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Abstract

We obtain factorial moment identities for the Charlier, Meixner and Krawtchouk
orthogonal polynomial ensembles. Building on earlier results by Ledoux [Elect. J.
Probab. 10, (2005)], we find hypergeometric representations for the factorial moments
when the reference measure is Poisson (Charlier ensemble) and geometric (a particular
case of the Meixner ensemble). In these cases, if the number of particles is suitably
randomised, the factorial moments have a polynomial property, and satisfy three-term
recurrence relations and differential equations. In particular, the normalised factorial
moments of the randomised ensembles are precisely related to the moments of the
corresponding equilibrium measures. We also briefly outline how these results can be
interpreted as Cauchy-type identities for certain Schur measures.
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1 Introduction and definitions

An orthogonal polynomial ensemble is a probability measure on RN given by

dQ(x) =
1

ZN
∆(x)2

N∏
j=1

dµ(xj), (1.1)

where x = (x1, . . . , xN ), µ is a probability measure on the real line having all moments,

∆(x) = det
1≤i,j≤N

(
xj−1i

)
=
∏
i<j

(xj − xi), (1.2)

*Research supported by ERC Advanced Grant 669306. Research of FDC partially supported by Gruppo
Nazionale di Fisica Matematica GNFM-INdAM.

†University College Dublin, Ireland. E-mail: philip.cohen@ucdconnect.ie

http://www.imstat.org/ejp/
https://doi.org/10.1214/20-EJP472
http://arXiv.org/abs/1907.12884
mailto:philip.cohen@ucdconnect.ie


Moments of discrete orthogonal polynomial ensembles

and ZN is a normalisation constant. Orthogonal polynomial ensembles arise as joint
eigenvalue distributions of certain unitarily invariant models of random matrices [43].
Dyson [16] showed that the measure (1.1) also has a natural interpretation as a 2d

Coulomb gas on the line (also known as log-gas). There are a number of models from
statistical physics, probability theory and combinatorics, which are described in terms
of orthogonal polynomial ensembles. The reader can consult the survey article by
König [35].

The measure (1.1) can be conveniently analysed by using the so-called orthogonal
polynomial method pioneered by Mehta [42] in the study of random matrices. Denote
by pn(x), n ∈ N, the orthonormal polynomials with respect to the measure µ, i.e.∫
pm(x)pn(x)dµ(x) = δmn. Then, a standard calculation shows that

dQ(x) =
1

N !
det

1≤i,j≤N
K(xi, xj)

N∏
j=1

dµ(xj), (1.3)

where K(x, y) =
∑N−1
n=0 pn(x)pn(y). In fact, all the marginals (1.3) can be expressed as

determinants of the correlation kernel K(x, y). In particular, for suitable functions f ,∫
RN

(
1

N

N∑
n=1

f(xn)

)
dQ(x1, . . . , xN ) =

∫
R

f(x)dρN (x), (1.4)

where the normalised one-point function ρN is the probability measure

dρN (x) =
1

N

N−1∑
n=0

pn(x)2dµ(x). (1.5)

Therefore the study of the Coulomb gas Q for some reference measure µ amounts to
understanding properties of the associated orthogonal polynomials pn(x).

Certainly, one of the most studied quantities on orthogonal polynomial ensembles are
the so-called moments. Let X = (X1, . . . , XN ) be distributed according to the probability
measure Q. Then, the kth moment of X is the expectation of the kth power sum

EQ
1

N

N∑
n=1

Xk
n =

∫
R

xkdρN (x), k ∈ N. (1.6)

It is well-known that moments of orthogonal polynomial ensembles admit a 1/N -expansion
as N →∞, whose coefficients satisfy a hierarchy of conditions known as loop equations
initially derived in theoretical physics [2, 3], and then proved using several analytical
techniques [1, 15, 17, 22, 27, 36, 48]. (These expansions are special instances of the
asymptotic series and associated topological recursions for more general probability
models called β-ensembles; see [7, 8, 19, 20, 24] for the state of the art.)

When the reference measure µ is the standard Gaussian, Gamma, or Beta distribution,
Q is the eigenvalues distribution of the Gaussian (GUE), Laguerre (LUE) or Jacobi
(JUE) unitary ensembles of random matrices, with associated Hermite, Laguerre and
Jacobi polynomials [43]. These classical ensembles are exactly solvable, in the sense
that the coefficients of the 1/N -expansion have an explicit description in terms of
enumeration of maps (or factorisations in the symmetric group) on surfaces labelled
by their genus [9, 10, 13, 23, 28, 44]. The 1/N -expansion for the GUE, LUE and JUE
is actually convergent; moments (1.6) of the classical random matrix ensembles are
polynomials or rational functions in the variable N (the size of the matrix).

Moreover, the moments (1.6) of Gaussian, Laguerre and Jacobi unitary ensembles
satisfy three-term recurrences in k (the order of the moment). These remarkable recur-
sions were first discovered by Harer and Zagier [29] for the GUE, and by Haagerup and
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Moments of discrete orthogonal polynomial ensembles

Thorbjørnsen for the LUE [26] (the extension of the Haagerup-Thorbjørnsen recursion to
moments of the inverse LUE was examined later in [11]). Recursions in k for moments
of the JUE were obtained by Ledoux [38], and recast as three-term recurrences in [12].

Recent studies by Cunden, Mezzadri, O’Connell and Simm [12] clarified the origin
of these three-term recurrences in k for moments of the classical ensembles. Those
recursions originate from the second order differential equations (continuous Sturm-
Liouville problems) satisfied by the Hermite, Laguerre and Jacobi polynomials. In fact,
the Harer-Zagier, Haagerup-Thorbjørnsen and Ledoux recursions can be interpreted as
second order difference equation in the variable k (discrete Sturm Liouville problems). It
turns out that their solutions are hypergeometric orthogonal polynomials in k belonging
to the Askey scheme [33]. The polynomial structure, the orthogonality relation and
the hypergeometric representation of the moments as function of k explain several
nontrivial symmetries and provide new results. For instance, by duality, moments of
classical classical random matrices, if suitably normalised can be view as hypergeometric
polynomials in the variable (N − 1) as well; therefore, they also satisfy three-term
recurrences in (N − 1), whose nature is different from the general topological recursion.
See [12] for the details.

This link between moments of the classical continuous orthogonal polynomial (OP)
ensembles and hypergeometric OPs suggests that other related ‘solvable models’ might
exhibit unexpected representation of the moments in terms of hypergeometric series
and/or special orthogonal polynomials.

In this paper we examine the classical discrete OP ensembles. Namely, the Charlier,
Meixner, and Krawtchouk ensembles, which correspond to the Poisson, negative binomial,
and binomial reference measures µ on N, respectively. In these ensembles the reference
measure µ is discrete. Hence, the measure Q can be thought of as a discrete Coulomb
gas: a system of N particles on the integer lattice N, distributed according to a common
distribution µ under the influence of the repelling density ∆(x)2. It turns out (as is often
the case for integer valued random variables) that rather than the moments (1.6), the
factorial moments

EQ
1

N

N∑
n=1

Xn(Xn − 1) · · · (Xn − k + 1) =

∫
R

x(x− 1) · · · (x− k + 1)dρN (x), k ∈ N, (1.7)

are more natural to look at in the discrete setting.

The outline of the paper is as follows. In Section 2 we introduce the OP ensembles
considered in this paper. Then, we give the factorial moment formulae for the Charlier
and Meixner ensembles calculated by Ledoux [39], and we calculate the corresponding
formula for the Krawtchouk ensemble, whose statement is omitted in [39].

In Section 3, motivated by recent developments [12] on moments of the classical
continuous OP ensembles, we give hypergeometric representations for the factorial
moments of the Charlier ensemble, and the special case of Meixner ensemble with γ = 1.
From these formulae it is clear that the kth factorial moment (suitably normalised) is a
polynomial in k.

The main novel observation reported in the paper is contained in Section 4. It turns
out that in the Charlier, and γ = 1 Meixner ensembles, if the number of particles N
is randomised according to certain distributions, then the kth factorial moment has
an even simpler hypergeometric representation and can be expressed as a Jacobi or
Legendre polynomial of degree k. It follows that the randomised factorial moments
satisfy three-term recursions in k (similar to the Harer-Zagier, Haagerup-Thorbjørnsen
and Ledoux recurrences in the continuous ensembles), and second order differential
equations (Sturm-Liouville problems).
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Moments of discrete orthogonal polynomial ensembles

In the last section of this work, we highlight a nice feature of the normalised factorial
moments for the randomised Charlier and γ = 1 Meixner ensembles, namely that they
are precisely related to the moments of the corresponding equilibrium measures.

2 Moment formulae for Charlier, Meixner and Krawtchouk en-
sembles

We give first the precise definitions of the three classical OP ensembles consid-
ered here. These ensembles arise in connection with random partitions [30, 31] and
conditioned random walks [34, 35, 45].

In the following we will use the hypergeometric notation

pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
=

∞∑
i=0

(a1)i · · · (ap)i
(b1)i · · · (bq)i

zi

i!
. (2.1)

where (a)i denotes the rising factorial a(a + 1) . . . (a + i − 1). If one of the parameters
a1, · · · , ap is a nonpositive integer, then the series terminates. Recall that a series

∑∞
i=0 ti

is hypergeometric if the ratio of consecutive terms ti+1

ti
is a rational function of i, and

from (2.1) we see that

ti+1

ti
=

(i+ a1) . . . (i+ ap)

(i+ b1) . . . (i+ bq)(i+ 1)
z =⇒

∞∑
i=0

ti = pFq

(
a1, . . . , ap
b1, . . . , bq

; z

)
t0. (2.2)

(a) The Charlier ensemble corresponds to a Poisson reference measure µ = µθ with rate
θ > 0, given by1

µθ(x) =
θxe−θ

x!
, x ∈ N. (2.3)

The nth normalised Charlier polynomial cn(x; θ) can be written as [33, 9.14]

cn(x; θ) =

√
θn

n!
2F0

(
−n,−x
− ;−1

θ

)
. (2.4)

The Charlier one-point function will be denoted by

ρθN (x) =
1

N

N−1∑
n=0

cn(x; θ)2µθ(x). (2.5)

(b) The Meixner ensemble corresponds to a negative binomial reference measure µ = µγq
with parameters 0 < q < 1 and γ > 0, where (γ)x denotes the rising factorial as
defined above,

µγq (x) =
(γ)x
x!

qx(1− q)γ , x ∈ N. (2.6)

The nth normalised Meixner polynomial mn(x; γ, q) is [33, 9.10]

mn(x; γ, q) =

√
(γ)nqn

n!
2F1

(
−n,−x
γ

; 1− 1

q

)
. (2.7)

We shall denote the Meixner one-point function by

ργN,q(x) =
1

N

N−1∑
n=0

mn(x; γ, q)2µγq (x). (2.8)

1In this paper 0 ∈ N.
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(c) The Krawtchouk ensemble corresponds to the binomial distribution µ = µKp with
K ≥ N trials and success probability 0 < p < 1,

µK,p(x) =

(
K

x

)
px(1− p)K−x, x = 0, 1, 2, . . . ,K. (2.9)

The nth normalised Krawtchouk polynomial kn(x; p,K) has the hypergeometric
representation [33, 9.11]

kn(x; p,K) =

√(
K

n

)(
p

1− p

)n
2F1

(
−n,−x
−K ;

1

p

)
, n = 0, 1, 2, . . . ,K. (2.10)

Note that, unlike in the Charlier and Meixner cases, this is a finite family of K + 1

polynomials. The binomial distribution (2.9) corresponds to a negative binomial
distribution with negative parameters (2.6)

µK,p(x) = µ−K−p/(1−p)(x), (2.11)

and the Krawtchouk polynomials are related to the Meixner polynomials given
by (2.7) in the following way:

kn(x; p,K) = mn (x;−K,−p/(1− p)) . (2.12)

We denote the one-point function of the Krawtchouk ensemble as

ρN,K,p(x) =
1

N

N−1∑
n=0

kn(x; p,K)2µK,p(x). (2.13)

In [39], formulae for the factorial moments of the Charlier and Meixner ensembles
are calculated. We state the results here.

Theorem 1 (Ledoux [39]). Let ρN,θ(x) denote the Charlier one-point function. Then, the
factorial moment

Mθ(k,N) =

∫
x(x− 1) · · · (x− k + 1)dρN,θ(x) (2.14)

is given by

Mθ(k,N) =

k∑
i=0

θk−i
(
k

i

)2
1

N

N−1∑
l=i

l!

(l − i)!
. (2.15)

Theorem 2 (Ledoux [39]). Let ργN,q(x) denote the Meixner one-point function. Then, the
factorial moment

Mγ
q (k,N) =

∫
x(x− 1) · · · (x− k + 1)dργN,q(x) (2.16)

is given by

Mγ
q (k,N) =

k∑
i=0

(
q

1− q

)k
q−i
(
k

i

)2
1

N

N−1∑
l=i

l!

(l − i)!
(γ + l)k−i. (2.17)

We can also compute the factorial moments of the Krawtchouk ensemble.

Theorem 3. Let ρN,K,p(x) denote the Krawtchouk one-point function. Then, the factorial
moment

MK,p(k,N) =

∫
x(x− 1) · · · (x− k + 1)dρN,K,p(x) (2.18)

is given by

MK,p(k,N) =

k∑
i=0

pk−i (1− p)i
(
k

i

)2
1

N

N−1∑
l=i

l!(K − l)!
(l − i)!(K − l − k + i)!

. (2.19)
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Proof. From the general setting of [39], we deduce the following ‘integration by parts’
formula ∫

xf(x)dµK,p(x) = pK

∫
f(x+ 1)dµK−1,p(x). (2.20)

Hence, we have∫
x(x− 1) · · · (x− k + 1)kl(x; p,K)2dµK,p(x)

= pk
K!

(K − k)!

∫
kl(x+ k; p,K)2dµK−k,p(x). (2.21)

In order to calculate this integral, we use the forward shift operator [33, Eq. (9.11.6)]

kl(x+ 1; p,K)− kl(x; p,K) =

√
l

Kp(1− p)
kl−1(x; p,K − 1), (2.22)

and iterate so that

kl(x+ k; p,K) = kl(x+ k − 1; p,K)−

√
l

Kp(1− p)
kl−1(x+ k − 1; p,K − 1)

= · · · =
k∧l∑
i=0

(−1)i
(
k

i

)√
(−l)i

(−K)ipi(1− p)i
kl−i(x; p,K − i).

Hence we observe that

kl(x+ k; p,K)2 =

k∧l∑
i,j=0

(−1)i+j
(
k

i

)(
k

j

)√
(−l)i(−l)j

(−K)i(−K)j
(p(1− p))−

i+j
2 kl−i(x; p,K − i)kl−j(x; p,K − j).

(2.23)

We now make use of the Krawtchouk generating function [33, Eq. (9.11.11)](
1− 1− p

p
t

)x
(1 + t)K−x =

K∑
n=0

√(
K

n

)(
1− p
p

)n
kn(x; p,K)tn. (2.24)

So, to calculate the integral
∫
kl−i(x; p,K − i)kl−j(x; p,K − j)dµK−k,p(x) we find the

tl−isl−j coefficient of∫ K−i∑
n=0

K−j∑
m=0

√(
K − i
n

)(
K − j
m

)(
1− p
p

)n+m
kn(x; p,K− i)km(x; p,K− j)tnsmdµK−k,p(x)

(2.25)
which, by the generating function (2.24), is equal to∫ (

1− 1− p
p

t

)x
(1 + t)K−x−i

(
1− 1− p

p
s

)x
(1 + s)K−x−jdµK−k,p(x)

= (1 + t)k−i(1 + s)k−j
(

1 +
1− p
p

st

)K−k
,

since, after taking out a factor of (1 + t)k−i(1 + s)k−j , we find that the remaining discrete
integral can be simplified using the binomial theorem. Thus for any integers n and m,
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we can calculate the tnsm coefficient by counting the terms in this product with the
corresponding coefficients, to get

k−i∑
a=0

(
k − i
a

)(
K − k
n− a

)(
k − j

m− n+ a

)(
1− p
p

)n−a
.

Hence taking n = l− i, m = l−j and relabelling a = r− i, the tl−isl−j coefficient of (2.25)
gives∫

kl−i(x; p,K − i)kl−j(x; p,K − j)dµK−k,p(x) =

k∧l∑
r=i∨j

(
k − i
r − i

)(
k − j
r − j

)(
K − k
l − r

)(
1− p
p

)l−r
. (2.26)

Combining this with (2.23) we have a formula for
∫
kl(x + k; p,K)2dµK−k,p(x). Finally,

taking the sum over l from 0 to N − 1, this is

pk

N

N−1∑
l=0

k∧l∑
r=0

(
1− p
p

)r (
k

r

)2
l!(K − l)!

(l − r)!(K − l − k + r)!

which, once we swap the order of the sums, is the desired formula.

Remark 1. The reader can check that the moments (2.19) of the Krawtchouk ensemble
can be obtained formally from the Meixner case (2.17) by the substitution q → −p/(1−p)
and γ → −K:

MK,p(k,N) = M−K− p
1−p

(k,N). (2.27)

3 Hypergeometric moment formulae

3.1 Hypergeometric representations

Theorems 1, 2 and 3 are the starting points of our analysis on the factorial mo-
ments of the classical discrete OP ensembles as functions of k. Specifically we look for
properties that mirror the nice structure recently found on the classical continuous OP
ensembles [12]. A ‘nice property’ in the continuous setting is that the moments have a
hypergeometric representation. We found similar hypergeometric series for the factorial
moments of the classical discrete OP ensembles when the reference measure is Poisson
µθ(x) = θxe−θ/x!, θ > 0 (Charlier ensemble) and geometric µ1

q(x) = qx(1− q) (Meixner
ensemble with parameter γ = 1).

We will make use of the following identity, which can be proved by induction on N :

N−1∑
l=i

(l + k − i)!
(l − i)!

=
(N + k − i)!

(k + 1)(N − i− 1)!
=

1

k + 1
(N − i)k+1. (3.1)

Theorem 4 (Charlier factorial moment). The factorial moment of the Charlier ensemble
can be written as

Mθ(k,N) = θk3F1

(
−k,−k, 1−N

2
;−1

θ

)
. (3.2)

In particular, θ−kMθ(k,N) can be extended to the entire complex plane to a polynomial
in k of degree 2(N − 1), and when k ∈ N, it is a polynomial in (N − 1) of degree k.
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Proof. Firstly, by (3.1) (with k = i) and the identity 1
N (N − i)i+1 = (N − i)i, we simplify

formula (2.15) as

Mθ(k,N) =

k∑
i=0

θk−i
(
k

i

)2
(N − i)i
(i+ 1)

. (3.3)

If we denote

ti = θk−i
(
k

i

)2
(N − i)i
(i+ 1)

,

we have t0 = θk, and for all 0 ≤ i ≤ k,

ti+1

ti
=

(k − i)2(N − (i+ 1))

(i+ 2)(i+ 1)θ
=

(i− k)(i− k)(i+ 1−N)

(i+ 2)(i+ 1)

(
−1

θ

)
.

So, by (2.2), the factorial moment Mθ(k,N) =
∑
i≥0 ti has the required hypergeometric

representation.

The first few moments as functions of k are

Mθ(k, 1) = θk

Mθ(k, 2) =
1

2
θk−1

(
k2 + 2θ

)
Mθ(k, 3) =

1

6
θk−2

(
k4 − 2k3 + (6θ + 1)k2 + 6θ2

)
.

Consider now the negative binomial distribution with the special parameter γ = 1, so
that the reference measure is simply a geometric distribution dµ1

q(x) = qx(1− q). The
corresponding measure Q is the Meixner ensemble with parameter γ = 1.

Theorem 5 (Meixner factorial moment). The factorial moment of the Meixner ensemble
with γ = 1 can be written as

M1
q (k,N) =

(
q

1− q

)k
(N + 1)k
k + 1

3F2

(
−k,−k, 1−N

1,−N − k ;
1

q

)
. (3.4)

In particular, ((1− q)/q)k k+1
(N+1)k

M1
q (k,N) can be extended to the entire complex plane

to a polynomial in k of degree 2(N − 1), and when k ∈ N, it is a polynomial in (N − 1) of
degree k.

Proof. When γ = 1, we observe that (γ+l)k−il!
(l−i)! = (l+k−i)!

(l−i)! , and by (3.1) the formula of the
factorial moment simplifies as

M1
q (k,N) =

k∑
i=0

(
q

1− q

)k
q−i
(
k

i

)2
1

N

(N − i)k+1

k + 1
. (3.5)

If we denote

ti =

(
q

1− q

)k
q−i
(
k

i

)2
1

N

(N − i)k+1

k + 1
,

then we have

t0 =

(
q

1− q

)k
(N + 1)k
k + 1

ti+1

ti
=

(k − i)2(N − i− 1)

(i+ 1)2(N + k − i)q
=

(i− k)(i− k)(i+ 1−N)

(i+ 1)(i−N − k)(i+ 1)

(
1

q

)
, 0 ≤ i ≤ k.

Using (2.2) we conclude the proof.
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The first few moments as functions of k are

M1
q (k, 1) =

(
q

1− q

)k
(2)k

1

k + 1

M1
q (k, 2) =

(
q

1− q

)k
(3)k

(
k2 + kq + 2q

)
(k + 1)(k + 2)q

M1
q (k, 3) =

(
q

1− q

)k
(4)k

(
k4 + 4k3q − 2k3 + 2k2q2 + 8k2q + k2 + 10kq2 + 12q2

)
2(k + 1)(k + 2)(k + 3)q2

.

3.2 Interpretations in terms of Schur measures

It is well known that the Charlier and Meixner ensembles can be interpreted in terms
of Schur measures on integer partitions. For a particle configuration x1 > · · · > xN on
the nonnegative integers, we can associate an integer partition λ via λi = xi + i − N .
Under this identification, the Charlier ensemble with N particles and parameter θ
corresponds to the probability distribution on integer partitions given by

Cθ,N (λ) := e−Nθ
θ|λ|

|λ|!
sλ(1N )fλ, (3.6)

as described by Borodin and Olshanski [6], where sλ(x1, . . . xN ) is the Schur polynomial
in N variables indexed by λ, and fλ is the number of standard Young tableaux of shape λ,
given by the hook-length formula [41]. Furthermore, assuming γ is a positive integer, the
Meixner ensemble with N particles and parameters γ, q corresponds to the probability
distribution [5]

Mq,γ,N (λ) := q|λ|(1− q)N(N+γ−1)sλ(1N )sλ(1N+γ−1). (3.7)

For λ an integer partition with at most N parts, define

FN,k(λ) =
1

N

N∑
i=1

[(λi +N − i)(λi +N − i− 1) · · · (λi +N − i− k + 1)]. (3.8)

Then, in the notations of the previous two sections, the factorial moments can be written
as follows

Mθ(k,N) =
∑
λ

FN,k(λ)Cθ,N (λ), (3.9)

and
Mγ
q (k,N) =

∑
λ

FN,k(λ)Mq,γ,N (λ), (3.10)

where the sums are taken over all integer partitions λ.
The fact that Cθ,N and Mq,γ,N are probability measures is a consequence of the

Cauchy-Littlewood identity [41, I.4, (4.3)]. Thus the statements of Theorems 1, 2, 4 and 5
can be interpreted as extensions of particular cases of the Cauchy-Littlewood identities.

Corollary 1. The following identity relating Schur polynomials and hypergeometric
functions holds, as a result of the Charlier factorial moment formula:∑

λ

FN,k(λ)e−Nθ
θ|λ|

|λ|!
sλ(1N )fλ = θk3F1

(
−k,−k, 1−N

2
;−1

θ

)
. (3.11)

Corollary 2. The following identity relating Schur polynomials and hypergeometric
functions holds, as a result of the γ = 1 Meixner factorial moment formula:∑

λ

FN,k(λ)q|λ|sλ(1N )sλ(1N ) =
qk(N + 1)k

(1− q)N2+k(k + 1)
3F2

(
−k,−k, 1−N

2,−N − k ;
1

q

)
. (3.12)
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4 Randomised factorial moments

In the classical continuous OP ensembles, the moments are themselves hypergeo-
metric orthogonal polynomials in the variable k [12]. This is not the case in the discrete
setting. However, if we suitably randomise the number of particles N , then the factorial
moments simplify dramatically and can be expressed as Jacobi polynomials.

Recall that the Jacobi polynomials with shape parameters (α, β), are orthogonal with
respect to the Beta distribution (1 − x)α(1 + x)β on the interval x ∈ [−1, 1]. They have
the hypergeometric representation [33, 9.8]

P (α,β)
n (x) =

(α+ 1)n
n!

2F1

(
−n, n+ α+ β + 1

α+ 1
;

1− x
2

)
. (4.1)

(Here we do not require them to be have squared norm 1.) When α = β = 0, this is a
special case known as the Legendre polynomials, orthogonal with respect to the uniform
measure on x ∈ [−1, 1], and we use the standard notation [33, 9.8.3] Pn(x) = P

(0,0)
n (x).

For a given reference measure µ, the OP ensemble Q can be thought of as a random
point configuration where the number of points (or particles) is N . We now show that the
formulae of the factorial moments in the Charlier ensemble and in the Meixner ensemble
with γ = 1 simplify if we randomise N .

4.1 Poissonised Charlier moments

Consider the OP ensemble Q with reference measure µθ, θ > 0. Suppose that N − 1

has Poisson distribution µtθ, t > 0, i.e.

P (N = m+ 1) = e−tθ
(tθ)m

m!
, m ∈ N. (4.2)

The resulting probability measure is a Poissonised Charlier ensemble.

Theorem 6. Define the Poissonised Charlier factorial moment as

Mθ(k; t) =

∫ (∫
x(x− 1) . . . (x− k + 1)dρθm+1(x)

)
dµtθ(m). (4.3)

Then, Mθ(k; t) can be written in terms of a Jacobi polynomial of degree k in the variable
(1 + t)(1− t)−1, with parameters α = 1 and β = 0:

Mθ(k; t) = θk2F1

(
−k,−k

2
; t

)
=
θk(1− t)k

k + 1
P

(1,0)
k

(
1 + t

1− t

)
. (4.4)

In the proof we shall make use of the following generating function from the theory
of hypergeometric functions.

Lemma 1 (Exton [18]). The following identity between hypergeometric functions holds:

etθ2F1

(
a, b

c
; t

)
=

∞∑
m=0

(tθ)m

m!
3F1

(
a, b,−m

c
;−θ−1

)
. (4.5)

Proof. We first rewrite the hypergeometric functions and exponential on the left hand
side as series, i.e.

etθ2F1

(
a, b

c
; t

)
=

∞∑
j=0

(tθ)j

j!

∞∑
k=0

(a)k(b)k
(c)k

tk

k!
.
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Then, we change the variables in the double sum by defining m = k + j and eliminating
j, so we have

etθ2F1

(
a, b

c
; t

)
=

∞∑
m=0

tm
m∑
k=0

(a)k(b)k
(c)k

θm−k

(m− k)!k!

=

∞∑
m=0

tmθm

m!

m∑
k=0

(a)k(b)k
(c)k

m!

(m− k)!k!
(θ−1)k

=

∞∑
m=0

tmθm

m!

m∑
k=0

(a)k(b)k(−m)k
(c)k

(−θ−1)k

k!
,

which is exactly the form of the hypergeometric function required.

Proof of Theorem 6. We use Lemma 1 with a = b = −k and c = 2, so that

2F1

(
−k,−k

2
; t

)
=

∞∑
m=0

e−tθ(tθ)m

m!
3F1

(
−k,−k,−m

2
;−θ−1

)
=

∫
3F1

(
−k,−k,−m

2
;−θ−1

)
dµtθ(m),

by definition of the Poisson measure µtθ. Hence by the factorial moment formula of
Theorem 4, we have

Mθ(k; t) = θk2F1

(
−k,−k

2
; t

)
.

To show the second equality (4.4) we use the hypergeometric representation (4.1) of the
Jacobi polynomial.

The first few Poissonised moments are

Mθ(1; t) =
θ

2
(t+ 2) Mθ(2; t) =

θ2

3

(
t2 + 6t+ 3

)
Mθ(3; t) =

θ3

4

(
t3 + 12t2 + 18t+ 4

)
Mθ(4; t) =

θ4

5

(
t4 + 20t3 + 60t2 + 40t+ 5

)
.

Note that (4.4) are polynomials in t. In particular, they are regular at t = 1, corresponding
to the Poissonised Charlier ensemble with parameter θ.

Corollary 3. When we set t = 1 (i.e. Poissonise with parameter θ), we have

Mθ(k; 1) =
θk

k + 1

(
2k + 1

k

)
= θk

2k + 1

k + 1
Ck, (4.6)

where Ck = 1
k+1

(
2k
k

)
is the kth Catalan number.

Proof. The second equality is clear. To show the first equality, we observe that

2F1

(
−k,−k

2
; 1

)
=

k∑
j=0

1

j + 1

(
k

j

)2

=
1

k + 1

k∑
j=0

(
k + 1

k − j

)(
k

j

)
.

Then, by the Chu-Vandermonde identity, we have the binomial term as required.

The Jacobi polynomials satisfy a three-term recurrence [33, Eq. (9.8.4)] (in the degree)
and a second order differential equation [33, Eq. (9.8.6)] (in the argument). In the special
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case (α, β) = (1, 0) they are

xP
(1,0)
k (x) =

k + 2

2k + 3
P

(1,0)
k+1 (x)− 1

(2k + 1)(2k + 3)
P

(1,0)
k (x) +

k

2k + 1
P

(1,0)
k−1 (x), (4.7)

(1− x2)
d2

dx2
P

(1,0)
k (x)− (1 + 3x)

d

dx
P

(1,0)
k (x) + k(k + 2)P

(1,0)
k (x) = 0. (4.8)

These, combined with Theorem 6, show that the Poissonised factorial moments Mθ(k, t)

of the Charlier ensemble satisfy a three-term recurrence in k and a second order
differential equation in t.

Corollary 4. The Poissonised moments Mθ(k, t) satisfy the three-term recurrence

(2k + 1)(k + 2)2Mθ(k + 1, t) = θ(k + 1) [(2k + 3)(2k + 1)(1 + t) + (1− t)]Mθ(k, t)

− θ2k2(2k + 3)(1− t)2Mθ(k − 1, t), (4.9)

and the second order differential equation

t

(1− t)k−2
d2

dt2
Mθ(k, t) + 2k−2(2k + 3)

d

dt
Mθ(k, t) + 2k−1k2Mθ(k, t) = 0. (4.10)

Proof. The recursion (4.9) is an immediate consequence of (4.7). For the proof of the
differential equation (4.10), note that from (4.8) we have

t(1− t)2 d2

dt2
P

(1,0)
k

(
1 + t

1− t

)
+ (2− t)(1− t) d

dt
P

(1,0)
k

(
1 + t

1− t

)
− k(k + 2)P

(1,0)
k

(
1 + t

1− t

)
= 0.

(4.11)
A straightforward manipulation concludes the proof.

4.2 Negative binomialised Meixner moments

For the Meixner ensemble with γ = 1 it turns out that negative binomialising the
number of particles provides tractable formulae. More precisely, consider the OP
ensemble Q with geometric reference measure µ1

q, 0 < q < 1. Suppose that N − 1 has
2-negative binomial distribution µ2

tq, t > 0, i.e.

P (N = m+ 1) = (m+ 1)(tq)m(1− tq)2, m ∈ N. (4.12)

Theorem 7. Define the 2-negative binomialised Meixner factorial moment as

M1,2
q (k; t) =

∫ (∫
x(x− 1) . . . (x− k + 1)dρ1m+1,q(x)

)
dµ2

tq(m). (4.13)

Then, M1,2
q (k; t) can be written in terms of a a Legendre polynomial in the variable

(1 + t)(1− t)−1:

M1,2
q (k; t) = k!

(
q

(1− q)(1− tq)

)k
2F1

(
−k,−k

1
; t

)
= k!

(
q

(1− q)(1− tq)

)k
(1− t)kPk

(
1 + t

1− t

)
. (4.14)

Proof. We first follow a similar method to Exton’s lemma to find the hypergeometric
representation in (4.14), and then compare with (4.1) to show that this is a Legendre
polynomial.
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By (3.4) and the definition of µ2
tq, we have

M1,2
q (k; t) =

∫ ( k∑
i=0

(
q

1− q

)k
q−i
(
k

i

)2
1

m+ 1

(m+ 1− i)k+1

k + 1

)
dµ2

tq(m)

=
1

k + 1

(
q

1− q

)k ∞∑
m=0

(m+ 1)(tq)m(1− tq)2
k∑
i=0

q−i
(
k

i

)2
(m+ 1− i)k+1

m+ 1

=
1

k + 1

(
q

1− q

)k
(1− tq)2

∞∑
l=0

k∑
i=0

tlql(l + 1)k+1t
i

(
k

i

)2

=
1

k + 1

(
q

1− q

)k
(1− tq)2

( ∞∑
l=0

tlql(l + 1)k+1

)
·

(
k∑
i=0

ti
(
k

i

)2
)

=
1

k + 1

(
q

1− q

)k
(1− tq)2

(
(k + 1)!

(1− tq)k+2

)
·
(

2F1

(
−k,−k

1
; t

))
,

where in the third line we relabelled l = m − i. Simplifying the terms we get the first
equality in (4.14). By (4.1),

Pk

(
t+ 1

t− 1

)
= (t− 1)−k2F1

(
−k,−k

1
; t

)
,

and the second equality in (4.14) follows.

Corollary 5. When we set t = 1, i.e. negative binomialise with parameter q, we have

M1,2
q (k; 1) =

qk

(1− q)2k
(k + 1)!Ck. (4.15)

Proof. An immediate consequence of

2F1

(
−k,−k

1
; 1

)
=

k∑
j=0

(
k

j

)2

=

(
2k

k

)
.

As in the Charlier case, the negative binomialised factorial moments of the γ = 1

Meixner ensemble satisfy three term recurrences in k and differential equations in the
parameter t.

Corollary 6. The negative binomialised factorial moments M1,2
q (k; t) satisfy the three

term recurrence

M1,2
q (k + 1; t) =

(2k + 1)q(1 + t)

(1− q)(1− tq)
M1,2
q (k; t)−

(
kq(1− t)

(1− q)(1− tq)

)2

M1,2
q (k − 1; t), (4.16)

and the second order differential equation

t(1− t) d2

dt2
M1,2
q (k; t) +

qt2 − (1− 2k(1− q) + q)t+ 1

1− qt
d

dt
M1,2
q (k; t)

− kq(1− t) + k2(1− q2t)
(1− qt)2

M1,2
q (k; t) = 0. (4.17)

Proof. A consequence of the three-term recursion [33, Eq. (9.8.64)] in k and the differ-
ential equation [33, Eq. (9.8.66)] in x of the Legendre polynomials Pk(x),

xPk(x) = (k + 1)Pk+1(x)− 2kPk(x) + kPk−1(x), (4.18)

(1− x)2
d2

dx2
Pk(x)− 2x

d

dx
Pk(x) + k(k + 1)Pk(x) = 0. (4.19)
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Remark 2. In place of the Legendre polynomials, we could also use the Legendre rational
functions Rk(x), which are defined by

Rk(x) =

√
2

x+ 1
Pk

(
x− 1

x+ 1

)
,

and form an orthogonal system of rational functions on the positive half-line with respect
to the weight ω(x) = (1 + x)−2. See [25].

We conclude this section by remarking that the above results may also be interpreted
in terms of the Schur measures described in Section 3.2.

Corollary 7. The Poissonised Charlier factorial moment can be written as the following
Cauchy-like weighted sum over Schur polynomials:

∞∑
N=1

∑
λ

FN,k(λ)e−(N+t)θ θ
|λ|

|λ|!
(tθ)N−1

(N − 1)!
sλ(1N )fλ = θk2F1

(
−k,−k

2
; t

)
. (4.20)

Corollary 8. The 2-Negative Binomialised (γ = 1) Meixner factorial moment can be
written as the following Cauchy-like weighted sum over Schur polynomials:

∞∑
N=1

∑
λ

NFN,k(λ)q|λ|(tq)N−1sλ(1N )2 =
qkk!

(1− q)k(1− tq)k+2 2F1

(
−k,−k

1
; t

)
. (4.21)

5 Equilibrium measures

Let X = (X1, . . . , XN ) be distributed according to an OP ensemble Q. The mean
spectral measure is the probability measure ρ̃N = EQ

1
N

∑N
n=1 δXn/N , and it is a simple

rescaling of the one-point function

dρ̃N (x) = dρN (Nx) =
1

N

N−1∑
n=0

pn(Nx)2dµ(Nx). (5.1)

It is well-known that in the limit N →∞, under some quite general conditions, the mean
spectral measure of OP ensembles converges to a limiting probability measure known
as equilibrium measure (it is the unique minimiser of a certain energy functional). For
the classical OP ensembles (continuous and discrete), the equilibrium measure is known
explicitly in terms of elementary functions [14, 30, 31, 32, 37, 47]. In the context of the
corresponding Schur measures, these equilibrium measures describe limit shapes of
random partitions and have close connections to asymptotic representation theory and
free probability [4].

In [38, 39], Ledoux gave a precise description of the equilibrium measures of the
classical ensembles as the distribution of adapted mixtures of an arcsine random variable
with an independent uniform random variable.

In the following, ξ will be a random variable with the arcsine distribution on (−1, 1),
and U a uniform random variable on (0, 1), independent of ξ, so that

P (ξ ≤ s, U ≤ u) =

∫ s

−∞

χ(−1,1)(s
′)

π
√

1− s′ 2
ds′
∫ u

−∞
χ(0,1)(u

′)du′. (5.2)

5.1 Charlier ensemble

The equilibrium measure can be described as follows.

Theorem 8 (Ledoux [39]). Consider the mean spectral measure of the Charlier ensemble
ρ̃θNN , and suppose that θN ∼ hN as N →∞. Then, as N →∞, ρ̃θNN converges weakly to
the distribution of the random variable

U + 2
√
Uhξ + h. (5.3)
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We now explain how the Poissonised Charlier moment formulae relate to Theorem 8.
When we Poissonise the Charlier ensemble, we take (N − 1) a Poisson random variable
with rate tθ, see (4.2). Therefore, EN = 1 + θt and Var(N) = θt, and we see that N/θ → t

in probability, as θ →∞. In other words, θ ∼ N/t, which is the assumption needed for
Ledoux’s theorem above, with h = 1/t.

Lemma 2. The kth moment of the random variable U + 2
√
Uhξ + h is∫ 1

0

∫ 1

−1

(
u+ 2

√
uhs+ h

)k dsdu

π
√

1− s2
= hk2F1

(
−k,−k

2
;

1

h

)
. (5.4)

Proof. First we substitute sinx = s and then use a multinomial expansion to get

1

π

∫ 1

0

∫ π
2

−π2

k∑
j=0

k−j∑
l=0

k!

j!l!(k − j − l)!
2ju

j
2h

j
2 (sinx)julhk−j−ldxdu.

For the integral in x we use∫ π
2

−π2
sinj (x)dx =

{
π
2j

( j
j
2

)
if j is even

0 if j is odd
, (5.5)

so that∫ 1

0

∫ 1

−1

(
u+ 2

√
uhs+ h

)k dsdu

π
√

1− s2
= hk

b k2 c∑
j=0

k−2j∑
l=0

k!

(j!)2l!(k − 2j − l)!
h−j−l

(j + l + 1)
,

so it just remains to show that the double sum is equal to 2F1

(−k,−k
2

; 1
h

)
to complete the

proof.
To do so, we first note that this hypergeometric function can be written as

2F1

(
−k,−k

2
;

1

h

)
=

k∑
m=0

(
k

m

)2
h−m

m+ 1
=

k∑
m=0

(
k

m

)(
k

k −m

)
h−m

m+ 1
,

and using an identity from Riordan [46, Chapter 1, Problem 2(a)] we have(
k

m

)(
k

k −m

)
=

m∧(k−m)∑
j=0

(
m

j

)(
k − j

k −m− j

)(
k

k − j

)
=

b k2 c∑
j=0

(
m

j

)(
k − j

k −m− j

)(
k

k − j

)
,

since clearly we have 0 ≤ j ≤ bk2 c in this sum. Thus, substituting l = m− j and swapping
the order of summation, we have

2F1

(
−k,−k

2
;

1

h

)
=

b k2 c∑
j=0

k−2j∑
l=0

(
j + l

j

)(
k − j

k − 2j − l

)(
k

k − j

)
h−j−l

j + l + 1

where k − 2j is the maximum value of l that keeps each binomial coefficient non-zero.
Clearly the binomial coefficients simplify to give the double sum above, so the proof is
complete.

Comparing the moments (5.4) of the equilibrium measure with Theorem 6 we readily
get the following result.

Corollary 9. For all θ, h > 0, the kth Poissonised factorial moments are related to the
moments of (5.3) in the following way:∫ 1

0

∫ 1

−1

(
u+ 2

√
uhs+ h

)k dsdu

π
√

1− s2
=
Mθ(k; 1/h)

(θ/h)k
. (5.6)

EJP 25 (2020), paper 72.
Page 15/19

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP472
http://www.imstat.org/ejp/


Moments of discrete orthogonal polynomial ensembles

After rescaling, the factorial moments converge to the moments as θ →∞. Therefore,
the moments of the Poissonised Charlier mean spectral measure converge to the moments
of (U + 2

√
Uhξ + h), which is consistent with Theorem 8.

5.2 Meixner ensemble

The equilibrium measure for the Meixner ensemble can be also expressed in terms of
independent arcsine and uniform random variables.

Theorem 9 (Ledoux [39]). Consider the mean spectral measure of the Meixer ensemble
ρ̃γNN,q, and suppose that γN ∼ cN as N →∞. Then, as N →∞, ρ̃γNN,q converges weakly to
the distribution of the random variable

1

1− q

(
U + 2

√
qU(c+ U)ξ + q(c+ U)

)
. (5.7)

Here we consider the special case γ = 1, that is c = 0 (in fact for any fixed γ this is the
case), when the limiting random variable takes the simpler form of U(1+q+2

√
qξ)(1−q)−1.

As in the Charlier case, we now calculate the kth moment of this random variable.

Lemma 3. The kth moment of the random variable 1
1−q (U(1 + q + 2

√
qξ)) is given by∫∫ (

u(1 + q + 2
√
qs)

1− q

)k
dsdu

π
√

1− s2
=

1

k + 1

(
q

1− q

)k
2F1

(
−k,−k

1
;

1

q

)
. (5.8)

Proof. The kth moment is the product∫ 1

0

(
u

1− q

)k
du

∫ 1

−1

(1 + q + 2
√
qs)k

π
√

1− s2
ds,

where the first integral is (1− q)−k(k + 1)−1, and the second can be transformed by a
substitution and binomial expansion to

1

π

∫ π
2

−π2
(1 + q + 2

√
q sinx)kdx =

1

π

k∑
j=0

(
k

j

)
(1 + q)k−j2jq

j
2

∫ π
2

−π2
sinj (x)dx.

We can once again use (5.5) to see that

1

π

∫ π
2

−π2
(1 + q + 2

√
q sinx)kdx =

k∑
j=0,j even

k!

(k − j)!( j2 )!( j2 )!
(1 + q)k−jq

j
2

= (1 + q)k
b k2 c∑
j=0

k!

(k − 2j)!(j!)2
(1 + q)−2jqj ,

and the sum is equal to
(

q
1+q

)k
2F1

(
−k,−k

1
; 1
q

)
.

In the Meixner case, the connection between factorial moments and moments of the
equilibrium measure is not as straightforward as in the Charlier ensemble. Nevertheless,
there is a natural way to obtain a match via a 2-negative binomialised (N − 1), weighting
the factorial moments, and then taking the limit t→ 1/q. We state this as a corollary of
Theorem 5.

Corollary 10. Consider the Meixner ensemble with parameters γ = 1 and 0 < q < 1,
and kth factorial moments M1

q (k,N). Suppose that (N − 1) has 2-negative binomial
distribution (4.12). Then,∫∫ (

u(1 + q + 2
√
qs)

1− q

)k
dsdu

π
√

1− s2
= lim
t→ 1

q

∫
M1
q (k,m+ 1)

(m+ 2)k
dµ2

tq(m). (5.9)
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Proof. From the explicit formula (3.4) we get∫
M1
q (k,m+ 1)

(m+ 2)k
dµ2

tq(m) =

∞∑
m=0

k∑
j=0

(
k

j

)2
(−m)j

(−m− k − 1)j
(tq)m(1− tq)2(m+ 1)q−j

=

k∑
j=0

(
k

j

)2

tj(1− tq)2
∞∑
l=0

(−l − j)j
(−l − j − k − 1)j

(l + j + 1)(tq)l

=

k∑
j=0

(
k

j

)2

tj(1− tq)2
∞∑
l=0

(l + 2)j
(l + k + 2)j

(l + 1)(tq)l.

The l sum is
∞∑
l=0

(l + 2)j(2)l
(l + k + 2)j l!

(tq)l =
(j + 1)!(k + 1)!

(j + k + 1)!
2F1

(
k + 2, j + 2

k + j + 2
; tq

)
.

By Euler’s hypergeometric transformation,

(1− tq)22F1

(
k + 2, j + 2

k + j + 2
; tq

)
= 2F1

(
j, k

k + j + 2
; tq

)
,

and by Gauss’ hypergeometric theorem, the function on the right hand side is equal to
(j+k+1)!

(j+1)!(k+1)! if we take tq → 1. We therefore have the limit

lim
t→ 1

q

(1− tq)22F1

(
k + 2, j + 2

k + j + 2
; tq

)
=

(j + k + 1)!

(j + 1)!(k + 1)!
.

The factorial terms cancel and we get

1

k + 1

(
q

1− q

)k k∑
j=0

(
k

j

)2
1

qj
=

1

k + 1

(
q

1− q

)k
2F1

(
−k,−k

1
;

1

q

)
,

which is exactly the hypergeometric representation of Lemma 3.

The above corollary is consistent with Theorem 9, which gives the equilibrium
measure for the Meixner ensemble with γ = 1 (i.e. c = 0). Note that, in this scaling limit,
the 2-negative binomial with parameter tq, multiplied by (1− tq), converges in law as
t→ 1/q, to a standard gamma random variable with parameter 2.

Remark 3. When c > 0, the moments of the limiting distribution become

b k2 c∑
j=0

k−2j∑
l=0

j∑
m=0

k!cl+m

l!j!m!(j −m)!(k − 2j − l)!(k −m− l + 1)

qj+l

(1 + q)2j+l
. (5.10)

We have been unable to find a hypergeometric representation for this. If it were possible,
it would suggest how (if possible at all) to randomise N in a way to obtain tractable
results and recover the equilibrium measure for general γ ∼ cN .

Similarly, in the Krawtchouk ensemble for K ∼ κN , with κ > 1 and 0 < p < 1, the
mean spectral measure converges to the distribution of [39]

(1− p)U + 2
√
p(1− p)U(κ− U)ξ + p(κ− U). (5.11)

We could calculate the moments of (5.11) as

b k2 c∑
j=0

k−2j∑
l=0

j∑
m=0

pkk!(−1)mκk−j−l−m

l!j!m!(j −m)!(k − 2j − l)!(j + l +m+ 1)

(
1− p
p

)j (
1− 2p

p

)l
, (5.12)

but, as in the general Meixner case, we have not been able to properly identify a useful
hypergeometric representation.
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