} = sJ . Thus, we have

Eσ[τG\{σ}] = Eσ[sJ ] (7.18)

= Eσ[

J∑
i=1

(si − ti) +

J∑
i=2

(ti − si−1) + t1]

=

∞∑
j=1

(

j∑
i=1

Eσ[(si − ti)|J = j] +

j∑
i=2

Eσ[(ti − si−1)|J = j] + Eσ[t1|J = j])Pσ[J = j].

We now bound these three types of terms, and the probability Pσ[J = j]. By direct
inspection of the transition probabilities, and the Markov property,

Eσ[t1|J = j] . L−2e4β ≈ e3β .

By the same calculation,

Eσ[ti − si−1|J = j] = Eσ[t1|J = j] . L−2e4β ≈ e3β (7.19)

for 1 6 i 6 j. By Inequality (7.14),

Pσ[J = 1] & L−1,

and so by the Markov property

Pσ[J > j] 6 (1− C L−1)j (7.20)
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for some fixed 0 < C <∞ and all j ∈ N. Finally, we calculate the term E[si − ti|J = j].
By the coupling Equality (7.16) from the proof of Lemma 7.5 and the usual bound of
O(L2) on the first hitting time of {1, L− 1} for simple random walk on [1 : (L− 1)],

Eσ[(si − ti)1Bci |J = j] . L2. (7.21)

By Inequality (7.14),

Pσ[Bi|J = j] . L2e−2β ≈ e−β .

Thus, also applying Lemma 7.8 and then again Inequality (7.14),

Eσ[(si − ti)1Bi |J = j] = Eσ[(si − ti)|J = j, Bi]Pσ[Bi|J = j]

Lemma 7.8

. β9 e4βPσ[Bi|J = j]

Inequality (7.14)

. β9 e4β L2 e−2β

≈ β9e3β .

Combining this with Inequality (7.21), we conclude

Eσ[(si − ti)|J = j] . β9e3β . (7.22)

Applying Inequalities (7.19), (7.20), and (7.22) to Inequality (7.18), we have:

Eσ[τG\{σ}] =

∞∑
j=1

(

j∑
i=1

Eσ[(si − ti)|J = j] +

j∑
i=2

Eσ[(ti − si−1)|J = j] + Eσ[t1|J = j])P[J = j]

.
∞∑
j=1

j β9 e3βPσ[J = j]

. β9 e3.5β .

This completes the proof.

We now put these results together:

Proof of Upper Bound of Theorem 3.2. Fix a point σ ∈ Ω[1:L]2 and a subset A ⊂ Ω[1:L]2

with πper
Λ (A) > 3

4 . We wish to bound the expected hitting time Eσ[τA].

Assume for now that σ ∈ G. Let {X̂i}i∈N be the trace of {Xt}t > 0 on G, as in Definition
7.4. Let

τ̂A = min{i : X̂i ∈ A}.

By Lemma 4.4, we know that πper
Λ (A ∩ G) > 2

3 for all β > β0 sufficiently large. Thus, by
Theorem 1 of [22] and Corollary 7.7,

Eσ[τ̂A] . L log(L)2,

uniformly in the particular choice of σ ∈ G and A ⊂ ΩΛ with large measure. In particular,
there exists a constant 0 < C1 <∞ that satisfies

Pσ[τ̂A > C1 L log(L)2] 6 0.01 (7.23)

uniformly in these choices.
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Next, let {ti}i∈N be the random sequence of times given in Definition 7.4 when
constructing the trace {X̂i}i∈N. Define also the timescale I = dC1 L log(L)2 + 1e. By
Lemma 7.9,

E[ti+1 − ti|Xti = η] . β9e3.5β , (7.24)

uniformly in the choice of η ∈ G. In particular, there exists a constant 0 < C2 <∞ that
satisfies

Pσ[tI > C2 β
9 e3.5β L log(L)2] 6 0.01

uniformly in the initial point σ ∈ G. Combining Inequalities (7.23) and (7.24), we have
uniformly in σ ∈ G and A ⊂ Ω[1:L]2 with sufficiently large measure

Pσ[τA > C2 β
9 e3.5β L log(L)2] 6 Pσ[τ̂A > I] + Pσ[tI > C2 β

9 e3.5β L log(L)2] (7.25)

6 0.02.

Next we extend this to general starting positions. By Lemma 7.8, there exists
0 < C3 <∞ so that, for all σ ∈ Ω[1:L]2 ,

Pσ[τG > C3β
9e4β ] 6 0.01.

Combining this with Inequality (7.25), we conclude that for all σ ∈ Ω[1:L]2 ,

Pσ[τA > C3β
9e4β + C2 β

9e3.5β L log(L)2] 6 Pσ[τG > C3β
9e4β ] +

+ sup
η∈G

Pη[τA > C2 β
9 e3.5β L log(L)2]

6 0.01 + 0.02 = 0.03.

This immediately implies

max
σ∈Ω[1:L]2

Eσ[τA] . β9e4β .

By Theorem 1 of [22], this implies the desired bound on the mixing time.
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