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Abstract

We identify the local scaling limit of multiple boundary-to-boundary branches in
a uniform spanning tree (UST) as a local multiple SLE(2), i.e., an SLE(2) process
weighted by a suitable partition function. By recent results, this also characterizes the
“global” scaling limit of the full collection of full curves. The identification is based
on a martingale observable in the UST with N branches, obtained by weighting the
well-known martingale in the UST with one branch by the discrete partition functions
of the models. The obtained weighting transforms of the discrete martingales and
the limiting SLE processes, respectively, only rely on a discrete domain Markov
property and (essentially) the convergence of partition functions. We illustrate their
generalizability by sketching an analogous convergence proof for a boundary-visiting
UST branch and a boundary-visiting SLE(2).
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1 Introduction

Schramm–Loewner evolution (SLE) type curves are conformally invariant random
curves [39, 38, 11], known or conjectured to describe the scaling limits of random
interfaces in many critical planar lattice models [42, 34, 40, 4, 48, 41, 14, 6, 15, 12].
A particularly interesting variant is the local multiple SLE [9, 30], which explicitly
connects SLEs to Conformal field theory, the physics description of scaling limits of
critical models [1, 13, 10, 22, 35]. The main result of this article, Theorem 2.1, proves
local multiple SLE convergence for multiple boundary-to-boundary branches in a uniform
spanning tree (UST) model on Z2 (see Figure 1), as well as its natural generalization to
other isoradial lattices.

The local multiple SLE convergence of multiple UST branches was predicted in [21,
Conjecture 4.3] (see also [9, Section 2] and [27, Section 5.1]). A proof outline for
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that conjecture was given by the author in [20, Theorem 6.8] together with several
consequences, most importantly determining the scaling limit of full curves based on
the conjectured local limit. This paper fills the omitted part [20, Assumption 5.1] of that
proof outline, thus completing the proof.

Scaling limits of multiple chordal interfaces have been recently also studied in terms
of the global multiple SLEs [29, 32, 46, 36, 2]. The proof of our main theorem 2.1
provides an important example of the relation between convergence proofs based on
local and global multiple SLEs, as discussed in [20, Section 1]: On the one hand, due to
recent characterization results for global multiple SLEs, rather short convergence proofs
can nowadays be given for various discrete chordal curve models, when conditioned on
the pairing of the boundary points by the curves [46, 2]. Such proofs require as an input
the convergence of the corresponding one-curve model to chordal SLE (see [48] on the
UST). To extend such proofs to unconditional models, one in addition needs to solve the
scaling limit probabilities of the different pairings of boundary points. This is done for
some lattice models in [42, 37] and Theorem 2.2 of this paper. In conclusion, using [48],
global multiple SLE theory, and Theorem 2.2, one could thus characterize the scaling
limit of (unconditional) multiple UST branches in terms of global multiple SLEs.

In this paper, we instead convert the convergence proof of [48], based on martingale
observables, from one to multiple UST branches. Key tools are a discrete Girsanov
transform, converting discrete martingales from one to multiple UST branches, and
(essentially) Theorem 2.2, establishing the convergence of the conversion factors in
such martingale transforms. Compared to using global multiple SLEs, this approach
roughly speaking takes fewer inputs, but with the price of re-doing the input from [48].
The discrete Girsanov transform is not specific to the UST model and, if an analogue
of Theorem 2.2 were at hand, SLE convergence proofs could be promoted from one
to multiple curves similarly in other lattice models; see the use of [42] in [25] for
comparison. We illustrate this generalizability by showing how to extend our proof to a
boundary-visiting UST branch and boundary-visiting SLE(2).

Martingale arguments proving the convergence lattice interfaces to different multiple
SLE type curves are given in [16, 26, 25, 20, 17]. The convergence of different variants
of a single UST branch, or the closely related loop-erased random walk, to different SLE
variants has been proven in [34, 48, 33, 8], and for isoradial and even more general
graphs in [7, 47, 43, 44].

Organization

Section 2 gives the precise statement of the main result and a brief discussion
of its consequences. The following three sections constitute the proof: Section 3
solves the discrete partition functions and martingales in a purely combinatorial setup,
Section 4 establishes the convergence of these observables, and Section 5 identifies the
scaling limit process via the limiting martingale observable. Some technical details are
postponed to Appendices A and B. The analogue of the main result for a boundary-visiting
UST branch is discussed in Section 6, and its (non-rigorous) interpretation in terms of
boundary-visiting SLEs in Appendix C.

2 Setup and statement

This section introduces the precise setup and statement of the main result. The
combinatorial model is defined Subsection 2.1. Section 2.2 introduces isoradial graphs
on which the scaling limit results are obtained. The necessary background on Loewner
evolutions and (multiple) SLEs are reviewed in Section 2.3, and in Section 2.4 we are
ready to state and discuss the theorem.
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Figure 1: A WST sample on a 50 × 50 square grid graph, with the boundary branches
from the interior vertices of the odd edges e1, e3, and e5 reaching the boundary each via
a different even edge e2, e4, or e6.

2.1 The weighted spanning tree and its boundary-to-boundary branches

2.1.1 The random spanning tree model

Let H = (V(H), E(H)) be a connected finite graph. A spanning tree of H is a subgraph T
that is connected and acyclic (is a tree) and contains all the vertices of H (is spanning).
Endow the edges E(H) with positive weights w : E(H)→ R>0. The weighted (random)
spanning tree on H is a random spanning tree with probabilities

P[T ] ∝
∏
e∈T

w(e)

Note that if all edges e ∈ E(H) carry equal weight, this becomes a uniform random
spanning tree.

We will in this paper always study the planar weighted spanning tree with wired
boundary conditions, meaning the following. Let G = (V, E) be a finite connected planar
graph with a fixed planar embedding. Declare some vertices adjacent to the infinite face
of G as boundary vertices V∂ , and the remaining vertices of V as interior vertices V◦. The
weighted spanning tree with wired boundary conditions (WST) on G is then a weighted
spanning tree on the graph H = G/∂ obtained by identifying all the boundary vertices
V∂ to a single vertex v∂ . For notational simplicity, we will identify the edges of G and
G/∂, hence both graphs endowed with the edge weights w, and we regard the WST as
a subgraph of both G/∂ and G via this identification. Edges between the interior and
boundary vertices V◦ and V∂ are called boundary edges ∂E .

2.1.2 Boundary-to-boundary branches

Note that in a WST tree, each interior vertex v ∈ V◦ connects to the boundary vertices
∂V by a unique simple path, called the boundary branch from v. Let e1, . . . , e2N ∈ ∂E
be distinct boundary edges, indexed counterclockwise along the boundary. Condition
the WST on G on the event that the boundary branches from the interior vertices of
the odd edges e1, e3, . . . , e2N−1 reach the boundary ∂V via the even edges e2, e4, . . . , e2N ,
each using a different even edge; see Figure 1 for illustration. (We assume that G
and e1, . . . , e2N are such that this conditioning is possible.) This produces N boundary
branches in the WST, and adding the odd edges e1, e3, . . . , e2N−1, we obtain N chordal,
vertex-disjoint simple paths on G. These chordal vertex-disjoint paths are called WST
boundary-to-boundary branches pairing e1, . . . , e2N .
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The way the boundary-to-boundary branches pair the edges e1, . . . , e2N is encoded
into a partition α of the set {1, 2, . . . , 2N} into disjoint pairs. Due to planarity and the
disjointness of the boundary-to-boundary branches, α is a planar pair partition a.k.a. a
link pattern, i.e., the pairs of α among the real-line points {1, 2, . . . , 2N} can be connected
by N disjoint curves in the upper half-plane. The set of link patterns on {1, 2, . . . , 2N} is
denoted by LPN .

2.2 Isoradial graphs

2.2.1 Isoradial lattices

Let Γ be an infinite, locally finite planar graph embedded in the plane. We say that Γ an
isoradial lattice with mesh size δ if the following holds: the vertices adjacent to each
face of Γ lie on the arc of a circle with radius δ, centered inside that face. We draw the
dual graph Γ∗ of Γ so that the dual vertices lie at these circle center points. The four
endpoints of an edge e and its dual e∗ then determine a rhombus of side length δ. We
endow isoradial lattices with edge weights

w(e) = tan θe,

where θe is half of the opening angle of the rhombus, as divided by e. As in [7], we
assume that the half angles θe are bounded uniformly away from 0 and π/2: there exists
η > 0 such that

η ≤ θe ≤ π/2− η (2.1)

for all edges e of Γ. When studying the scaling limit δ ↓ 0, we will always assume that
same η applies for all δ.

2.2.2 Simply-connected subgraphs

Let ΛG ⊂ C be a bounded simply-connected domain, whose boundary consists of edges
and vertices in Γ. Let G = (V, E) be the planar graph with V = V(Γ)∩ΛG and E = E(Γ)∩ΛG .
We call G the simply-connected subgraph of Γ. We will always run the WST model on G
with the isoradial edge weights and boundary vertices V∂ = V ∩ ∂ΛG .

2.3 Loewner evolutions and SLE

We now briefly review Loewner evolutions and SLE in the upper half-plane H. We
refer the reader to the textbooks [31, 3, 23] for more details.

2.3.1 Loewner evolutions

The Loewner (differential) equation in H determines a family of complex analytic map-
pings gt, t ≥ 0 by

g0(z) = z for all z ∈ H

∂tgt(z) =
2

gt(z)−Wt
, (2.2)

where W· : R≥0 → R is a given continuous function, called the driving function. For a
given z ∈ H, the solution gt(z) of this equation is defined up to the (possibly infinite)
hitting time τ(z) of 0 by the process |gt(z) −Wt|. The set where gt is not defined is
denoted by

Kt = {z ∈ H : τ(z) ≤ t}.
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The sets Kt are growing in t, and for all t they turn out to be hulls, i.e., Kt are bounded
and closed in H, and Ht := H \Kt is simply-connected. It also holds true that gt, called
the mapping-out function of Ht, is a conformal map Ht → H such that

gt(z) = z +
2t

z
+O(1/z2) as z →∞.

The Loewner differential equation thus maps a driving function W· to a growing
family of hulls K·. Conversely, a family of growing hulls K· can be obtained as the hulls
of some Loewner equation (after a suitable time reparametrization) if and only if the
hulls satisfy the local growth property and have a half-plane capacity tending to infinity
(see [23] for definitions). The families K·, W·, and g· satisfying the above conditions
can thus be regarded as equivalent, and we title them Loewner evolutions. We equip
the space of Loewner evolutions with the metric topology inherited from their driving
functions

d(W, W̃ ) =
∑
n∈N

2−n min{1, sup
t∈[0,n]

|W̃t −Wt|},

i.e., the topology of uniform convergence over compact subsets. Random Loewner
evolutions will be studied in this topology. The Borel sigma algebra F of this metric is,
as usual, equipped with the right continuous filtration (Ft)t≥0 of the stopped functions
W·∧t, i.e., Ft = ∩s>tσ(W·∧s).

2.3.2 SLE type processes

The Schramm–Loewner evolution SLE(κ) with parameter κ > 0 from 0 to ∞ in H, for
short SLE(κ) in (H : 0,∞), is the random Loewner evolution driven by a scaled Brownian
motion,

W0 = 0

dWt =
√
κdBt.

It is a chordal curve in the precise sense that, almost surely, there exists a continuous

function γ : R≥0 → H, with γ(0) = 0 and γ(t)
t→∞
−→∞, such that H \Kt is the unbounded

component of H \ γ([0, t]) for all t.
This work concerns SLE type processes with a partition function. The starting point

at time t = 0 are 2N marked real points X(1)
0 < . . . < X

(2N)
0 and a smooth, positive

partition function Z : R2N → R+. The driving function is bound to the evolution a
special j:th marked point

Wt = X
(j)
t for all t,

and Wt and the remaining the marked real points X(i)
t = gt(X

(i)
0 ), with i 6= j, evolve

according to the SLE type stochastic differential equationsdWt =
√
κdBt + κ

∂jZ(X
(1)
t ...X

(2N)
t )

Z(X
(1)
t ...X

(2N)
t )

dt

dX
(i)
t = 2

X
(i)
t −Wt

dt for all i 6= j.
(2.3)

2.3.3 Localizations

The partition function SLEs obtained as scaling limits in this paper will be so-called local
multiple SLEs. We will not need any inputs from the theory of local multiple SLEs, but it
is necessary to comply with their inherently local nature.
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A localization neighbourhood is a bounded open neighbourhood U of X(j)
0 = W0 in H,

whose closure is a hull bounded away from all the other marked (starting) points X(i)
0 ,

i 6= j. Morally, we would like to consider the partition function SLE up to the time the
hulls K· exit the neighbourhood U . However, such an exit time is not continuous in our
topology of Loewner evolutions, posing problems when studying weak convergence of
lattice models. Hence, we use the continuous modification τ of the exit time of U , as
defined in [20]. The stopping at τ comes later than the exit time of U but before the exit
time of its ε-thickening Uε, where a small ε > 0 is chosen as an input in the definition
of τ . The precise definition is not important in the context of this paper.

Due to working only up to the stopping time τ , it suffices to define an SLE partition
function Z(x1, . . . , x2N ) for x1 < . . . < x2N .

2.4 The main result and some consequences

The main result of this paper is given the following setup and notation.

Let (Γn)n∈N be a sequence of of isoradial lattices with mesh sizes δn ↓ 0. Let

(Gn; e
(n)
1 , . . . , e

(n)
2N ) be simply-connected subgraphs of Γn with a fixed number 2N of marked

boundary edges. Assume that, as planar domains with marked boundary points, Gn
are uniformly bounded and converge in the Carathéodory sense (see, e.g., [7] for the
definition) to a domain (Λ; p1, . . . , p2N ) with 2N distinct marked prime ends.

Let φn : Λn → H and φ : Λ→ H conformal maps such that φ−1
n → φ−1 uniformly over

compact subsets of H. Such maps exist by the Carathéodory convergence, and can be
chosen so that, denoting φ(p1, . . . , p2N ) = (X

(1)
0 . . . X

(2N)
0 ), we have −∞ < X

(1)
0 < . . . <

X
(2N)
0 <∞. We also fix an index 1 ≤ j ≤ 2N and a localization neighbourhood U of X(j)

0 .

Consider now WST boundary-to-boundary branches on (Gn; e
(n)
1 , . . . , e

(n)
2N ), mapped

conformally to H by the maps above. Let W (n)
· denote the driving functions in the

Loewner evolutions describing the growth of the boundary-to-boundary branch starting
from e

(n)
j and stopped at the continuous modification τ (n) of the exit time of U .

Theorem 2.1 (WST boundary-to-boundary branches converge to local multiple SLE(2)).

In the setup and notation above, W (n)
· converge weakly to the SLE type driving func-

tion (2.3) stopped at τ , with parameter κ = 2, and partition function ZN as given in
Equation (4.3). If the WST boundary-to-boundary branches are in addition conditioned
to form a given link pattern α ∈ LPN , then the analogous convergence holds with the
partition function Zα given in (4.2).

The functions ZN and Zα above are so-called local multiple SLE partition functions
at κ = 2, and W is hence a local multiple SLE(2) driving function; see [21, Theorem 4.1]
or Theorem 2.3 below.

For several remarkable consequences of Theorem 2.1, see [20, Theorems 5.2, 5.8, 6.8,
and Proposition 5.9]. Note that for these consequences it is important that no boundary
regularity assumptions were imposed on the domains Λn or Λ. Some simpler conse-
quences of Theorem 2.1 and by-products of its proof are discussed below.

First, Theorem 2.1 is also a conformal invariance result. Indeed, the description of
the scaling limit is given merely in terms of H and X

(1)
0 . . . X

(2N)
0 , not their conformal

(pre)images, the actual limiting domain Λ and prime ends p1, . . . , p2N .

In the case of a single curve, N = 1, the theorem above is equivalent to the well
known SLE(2) convergence of a WST branch [48]. The scaling limit appears as a partition
function SLE since the conformal maps were chosen so that it is an SLE(2) from X1 to
X2, not from 0 to∞.
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As a by-product of the proof, we obtain the convergence of the WST boundary-to-
boundary branch link pattern probabilities on isoradial graphs and without any boundary
regularity assumptions (cf. [27, 28] and [21, Theorem 3.16]).

Theorem 2.2 (Scaling limit of link pattern probabilities). In the setup and notation above,
the probability that the WST boundary-to-boundary branches form the link pattern α

tends to Zα(X
(1)
0 . . . X

(2N)
0 )/ZN (X

(1)
0 . . . X

(2N)
0 ) as n→∞.

Second, the proof of Theorem 2.1 also provides an alternative proof showing that the
partition functions ZN and Zα satisfy the PDEs that appear in the definition of the so-
called local multiple SLE partition functions (see, e.g., [30, Appendix A]). The same PDEs
appear in Conformal field theory as degeneracy PDEs for correlation functions of primary
fields [35]. A different proof for the theorem below was given in [21, Theorem 4.1] by a
direct computation based on the explicit expressions (4.3) and (4.2).

Theorem 2.3. The partition functions ZN and Zα satisfy for all j ∈ {1, . . . , 2N} the PDEs

∂jjZ?(x1, . . . , x2N ) +

2N∑
i=1
i6=j

2

xi − xj
∂iZ?(x1, . . . , x2N )−

2N∑
i=1
i 6=j

2

(xi − xj)2
Z?(x1, . . . , x2N ) = 0.

3 The combinatorial model

In this section, we study the combinatorial WST model on a finite connected planar
graph G. We assume that such G comes with a planar embedding, a choice of boundary
vertices, and edge weights w. The main results — and the only ones referred to in
other sections — are Proposition 3.4, establishing WST martingales, and Theorem 3.1,
expressing them in terms of discrete harmonic functions.

3.1 WST connectivity partition functions

In this subsection, we define some basic discrete harmonic objects, define the con-
nectivity partition functions of the WST, and review their solution in terms of the discrete
harmonic objects, given in [27, 28] and [21].

3.1.1 The discrete Green’s function, Poisson kernel, and excursion kernel

Define the weight w(v) of a vertex v as the total weight of adjacent edges,

w(v) :=
∑

e=〈v,u〉∈E

w(e).

For w, v ∈ V, denote by W (v, w) the set of finite length nearest-neighbour walks (se-
quences of adjacent vertices) on the graph G, whose first vertex is v and last w. Let
λ ∈ W (v, w) be a walk with the vertex sequence v = v0, v1, . . . , vm = w and the edge
sequence e1 = 〈v0, v1〉, e2 = 〈v1, v2〉, . . . , em = 〈vm−1, vm〉. Define the weight of the walk λ
by

w(λ) :=

∏m
k=1 w(ek)∏m
k=0 w(vk)

.

Note that this weight is preserved under reversing the walk.
Denote by W ◦(v, w) ⊂ W (v, w) the walks that only contain interior vertices. The

discrete Green’s function on G : V × V → R is now defined as the partition function of
walks in W ◦(v, w)

G(v, w) :=
∑

λ∈W ◦(v,w)

w(λ).
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Note that G(v, w) indeed is the Green’s function of the negative discrete Laplacian (see
Section A.1 in Appendix A), and that G(v, w) = G(w, v).

If w is the interior vertex of a boundary edge e ∈ ∂E , then we call G(v, w) a discrete
Poisson kernel between v and e and denote

G(v, w) =: P(v, e).

Note that Green’s function has zero boundary values, G(v, w) = 0 for all w ∈ ∂V, so the
Poisson kernel P(v, e) can be seen as the discrete derivative of G(v, w) in w, along the
boundary edge e. Note also that P(v, e) is a discrete harmonic function in v, see again
Section A.1.

If also v is the interior vertex of a boundary edge ẽ ∈ ∂E , then we call G(v, w) a
discrete excursion kernel between ẽ and e and denote

G(v, w) = P(v, e) =: K(ẽ, e).

The excursion kernel can be interpreted as the discrete derivative of P(v, e) in v, along
the boundary edge ẽ. The reason for introducing these redundant notations is their
different behaviour in the scaling limit.

3.1.2 Excursion kernel determinants

Let α ∈ LPN be a link pattern. The left-to-right orientation of α is the ordered collec-
tion of ordered pairs ((a1, b1), . . . , (aN , bN )) such that α = {{a1, b1}, . . . , {aN , bN}} and
furthermore ai < bi for all i and a1 < a2 < . . . < aN .

Let e1, . . . , e2N be boundary edges of G, and let ((a1, b1), . . . , (aN , bN )) be the left-to-
right orientation of a link pattern α ∈ LPN . We define the excursion kernel determinant
∆K
α(e1, . . . , e2N ) of α on (G; e1, . . . , e2N ) by

∆K
α(e1, . . . , e2N ) := det

(
K(eak , eb`)

)N
k,`=1

. (3.1)

3.1.3 Solution of the WST connectivity partition functions

Consider now the WST measure P on G. Let e1, . . . , e2N be distinct boundary edges,
indexed in counterclockwise order. Denote by EN the event that the WST boundary
branches from the interior vertices of the odd edges e1, e3, . . . , e2N−1 reach the boundary
∂V via the even edges e2, e4, . . . , e2N , each using a different even edge. (Recall that this is
the event required in the construction of boundary-to-boundary branches in Section 2.1.)
We denote

ZGN (e1, . . . , e2N ) := P[EN ].

We wish to keep the graph G (equipped with embedding, boundary vertices, and edge
weights), as well as the marked boundary edges, explicit in this notation for later
purposes.

For a link pattern α ∈ LPN denote by Eα the event that EN occurs and additionally
the obtained WST boundary-to-boundary branches pair the edges e1, . . . , e2N according
to the link pattern α. Denote

ZGα (e1, . . . , e2N ) := P[Eα],

so obviously

ZGN (e1, . . . , e2N ) =
∑

α∈LPN

ZGα (e1, . . . , e2N ). (3.2)
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We call ZGα the connectivity α partition function of the WST and ZGN the total WST
connectivity partition function.

The WST connectivity partition functions ZGα , for all α ∈ LPN , were solved in terms
of excursion kernels determinants in [27, 28]. We follow here the presentation in [21,
Theorem 3.12 and Section 3.6].

Theorem 3.1. We have for all α ∈ LPN

ZGα (e1, . . . , e2N ) =

 2N∏
i=2
i even

w(ei)

 ∑
β∈LPN

M−1
α,β∆K

β(e1, . . . , e2N ), (3.3)

where M−1
α,β only depend on the link patterns α, β ∈ LPN as given explicitly in [21,

Example 2.10].

The formula above differs from that appearing in [21, Section 3.6] in terms of the
edge weight factor. This is due to a different choice of normalization in the definition of
discrete excursion kernels.

3.2 Discrete martingales

In this subsection, we study discrete martingales under growing WST boundary-to-
boundary branches. The reader should notice that the discussion of this subsection
could be carried out more or less similarly in several other lattice models. What is
special about the WST is Theorem 3.1 above, which connects the obtained martingales
to discrete harmonic functions.

Let us introduce some notation. Let (G; e1, . . . , e2N ) be as above. Fix a link pattern
α ∈ LPN . Denote the conditional WST measures by

PN [ · ] := P[ · | EN ] and Pα[ · ] := P[ · | Eα],

where EN and Eα ⊂ EN are as above. Under these conditional measures, we are
interested in the WST boundary-to-boundary branch γ (a sequence of adjacent vertices
γ(0), γ(1), . . .) starting from the marked boundary edge ej = 〈γ(0), γ(1)〉. Note that under
Pα, we also know the last edges ek ∈ {e1, . . . , e2N} of γ. Denote by E1 the WST event that
the boundary branch from the interior vertex of the odd-index edge ej or ek reaches the
boundary ∂V via the even-index one. Hence Eα ⊂ E1 and if N = 1 then indeed EN = E1.
Denote

P1[ · ] := P[ · | E1].

Under the conditional measures PN , Pα, and P1, denote by Ft, t ∈ {1, 2, . . .}, the sigma
algebras of the t first vertices (γ(0), . . . , γ(t)) on the path γ (so F1 is the trivial sigma
algebra). By discrete martingales we mean martingales under these measures and this
filtration.

3.2.1 Connectivity probability martingales

Our first martingales are the conditional probabilities of the event Eα given Ft. Denote
by Gt the planar graph G = (V, E) with boundary vertices V∂t = V∂ ∪ {γ(0), . . . , γ(t− 1)}
and denote e

(t)
j = 〈γ(t− 1), γ(t)〉 (so V∂t=1 = V∂ and e

(1)
j = ej). Define the shorthand
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notations

ZGtα := ZGtα (e1, . . . , ej−1, e
(t)
j , ej+1, . . . , e2N ) and

ZGtN := ZGtN (e1, . . . , ej−1, e
(t)
j , ej+1, . . . , e2N ) and

ZGt1 :=

{
ZGt1 (e

(t)
j , ek), j odd

ZGt1 (ek, e
(t)
j ), j even.

Below we use the discrete domain Markov property to construct conditional probability
martingales from these partition functions. Note that Theorem 3.1 expresses these
partition functions as polynomials in discrete excursion kernels on Gt.
Lemma 3.2. We have

EN [1{Eα} | Ft] = ZGtα /Z
Gt
N and E1[1{Eα} | Ft] = ZGtα /Z

Gt
1 .

Proof. Note that we have

EN [1{Eα}] = P[Eα | EN ] = P[Eα]/P[EN ] = ZG1
α /ZG1

N ,

and similarly E1[1{Eα}] = ZG1
α /ZG1

1 . This actually proves the claim for conditioning on
the trivial sigma algebra F1. The same deduction, combined with the domain Markov
property for the WST (see, e.g., [20, Proof of precompactness in Theorem 6.8]) can be
used to prove the claim for any Ft.

3.2.2 Discrete Girsanov transforms

The measure Pα can be seen as either PN or P1 conditional on the event Eα. We
now recall how martingales under the unconditional measure can be transformed to
the conditional one and vice versa, by a discrete analogue of Girsanov’s transform.
Analogous martingale transforms hold in a wide generality but, as with the previous
martingales, we prefer to state and prove them for WST, in the form in which they will
be applied.

Lemma 3.3. If M (α)
t is an Ft martingale under Pα, then

M
(N)
t = M

(α)
t ZGtα /Z

Gt
N

is an Ft martingale under PN . If M (1)
t is an Ft martingale under P1, then

M
(α)
t = M

(1)
t∧TZ

Gt∧T
1 /ZGt∧Tα

is an Ft martingale under Pα; here T is the Ft stopping time given by the first time s for
which the next step γ(s+ 1) may be taken under P1 so that Z

Gs+1
α = 0.

Proof. Start from the first transform. The process M (N)
t is clearly adapted, and it is

integrable due to the finiteness of the sample space, so it remains to check the conditional
expectation property, i.e., E[1{A}M (N)

t+1 ] = E[1{A}M (N)
t ] for any A ∈ Ft. Starting from

the conditional expectation property of M (α)
t , and then expressing Eα as a conditional

measure, Eα[ · ] = EN [ · 1{Eα}]/PN [Eα], we obtain, for any event A ∈ Ft

Eα[M
(α)
t 1{A}] = Eα[M

(α)
t+11{A}]

EN [M
(α)
t 1{A}EN [1{Eα} | Ft]] = EN [M

(α)
t+11{A}EN [1{Eα} | Ft+1]].

Substituting the conditional probabilities from Lemma 3.2 now proves the first claim.
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For the second transform, integrability and adaptedness are similarly clear. Let us
prove the conditional expectation property. Notice that Eα[ · ] = E1[ · 1{Eα}]/P1[Eα]

and using Lemma 3.2 compute, for an arbitrary event A ∈ Ft

Eα[M
(α)
t 1{A}]− Eα[M

(α)
t+11{A}] (3.4)

=
1

P1[Eα]

(
E1

[
M

(α)
t 1{A}ZGtα /Z

Gt
1

]
− E1

[
M

(α)
t+11{A}ZGt+1

α /Z
Gt+1

1

])
.

Next, using the piecewise definition of M (α)
t , we obtain

(3.4) =
1

P1[Eα]

(
E1

[
1{T ≤ t}M (1)

T (ZGT1 /ZGTα )1{A}︸ ︷︷ ︸
:=Xt, Ft-measurable r.v.

(
ZGtα /Z

Gt
1 − ZGt+1

α /Z
Gt+1

1︸ ︷︷ ︸
apply Lemma 3.2

)]

+ E1

[
1{T > t}1{A}︸ ︷︷ ︸

:=Yt, Ft-measurable r.v.

M
(1)
t (ZGt1 /ZGtα )ZGtα /Z

Gt
1

]

− E1

[
1{T > t}1{A}︸ ︷︷ ︸

=Yt

M
(1)
t+1(Z

Gt+1

1 /ZGt+1
α )ZGt+1

α /Z
Gt+1

1

])

=
1

P1[Eα]

(
E1

[
XtE1[1{Eα} | Ft]

]
− E1

[
XtE1[1{Eα} | Ft+1]︸ ︷︷ ︸

=0 by tower law of conditional expectation

]

+ E1

[
YtM

(1)
t

]
− E1

[
YtM

(1)
t+1

]
︸ ︷︷ ︸

=0 since M(1)
t is a martingale

)

=0.

This finishes the proof.

3.2.3 Discrete harmonic martingales

We now establish the discrete harmonic martingales on which the scaling limit identifica-
tion is based. The starting point is the well-known Ft martingales under the measure P1,
given by [34, 48, 8]

Mt(v) =
PGt(v, e

(t)
j )

KGt(ek, e
(t)
j )

, where v ∈ V is any fixed vertex; (3.5)

here and hereafter we will need Poisson and excursion kernels on subgraphs Gt of G,
explicating the subgraph in the superscript. Note that for fixed t, Mt(v) is a discrete
harmonic function of v on Gt (see Section A.1 in Appendix A). Let us also define the
notation

Z̃Gtα :=
∑

β∈LPN

M−1
α,β∆KGt

β (e1, . . . , ej−1, e
(t)
j , ej+1, . . . , e2N ),

i.e., Z̃Gtα is obtained from ZGtα given by (3.3) by dividing out the weights of the even
marked boundary edges of Gt. Analogously, define Z̃GtN =

∑
β∈LPN

Z̃Gtβ and Z̃Gt1 as the

case N = 1 with marked edges e(t)
j , ek. The martingale transforms of Lemma 3.3 and

the martingale (3.5) now allow us to find martingales under the various measures. We
collect these below, directly with normalizing factors for which scaling limits exist. Note
that the normalizing factors are Poisson kernels P = PG1 at time t = 1.

EJP 25 (2020), paper 83.
Page 11/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP485
http://www.imstat.org/ejp/


UST branches, martingales, and multiple SLE(2)

Proposition 3.4. Let v, w ∈ V be any vertices and β ∈ LPN any link pattern. We have
the following Ft martingales under the different measures:

M
(1)
t (v, w) =

PGt(v, e
(t)
j )

Z̃Gt1

P(w, ek), under P1;

M
(α)
t (v, w) =

PGt(v, e
(t)
j )

Z̃Gtα

2N∏
i=1
i 6=j

P(w, ei) stopped at T , under Pα;

M
(N)
t (v, w) =

PGt(v, e
(t)
j )

Z̃GtN

2N∏
i=1
i 6=j

P(w, ei) stopped at T , under PN ;

M̃
(N)
t =

Z̃Gtβ

Z̃GtN
under PN ; and

M̃
(α)
t =

Z̃Gtβ

Z̃Gtα
stopped at TN , under Pα;

here T (resp. TN ) is the Ft stopping time given by the first time s for which the next step
γ(s+ 1) may be taken under P1 (resp. PN ) so that Z

Gs+1
α = 0.

Proof. For the first martingale, note that Z̃Gt1 is by Theorem 3.1 a constant scaling of

KGt(ek, e
(t)
j ). M (1)

t (v, w) is thus a constant scaling of the martingale (3.5). The second
one is, up to constant scaling, obtained by applying the second martingale transform
of Lemma 3.3 to the first martingale. The third martingale M (N)

t (v, w) is obtained by

the first transform of Lemma 3.3 from the second martingale M (α)
t (v, w). The fourth

one is the conditional probability martingale of Lemma 3.2. The fifth martingale M̃ (α)
t

is obtained by the second martingale transform of Lemma 3.3 from the fourth one.
(Lemma 3.3 is stated as transforming P1 martingales to Pα but its direct analogue
applies from PN to Pα.)

4 Observable convergence results

4.1 Convergence of discrete harmonic objects

4.1.1 The continuous Green’s function, Poisson kernel, and excursion kernel

The Green’s function G(z, w) of the negative Laplacian (−∆) on the upper half-plane
z, w ∈ H is given by

G(z, w) = − 1

2π
[log |z − w| − log |z − w∗|].

The Poisson kernel P(z, x) of the z ∈ H at x ∈ R and is given by

P(z, x) = − 1

π
=(

1

z − x
) =

1

π

=(z)

|z − x|2
, (4.1)

and the excursion kernel K(x, y) between x, y ∈ R, x 6= y is given by

K(x, y) =
1

π

1

(x− y)2
.

Notice that the normal derivatives of G can be defined on R by Schwarz reflection,
and then

P(z, x) = (∂yG(z, x+ yi))y=0 ,
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and in a similar sense

K(x, x′) = (∂yP(x+ yi, x′))y=0 .

With this observation, G, P, and K are the continuum analogues (in H) of the discrete
objects G, P, and K, respectively, introduced in Section 3.1.1.

When combining Poisson kernels with Loewner evolutions, we will need the following
elementary observation. Let Ht ⊂ H be the complement of a hull in H and gt : Ht → H its
mapping-out function. Let x ∈ R be such that a neighbourhood N of x in H is contained
in Ht. As observed above, G(z, w) defines a harmonic function of w onH\{z} (and thus on
Ht \{z}) with boundary normal derivative P(z, x) at x. Denote zt = gt(z), wt = gt(w), and
xt = gt(x). By conformal invariance of harmonic functions, G(z, w) = G(g−1

t (zt), g
−1
t (wt))

is hence a harmonic function of wt on H \ {zt}. Its boundary normal derivative at xt
given by

(g−1
t )′(xt)P(z, x) =

1

g′t(x)
P(z, x).

4.1.2 Convergence results on isoradial graphs

We now state four results, guaranteeing the convergence of suitable ratios of discrete
Green’s functions, Poisson kernels, and excursion kernels to their continuous counter-
parts. The two first results are “classics” of discrete harmonic analysis, see [7], while
the two latter ones follow by combining the first ones with Theorem A.4 of Appendix A.
Theorem A.4 can be proven based on a uniform estimate on the behaviour discrete
harmonic functions near a boundary segment with zero boundary conditions, given
recently by Chelkak and Wan [8, Corollary 3.8]. We provide in Appendix A a different
proof based on conformal crossing estimates for the random walk [24], that was found
independently by the author.

The convergence results consider the following setup. Let G(n) = (V(n), E(n)) be
simply-connected subgraphs of the isoradial lattices Γ(n) with mesh sizes δn → 0, as
defined in Section 2.2. Denote the Green, Poisson, and excursion kernels on G(n)

by G(n), P(n), and K(n), respectively. Let v(n), w(n) ∈ V(n) be interior vertices and
e

(n)
1 , e

(n)
2 ∈ ∂E(n) be distinct boundary edges, both connected to v(n) by a path on

the interior vertices. Assume that (G(n); v(n), w(n); e
(n)
1 , e

(n)
2 ) → (Λ; v, w; p1, p2) in the

Carathéodory sense, where the limit is a simply-connected domain with two marked
interior points and two distinct marked prime ends. Let φ be a conformal map Λ→ H.
Note that the scaling limits in the following theorem are conformally invariant, in the
sense that they do not depend on the precise choice of this conformal map.

Theorem 4.1. In the setup and notation given above, we have the following conver-
gences as n→∞.

i) [7, Corollary 3.11] The discrete Green’s functions G(n)(·, v(n)) tend to the continuous
one G(φ(·), φ(v)) uniformly over compact subsets of Λ \ {v}, in the following precise
sense: given r > 0, there exist ε(n) = ε(n, r) with ε(n)→ 0 as n→∞, such that for
all vertices u ∈ V(n) lying inside the limiting domain Λ with d(u, v), d(u, ∂Λ) ≥ r, we
have ∣∣G(n)(u, v(n))− G(φ(u), φ(v))

∣∣ ≤ ε(n).

ii) [7, Theorem 3.13] Ratios of discrete Poisson kernels P(n)(·, e(n)
1 )/P(n)(v(n), e

(n)
1 )

tend to the continuous ones P(φ(·), φ(p1))/P(φ(v), φ(p1)) uniformly over compact
subsets of Λ, in the following precise sense: given r > 0, there exist ε(n) = ε(n, r)
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with ε(n)→ 0 as n→∞, such that for all vertices u ∈ V(n) lying inside the limiting
domain Λ with d(u, ∂Λ) ≥ r, we have∣∣∣∣∣ P(n)(u, e

(n)
1 )

P(n)(v(n), e
(n)
1 )
− P(φ(u), φ(p1))

P(φ(v), φ(p1))

∣∣∣∣∣ ≤ ε(n);

here we assume that φ is chosen so that φ(p1) 6=∞.
iii) Convergence of excursion kernel–Poisson kernel ratios (also in [8, Proposition 3.14]):

we have

K(n)(e
(n)
1 , e

(n)
2 )

P(n)(v(n), e
(n)
1 )P(n)(w(n), e

(n)
2 )
−→ K(φ(p1), φ(p2))

P(φ(v), φ(p1))P(φ(w), φ(p2))
, as n→∞

where we assume that φ(p1), φ(p2) 6=∞.
iv) Convergence of ratios of Poisson kernels in different domains: Let G̃(n) ⊂ G(n) be

simply-connected subgraphs of Γ(n), such that also (G̃(n); v(n), w(n); e
(n)
1 ) satisfy the

assumptions of this proposition, with the limiting domain (Λ̃; v, w; p1). Suppose
furthermore that H \ φ(Λ̃) is a hull and bounded away from φ(w) and φ(p1). Then,
we have

PG
(n)

(v(n), e
(n)
1 )

PG̃(n)(w(n), e
(n)
1 )
−→

1
g′(φ(p1))P(φ(v), φ(p1))

P(g(φ(w)), g(φ(p1)))
as n→∞,

where g is a conformal mapping-out function φ(Λ̃)→ H and we assume φ(p1) 6=∞.

The proof of Theorem 4.1 is given in Section A.5 in Appendix A.

4.2 SLE partition functions and convergence of WST connectivity probabilities

4.2.1 Excursion kernel determinants and partition functions

In analogy to the discrete excursion kernel determinants, as defined in Section 3.1.2,
we define their continuous counterparts. Let x1 < . . . < x2N be real numbers, and let
((a1, b1), . . . , (aN , bN )) be the left-to-right orientation of a link pattern α ∈ LPN . We define
the continuous excursion kernel determinant ∆Kα (x1, . . . , x2N ) of α by

∆Kα (x1, . . . , x2N ) := det
(
K(xak , xb`)

)N
k,`=1

,

and connectivity partition functions

Zα(x1, . . . , x2N ) :=
∑

β∈LPN

M−1
α,β∆Kβ (x1, . . . , x2N ), (4.2)

where M−1
α,β is as in Theorem 3.1. Finally, we also define

ZN (x1, . . . , x2N ) :=
∑

α∈LPN

Zα(x1, . . . , x2N ). (4.3)

An alternative expression for ZN is given in [36, Lemma 4.12].

4.2.2 Proof of Theorem 2.2

Denote by P(n) the WST measure on G(n), let E(n)
N and E

(n)
α be the WST connectivity

events on (G(n); e
(n)
1 , . . . , e

(n)
2N ) defined in Section 3.1.3, and P(n)

N [ · ] = P(n)[ · |E(n)
N ]. In

this notation, we wish to show that

P
(n)
N [E(n)

α ] −→ Zα(X
(1)
0 . . . X

(2N)
0 )

ZN (X
(1)
0 . . . X

(2N)
0 )

as n→∞.
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From the inclusion of events E(n)
α ⊂ E(n)

N , we have

P
(n)
N [E(n)

α ] =
P(n)[E

(n)
α ]

P(n)[E
(n)
N ]

(Theorem 3.1) =

∑
β∈LPN

M−1
α,β∆K(n)

β (e
(n)
1 , . . . , e

(n)
2N )∑

γ∈LPN

∑
β∈LPN

M−1
γ,β∆K(n)

β (e
(n)
1 , . . . , e

(n)
2N )

. (4.4)

Note that each term in the determinants ∆K(n)

β above is a product of N excursion kernels

K(n)(·, ·), and in such a term, each of the 2N marked boundary edges appears as an
excursion kernel argument exactly once. Divide both sides of the fraction above by∏2N
i=1 P

(n)(v(n), e
(n)
i ), where v(n) ∈ Vn is the vertex of G(n) closest to a fixed but arbitrary

reference point v in the limiting domain Λ. Then, by Theorem 4.1(iii), studying either
the numerator or denominator of (4.4) above (but not yet their ratio), in the scaling limit
n→∞ we can replace the discrete Poisson and excursion kernels by their continuous
counterparts, making a small error o(1). That is, for instance for the numerator, we
compute

2N∏
i=1

(
1

P(n)(v(n), e
(n)
i )

) ∑
β∈LPN

M−1
α,β∆K(n)

β (e
(n)
1 , . . . , e

(n)
2N )

=

2N∏
i=1

(
1

P(φ(v), φ(pi))

) ∑
β∈LPN

M−1
α,β∆Kβ (φ(p1), . . . , φ(p2N )) + o(1)

=

2N∏
i=1

(
1

P(φ(v), X
(i)
0 )

)
Zα(X

(1)
0 . . . X

(2N)
0 ) + o(1), (4.5)

where the last step used the definitions (4.2) and X(i)
0 = φ(pi). Furthermore, note that

by [21, Theorem 4.1], we have Zα > 0, so the error o(1) in (4.5) is small also relative
to the first term. A similar deduction holds for the denominator of (4.4). Due to small
relative errors, we can also study the ratio (4.4), and Theorem 2.2 follows.

5 Proof of the main theorem

The proof of Theorem 2.1 consists of showing precompactness, i.e., the existence of
subsequential weak limits, and identification of any subsequential limit. The precompact-
ness part was done for one curve in [24] (see also [19]), and for multiple curves in [20].
We briefly review the key part of the argument in Section A.3 in Appendix A. This section
provides the proof of the identification part.

For notation, denote by P(n)
? the WST measure on G(n), conditional on the event E(n)

?

between the edges e(n)
1 , . . . , e

(n)
2N , where ? ∈ {α,N, 1}. (The limit identification will be

identical for ? ∈ {α,N, 1}.) By the precompactness, we may extract a subsequence such
that the stopped driving functions W (n) converge weakly to a limiting random function
W described by the weak limit measure P? (a Borel measure on the space of continuous
functions). We will suppress the subsequence notation and assume that W (n) converge
weakly.

5.1 Continuous martingales in the scaling limit

The first step in the identification part of Theorem 2.1 is to promote the discrete
martingales of Proposition 3.4 to continuous martingales in the weak limit. This is
formulated in Proposition 5.1 below, and the rest of this subsection constitutes the proof
of that proposition.
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To state Proposition 5.1, notice that the derivative g′t of a Loewner mapping-out
function (see (2.2)) evolves as

g′0(z) = 1

∂tg
′
t(z) = − 2g′t(z)

(gt(z)−Wt)2
. (5.1)

Up to the stopping time τ , the functions gt(·) and their derivatives g′t(·) are well defined

by Schwarz reflection also at the marked boundary points X
(i)
0 ∈ R, i 6= j. Their

evolution is governed by the same differential equation (5.1), with z = X
(i)
0 . Recall also

the definitions of the neighbourhood Uε and the filtration Ft from Section 2.3.

Proposition 5.1. For all z ∈ H \ Uε and ω ∈ H, the process

M
(?)
t (z, ω) =

P(gt(z),Wt)

Z?(X(1)
t , . . . , X

(2N)
t )

2N∏
i=1
i 6=j

P(ω,X
(i)
0 )

g′t(X
(i)
0 )

, stopped at τ (5.2)

is a continuous bounded Ft martingale under P?.

5.1.1 Proof of boundedness and continuity in Proposition 5.1

Boundedness: The boundedness of the process M
(?)
t (z, ω) follows from basic properties

of Loewner evolutions, combined with some standard harmonic measure arguments.
A proof is given for completeness in Appendix B.

Continuity: Recall that Wt is the weak limit process on the space of continuous
functions, thus by construction continuous in t. From basic properties of ordinary differ-
ential equations, it follows that also the processes X(1)

t , . . . , X
(2N)
t , gt(z), and g′t(X

(i)
0 ) are

then continuous. Thus, each individual factor in the denominator and numerator of the
right-hand side of (5.2) is continuous. Finally, in the proof of boundedness it is shown
that the processes in the denominator remain bounded away from zero. Continuity of
M

(?)
t (z) then follows.

5.1.2 Uniform convergence of discrete martingale observables

Before proceeding to prove the martingaleness in Proposition 5.1, we will need a uniform
convergence result for the discrete martingale observables in Proposition 3.4.

In order to state the uniform convergence, we need some more notations. View
the WST boundary-to-boundary branch from e

(n)
j , as mapped to H by φn, as a Loewner

chain. Denote by t the continuous time parameter of this Loewner chain and by τ (n) the
continuous exit time of the localization neighbourhood U . Denote by W (n)

· the driving
function of the Loewner chain, as stopped at τ (n) (so W (n)

· → W· weakly), and by g(n)
·

the solutions to the Loewner equation. Denote X(n;i)
t = g

(n)
t (X

(n;i)
0 ) the solutions of this

Loewner equation starting from the boundary point X(n;i)
0 = φn(e

(n)
i ) corresponding to

the i:th marked boundary edge. For z ∈ H \ Uε and ω ∈ H, denote

M
(n;?)
t (z, ω) =

P(g
(n)
t (z),W

(n)
t )

Z?(X(n;1)
t , . . . , X

(n;2N)
t )

2N∏
i=1
i 6=j

P(ω,X
(n;i)
0 )

(g
(n)
t )′(X

(n;i)
0 )

, stopped at τ (5.3)

Finally, denote by dte(n) (resp. dτ (n)e(n)) the next time after t (resp. τ (n)) when the
growth process has reached a vertex of Vn, as intepreted on a WST branch on Gn.
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Proposition 5.2. Assume the setup of Theorem 2.1, and let r > 0 be given. There exist
ε(n) = ε(n, r), with ε(n)→ 0 as n→∞, such that the following holds. For any v, w ∈ Vn
with |φn(v)|, |φn(w)| < 1/r and d(φn(v), ∂(H \ Uε)), d(φn(w), ∂H) > r, any realization of

W
(n)
· possible under P(n)

? , and any t ≤ τ (n)∣∣∣M (n;?)

dte(n)(v, w)−M
(n;?)
t (φn(v), φn(w))

∣∣∣ ≤ ε(n),

and thus in particular∣∣∣M (n;?)

dτ(n)e(n)(v, w)−M
(n;?)

τ(n) (φn(v), φn(w))
∣∣∣ ≤ ε(n);

here M (n;?)
s (v, w) are the P(n)

? martingales in discrete time s from Proposition 3.4, for

the WST boundary-to-boundary branches on (Gn; e
(n)
1 , . . . , e

(n)
2N ).

Proof. Fix a realization of the WST boundary-to-boundary branch from e
(n)
j , and the

corresponding driving function W
(n)
· . Denote by s the discrete time parameter, and

fix also s ≤ dτ (n)e(n). We have thus also fixed the graph G(n)
s . Recall the expression

for M (n;?)
s (v, w) from Proposition 3.4 (suppressing all indices n in the expression to

streamline the notation):

M (n;?)
s (v, w) =

PGs(v, e
(s)
j )

Z̃Gs?

2N∏
i=1
i 6=j

P(w, ei) =

∏2N
i=1 P

Gs(v, e
(s)
i )

Z̃Gs?

2N∏
i=1
i6=j

P(w, ei)

PGs(v, ei)

stopped at s = T , (5.4)

where we denoted e(s)
i = ei for i 6= j. Notice that (for all n large enough) dτ (n)e(n) comes

before T , so we need not care about the stopping at T in what follows.
Now, assume for a contradiction that for some δ > 0, there existed infinitely many n,

W
(n)
· , t(n) ≤ τ (n), v(n), and w(n) such that∣∣∣M (n;?)

dt(n)e(n)(v
(n), w(n))−M

(n;?)

t(n) (φn(v(n)), φn(w(n)))
∣∣∣ ≥ δ.

By standard compactness arguments, we may extract a subsequence such that
(G(n)
s ; e

(s)
1 , . . . , e

(s)
2N ; v(n), w(n)), with s = dt(n)e(n), converge in the Carathéodory sense.

Note that by the assumed setup, also (G(n); e
(n)
1 , . . . , e

(n)
2N ; v(n), w(n)) convergence in the

Carathéodory sense. Consider now n → ∞ along this subsequence. Using Theo-
rem 4.1(iii) and (iv) for M (n;?)

dt(n)e(n)(v
(n), w(n)) in (5.4), and basic Carathéodory stability

arguments for M
(n;?)

t(n) (φn(v(n)), φn(w(n))), we observe that these two quantities then
converge to the same limit, a contradiction.

5.1.3 Proof of martingaleness in Proposition 5.1

M
(?)
t (z, ω) is clearly Ft adapted, and it is integrable since it is bounded. It remains to

check the conditional expectation property. We claim that, for all t ≥ 0,

M
(?)
t (z, ω) = E?[M

(?)
τ (z, ω) | Ft],

from which the conditional expectation property follows. Equivalently, we wish to show
that for any ft continuous bounded function of W measurable with respect to Ft, we
have

E?[M
(?)
t (z, ω)ft(W )] = E?[M

(?)
τ (z, ω)ft(W )]. (5.5)
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Let thus us prove (5.5). The proof is based on approximating the expectations on either
side above by their discrete analogues. For notational simplicity, we will perform the
analysis for the left-hand side — the right-hand side can be treated analogously.

We would like to use the weak convergence W (n)
· →W·. Note however that the pro-

cess M
(n;?)
t (z, ω) takes as input not only W (n)

· but also the processes X(n;i)
t = g

(n)
t (X

(n;i)
0 )

and (g
(n)
t )′(X

(n;i)
0 ), with i 6= j. If we replaced them in the definition (5.3) with g(n)

t (X
(i)
0 )

and (g
(n)
t )′(X

(i)
0 ), then M

(n;?)
t (z, ω) and M

(?)
t (z, ω) would both be simply the same continu-

ous bounded function h(t,z,ω) of the driving function, applied to W (n)
· and W·, respectively.

(The boundedness uniformly over the driving function was proven in Lemma B.1 in
Appendix B, and continuity follows from the stability of the Loewner equation with re-
spect to driving term.) Let us now compare M

(n;?)
t (z, ω) and h(t,z,ω)(W

(n)), i.e., replace

g
(n)
t (X

(n;i)
0 ) and (g

(n)
t )′(X

(n;i)
0 ) by g

(n)
t (X

(i)
0 ) and (g

(n)
t )′(X

(i)
0 ). First, changing X

(i)
0 to

X
(n;i)
0 will perturb g(n)

t (·) and (g
(n)
t )′(·) applied to these starting points by a small amount,

uniformly over t and W (n).1 Second, by the compactness of the possible coordinates
g

(n)
t (X

(i)
0 ), proven in Appendix B, also 1/Z? only acquires a small perturbation, again

uniformly over t and W (n) (recall that a continuous function is uniformly continuous on a
compact set). In conclusion, we have

M
(?)
t (z, ω) = h(t,z,ω)(W ) and (5.6)

M
(n;?)
t (z, ω) = h(t,z,ω)(W

(n)) + o(1), (5.7)

the latter asymptotic formula as n→∞, o(1) small uniformly over t and W (n). Altogether,
we get

E?[M
(?)
t (z, ω)ft(W )]

(use (5.6)) = E?[h(t,z,ω)(W )ft(W )]

(weak conv.) = E
(n)
? [h(t,z,ω)(W

(n))ft(W
(n))] + o(1)

(use (5.7)) = E
(n)
? [M

(n;?)
t (z, ω)ft(W

(n)) + o(1)] + o(1)

(o(1) uniform) = E
(n)
? [M

(n;?)
t (z, ω)ft(W

(n))] + o(1).

Note that here and in continuation it is important that the error terms inside the
expectation operator are uniform, and can thus be taken outside of the expectation.

Next, let v(n) ∈ Vn be the vertex for which φn(v(n)) is as close to z as possible, and

define w(n) ∈ Vn closest to ω in the analogous sense. It is easy to deduce that M
(n;?)
t (z, ω)

is uniformly close to M
(n;?)
t (φn(v(n)), φn(w(n))) as n→∞. One then obtains

E?[M
(?)
t (z, ω)ft(W )] = E

(n)
? [M

(n;?)
t (φn(v(n)), φn(w(n)))ft(W

(n))] + o(1)

(Prop. 5.2) = E
(n)
? [M

(n;?)

dte(n)∧dτ(n)e(n)(v
(n), w(n))ft(W

(n))] + o(1), (5.8)

where in both steps a uniform error term o(1) was taken out of the expectation and
absorbed into the previous one.

Repeating the argument of the previous two paragraphs for the right-hand side
of (5.5), we get

E?[M
(?)
τ (z, ω)ft(W )] = E

(n)
? [M

(n;?)

dτ(n)e(n)(v
(n), w(n))ft(W

(n))] + o(1). (5.9)

1 For (g
(n)
t )(·), such a stability follows directly from Grönwall’s lemma, similarly to Equation (B.1) in

Appendix B; using this stability and Grönwall’s lemma again, one then obtains a similar stability for (g
(n)
t )′(·).
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Now, notice that ft(W (n)) is measurable in the stopped sigma algebra Fdte(n)∧dτ(n)e(n)

of the discrete time filtration Fs of the WST branch on G(n). Also, for each fixed n, the
stopping times dte(n) ∧ dτ (n)e(n) and dτ (n)e(n) are bounded, and thus we have

M
(n;?)

dte(n)∧dτ(n)e(n)(z
(n), ω(n)) = E

(n)
?

[
M

(n;?)

dτ(n)e(n)(z
(n), ω(n))

∣∣∣∣ Fdte(n)∧dτ(n)e(n)

]
.

With these two observations, (5.9) yields

E?[M
(?)
τ (z, ω)ft(W )] = E

(n)
? [M

(n;?)

dte(n)∧dτ(n)e(n)(z
(n), ω(n))ft(W

(n))] + o(1). (5.10)

Finally, combining (5.8) and (5.10) and taking the limit n→∞ proves (5.5). This finishes
the martingaleness part, and the entire proof of Proposition 5.1.

5.2 Identification via martingales

The second step in our proof of Theorem 2.1 is to use the martingales from the first
step to identify W via explicit Itô calculus. In order to apply Itô’s theorem, we first need
to show the semimartingaleness of the driving function W .

Lemma 5.3. The weak limit process W is a semimartingale.

Proof. The proof is based on applying the Implicit function theorem to the martingales
of Proposition 5.1. Denote gt(z) = zt and define a complex-valued process f in terms of

Wt and the time-differentiable processes zt, X
(i)
t , and g′t(X

(i)
0 ), where i 6= j, given by

f(zt;Wt; (X
(i)
t )i 6=j ; (g′t(X

(i)
0 ))i6=j) :=

1

(zt −Wt)Z?(X(1)
t , . . . , X

(2N)
t )

2N∏
i=1
i6=j

1

g′t(X
(i)
0 )

,

stopped at τ. (5.11)

Note that for z ∈ H \ Uε and given ω ∈ H, M
(?)
t (z, ω) is by (5.2) and (4.1) a constant

multiple of =(f). Observe also that f and ∂Wt
f are complex analytic in zt (we will below

treat zt ∈ H as the complex argument of f ).
We first claim that for any function W· (and the related maps g·) and any t < τ , we

have ∂Wt
=(f) = =(∂Wt

f) 6= 0 for almost every z ∈ Ht, or equivalently, for almost every
zt ∈ H. Indeed, by basic properties of analytic functions, either =(∂Wt

f) = 0 for all
zt ∈ H, or =(∂Wtf) 6= 0 for almost every zt ∈ H. By explicit differentiation, we see that
the latter occurs.

Take now a deterministic countable dense set of complex numbers z in a fixed ball in
H \ Uε. By the previous paragraph, for any t < τ , we must have ∂Wt=(f) 6= 0 for some of
these z’s, and by continuity in time, ∂W=(f) 6= 0 then also holds on some time interval
around t. Now, by the Implicit function theorem, whenever ∂Wt=(f) 6= 0, the collection
of local inverses of =(f) provides a smooth function ψ such that the relation

Wt = ψ(zt, (X
(i)
t )i 6=j ; (g′t(X

(i)
0 ))i6=j ,M

(?)
t (z, ω))

holds (here we also used (=(f))t = cst.×M
(?)
t (z, ω)). In conclusion, we have determin-

istic collections of complex numbers z and local inverses ψ of =(f), and it holds that
for every t < τ there exist z and ψ in these collections such that the relation above
is valid over some open time interval containing t. We now conclude by observing
that ψ(zt, (X

(i)
t )i 6=j ; (g′t(X

(i)
0 ))i 6=j ,M

(?)
t (z, ω)) (when it is defined) is a semimartingale.

Indeed, ψ is smooth, M
(?)
t (z, ω) is a continuous bounded martingale by Proposition 5.1,

while gt(z), g′t(X
(i)
0 ), and X(i)

t are differentiable in time by the Loewner equations (2.2)
and (5.1). The claim thus follows by basic martingale theory.
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Proofs of Theorems 2.1 and 2.3. Let f be as defined in (5.11). As W is a semimartingale,
we can apply Itô’s theorem to deduce that for t < τ (we omit writing the arguments of f )

df =
1

2
∂2
Wt
fd〈W,W 〉t + ∂Wt

fdWt + ∂ztfdzt +
∑
i 6=j

∂
X

(i)
t
fdX

(i)
t +

∑
i 6=j

∂
g′t(X

(i)
0 )
fd(g′t(X

(i)
0 ))t.

(5.12)

Let us now compute the various terms above (we also omit writing the arguments of Z?
and its derivatives):

∂Wt
fdWt =

(
1

zt −Wt
− ∂jZ?
Z?

)
fdWt (5.13)

1

2
∂2
Wt
fd〈W,W 〉t =

1

2

(
2

(zt −Wt)2
+ 2

(
∂jZ?
Z?

)2

− 2∂jZ?
(zt −Wt)Z?

− ∂jjZ?
Z?

)
fd〈W,W 〉t

(5.14)

∂ztfdzt = − 1

zt −Wt
f

2

zt −Wt
dt (5.15)

∂
X

(i)
t
fdX

(i)
t = −∂iZ?

Z?
f

2

X
(i)
t −Wt

dt (5.16)

∂
g′t(X

(i)
0 )
fd(g′t(X

(i)
0 ))t =

2

(X
(i)
t −Wt)2

fdt, (5.17)

where the three last equations also used the Loewner differential equations (2.2)
and (5.1).

By (5.12)–(5.17) (and noticing that f is a real scaling of 1/(zt −Wt)), each term of df

is of the form

1

(zt −Wt)k
× [real stochastic differential], where k ∈ {1, 2, 3}.

Also, notice that =(f) is a martingale by Proposition 5.1 (i.e., the drift part of =(df)

vanishes) simultaneously for all z ∈ H\Uε. It is easy to show that this can only occur if the
drift stochastic differential coefficients of 1/(zt −Wt)

k cancel out for each k individually.
We now examine the different powers 1/(zt −Wt)

k individually. Terms of the form
f/(zt −Wt)

2 in (5.12) come from (5.14) and (5.15), and impose

1

2

2f

(zt −Wt)2
d〈W,W 〉t −

2f

(zt −Wt)2
dt = 0

⇔ d〈W,W 〉t = 2dt. (5.18)

Terms f/(zt −Wt) appear in (5.13) and (5.14) and they yield

f

zt −Wt
d[drift part of W ]t −

1

2

2f∂jZ?
(zt −Wt)Z?

d〈W,W 〉t = 0

⇔ d[drift part of W ]t = 2
∂jZ?
Z?

dt. (5.19)

Equations (5.18) and (5.19) are sufficient to identify the stochastic differential of the
semimartingale W as

dWt =
√

2dBt + 2
∂jZ?(X(1)

t . . . X
(2N)
t )

Z?(X(1)
t . . . X

(2N)
t )

dt,
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i.e., Wt is the SLE(2) driving function with the partition function Z?. This finishes the
proof of Theorem 2.1.

Let us yet prove Theorem 2.3. This is based on collecting the terms of the form
f/(zt −Wt)

0 in (5.12) from (5.13), (5.14), (5.16), and (5.17):

−∂jZ?
Z?

fd[drift part of W ]t +
1

2

(
2

(
∂jZ?
Z?

)2

− ∂jjZ?
Z?

)
fd〈W,W 〉t

−
∑
i 6=j

∂iZ?
Z?

f
2

X
(i)
t −Wt

dt+
∑
i 6=j

2

(X
(i)
t −Wt)2

fdt = 0

−∂jjZ?
Z?

dt+
∑
i 6=j

(
−∂iZ?
Z?

2

X
(i)
t −Wt

dt+
2

(X
(i)
t −Wt)2

dt

)
= 0.

Since this must hold for any t and any initial configuration of the points (X
(1)
0 , . . . , X

(2N)
0 ),

as well as for any j, Theorem 2.3 follows.

5.3 Alternative proof strategies

The proof of Theorem 2.1 relied on a discrete martingale observable that was a
discrete Girsanov transform of the one-branch martingale (3.5). The limit identification
step was then identical to that in the one-curve case, given by the special case ? = 1.
It seems possible that also the other martingales of Lemma 3.2 and Proposition 3.4
could be used for proving Theorem 2.1, as originally suggested in [20]. We now briefly
describe three alternative proof strategies that seem tractable; note that the discussion
below is speculative.

i) Take as an input the identification of the one-curve scaling limit E1 as an SLE(2).
Using the discrete transform converting expectations of Ft-measurable functions
from E

(n)
1 to E(n)

N or E(n)
α , Lemma 3.2, find the continuous transform converting

expectations Ft-measurable functions from E1 to EN or Eα. Apply Girsanov’s
theorem to convert the driving function from E1 to EN or Eα. This strategy is
applied in [25] for FK-Ising and percolation.

ii) Take as an input the identification of the one-curve scaling limit and Theorem 2.3,
as proven independently in [21, Theorem 4.1]. Use the fourth and fifth martingale
Zβ/Z? of Proposition 3.4. Here two technical difficulties arise. First, proving
Lemma 5.3 requires detailed analysis of the derivatives of the martingale functions,
and these derivatives may be zero (simultaneously for all β) at least if N = 2.
Second, in the proof of Theorem 2.1, we need at least two processes to identify
the two differentials d〈W,W 〉t and d[drift part of W ]t, so we need many enough
martingales Zβ/Z? (scaling limits of Zβ/Z?), and we need to establish suitable
linear independence type results for these martingales (especially N = 2 is a
problem again). Ways to overcome these difficulties are:

a) to argue absolute continuity with respect to the one-curve case, which implies
that W is a semimartingale and d〈W,W 〉t = 2dt; or

b) to modify the fourth and fifth martingale results of Proposition 3.4: Zβ may
be taken to be a WST connectivity partition function of 2M > 2N boundary
points, and Zβ/Z? is still a P? martingale. The freedom of choice of these
extra boundary points would probably solve the problems named above.

iii) A completely different approach based on global multiple SLEs is outlined in an
update added to [21, Conjecture 4.3] after the publication of [36, 2].
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6 An analogous result for a boundary-visiting branch

We now sketch the proof of a local identification of the scaling limit of a single
spanning tree branch conditioned on boundary visits. The result and its proof are closely
analogous to our main theorem 2.1, and we trust that the reader can fill the details
omitted here for the sake of brevity. In particular, this proof provides another example of
how discrete partition functions can be used for transforming martingale observables, in
this case from the usual branch to the boundary-visiting branch.

6.1 Statement

This generalization only addresses the (isoradial) square lattice Z2, and the WST on
its subgraph G = (V, E) thus becomes the uniform random spanning tree with wired
boundary conditions (UST). An edge ê ∈ E is called boundary-neighbouring if it is
between two interior vertices, but both of these interior vertices are adjacent to the
boundary vertices V∂ . A boundary branch in the UST is said to visit boundary at ê if it
traverses through ê. In this section, we will consider a single UST boundary-to-boundary
branch between the boundary edges e1 = ein and e2 = eout, with the additional condition
of visiting boundary at the boundary-neighbouring edges ê1, . . . , êN ′ in an order ω, see
Figure 2(left) for an illustration. (We will always assume that the order of visits ω is
topologically possible.)

The scaling limits are characterized in the following setup. Let (Gn; e
(n)
in , e

(n)
out;

ê
(n)
1 , . . . , ê

(n)
N ′ ) be simply-connected subgraphs of δnZ2, where δn

n→∞−→ 0, with two marked
boundary edges and N ′ marked boundary-neighbouring edges. Assume that, as planar
domains with marked boundary points, Gn are uniformly bounded and converge in the
Carathéodory sense to a domain (Λ; pin, pout; p̂1 . . . , p̂N ′) with (2 + N ′) distinct marked
prime ends. Assume also that the boundary of both Gn and Λ is locally a straight hor-
izontal or vertical line in some fixed neighbourhoods of the boundary-visit locations
ê

(n)
1 , . . . , ê

(n)
N ′ and p̂1 . . . , p̂N ′ .

Let φn : Λn → H and φ : Λ→ H conformal maps such that φ−1
n → φ−1 uniformly over

compact subsets of H. Denote φ(pin, pout; p̂1 . . . , p̂N ′) = (X
(in)
0 , X

(out)
0 ; X̂

(1)
0 , . . . X̂

(N ′)
0 ),

and assume that φ is chosen so that these prime ends of H are all real (finite). Fix
a localization neighbourhood U of X(in)

0 bounded away from the remaining marked

boundary points X(out)
0 , X̂

(1)
0 , . . . X̂

(N ′)
0 .

Consider now WST boundary-to-boundary branch from e
(n)
in to e(n)

out on Gn, conditioned

to visit boundary at ê(n)
1 , . . . , ê

(n)
N ′ in the (possible) order ω. Map this branch conformally

to H by the map φn above. Let W (n)
· denote the driving functions in the Loewner

evolutions describing the growth of the boundary-to-boundary branch starting from e
(n)
in

and stopped at the continuous modification τ (n) of the exit time of U .

Theorem 6.1. In the setup and notation above, W (n)
· converge weakly to the SLE type

driving function (2.3), stopped at τ , with parameter κ = 2, and partition function

ζω = ζω(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t ) as given in [21, Theorem 1.1].

The scaling limit above can interpreted as the initial segment of SLE(2) in

(H;X
(in)
0 , X

(out)
0 ), conditioned to visit X̂(1)

0 , . . . , X̂
(N ′)
0 in the order ω, see Appendix C.

6.2 The combinatorial model

Let us again start from the combinatorial solution. Consider the UST measure P on
G, a simply-connected subgraph of Z2 (equipped with a choice of boundary vertices).
Denote by

Zω(ein, eout; ê1, . . . , êN ′)
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eout

ê3 ein

ê1ê2

ẽ6

ẽ7ẽ8 ẽ1

ẽ3ẽ2ẽ5ẽ4

Figure 2: Left: A UST sample with a boundary-to-boundary branch between the
boundary edges e1 = ein and e2 = eout, visiting boundary at the boundary-neighbouring
edges ê1, ê2, ê3 in that order. Left and right: An illustration of the bijection between
spanning trees with a boundary-visiting boundary-to-boundary branch and those with
multiple boundary-to-boundary branches.

the probability that the boundary branch from e◦in reaches ∂V via eout and visits

ê
(n)
1 , . . . , ê

(n)
N ′ in the order ω. There is a bijection between spanning trees satisfying

this condition, and spanning trees with N = (N ′ + 1) boundary-to-boundary branches
that form a link pattern α = α(ω) ∈ LPN between the boundary edges ẽ1, . . . , ẽ2N

obtained by re-labelling ein, eout, and the 2N ′ boundary edges adjacent to ê1, . . . , êN ′ .
Informally, the bijection is simply obtained by “cutting the boundary-visiting branch at
each visit”, see Figure 2. For a formal description, see [21, Lemma 3.2].

In particular, we have

Zω(ein, eout; ê1, . . . , êN ′) = Zα(ω)(ẽ1, . . . , ẽ2N ), (6.1)

and also the initial segment of the boundary-visiting branch coincides with that of a
suitable branch in the link pattern α(ω) between ẽ1, . . . , ẽ2N . Let us hence study the
UST measure conditional on the multiple branches forming α(ω) between ẽ1, . . . , ẽ2N ,
denoted Pα. A discrete martingale observable under Pα is given Proposition 3.4,

M
(α)
t (v, u) =

PGt(v, e
(t)
in )

Z̃Gtα
P(u, eout) stopped at T . (6.2)

The same martingale observable could be found directly under the boundary visiting
branch, by modifying the proof of Proposition 3.4 so that martingales are transformed
from a single branch to a boundary-visiting branch, and then using (6.1).

6.3 Observable convergence

The expression for the discrete martingale observable (6.2) and its scaling limit were
studied in [21]: in the notation of Theorems 4.1 and 6.1

δ3N ′ P
Gt(v, e

(t)
in )

Z̃Gtα
P(u, eout)

δ→0−→

N ′∏
i=1

g′t(X̂
(i)
0 )−3|φ′(p̂i)|−3

 P(gt(z),Wt)

ζω(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t )

P(w,X
(out)
0 )

g′t(X
(out)
0 )

,

where φδ(v) → z and φδ(u) → w as δ → 0, and ζω is the function given in [21, Theo-
rem 1.1]. (To be very precise, we need to adapt [21, Theorem 1.1] a little bit to allow
potentially rough boundaries at ein and eout above. This follows however by a simple
application Theorem 4.1(iv).)

6.4 Precompactness

The precompactness of the multiple branches in the link pattern α(ω) is proven
identically to the precompactness part in the main theorem 2.1, see Section A.3. Note
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that in the main theorem, all the endpoints of WST branches tend to different limiting
prime ends, while this is not the case here. Nevertheless, the precompactness conditions
of [20], checked in Section A.3, guarantee precompactness even if some limiting prime
ends coincide, see [20, Section 4.1].

6.5 Continuous martingales in the scaling limit

Extract now a subsequential weak limit driving function W . Repeating the arguments
of Section 5.1 in verbatim, one observes that

P(gt(z),Wt)

ζω(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t )g′t(X

(out)
0 )

N ′∏
i=1

g′t(X̂
(i)
0 )−3, stopped at τ (6.3)

is a bounded continuous martingale for all z ∈ H \ Uε.

6.6 Identifying the scaling limit

With a blue copy of Lemma 5.3 (but this time based on the martingale (6.3)), one
proves that the driving function W is a semimartingale.

We now finish the proof outline of Theorem 6.1 by identifying the law of W with an
explicit computation that closely resembles the proof Theorem 2.1 in Section 5.2. We
start by defining, analogously to (5.11), the process

f(zt;Wt; (X̂
(i)
t )i≤N ′ ; X̂

(out)
t ; (g′t(X̂

(i)
0 ))i≤N ′ ; g

′
t(X̂

(out)
0 )) (6.4)

:=
1

(zt −Wt)ζω(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t )g′t(X

(out)
0 )

N ′∏
i=1

1

g′t(X̂
(i)
0 )3

, stopped at τ,

whose imaginary part =f coincides with the martingale (6.3) up to a constant factor.
By Itô’s theorem, we have for t < τ (omitting the arguments of f )

df =
1

2
∂2
Wt
fd〈W,W 〉t + ∂Wt

fdWt + ∂ztfdzt

+

∑
i≤N ′

∂
X̂

(i)
t
fdX̂

(i)
t + ∂

X
(out)
t

fdX̂
(out)
t

+ ∂
g′t(X̂

(out)
0 )

fd(g′t(X̂
(out)
0 ))t

+
∑
i≤N ′

∂
g′t(X̂

(i)
0 )
fd(g′t(X̂

(i)
0 ))t, (6.5)

and the drift part of =(df) should vanish by the martingaleness of =f .
The five first terms, on the two first lines of (6.5), yield, identically to the five terms

in the Itô differential (5.12),

∂WtfdWt =

(
1

zt −Wt
− ∂xinζω

ζω

)
fdWt (6.6)

1

2
∂2
Wt
fd〈W,W 〉t =

1

2

(
2

(zt −Wt)2
+ 2

(
∂xin

ζω
ζω

)2

− 2∂xin
ζω

(zt −Wt)ζω
−
∂2
xin
ζω

ζω

)
fd〈W,W 〉t

(6.7)

∂ztfdzt = − 1

zt −Wt
f

2

zt −Wt
dt (6.8)

∂
X

(out)
t

fdX
(out)
t = −∂xoutζω

ζω
f

2

X
(out)
t −Wt

dt and ∂
X̂

(i)
t
fdX̂

(i)
t = −∂x̂iζω

ζω
f

2

X̂
(i)
t −Wt

dt

(6.9)

∂
g′t(X

(out)
0 )

fd(g′t(X
(out)
0 ))t =

2

(X
(out)
t −Wt)2

fdt, (6.10)
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while the last term of (6.5) becomes

∂
g′t(X̂

(i)
0 )
fd(g′t(X̂

(i)
0 ))t =

6

(X̂
(i)
t −Wt)2

fdt. (6.11)

As in the proof Theorem 2.1 in Section 5.2, one now argues that the real drift
differentials multiplying the complex number 1/(zt −Wt)

k must cancel out in (6.5) for
each k individually. Terms of the form f/(zt −Wt)

2 come from (6.7) and (6.8), and yield

d〈W,W 〉t = 2dt. (6.12)

Terms f/(zt −Wt) appear in (6.6) and (6.7) and yield

d[drift part of W ]t = 2
∂xin

ζω
ζω

dt. (6.13)

Equations (6.12) and (6.13) identify the semimartingale W as the solution to

dWt =
√

2dBt + 2
(∂xin

ζω)(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t )

ζω(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t )

dt,

i.e., Wt is the SLE(2) driving function with the partition function ζω. This proves Theo-
rem 6.1.

Terms of the form f/(zt − Wt)
0 in (6.5) provide a nice double-check: the come

from (6.6), (6.7), (6.9), (6.10), and (6.11), and yield

−∂xin
ζω

ζω
fd[drift part of W ]t +

1

2

(
2

(
∂xin

ζω
ζω

)2

−
∂2
xin
ζω

ζω

)
fd〈W,W 〉t

−∂xout
ζω

ζω
f

2

X
(out)
t −Wt

dt−
∑
i≤N ′

∂x̂iζω
ζω

f
2

X̂
(i)
t −Wt

dt

+
2

(X
(out)
t −Wt)2

fdt+
∑
i≤N ′

6

(X̂
(i)
t −Wt)2

fdt = 0

Similarly to the proof of Theorem 2.3 in Section 5.2, one deduces that ζω must satisfy
the PDE

−∂2
xin
ζω(xin, xout; x̂1, . . . , x̂N ′)−

2

xout − xin
∂xout

ζω(xin, xout; x̂1, . . . , x̂N ′)

−
∑
i≤N ′

2

x̂i − xin
∂x̂iζω(xin, xout; x̂1, . . . , x̂N ′) +

2

(xout − xin)2
ζω(xin, xout; x̂1, . . . , x̂N ′)

+
∑
i≤N ′

6

(x̂i − xin)2
ζω(xin, xout; x̂1, . . . , x̂N ′) = 0.

(6.14)

The exact same PDE for ζω was proven in [21, Theorem 1.1] with a completely different
method.

We conclude by remarking that the core of [21, Theorem 1.1], certain third order
PDEs of Conformal field theory for ζω, do not arise from this probabilistic study, as
anticipated in [21].

A On the boundary behaviour of discrete harmonic functions and
the precompactness of WST branches

The main result of this appendix is Theorem A.4, relating the boundary behaviour
of discrete harmonic functions to that of the continuous ones. The main observable

EJP 25 (2020), paper 83.
Page 25/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP485
http://www.imstat.org/ejp/


UST branches, martingales, and multiple SLE(2)

convergence result of this paper, Theorem 4.1, is a simple application of Theorem A.4. A
key ingredient the proof of Theorem A.4 is a Beurling type estimate for random walk
excursions from [24], recalled in Proposition A.2. Interestingly, this proposition also
constitutes the proof of precompactness of the multiple WST boundary-to-boundary
branches.

A.1 Discrete harmonic functions

Consider for a moment the setup of Section 3, i.e., G = (V, E) is a finite connected
planar graph with a planar embedding, a choice of boundary vertices, and edge weights
w. The discrete Laplacian ∆ maps a function f : V → R on the vertices to another
function ∆f : V → R given by

∆f(v) =
∑

e=〈v,u〉∈E

w(e)(f(u)− f(v)).

The function f is discrete harmonic is ∆f(v) = 0 for all interior vertices v ∈ V◦.
Recall the definitions of the discrete Green’s function and Poisson and excursion

kernels from Section 3.1.1. Note that the Green’s function G(·, w), interpreted as a
function V → R with fixed w ∈ V, satisfies G(v, w) = 0 for all v ∈ ∂V, and for v ∈ V◦,

∆G(v, w) = −δw(v) =

{
−1, v = w

0, v 6= w.

By linearity, Poisson problems of the discrete Laplacian can thus be solved in terms of
G(·, w).

For an interior vertex v ∈ V◦ and a set of boundary edges A ⊂ ∂E , we define the
discrete harmonic measure of A as seen from v, denoted by HG(v;A), as the probability
that random walk on V with edge weights w, launched from v ∈ V, first reaches ∂V via
an edge of A. All harmonic measures can be expressed in terms of Poisson kernels; if
A = {e} consists of a single boundary edge, then

HG(v; {e}) = w(e)P(v, e),

and otherwise HG(v;A) =
∑
e∈A HG(v; {e}).

Assume now that all boundary edges of G link to different boundary vertices (or
modify G accordingly). The harmonic measure HG(v;A) (or the Poisson kernel) can
be regarded a discrete harmonic function on G by extending it to w ∈ ∂V by setting
HG(w;A) = 1{w adjacent to A}. (This follows as Poisson kernel is a Green’s function and
thus harmonic except at one vertex.) This justifies the term harmonic measure, and is
crucial for the scaling limit analysis of Poisson kernels.

A.2 A Beurling type estimate for random walk excursions

The main result of this subsection, Proposition A.2, is central in the proof of The-
orem A.4 and implies directly the precompactness of the WST boundary-to-boundary
branches. It was first given in [24, Section 4.5] in the latter purpose. Due to its double
importance, we recall the argument of [24] here. Note that in the results in this sub-
section are uniform over all simply-connected subgraphs of isoradial lattices (possibly
different lattices, satisfying 2.1), and do not depend on the mesh size.

A.2.1 Random walks and isoradial balls and quadrilaterals

Let Γ be an isoradial lattice with the isoradial edge weights w. We will denote the
probability measure of the w-weighted random walk on Γ, launched from v ∈ V(Γ), by Pv.
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Let G = (V, E) be a simply-connected subgraph of Γ. A random walk excursion from an
interior vertex v ∈ V◦ to some boundary edges A ⊂ ∂E on G is a random walk launched
from v, stopped upon hitting the boundary vertices ∂V, and conditioned to first reach
∂V via an edge of A. We will denote the underlying random walk measure with this
conditioning by PGv A.

We define the discrete ball BΓ(u, ρ) around a vertex u ∈ V(Γ), for any ρ > 0, as
the following simply-connected isoradial graph. Take the largest simple loop ` on the
dual lattice Γ∗ such that the primal vertices inside ` include u and are contained in
the (continuous) ball B(u, ρ). The primal vertices inside ` are the interior vertices of
BΓ(u, ρ), all their other neighbours in Γ are the boundary vertices of BΓ(u, ρ), and the
edges of BΓ(u, ρ) are those of Γ between the vertices of BΓ(u, ρ). We will later refer to
a simply-connected isoradial subgraphs constructed via a dual loop `, similarly to the
above, as the subgraph of Γ determined by `.

Let G = (V, E) be a simply-connected isoradial subgraph of Γ. By an isoradial
quadrilateral Q on the boundary of G, we mean the following topological quadrilateral.
We take two disjoint simple paths ` and `′ on the dual isoradial lattice Γ∗, both crossing
the boundary of G (as viewed as a continuous domain) by their first and last edges and
otherwise staying inside the domain G. We also require that there exists a path on the
graph G crossing both ` and `′ and staying on the interior vertices V◦ except for possibly
at its endpoints. Then, the planar domain Q is2 the unique connected component of the
planar domain G \ (` ∪ `′) adjacent to both ` and `′. Two segments of ∂Q lie on the arcs `
and `′ and two on the boundary of the domain G, giving the structure of a topological
quadrilateral. We denote by m(Q) the conformal modulus of Q, i.e., the unique L > 0

such that Q can be conformally mapped to the rectangle (0, 1) × (0, L), where the top
and bottom arcs correspond to ` and `′.

Let v ∈ V◦ be an interior vertex and A ⊂ ∂E a set of boundary edges of G. We say
that Q is compatible with A (resp. v ∪A), if all edges of A lie at least half outside of the
planar domain Q (resp. and also v 6∈ Q), and these edges or half-edges of A \Q (resp.
and also v) all lie in one component of the planar domain G \Q. For definiteness, we will
assume the ` separates `′ from v and the edges or half-edges of A \Q.

Consider now the simply-connected subgraph of Γ determined by the largest simple
loop on the dual Γ∗, so that the dual loop stays in Q ∪ ` ∪ `′ and intersects both ` and
`′. Slightly abusively, we will also denote by Q this subgraph of Γ and G. The boundary
vertices V∂(Q) are naturally divided into four disjoint subsets S0, S1, S2, S3 indexed
counterclockwise: S0 and S2 are adjacent to boundary edges crossing the dual paths `
and `′, respectively, while S1 and S3 are adjacent to the remaining two arcs of the simple
dual loop. Note that a walk on the interior vertices V◦ that crosses the domain Q from `

to `′ must make the crossing on the (a priori smaller) graph Q from S0 to S2.

A.2.2 A Beurling estimate for random walk excursions

Lemma A.1. [24, Proposition 4.17] There exists ε0 > 0 such that for any c > 0 there
exists M > 0 such that the following holds. Let G = (V, E) be any simply-connected
isoradial subgraph with any marked boundary edges A ⊂ ∂E . Let Q be an isoradial
quadrilateral on the boundary of G, compatible with A. Now, if m(Q) ≥M , then there
exists u ∈ V◦(Q) and ρ > 0 such that

i) B := BΓ(u, ρ) a subgraph of the graph Q;

ii) minx∈B HG(x;A) ≥ cmaxx∈S2 HG(x;A); and

2 The definition of Q is here slightly more restrictive than in [24]. This is in order to directly comply with
assumptions in a result of [5], used in the proof of Lemma A.1.
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iii) PQx e[excursion intersects B] ≥ ε0 for all x ∈ V◦(Q) adjacent to S0 and e ∈ ∂E(Q)

adjacent to S2.

Proof. The proof in [24, Proposition 4.17] is given for Γ = Z2. Their argument, as well
as its inputs (the weak Beurling estimate [7, Proposition 2.11], the Harnack lemma [7,
Proposition 2.7], and [5, Proposition 3.3]), apply directly to general isoradial graphs Γ.

The proof of the following lemma essentially coincides with the proof of [24, Theorem
4.18], where the statement is however given in terms of loop-erased random walks.

Proposition A.2. (cf. [24, Theorem 4.18]) Continue in the setup and notation of the
above lemma, and let c be chosen larger than 1. Let a ∈ V◦ be any vertex such that Q is
compatible with a∪A. Denote by τ , τ ′, and T the first times the random walk (trajectory)
from a hits `, `′, and ∂V, respectively. Then, we have

PGa A[τ ′ ≤ T |τ ≤ T ] ≤ 1

ε0(c− 1)
× PGa A[τ ′ > T |τ ≤ T ]. (A.1)

In particular, for any ε̃ > 0, by choosing M large enough, having m(Q) ≥M guarantees
that

PGa A[τ ′ ≤ T ] < ε̃. (A.2)

Remark A.3. By applying (A.1) to a “rainbow of discrete boundary quadrilaterals” one
can improve (A.2) to

PGa A[τ ′ ≤ T ] ≤ Ke−αm(Q)

for some positive absolute constants K,α. This can be seen as an analogue of the weak
Beurling estimate for the random walk (e.g., [7, Proposition 2.11]) for excursions of
random walks. This extension is nevertheless not necessary here, and we leave the
details to the reader. (The non-trivial part is to divide a big discrete quadrilateral into a
rainbow of smaller ones so that the latter are discrete and (A.1) remains valid.)

Proof of Proposition A.2. Consider a random walk excursion from a to A. If this excur-
sion crosses `′, decompose it into three subwalks: roughly, in G and not crossing `′ from
a to S0, then in Q from S0 to S2, and then in G from S2 to A. Formally, the last part starts
after the first crossing of `′ and the middle part after the last crossing of ` before it.
Decompose the partition function of random walk excursions from a to A accordingly.
Lemma A.1 (iii) now implies that the middle part of this decomposition visits B with
probability at least ε0, so

Pa A[τ ′ ≤ T |τ ≤ T ] ≤ 1

ε0
Pa A[τB ≤ τ ′ ≤ T |τ ≤ T ]

=
Pa A[τB ≤ τ ′ ≤ T ]

ε0Pa A[τ ≤ T ]
, (A.3)

where τB denotes the hitting time of B. (Inside this proof, all excursion probabilities are
in G, so we drop the superscripts.) Next, we claim that

Pa A[τB ≤ τ ′ ≤ T ] ≤ 1

c− 1
Pa A[τB ≤ T < τ ′], (A.4)

where c is the constant in Lemma A.1 (ii). To prove this, divide the excursion from a via
first B and then S2 to A (resp. via B but avoiding S2) into two subwalks: first from a
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until first hitting B, and then from B via S2 (resp. avoiding S2) to A. Studying the latter
parts, observe that for a random walk η launched from y ∈ B,

Py A[τ ′ ≤ T ] =
Py[τ ′ ≤ T & 〈η(T − 1), η(T )〉 ∈ A]

Py[〈η(T − 1), η(T )〉 ∈ A]

≤ maxx∈S2 HΛ(x;A)

minx∈B HΛ(x;A)

≤ 1/c,

where we used Lemma A.1 (ii). This also implies Py A[τ ′ > T ] ≥ 1− 1/c. Taking c > 1 in
Lemma A.1, we now obtain (A.4). Finally, combining (A.3) and (A.4), we obtain

Pa A[τ ′ ≤ T |τ ≤ T ] ≤ 1

ε0(c− 1)

Pa A[τB ≤ T < τ ′]

Pa A[τ ≤ T ]

≤ 1

ε0(c− 1)
Pa A[τ ′ > T |τ ≤ T ].

This proves (A.1).
To prove (A.2), notice that the excursion from a to A has to cross ` to reach `′. Thus,

PGa A[τ ′ ≤ T ] ≤ PGa A[τ ′ ≤ T |τ ≤ T ].

If c is chosen very large, then by (A.1) the conditional probability on the right-hand side
above is much smaller than the conditional probability of its complement event. Thus,
the right-hand side above is small.

A.3 On the precompactness of WST boundary-to-boundary branches

Consider now a random walk excursion from a boundary-neighbouring vertex e◦1,
where e1 = 〈e◦1, e∂1 〉 ∈ ∂E , to a given boundary edge e2 ∈ ∂E . The loop-erasure of this
excursion is in distribution equal to a WST boundary-to-boundary branch from e1 to
e2 (see [45] and [21, Corollary 3.5]). Proposition A.2 now states that for this random
walk excursion and any compatible isoradial quadrilateral Q with m(Q) large enough,
we have

PGe◦1 e2
[excursion crosses Q] < ε̃. (A.5)

The loop-erasure of the excursion (i.e., the WST branch) is of course even less likely to
cross Q.

Crossing probability bounds as (A.5) above, uniform over all planar domains and
quadrilaterals, were in [24] shown to imply the precompactness of a chordal random
curve model (see also [19]), in this case the WST boundary-to-boundary branch. Assum-
ing the crossing probability bound for a single boundary-to-boundary branch, a similar
bound was derived for multiple branches in [20]. These arguments in [24, 19, 20] are
not specific for the WST but hold for a wide range of random curve models; in this
sense Proposition A.2 is the core of the precompactness WST boundary-to-boundary
branches. For the remaining details on the precompactness, we refer to [20, Proof of
precompactness in Theorem 6.8].

A.4 Ratios of discrete harmonic functions near a Dirichlet boundary

Consider now a sequence of isoradial graphs Γn with mesh sizes δn → 0. Let
Gn = (Vn, En) be a sequence simply-connected isoradial subgraphs such that, as planar
domains, Gn → Λ in the sense of Carathéodory, with the corresponding conformal maps
φn : Λn → H and φ : Λ → H, where φn → φ uniformly on the compact subsets of Λ.
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Let the interior vertices an ∈ V◦n approximate the prime end a of Λ in the sense that
a′n =: φn(an) → a′ =: φ(a), and assume that an are connected to (the vertex of Vn
closest to) the reference point of the Carathéodory convergence by a path on the interior
vertices V◦n.

Theorem A.4. In the setup above, let fn, gn : Vn → C be non-negative discrete harmonic
functions converging to the harmonic functions f, g : Λ→ C, respectively, uniformly over
compact subsets of Λ. Assume furthermore that fn, gn attain zero boundary values in
the image of a neighbourhood of a′ under φ−1

n , for all n. Then, we have

fn(an)

gn(an)
→ ∂y(f ◦ φ−1)(a′)

∂y(g ◦ φ−1)(a′)

if ∂y(g ◦ φ−1)(a′) 6= 0, where ∂y denotes the vertical derivative (which is well defined at
a′ by Schwarz reflection).

Remark A.5. The theorem above holds even if fn and gn only converge uniformly over
compact subsets φ−1(V ), where V is some neighbourhood of a′ in H; this is seen by
simply applying it to fn and gn restricted to suitable subgraphs of Gn.

One way to prove Theorem A.4 would be based on [8, Corollary 3.8], see [8, Proof of
Proposition 3.14] for an analogue. We present below a proof based on Proposition A.2.

Proof of Theorem A.4. Roughly, the idea of the proof is to consider fn(an) and gn(an)

as expectations with respect to the random walk launched from an. Then, we split the
walks into a beginning in the vincinity of the boundary point a and a tail after exiting
that vincinity for a first time.

Formally, let A′ = ∂B(a′, R) ∩H be a semicircle of radius R around a′ in H, where R
is a (small) fixed number. Let r < R be another (very small) fixed number and denote

A′r = {w ∈ A′ : =w > r}.

We assume that R is small enough, so that the curve ∂B(a′, 2R) separates φn(an) from
the nonzero boundary values of fn and gn (as mapped to H). The index n will be assumed
large enough so the edges of φn(Gn) inside or intersecting the half-circle A′ have radii
< r (this is guaranteed for large enough n by standard harmonic measure arguments),
and d(φn(an), a′) < r. Finally, denote by An, Ar;n ⊂ Λn the images in Λn of the sets A′

and A′r, respectively, under φ−1
n .

Let τ∂Vn denote the hitting time of ∂Vn by a random walk, and define τn =

min{τAn , τ∂Vn} and τr,n = min{τAr,n , τ∂Vn}, where τAn and τAr;n are the hitting times
of An and Ar;n, respectively, by the walk trajectory. Notice that if τn = τAn < ∞, the
walk is at that time at a distance ≤ δn from An. We denote the set of all such possible
vertices as AΓ

n. We define analogously the vertex set AΓ
r;n related to Ar;n.

Let us now perform an analysis on fn — identical conclusions hold for gn. First,
expressing fn(an) as an expectation with respect to a random walk η launched from an,
and then using the fact that An separates an from the nonzero boundary values of fn,
we have

fn(an) =
∑
b∈∂Vn
f(b) 6=0

fn(b)Pan [η(τ∂Vn) = b]

=
∑
b∈∂Vn
fn(b) 6=0

fn(b)
∑
v∈AΓ

n

Pan [η(τ∂Vn) = b & η(τn) = v]. (A.6)

Next, we use Proposition A.2: study the random walk η, launched from an and conditioned
on hitting ∂Vn at a fixed boundary vertex b where fn is nonzero. If this walk crosses the
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curve segments An \Ar;n, its image in H crosses a half-annulus centered at a′ ±R, with
inner and outer radii given by 2r and R − r (recall that we have discretization errors
≤ r), respectively. Proposition A.2 guarantees that the probability of such a crossing is
o(1) as r/R→ 0, the error term small uniformly over the mesh sizes δn and b ∈ ∂Vn such
that fn(b) 6= 0. We denote the error term by or/R(1), to keep explicit the variable in the
Landau notation. With the positivity of fn, this implies

fn(an) = (1 + or/R(1))
∑
b∈∂Vn
fn(b)6=0

fn(b)
∑

v∈AΓ
r;n

Pan [η(τ∂Vn) = b & η(τn) = v]. (A.6 b)

Next, notice that, using the separating property of An and the strong Markov property
of the random walk, we have

Pan [η(τ∂Vn) = b & η(τn) = v] = Pan [η(τn) = v]Pv[η(τ∂Vn) = b].

So (A.6 b) becomes

fn(an) = (1 + or/R(1))
∑

v∈AΓ
r;n

Pan [η(τn) = v]
∑
b∈∂Vn
f(b) 6=0

fn(b)Pv[η(τ∂Vn) = b]

= (1 + or/R(1))
∑

v∈AΓ
r;n

Pan [η(τn) = v]fn(v)

= (1 + or/R(1))Pan [η(τn) ∈ AΓ
r;n]Ean [fn(η(τn)) | η(τn) ∈ AΓ

r;n]. (A.6 c)

We now study the function fn(v) in (A.6 c), where v ∈ AΓ
r;n. Recall first that fn

converges to f uniformly on the compact subsets of Λ, so fn(v) = f(v) + o
(r,R)
n (1)

as n → ∞; by uniformity, the error term o
(r,R)
n (1) is small uniformly over v ∈ AΓ

r;n

once r and R are fixed — we add the superscript (r,R) to the Landau notation to
indicate the dependency. As a next step, let ṽ be the point of Ar;n closest to the
vertex v, so d(ṽ, v) ≤ δn. Since f is continuous and thus uniformly continuous on a

compact set, we can now substitute f(v) with f(ṽ), making an error of o(r,R)
n (1) again

small uniformly over v, i.e., f(v) = f(ṽ) + o
(r,R)
n (1). Finally, since f has zero boundary

values at a, the harmonic function f ◦ φ−1 : H → R extends by Schwarz reflection to
a smooth function in a neighbourhood of a′ = φ(a) ∈ R. Thus, we can approximate
f(ṽ) = f ◦ φ−1(φ(ṽ)) in the previous expression by the Taylor expansion of f ◦ φ−1 at
a′, giving f(ṽ) = =(φ(ṽ))∂y

(
f ◦ φ−1

)
(a′) + OR(R2), where the error term OR(R2) only

depends on the function f ◦ φ−1. Altogether, this chain of approximations yields

fn(v) = =(φ(ṽ))∂y
(
f ◦ φ−1

)
(a′) +OR(R2) + o(r,R)

n (1), (A.7)

where the error terms are small uniformly over v ∈ AΓ
r;n.

Now, substitute (A.7) back into (A.6 c) and use the uniformity of the Landau terms
of (A.7) in v ∈ AΓ

r;n:

fn(an) = (1 + or/R(1))Pan [η(τn) ∈ AΓ
r;n]

(
∂y
(
f ◦ φ−1

)
(a′)Ean [=(φ(ṽ)) | v = η(τn) ∈ AΓ

r;n]

+OR(R2) + o(r,R)
n (1)

)
. (A.6 d)

Finally, use the expansion (A.6 d) for both fn and gn. We have

fn(an)

gn(an)
=

(1+or/R(1))(∂y(f ◦ φ−1)(a′)Ean [=(φ(ṽ)) | v = η(τn)∈AΓ
r;n]+OR(R2)+o

(r,R)
n (1))

(1+or/R(1))(∂y(g ◦ φ−1)(a′)Ean [=(φ(ṽ)) | v = η(τn)∈AΓ
r;n]+OR(R2)+o

(r,R)
n (1))

.

(A.8)
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Notice that =(φ(ṽn)) ≥ r by definition. Choosing for instance R = ε2 and r = ε3, and
then taking first ε small enough and then n large enough, we observe that fn(an)/gn(an)

can be made arbitrarily close to

∂y(f ◦ φ−1)(a′)

∂y(g ◦ φ−1)(a′)
.

This proves the claim.

A.5 Proof of Theorem 4.1

Parts (i) and (ii) are proven in [7, Corollary 3.11] and [7, Theorem 3.13], respectively.
Part (iii) follows by applying Theorem A.4 (see also Remark A.5) to the fraction(

P(n)(u, e
(n)
2 )

/
P(n)(w(n), e

(n)
2 )

)
G(n)(v(n), u)

.

This is a ratio of two positive discrete harmonic functions of u, both converging uniformly
by parts (i) and (ii). Part (iv) follows by applying Theorem A.4 to

GG
(n)

(v(n), u)

GG̃(n)(w(n), u)
.

For part (iv), notice also the covariance formula for the boundary derivatives on Green’s
functions under conformal mapping-out, derived in the end of Section 4.1.1.

B Proof of boundedness in Proposition 5.1

We will actually prove a slightly stronger statement: the martingale M
(?)
t (z, ω) in (5.2)

is bounded, and this does not rely on any knowledge about the weak limit W but only
on how M

(?)
t (z, ω) is defined in terms of a given continuous driving function. This

small difference will turn important later when we want to use the weak convergence
W (n) →W .

Lemma B.1. Let M
(?)
t (z, ω) be as in (5.2) but constructed from any continuous driving

function W (not necessarily on the support of the weak limit). For any z and ω, there
exists C > 0 such that for all continuous functions W and all t ≤ τ , we have∣∣M (?)

t (z, ω)
∣∣ < C.

Proof. We deduce an upper bound for the right-hand side of (5.2), uniform over t ≤ τ

and over the driving function W . The factors P(ω,X
(i)
0 ) are deterministic so they may be

omitted in this analysis.
Let us first lower-bound =(gt(z)) and hence upper-bound P(gt(z),Wt) (see (4.1)). Fix

any w ∈ H \Uε. It follows from Loewner’s equation that =(gt(w)) ≥ =(gUε(w)), where gUε
is the mapping-out function of Uε. Clearly, we can lower-bound the harmonic measure of
any curve from z to ∂Ht, as seen from w in Ht, by the probability of a Brownian motion
from w looping around z before exitingH\Uε. By conformal invariance, also the harmonic
measure of the straight vertical line segment from gt(z) to R, as seen from gt(w) in H,
has the same lower bound. On the other hand, since we have =(gt(w)) ≥ =(gUε(w)), the
distance from gt(w) to this vertical line segment is at least =(gUε(w)) − =(gt(z)), and
Beurling’s estimate now upper-bounds the same harmonic measure by (essentially) a
power of =(gt(z))/=(gUε(w)). For the lower and upper bounds to be consistent, =(gt(z))

cannot be too small compared to =(gUε(w)).

EJP 25 (2020), paper 83.
Page 32/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP485
http://www.imstat.org/ejp/


UST branches, martingales, and multiple SLE(2)

Let us next lower-bound Z?(X(1)
t , . . . , X

(2N)
t ). By translation invariance (see (4.2)–

(4.3)), we may do it assuming X
(1)
t = 0. The strategy is to first find both upper and

lower bounds for the differences (X
(2)
t −X

(1)
t ), . . . , (X

(2N)
t −X(2N−1)

t ). Then, assuming

X
(1)
t = 0 and these upper and lower bounds, we obtain a compact set of coordinates

(X
(1)
t , . . . , X

(2N)
t ), and the continuous function Z?(X(1)

t , . . . , X
(2N)
t ) attains a minimum

under these assumptions. This minimum is positive by [21]. It remains to find the upper
and lower bounds for (X

(2)
t −X

(1)
t ), . . . , (X

(2N)
t −X(2N−1)

t ). By an argument very similar to
the previous paragraph, one can lower-bound the harmonic measures of all the intervals
(−∞, X(1)

t ), (X
(1)
t , X

(2)
t ), . . . , (X

(2N)
t ,+∞), as seen from gt(w) in H. Since =(gt(w)) ≥

=(gUε(w)), Beurling’s estimate now shows that (X
(2)
t − X

(1)
t ), . . . , (X

(2N)
t − X

(2N−1)
t )

are lower-bounded. For the upper bound, suppose for a contradiction that we had
(X

(2N)
t − X(1)

t )/2 ≥ C=(w) for a large enough C. From Loewner’s equation we have
=(gt(w)) ≤ =(w). Thus, the circular annulus centered at <(gt(w)) ∈ R with inner radius

=(w) and outer radius C=(w) disconnects gt(w) from either (X
(2N)
t ,+∞) (if <(gt(w)) ≤

(X
(2N)
t + X

(1)
t )/2) or (−∞, X(1)

t ) (if <(gt(w)) ≥ (X
(2N)
t + X

(1)
t )/2). Beurling’s estimate

then upper-bounds the harmonic measure of one of these intervals by (essentially) a
power of 1/C. If C is large enough, this contradicts the previously derived constant

lower bound, so we must have (X
(2N)
t −X(1)

t ) ≤ 2C=(w).

We are left with lower-bounding g′t(X
(i)
0 ). Notice that by (5.1)

∂tg
′
t(X

(i)
0 ) = − 2g′t(X

(i)
0 )

(X
(i)
t −X

(j)
t )2

.

In the previous paragraph, we deduced |X(i)
t −X

(j)
t | ≥ C. It thus follows that

∂tg
′
t(X

(i)
0 ) ≥ − 2

C2
g′t(X

(i)
0 ), (B.1)

and by Grönwall’s lemma and the initial condition g′0(X
(i)
0 ) = 1, we have g′t(X

(i)
0 ) ≥

exp(−2t/C2). Since the stopping time τ is less than the half-plane capacity of Uε, we

obtain a lower bound for g′t(X
(i)
0 ). This concludes the proof of boundedness.

C Boundary-visiting SLEs

The scaling limit in Theorem 6.1 can interpreted as the initial segment of SLE(2) in

(H;X
(in)
0 , X

(out)
0 ) conditioned to visit X̂(1)

0 , . . . , X̂
(N ′)
0 in the order ω. We review here the

non-rigorous argument leading to this interpretation, following [18, 21].
Recall that the SLE(κ) in (H;xin, xout) is a random curve γ defined as a conformal

image of an SLE(κ) curve in (H; 0,∞). The initial segment of the curve γ from xin to
xout, up to the stopping time τ as in Theorem 6.1, can almost surely be described by a
Loewner chain, namely the partition function SLE(κ) with [9]dWt =

√
κdBt + κ

∂WZ(Wt,X
(out)
t )

Z(Wt,X
(out)
t )

dt

dX
(out)
t = 2

X
(out)
t −Wt

dt,
(C.1)

where W0 = xin, and X(out)
0 = xout, and

Z(a, b) = |b− a|1−6/κ.

Denote the probability measure of SLE(κ) in (H;xin, xout) by P
(H;xin,xout)
κ . We will in this

appendix assume κ < 8.

EJP 25 (2020), paper 83.
Page 33/37

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP485
http://www.imstat.org/ejp/


UST branches, martingales, and multiple SLE(2)

The SLE(κ) in (H;xin, xout) almost surely avoids any finite collection of points for
κ < 8 [38], so the boundary-visiting SLE can only be defined via a suitable approximation
procedure. It was motivated (non-rigorously) in [18] that the probability to visit the
%-neighbourhoods of x̂1, . . . , x̂N ′ in the order ω is of the magnitude (%8/κ−1)N

′
as %→ 0,

and furthermore

Z(xin, xout)(%
8/κ−1)−N

′
P(H;xin,xout)
κ [γ visits B(x̂1, %), . . . , B(x̂N ′ , %) in the order ω]

should in the limit %→ 0 tend to a positive function of (xin, xout; x̂1, . . . , x̂N ′) that satisfies
certain Möbius covariance, PDEs, and asymptotics. Let us call this function the boundary
visit amplitude.

By [21, Theorem 1.1], the functions ζω in Theorem 6.1 satisfies the covariance, PDEs,
and asymptotics of a boundary visit amplitude, at κ = 2. Thus, assuming the uniqueness
of solutions to such a PDE problem, ζω is the SLE(2) boundary visit amplitude. We finish
the argument for general κ, denoting the boundary visit amplitude by ζω.

Now, modify the limit procedure giving (conjecturally) the boundary visit amplitude
ζω(xin, xout; x̂1, . . . , x̂N ′), taking instead ki%-neighbourhoods of each xi, i.e., of different
sizes but shrinking at the same rate in the limit %→ 0. A guess for such a neighbourhood
visit probability would be

P(H;xin,xout)
κ [γ visits B(x̂1, k1%), . . . , B(x̂N ′ , kN ′%) in the order ω]

= (%8/κ−1)N
′

N ′∏
i=1

k
8/κ−1
i

 ζω(xin, xout; x̂1, . . . , x̂N ′)

Z(xin, xout)
+ o((%8/κ−1)N

′
) as %→ 0.

(C.2)

Assuming (C.2) and using the conformal Markov property of the SLE, one obtains

P(H;xin,xout)
κ [γ visits B(x̂1, k1%), . . . , B(x̂N ′ , kN ′%) in the order ω | Ft∧τ ]

=

N ′∏
i=1

g′t(X̂
(i)
0 )8/κ−1

 ζω(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t )

Z(Wt, X
(out)
t )

(%8/κ−1)N
′
+ o((%8/κ−1)N

′
)

stopped at τ. (C.3)

After all these heuristics, what one can rigorously prove that the leading coefficient
of (C.3)

Mt =

N ′∏
i=1

g′t(X̂
(i)
0 )8/κ−1

 ζω(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t )

Z(xin, xout)
, stopped at τ,

indeed is a positive Ft local martingale under P(H;xin,xout)
κ [18, 21], i.e., under (C.1). (The

drift part in its Itô differential is one of the PDEs defining ζω, given in (6.14) for κ = 2.)
It is also bounded, by arguments similar to Lemma B.1, hence a genuine martingale.

Construct now a new probability measure Q with the Radon–Nikodym derivatives

dQ

dP
(H;xin,xout)
κ

∣∣
Ft

= Mt/M0. (C.4)

By Girsanov’s theorem, under the probability measure Q, the process W is up to time τ
governed by

dWt =
√
κdBt + κ

∂xinζω(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t )

ζω(Wt, X
(out)
t , X̂

(1)
t , . . . X̂

(N ′)
t )

dt, (C.5)

i.e., W is the SLE(κ) type process with the partition function ζω.
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Going back to the heuristics, assuming (C.3) we interpret Mt as the conditional

probability of SLE(κ) in (H;X
(in)
0 , X

(out)
0 ) to visit X̂(1)

0 , . . . , X̂
(N ′)
0 . By (C.4), Q should

thus be interpreted as the measure and (C.5) as the driving function of the SLE(κ) in

(H;X
(in)
0 , X

(out)
0 ), conditional on boundary visits at X̂(1)

0 , . . . , X̂
(N ′)
0 in the order ω.
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