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Compactness and continuity properties for a Lévy
process at a two-sided exit time*†
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Abstract

We consider a Lévy process X = (X(t))t≥0 in a generalised Feller class at 0, and
study the exit position, |X(T (r))|, as X leaves, and the position, |X(T (r)−)|, just
prior to its leaving, at time T (r), a two-sided region with boundaries at ±r, r > 0.
Conditions are known for X to be in the Feller class FC0 at zero, by which we
mean that each sequence tk ↓ 0 contains a subsequence through which X(tk), after
norming by a nonstochastic function, converges to an a.s. finite nondegenerate
random variable. We use these conditions on X to characterise similar properties for
the normed positions |X(T (r))| /r and |X(T (r)−)| /r, and also for the normed jump
|∆X(T (r))/r| = |X(T (r))−X(T (r)−)| /r (“the jump causing ruin"), as convergence
takes place through sequences rk ↓ 0. We go on to give conditions for the continuity
of distributions of the limiting random variables obtained in this way.
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1 Introduction and background

Feller in [9] generalised the concept of domains of attraction for random walks by
considering certain kinds of convergence of the normed and centered sums of i.i.d
random variables through subsequences, thereby introducing the class of stochastically
compact random walks. In a similar vein, [15] considered Lévy processes X = (X(t))t≥0,
X(0) = 0, on R, which have this kind of behavior, after norming and centering, as t ↓ 0.
They called this class FC (at 0), and also introduced a subclass, denoted FC0, in which
centering is not required for such an X. See Subsection 1.4 for further information on
these classes.
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Compactness and continuity properties for two-sided Lévy exit times

1.1 The two-sided exit problem

We continue the study of the small time behavior of a nonzero Lévy process by
investigating the position of the process X at exit and just before exit from a two-sided
region, defined in terms of horizontal boundaries. Thus we consider the two-sided exit
time T (r) defined as

T (r) = inf {t > 0 : |X(t)| > r} , r > 0.

Since X is nonzero, lim supt→∞ |X(t)| = ∞ almost surely (a.s.), and so T (r) < ∞ a.s.
for each r > 0. By right continuity of (X(t))t≥0, which we assume as usual, we have
0 = X(0) = X(0+) = limt↓0X(t), so |X(t)| < r a.s. for t sufficiently small, and so T (r) > 0

a.s. for each r > 0. Thus we can define the position of the process at exit, X(T (r)), and
the position just before exit, X(T (r)−), and then the size of the jump at exit (“the jump
causing ruin”),

∆X(T (r)) := X(T (r))−X(T (r)−), r > 0.

As r ↓ 0, T (r) ↓ 0 a.s. and X(T (r)) → 0 a.s., and the size of |X(T (r))| by comparison
with the boundary value r is of interest. Our aim is to investigate the stochastic com-
pactness of |X(T (r))|/r, |X(T (r)−)|/r, and |∆X(T (r))| /r as r ↓ 0. By this we mean the
convergence in distribution of these quantities to finite nondegenerate limits through
subsequences of r tending to 0. The properties we consider are closely connected to
stochastic compactness properties of X(t) itself, as might be expected, but there are
some notable distinctions that need to be teased out. Furthermore, from these, we study
properties of the subsequential limit random variables (rvs) of |X(T (r))|/r, |X(T (r)−)|/r
and |∆X(T (r))| /r, for small r, giving conditions, in particular, for the continuity of their
subsequential limit distributions, and, in the case of |X(T (r))|/r, a condition for Lipschitz
and absolute continuity of the limit distributions.

We remark in passing that the analogs of our results are true for the stochastic
compactness of |X(T (r))|/r, |X(T (r)−)|/r, and |∆X(T (r))|/r as r ↑ ∞. The proofs follow
similarly as for the case r ↓ 0 with small changes. The requisite Feller class of X at∞
results are detailed in [16].

1.2 Lévy process setup, notation and preliminary results

Consider a Lévy process (X(t))t≥0, having Lévy triplet (γ, σ2,Π), thus, having in-
finitely divisible (inf. div.) characteristic function (c.f.)

EeiθX(t) = etΨ(θ), t > 0, θ ∈ R,

where

Ψ(θ) = iγθ − 1

2
σ2θ2 +

∫
R\{0}

(
eiθx − 1− iθx1{|x|≤1}

)
Π(dx), (1.1)

with γ ∈ R, σ2 ≥ 0, and Π a measure on R with
∫
R\{0}(x

2 ∧ 1)Π(dx) finite. Define the
positive, negative and two-sided Lévy tail functions

Π
+

(x) = Π{(x,∞)}, Π
−

(x) = Π{(−∞,−x)}, and Π(x) = Π
+

(x) + Π
−

(x), x > 0. (1.2)

Throughout, we assume σ2 > 0 or Π(R \ {0}) > 0, so X is not the process degenerate at
0. In fact, for most of our results we will assume Π(R \ {0}) = Π(0+) =∞, so X is not a
compound Poisson process.

We will need a truncated mean function defined by

ν(x) =

{
γ −

∫
x<|y|≤1

yΠ(dy), 0 < x ≤ 1,

γ +
∫

1<|y|≤x yΠ(dy), x > 1,
(1.3)
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Compactness and continuity properties for two-sided Lévy exit times

and truncated second moment functions defined for x > 0 by

V (x) = σ2 +

∫
0<|y|≤x

y2Π(dy) and U(x) = σ2 + 2

∫ x

0

yΠ(y)dy = V (x) + x2Π(x). (1.4)

Also introduce the function

h(x) =
x|ν(x)|+ U(x)

x2
, x > 0. (1.5)

Properties of h(x) can be deduced from results given in [19]. In particular, assuming as
we do that σ2 > 0 or Π(·) is not identically 0, we have, for x > 0 and λ > 1,

λ−2h(x)/2 ≤ h(λx) ≤ 3h(x). (1.6)

(See also Lemma 2 of [8].)

1.3 Convergence criteria

Let (X(t))t≥0 be a Lévy process having Lévy triplet (γ, σ2,Π), thus, having charac-
teristic exponent (1.1). It’s easy to check then that, for tk > 0, ak ∈ R and bk > 0,
(X(tk)− ak) /bk is an infinitely divisible random variable with triplet (γk, σ

2
k,Πk), where

σ2
k =

σ2tk
b2k

, γk =
γtk − ak

bk
+

∫
R\{0}

x
(
1{|x|≤1} − 1{|bkx|≤1}

)
Πk (dx) ,

and Πk (dx) = tkΠ(bkdx). Theorem 15.14, p.295, of [13] says that

X(tk)− ak
bk

D−→ Y, as k →∞, (1.7)

where Y is an inf. div. rv with triplet (β, τ2,Λ) such that β ∈ R, τ2 ≥ 0, and Λ is a Lévy
measure on R, if and only if for all h > 0 such that ±h are points of continuity of Λ(·):

lim
k→∞

tkΠ
±

(hbk) = Λ
±

(h), (1.8)

σ2
k +

∫
|x|<h

x2Πk (dx) =
tk
b2k
V (hbk)→ τ2 +

∫
0<|x|≤h

x2Λ(dx), (1.9)

and

γk −
∫
h<|x|≤1

xtkΠ(bkdx) =
tkν(hbk)− ak

bk
→ β −

∫
h<|x|≤1

xΛ(dx). (1.10)

A consequence of (1.8) is that

lim
k→∞

tkΠ(hbk) = Λ(h) := Λ
+

(h) + Λ
−

(h)

for all h > 0 such that h is a point of continuity of Λ. We can replace the function V in
(1.9) by U with obvious modifications, using (1.4). For a d−dimensional statement of
these criteria refer to [18]1.

As special cases, equivalent to

X(tk)/bk
P→ ±1,

for given nonstochastic sequences tk ↓ 0 and bk > 0, is, for all h > 0,

lim
k→∞

tkΠ(hbk) = 0, lim
k→∞

tkν(hbt)

bk
= ±1, lim

k→∞

tkV (hbk)

b2k
= 0,

1In their equation (7.11) and Lemma 7.5, bt should be bt/t and, in equation (7.15), btk should be btk/tk.
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and equivalent to (X(tk)− ak)/bk
D−→ N(0, 1) for given nonstochastic sequences tk ↓ 0,

ak ∈ R and bk > 0, is, for all h > 0,

lim
k→∞

tkΠ(hbk) = 0, lim
k→∞

tkν(hbk)− ak
bk

= 0, lim
k→∞

tkV (hbk)

b2k
= 1. (1.11)

Here and throughout, N(a, b) denotes a normal random variable with mean a ∈ R and
variance b > 0.

Obvious modifications of (1.8)–(1.10) characterize convergence through a continuous
limit as t ↓ 0.

1.4 Feller class for X at 0

As in [15], we say that X is in the Feller class at zero, written X(t) ∈ FC at 0, if
there exist non-stochastic functions a(t) ∈ R and b(t) > 0 such that each sequence tk ↓ 0

contains a subsequence tk′ ↓ 0 for which

X(tk′)− a(tk′)

b(tk′)

D−→ Y ′, as tk′ ↓ 0, (1.12)

where Y ′ is an a.s. finite random variable which is not degenerate at any constant, and
may depend on the choice of subsequence tk′ .

When a(t) may be taken as 0, we say that X is in the centered Feller class at zero,
written X(t) ∈ FC0 at 0. Specifically, X ∈ FC0 at 0 if there exists a non-stochastic
function b(t) > 0 such that each sequence tk ↓ 0 contains a subsequence tk′ ↓ 0 for which

X(tk′)

b(tk′)

D−→ Y ′, as tk′ ↓ 0, (1.13)

where Y ′ is an a.s. finite random variable which is not degenerate at any constant, and
may depend on the choice of subsequence tk′ . We describe Y ′ in (1.12) or (1.13) as a
“subsequential limit rv” of the rescaled X, as t ↓ 0.

[15] give the following analytic equivalences for FC and FC0 at 0.

Theorem 1.1. Assume σ2 > 0 or Π (0+) =∞. Then
(i) X(t) ∈ FC at 0 if and only if

lim sup
x↓0

x2Π(x)

V (x)
<∞; (1.14)

(ii) X(t) ∈ FC0 at 0 if and only if

lim sup
x↓0

x2Π(x) + x |ν(x)|
V (x)

<∞. (1.15)

When (1.12) or (1.13) holds, a functional version also holds; in particular, when X(t) ∈
FC0 we can strengthen the convergence in (1.13) to(

X(stk′)

b(tk′)

)
0<s≤T

D−→ (Y ′(s))0<s≤T , as tk′ ↓ 0, (1.16)

in D[0, T ] for any fixed T > 0, where (Y ′(s))0<s≤T is a Lévy process with Y ′(1)
D
= Y ′.

Moreover, when (1.12) or (1.13) holds, we can choose a norming function b(t) > 0

satisfying, for each small enough t > 0,

U(b(t))

b2(t)
=

1

t
. (1.17)

EJP 25 (2020), paper 51.
Page 4/26

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP451
http://www.imstat.org/ejp/


Compactness and continuity properties for two-sided Lévy exit times

Although not stated in [15], it can be proved using similar methods that if (1.12)
holds with functions a(t) and b(t) replaced by functions c(t) and d(t), then d(t) � b(t) as
t ↓ 0 in the sense that 0 < lim inft↓0 d(t)/b(t) ≤ lim supt↓0 d(t)/b(t) <∞; and similarly for
the version when a(t) is taken as 0. We remark that the function x 7→ x2/U(x) used in
(1.17) is strictly increasing and takes value 0 at x = 0 and value∞ at x =∞, under our
assumptions, hence has a finite, uniquely defined inverse on (0,∞). The function b(t) is
this inverse function, evaluated at t, t > 0.

Remark 1.2. Various properties of the subsequential limit rvs in (1.12) and (1.13)
have been derived. For example, any such Y ′ is infinitely divisible with an absolutely
continuous distribution ([5]), and the same is true for each Y ′(s) for every s > 0.

We emphasize, however, relevant to our discussion, that the Lévy measure of Y ′ is
not in general continuous; a counterexample using a symmetric St. Petersburg process
is detailed in Section 5.

1.5 Partial attraction to normality

We say that X is in the domain of partial attraction of the normal distribution at 0 ,
written as X(t) ∈ DP (N) at 0, if there exist sequences tk ↓ 0, ak ∈ R and bk > 0 such that

X(tk)− ak
bk

D−→ N(a, b), as k →∞, (1.18)

for finite constants a ∈ R and b > 0. The condition X(t) ∈ DP (N) will play an important
role in the many of the statements of our main results. In Subsection 1.3 we gave criteria
for (1.18) to occur, for designated sequences ak and bk > 0 (see (1.11)). We can also ask
for an existence result; for a given Lévy process with triplet (γ, σ2,Π), when are there
sequences producing the behavior in (1.18)? Such criteria are given for DP (N) in [14],
and also for the class DP0(N) (see Theorems 1 and 2 of [14]), where we say that X is
in DP0(N) at 0, the centered domain of partial attraction of the normal distribution, if
(1.18) holds for some bk > 0, a ∈ R, b > 0, but with ak = 0. We list these analytic criteria
here as:

Theorem 1.3. Assume σ2 > 0 or Π (0+) =∞.
(i) X(t) ∈ DP (N) at 0 if and only if

lim sup
x↓0

V (x)

x2Π(x)
=∞. (1.19)

(ii) X(t) ∈ DP0(N) at 0 if and only if

lim sup
x↓0

V (x)

x2Π(x) + x|ν(x)|
=∞. (1.20)

By (1.4) we can replace V by U in (1.19) and (1.20), to get the forms in which they
are stated in [14]. See also Theorem 6.1 of [17] where a d-dimensional version of (1.19)
is given.

1.6 Distributions and inequalities for positions and jump size

Here we state some identities and inequalities concerning the distributions ofX(T (r)),
X(T (r)−), and ∆X(T (r)). Important to our analyses are versions for Lévy processes
of inequalities of [19]. They state that there exist constants c1 > 0 and C1 > 0, not
depending on t or r, such that, for all t > 0 and r > 0

P

(
sup

0≤s≤t
|X(s)| ≤ r

)
≤ c1
th(r)

, (1.21)
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where h(·) is the function in (1.5), and

P

(
sup

0≤s≤t
|X(s)| ≥ r

)
≤ C1th(r);

and there exist constants c2 > 0 and C2 > 0, not depending on r, such that, for all r > 0,

c2
h(r)

≤ ET (r) ≤ C2

h(r)
. (1.22)

(See also Lemma 1 of [8].) We will also need the function

Ur(dy) :=

∫ ∞
0

P
(

sup
0≤u<t

|X(u)| ≤ r, X(t−) ∈ dy
)

dt, −r ≤ y ≤ r, (1.23)

and the associated measure

Ur((a, b)) :=

∫
a<y<b

Ur (dy)

=

∫ ∞
0

P
(

sup
0≤u<t

|X(u)| ≤ r, a < X(t−) < b
)

dt, −r ≤ a < b ≤ r. (1.24)

Notice from (1.23) that for r > 0

Ur([−r, r]) =

∫ ∞
0

P
(

sup
0≤u<t

|X(u)| ≤ r, |X(t)| ≤ r
)

dt

=

∫ ∞
0

P
(

sup
0≤u≤t

|X(u)| ≤ r
)

dt =

∫ ∞
0

P (T (r) > t)dt = E(T (r)). (1.25)

In the next lemma, Part (iii) is from [7], and we add in results for the position at exit,
X(T (r)), and the position just before exit, X(T (r)−). Recall the definitions of Π

±
(x) in

(1.2), and note the obvious properties |X(T (r))| ≥ 1 and |X(T (r)−)| ≤ 1.

Lemma 1.4. Suppose Π(0+) > 0 and r > 0. Then
(i) For s > 1

P (|X(T (r))| > rs) =

∫
|y|≤r

(
Π

+
(rs− y) + Π

−
(rs+ y)

)
Ur(dy). (1.26)

(ii) For 0 < s < 1

P (|X(T (r)−)| ≤ rs) =

∫
|y|≤rs

(
Π

+
(r − y) + Π

−
(r + y)

)
Ur(dy). (1.27)

(iii) For 0 < x ≤ 2r

P (|∆X(T (r))| > x) =

(∫
−r≤y≤r−x

Π
+

(r − y) +

∫
−r+x<y≤r

Π
−

(r + y)

)
Ur(dy)

+ Π
+

(x)Ur((r − x, r]) + Π
−

(x)Ur([−r,−r + x]), (1.28)

while for x ≥ 2r

P (|∆X(T (r))| > x) = Π(x)Ur([−r, r]). (1.29)

Proof of Lemma 1.4: The following joint and marginal distributions are in Lemma 2 and
Corollary 2 of [7]:

P (X(T (r)−) ∈ dy, X(T (r)) ∈ dz) = Ur(dy)Π(dz − y), for 0 ≤ |y| ≤ r < |z|; (1.30)
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and

P (X(T (r)) ∈ dz) =

∫
|y|≤r

Π(dz − y)Ur(dy), for |z| > r. (1.31)

From (1.30) we obtain by integration

P (X(T (r)−) ∈ dy) =
(
Π

+
(r − y) + Π

−
(r + y)

)
Ur(dy), for |y| < r. (1.32)

Using these we obtain (1.26)–(1.29) as follows.
Parts (i), (ii): Equations (1.26) and (1.27) follow by integrating (1.31) and (1.32).
Part (iii): (1.28) and (1.29) are established in the proof of Lemma 6 of [7].

As an application of Lemma 1.4 we have:

Lemma 1.5. Suppose Π(0+) > 0 and r > 0. Then for 0 < c < d:

P

{∣∣∣∣∆X(T (r))

r

∣∣∣∣ ∈ (c, d)

}
≤
(
Π(rc)−Π(rd)

)
Ur([−r, r]), 0 < c < d. (1.33)

Proof of Lemma 1.5: This follows from (1.28) and (1.29) by checking cases, 0 < c < d ≤
2, 0 < c ≤ 2 < d, and 2 < c < d. For 0 < c < d ≤ 2, we get from (1.28)

P

{∣∣∣∣∆X(T (r))

r

∣∣∣∣ ∈ (c, d)

}
=

(∫
r−rd<y≤r−rc

Π
+

(r − y) +

∫
−r+rc<y≤−r+rd

Π
−

(r + y)

)
Ur(dy)

+Π
+

(rc)Ur((r − rc, r]) + Π
−

(rc)Ur([−r,−r + rc])

−Π
+

(rd)Ur((r − rd, r])−Π
−

(rd)Ur([−r,−r + rd]).

Using upper bounds for Π
±

we can bound this by

Π
+

(rc)Ur((r − rd, r − rc]) + Π
−

(rc)Ur((−r + rc,−r + rd])

+Π
+

(rc)Ur((r − rc, r]) + Π
−

(rc)Ur([−r,−r + rc])

−Π
+

(rd)Ur((r − rd, r])−Π
−

(rd)Ur([−r,−r + rd])

= Π
+

(rc)Ur((r − rd, r])−Π
+

(rd)Ur((r − rd, r])
+Π
−

(rc)Ur([−r,−r + rd])−Π
−

(rd)Ur([−r,−r + rd])

=
(
Π

+
(rc)−Π

+
(rd)

)
Ur((r − rd, r]) +

(
Π
−

(rc)−Π
−

(rd)
)
Ur([−r,−r + rd]).

Since Ur(·) is a measure, this is no bigger than(
Π

+
(rc)−Π

+
(rd)

)
Ur([−r, r]) +

(
Π
−

(rc)−Π
−

(rd)
)
Ur([−r, r])

=
(
Π(rc)−Π(rd)

)
Ur([−r, r]),

as required for (1.33). The other two cases are similar, but easier, since we just subtract
Π(rd)Ur([−r, r]) for the “d” part.

Lemma 1.6. Suppose Π(0+) > 0 and r > 0, and c2, C2, are as in (1.22). Then we have
the following inequalities.

(i) For s > 1

c2Π((s+ 1)r)

h(r)
≤ P

( |X(T (r))|
r

> s
)
≤ C2Π((s− 1)r)

h(r)
. (1.34)

(ii) For 0 < s < 1

c2Π((1 + s)r)

h(rs)
≤ P

( |X(T (r)−)|
r

≤ s
)
≤ C2Π((1− s)r)

h(r)
. (1.35)
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(iii) When x > 0

c2Π(rmax(x, 2))

h(r)
≤ P

( |∆X(T (r))|
r

> x
)
≤ C2Π(xr)

h(r)
. (1.36)

Proof of Lemma 1.6: Parts (i) and (iii): (1.34) and the upper bound in (1.36) follow from
Corollary 4 and Lemma 6 of [7], on noting the bounds in (1.22) for ET (r). For the lower
bound in (1.36), use (1.28) to deduce, for 0 < x ≤ 2,

P (|∆X(T (r))| > xr) ≥ Π
+

(2r)Ur((r[−1, 1− x]) + Π
+

(xr)Ur(r(1− x, 1])

+ Π
−

(2r)Ur(r[−1 + x, 1]) + Π
−

(xr)Ur(r[−1,−1 + x])

≥ Π
+

(2r)Ur(r[−1, 1]) + Π
−

(2r)Ur(r[−1, 1]) = Π(2r)Ur(r[−1, 1]).

Thus, using this together with (1.29), we have for x > 0,

P (|∆X(T (r))| > xr) ≥ Π(rmax(x, 2))Ur(r[−1, 1]),

and use of (1.25) and (1.22) gives the lower bound in (1.36).
Part (ii): From (1.25) and (1.27), for 0 < s < 1,

P (|X(T (r)−)| ≤ rs) ≤
(
Π

+
(r − rs) + Π

−
(r − rs)

)
Ur([−r, r])

= Π((1− s)r)Ur([−rs, rs]) ≤ Π((1− s)r)Ur([−r, r]),

and, in the other direction,

P (|X(T (r)−)| ≤ rs) ≥
(
Π

+
((r + rs) + Π

−
(r + rs)

)
Ur([−rs, rs])

= Π((1 + s)r)Ur([−rs, rs]) ≥ Π((1 + s)r)Urs([−rs, rs]).

Then use (1.22) again.

See [11], [12] for random walk versions of many of the above results.
The next lemma provides another useful bound.

Lemma 1.7. Assume Π(0+) =∞ and X(t) ∈ FC at 0. Recall the function U(·) defined
in (1.4), and set

t(r) := r2/U(r), r > 0. (1.37)

Then there is an r0 > 0 and a finite constant C > 0 such that for 0 < r ≤ r0, 0 ≤ c < d < 1

and ε ∈ (0, 1)

P

{
|X(T (r)−)|

r
∈ [c, d)

}
≤

2C

(1− d)2

(
(1 + 128c21)ε+

∫ ε−1

ε

P

{
c ≤ 1

r
|X (st(r)) | < d

}
ds
)
, (1.38)

where c1 is the constant in (1.21).

Proof of Lemma 1.7: Take constants 0 < c < d < 1. From (1.27) we get

P

{
|X(T (r)−)|

r
∈ [c, d)

}
=

∫
c≤|y|<d

(
Π

+
(r(1− y)) + Π

−
(r(1 + y))

)
Ur(rdy)

=

(∫
−d<y≤−c

+

∫
c≤y<d

)(
Π

+
(r(1− y)) + Π

−
(r(1 + y))

)
Ur (rdy) .

With elementary estimates we can bound the RHS by the quantities(
Π

+
(r(1 + c)) + Π

−
(r(1− d))

)
Ur(r(−d,−c]) +

(
Π

+
(r(1− d)) + Π

−
(r(1 + c))

)
Ur(r[c, d))
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≤ t(r)
(
Π(r (1− d)) + Π (r (1 + c))

) 1

t(r)

(
Ur(r(−d,−c]) + Ur(r[c, d))

)
. (1.39)

Notice that

t(r)
(
Π(r (1− d)) + Π (r (1 + c))

)
=

r2

U(r)

(
Π(r (1− d)) + Π (r (1 + c))

)
≤ r2Π(r(1− d))

U(r(1− d))
+
r2Π(r)

U(r)
. (1.40)

Since X(t) ∈ FC at 0, by (1.14) with V replaced by U we can find a finite constant C > 0

such that for r ≤ some r0 > 0 (r0 not depending on c or d) the RHS of (1.40) does not
exceed

C
( 1

(1− d)2
+ 1
)
≤ 2C

(1− d)2
. (1.41)

For the other term in (1.39), by changing variable to t = t(r)s and noting that

sup
0≤u<t(r)s

|X(u)| = sup
0≤v<s

|X(t(r)v)| ,

we obtain from (1.24)
1

t(r)

(
Ur(r(−d,−c]) + Ur(r[c, d))

)

=

∫ ∞
0

P

{
sup

0≤v<s
|X(t(r)v)| ≤ r, −rd < X (st(r)−) ≤ −rc or rc ≤ X(st(r)−) < rd

}
ds

(1.42)

=

∫ ∞
0

P

{
sup

0≤v<s
|X(t(r)v)| ≤ r, rc ≤ |X(st(r)−)| < rd

}
ds.

Now for s > 0

P

{
sup

0≤v<s
|X(t(r)v)| ≤ r

}

≤ P

{
sup

0≤v<s/2
|X(t(r)v)| ≤ r, sup

s/2≤v<s
|X (t(r)v)−X(t(r)s/2)| ≤ 2r

}

≤ P2

{
sup

0≤v<s/2
|X (t(r)v) | ≤ 2r

}
= P2

{
sup

0≤v<t(r)s/2
|X (v) | ≤ 2r

}
.

Then by (1.21), (1.5) and (1.6) we obtain, for all s > 0 and r > 0,

P2

{
sup

0≤v<t(r)s/2
|X (v) | ≤ 2r

}
≤ 16c21
t2(r)s2h2(2r)

=
16c21U

2(r)

r4s2h2(2r)
≤ 128c21U

2(r)

r4s2h2(r)
≤ 128c21

s2
.

Then from (1.39), (1.40), (1.41) and (1.42) we can observe that, for any 0 < ε < 1 and
0 < r ≤ r0,

P

{
|X (T (r)−) |

r
∈ [c, d)

}

≤ 2C

(1− d)2

(
ε+

∫ ε−1

ε

P

{
c ≤ 1

r
|X (st(r)−) | < d

}
ds+

∫ ∞
ε−1

128c21
s2

ds

)
. (1.43)

Since, with probability 1, X does not jump at any given point in (0,∞), the RHS is equal
to the RHS of (1.38).
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When c = 0 < d < 1 replace the RHS of (1.39) by∫
−d<y<d

(
Π

+
(r(1− y)) + Π

−
(r(1 + y))

)
Ur(rdy) ≤ Π(r(1− d))Ur(r(−d, d)),

and note that (1.41) remains true with the smaller quantity

r2Π(r(1− d))

U(r(1− d))
≤ C

(1− d)2

on the RHS. Thus (1.43) remains true in this case too and we get (1.38) again.

1.7 Subsequential relative stability of X(T (r))/r and X(T (r)−)/r

The next theorem gives equivalences for the subsequential relative stability of
|X(T (r))|/r and |X(T (r)−)|/r at 0, by which we mean the existence of a non-stochastic
sequence rk ↓ 0 such that (1.44) or (1.46) hold.

Theorem 1.8. Suppose Π(0+) > 0. The following are all equivalent:
(a)(i) there is a non-stochastic sequence rk ↓ 0 as k →∞ for which

|X(T (rk))|
rk

P→ 1 as k →∞; (1.44)

(a) (ii) there is a non-stochastic sequence rk ↓ 0 and a constant c > 1 for which

P

(
|X(T (rk))|

rk
≤ c
)
→ 1 as k →∞; (1.45)

(b)(i) there is a non-stochastic sequence rk ↓ 0 for which

|X(T (rk)−)|
rk

P→ 1 as k →∞; (1.46)

(b)(ii) there is a non-stochastic sequence rk ↓ 0 and a constant c < 1 for which

P

(
|X(T (rk)−)|

rk
≤ c
)
→ 0 as k →∞; (1.47)

(c) there is a non-stochastic sequence rk ↓ 0 such that for some (hence every) c > 0

P

(
|∆X(T (rk))|

rk
> c

)
→ 0, as k →∞; (1.48)

(d)

lim sup
x↓0

x|ν(x)|+ U(x)

x2Π(x)
=∞. (1.49)

The following corollary is an immediate consequence of Theorem 1.8.

Corollary 1.9. (i) If, for some rk ↓ 0, as k →∞,

|X(T (rk))|
rk

P→ a, for some a ∈ [1,∞) , then
|X(T (rk))|

rk

P→ 1; (1.50)

(ii) if, for some rk ↓ 0, as k →∞,

|X(T (rk)−)|
rk

P→ a, for some a ∈ (0, 1] , then
|X(T (rk)−)|

rk

P→ 1. (1.51)
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Proof of Theorem 1.8: Suppose Π(0+) > 0 throughout.
(d) =⇒ (b)(i) =⇒ (b)(ii) =⇒ (d): We shall provide proofs of this sequence of equiva-

lences; the proof of (d) =⇒ (a)(i) =⇒ (a)(ii) =⇒ (d) is similar. Assume (1.49) holds, or,
equivalently,

lim inf
x↓0

Π(x)/h(x) = 0. (1.52)

For all 0 < s < 1 and r > 0 we get by (1.35) and (1.6)

P

(
|X(T (r)−)|

r
≤ s
)
≤ C2Π(r (1− s))

h(r)
≤ 3C2Π(r(1− s))

h(r(1− s))
. (1.53)

By (1.52) there is a decreasing sequence xk ↓ 0 such that

lim
k→∞

Π(xk)/h(xk) = 0. (1.54)

Thus, by (1.53) the sequence yk (s) := xk/(1− s) satisfies, for all 0 < s < 1,

P

{∣∣∣∣X(T (yk(s)−)

yk (s)

∣∣∣∣ ≤ s}→ 0, as k →∞.

Choose k1 ≥ 1 so that

P

{∣∣∣∣X(T (yk1(1/2)−))

yk1 (1/2)

∣∣∣∣ ≤ 1− 1

2

}
≤ 1

2
,

and, for j ≥ 2, choose kj > kj−1 so that ykj (1− 2−j) < ykj−1
(1− 2−j+1) and

P

{∣∣∣∣X(T (ykj (1− 2−j)−))

ykj (1− 2−j)

∣∣∣∣ ≤ 1− 1

2j

}
≤ 1

2j
.

Thus we see that for the sequence zj = ykj (1− 2−j) ↓ 0 we have

X(T (zj)−)

zj

P→ 1.

This implies (1.46) and clearly (1.46) implies (1.47).
Now suppose (1.47) is true for some 0 < c < 1 and sequence rk ↓ 0, and we show that

(1.49) holds. By (1.35) and (1.6)

P

{∣∣∣∣X(T (rk)−)

rk

∣∣∣∣ ≤ c} ≥ c2Π((1 + c)rk)

h (crk)
≥ c2c

2Π((1 + c)rk)

2(1 + c)2h((1 + c)rk)
.

By (1.47), the LHS tends to 0, thus (1.49) holds via (1.52). So we have shown (d) =⇒
(b)(i) =⇒ (b)(ii) =⇒ (d).

(c)⇐⇒ (d): Suppose (1.48) holds for rk ↓ 0 and some c > 0. Then by (1.36) and (1.6),
(1.54) holds with xk replaced by rk. Thus (1.49) holds via (1.52).

Conversely, assume (1.49) and hence that (1.54) holds for an xk ↓ 0. Take any ε ∈ (0, 1)

and let yk(ε) := xk/ε. Then (1.54) and (1.6) together imply limk→∞Π(εyk(ε))/h(yk(ε)) =

0. Then by (1.36),

lim
k→∞

P
( |∆X(T (yk(ε)))|

yk(ε)
> ε
)

= 0. (1.55)

Take sequences ε` ↓ 0 and δ` ↓ 0 as `→∞. Then by (1.55), we can make

P
( |∆X(T (yk(ε`)))|

yk(ε`)
> ε`

)
≤ δ` (1.56)
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for all k ≥ some k0(`). Let z` := yk0(`)(ε`). Given arbitrary ε > 0, δ > 0, choose
`0 = `0(ε, δ) so large that ε` ≤ ε and δ` ≤ δ whenever ` ≥ `0. Then by (1.56)

P
( |∆X(T (z`))|

z`
> ε
)
≤ δ

for all ` ≥ `0. This proves that (1.48) holds for any c > 0. Hence we have shown (c)⇐⇒
(d).

2 The position before exit

In this section we confine attention to X(T (r)−).

2.1 Stochastic compactness of |X(T (r)−)|/r at 0
We say that |X(T (r)−)|/r is stochastically compact at 0, written |X(T (r)−)|/r is in

SC at 0, if every sequence rk ↓ 0 has a subsequence rk′ ↓ 0 such that

|X(T (rk′)−)|
rk′

D→W ′,

where W ′ is a finite nondegenerate random variable which may depend on the choice of
subsequence rk′ .

Theorem 2.1. Assume Π(0+) =∞. Then |X(T (r)−)|/r is in SC at 0 if and only if

lim sup
x↓0

x|ν(x)|+ U(x)

x2Π(x)
<∞ (2.1)

and

for no sequence rk ↓ 0 does
|X(T (rk)−)|

rk

P→ 0, as k →∞. (2.2)

Remark 2.2. The type of convergence in (2.2) can occur. Suppose X(t) is a subordinator
with Lévy measure Π. Then according to Thm. 6, p.81, of [2], and the remarks following

it, X(T (r)−)/r
P→ 0 as r ↓ 0 if and only if the Laplace exponent of X is slowly varying at

infinity. This is the case for example with the gamma process X(t), having Lévy measure
Π(dx) = ax−1e−bx1{x > 0}, for some a > 0, b > 0.

Proof of Theorem 2.1: Since |X(T (r)−)|/r ≤ 1 is always relatively compact (equiva-
lently, tight), |X(T (r)−)|/r is in SC at 0 iff there can be no subsequence rk ↓ 0 such that

|X(T (rk)−)|/rk
P→ a, with a ∈ [0, 1]. When X satisfies (2.1) the possibility a ∈ (0, 1] is

impossible by Theorem 1.8 and Corollary 1.9, while the possibility a = 0 is ruled out
because it would contradict (2.2).

Corollary 2.3. Assume Π(0+) =∞ and X(t) ∈ FC0 at 0, but X(t) /∈ DP (N) at 0. Then
|X(T (r)−)|/r is in SC at 0.

Proof of Corollary 2.3: Assume Π(0+) =∞ and X(t) ∈ FC0 at 0, but X(t) /∈ DP (N) at
0. Recall by Theorem 1.1 that X(t) ∈ FC0 at 0 holds if and only if

lim sup
x↓0

(
x2Π (x) + x |ν(x)|

)
/V (x) <∞

and by Theorem 1.3, X(t) /∈ DP (N) at 0 holds if and only if

lim inf
x↓0

x2Π(x)/V (x) > 0.
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Thus (2.1) is satisfied. Now |X(T (r)−)|/r ≤ 1 is always relatively compact. Take any

rk ↓ 0 such that |X(T (rk)−)|/rk
D−→W for a finite rv W . Since (2.1) holds, W cannot be

degenerate at a positive constant by Theorem 1.8.
This rules out the possibility of a nonzero degenerate limit for |X(T (rk)−)|/rk but

there is still the possibility of a zero limit. Suppose by way of contradiction W = 0 a.s.
This is impossible, as follows. Since X(t) ∈ FC0 at 0 implies X(t) ∈ FC at 0, we can
apply Lemma 1.7, in which we take c = 0, replace r by rk and replace t(r) by tk = t(rk).
Then from (1.38), for k large enough, and any d ∈ (0, 1) and ε ∈ (0, 1),

P

{
|X(T (rk)−)|

rk
< d

}
≤ 2C

(1− d)2

(
(1 + 128c21)ε+

∫ ε−1

ε

P

{
1

rk
|X (stk) | < d

}
ds
)
. (2.3)

Notice that t(rk) satisfying (1.37) with r = rk implies rk = b(tk), where b(t) is the unique
inverse to the function x 7→ x2/U(x); see (1.17). Since X(t) ∈ FC0 at 0 we have the
functional convergence in (1.16). So, by taking a further subsequence of tk if necessary,
there is a process (Y ′(s)) such that

lim
k→∞

P

{
1

rk
|X (stk) | < d

}
= lim
k→∞

P

{
1

b(tk)
|X (stk) | < d

}
= P {|Y ′(s)| < d}

at points of continuity d > 0 of the distribution of Y ′(s). As pointed out in Remark 1.2,
any subsequential limit rv such as Y ′(s) has an absolutely continuous, hence continuous,
distribution for each s > 0. By dominated convergence the integral on the RHS of

(2.3) has limit
∫ ε−1

ε
P {0 ≤ |Y ′(s)| < d}ds as k → ∞. Since d and ε can be taken arbi-

trarily small, (2.3) shows that |X(T (rk)−)| /rk
P→ 0 is impossible and again we have a

contradiction.

2.2 Continuity of subsequential limit distributions, |X(T (r)−)|/r
In this subsection we give conditions under which any subsequential limit rv of a

stochastically compact |X(T (r)−)|/r has a continuous distribution.

Theorem 2.4. Assume Π(0+) =∞ and X(t) ∈ FC0 at 0. Assume also X(t) /∈ DP (N) at
0. Then by Corollary 2.3, |X(T (r)−)|/r is in SC at 0. Take any sequence rk ↓ 0 such that

|X(T (rk)−)|
rk

D→W , (2.4)

where W is a finite nondegenerate random variable. Then the distribution of W is
continuous at every point in (0, 1).

Proof of Theorem 2.4: Assume Π(0+) =∞ and X(t) ∈ FC0 at 0, and that (2.4) holds for
a given sequence rk ↓ 0. Let tk = t(rk), where t(r) is defined in (1.37), so that rk = b(tk),
and choose 0 < c < d < 1. Then by (1.38), for any ε > 0 and large k,

P

{
|X(T (rk)−)|

rk
∈ [c, d)

}

≤ 2C

(1− d)2

(
(1 + 128c21)ε+

∫ ε−1

ε

P

{
c ≤ 1

rk
|X (stk) | < d

}
ds
)
. (2.5)

By (1.16), taking a further subsequence of tk if necessary, we can make

P

{
c <

1

rk
|X (stk) | < d

}
→ P {c < |Y ′ (s)| < d} , as k →∞,
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where by Remark 1.2 the Lévy process Y ′(s) has a continuous distribution for each s > 0.
Therefore by the bounded convergence theorem

lim
k→∞

∫ ε−1

ε

P

{
c <

1

rk
|X (stk) | < d

}
ds =

∫ ε−1

ε

P {c < |Y ′ (s)| < d} ds,

for every 0 < ε < 1, and, again by the bounded convergence theorem,∫ ε−1

ε

P {b− 1/m < |Y ′ (s)| < b+ 1/m} ds→ 0, as m→∞,

for any b ∈ (0, 1). Substituting c = b − 1/m and d = b + 1/m, with d + 1/m < 1 and
1/m < b, in (2.5), implies that for all ε > 0 there exists an m0 = m0(ε) > 1 such that for
all m ≥ m0

lim sup
k→∞

P

{
|X (T (rk)−) |

rk
∈ (b− 1/m, b+ 1/m)

}
≤ 4C

(1− b− 1/m)2
(1 + 128c21)ε. (2.6)

Now we argue as follows. By (2.4) and the Portmanteau theorem ([4], p.15)

P {W ∈ (b− 1/m, b+ 1/m)} ≤ lim inf
k→∞

P

{
|X(T (rk)−)|

rk
∈ (b− 1/m, b+ 1/m)

}
.

For any m ≥ m0(ε) the RHS here does not exceed

lim sup
k→∞

P

{
|X (T (rk)−) |

rk
∈ (b− 1/m, b+ 1/m)

}
, (2.7)

which by (2.6) does not exceed 4C(1 + 128c21)ε/(1− b− 1/m)2. Since ε > 0 can be made
arbitrarily small, this implies that the distribution of W is continuous at b.

3 The position after exit

In this section we confine attention to X(T (r)).

3.1 Stochastic compactness of |X(T (r))|/r at 0
We say that |X(T (r))|/r is in SC at 0 if every sequence rk ↓ 0 has a subsequence {rk′}

such that |X(T (rk′))|/rk′ converges in distribution to a finite nondegenerate random
variable.

In the next theorem, Part (i) is from Theorem 2 of [7].

Theorem 3.1. Assume Π(0+) =∞. (i) |X(T (r))| /r is tight as r ↓ 0 if and only if

lim
λ→∞

lim sup
x↓0

x2Π(xλ)

x|ν(x)|+ U(x)
= 0. (3.1)

(ii) |X(T (r))| /r is in SC at 0 if and only if (2.1) and (3.1) hold;
(iii) furthermore (2.1) and (3.1) hold if and only if X (t) ∈ FC0 \DP (N) at 0.

Remark 3.2. Regarding Part (i) of Theorem 3.1: Condition (3.1) by itself characterizes
yet another stochastic compactness class for the process X, which we might term FC ′.
Specifically, we say that X(t) ∈ FC ′ at 0 if there exists a non-stochastic function b(t) > 0

such that each sequence tk ↓ 0 contains a subsequence tk′ ↓ 0 for which

X(tk′)

b(tk′)

D−→ Y ′, as tk′ ↓ 0, (3.2)

where Y ′ is an a.s. finite random variable which may be degenerate at a constant, but is
not degenerate at 0. We omit the proof and further discussion of this here. Class FC ′ is
analogous to a class SC ′ introduced by [10] which characterizes a similar property for
random walks.
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Proof of Theorem 3.1: Proof of Part (i): see Theorem 2 of [7]. The proof follows by an
easy argument based on inequalities (1.6) and (1.34).

Proof of Part (ii). Assume that |X(T (r))| /r is in SC at zero. Then |X(T (r))| /r is tight
as r ↓ 0 so (3.1) holds. Suppose that (2.1) does not hold. But then by Theorem 1.8,

|X(T (rk))| /rk
P→ 1 for some rk ↓ 0 as k →∞, a contradiction.

Conversely, assume (3.1) and (2.1) are satisfied. By (3.1), |X(T (r))| /r is tight as r ↓ 0.
Suppose there exists a constant 1 ≤ a <∞ and a sequence rk ↓ 0 such that

|X(T (rk))|
rk

P→ a, as k →∞.

Then by Corollary 1.9 and Theorem 1.8, (1.49) holds, which contradicts (2.1). Thus
|X(T (r))| /r is in SC at 0.

Proof of Part (iii). Assume (2.1) and (3.1). Now (2.1) implies the contrapositive of
(1.19), so X /∈ DP (N). Also (2.1) says that

lim sup
x↓0

h(x)

Π (x)
= lim sup

x↓0

x |ν(x)|+ U(x)

x2Π (x)
<∞. (3.3)

To complete the proof of (1.15) we shall need the following fact motivated by a result of
[6].

Fact A Assume Π (0+) = ∞. A nondegenerate Lévy process (X (t))t≥0 is in the Feller
class at 0 whenever

lim
λ→∞

lim sup
x↓0

Π (λx)

Π(x)
< 1. (3.4)

(For a proof see the Appendix.)

Now take λ > 0 and write

Π(λx)

Π(x)
=

(
x2Π(λx)

x|ν(x)|+ U(x)

)(
x|ν(x)|+ U(x)

x2Π(x)

)
. (3.5)

Then by (3.1) and (3.3)

lim
λ→∞

lim sup
x↓0

Π(λx)

Π(x)
= 0.

It follows then from Fact A and (1.14) that

lim sup
x↓0

x2Π(x)

V (x)
<∞,

which together with (3.3) and x2Π(x) ≤ U(x) implies that

lim sup
x↓0

x2Π(x) + x|ν(x)|
V (x)

≤ lim sup
x↓0

(
U(x) + x|ν(x)|

x2Π(x)

)(
x2Π(x)

V (x)

)
<∞.

So (1.15) is proved and hence X(t) ∈ FC0 at 0. Therefore X(t) ∈ FC0 \DP (N) at 0.
Going the other way, assume that X(t) ∈ FC0 \ DP (N) at 0. First observe that

X(t) ∈ FC0 at 0 implies by (1.15) that

lim sup
x↓0

x2Π(x) + x |ν(x)|
V (x)

=: d <∞,

and from X(t) /∈ DP (N) at 0 we get from (1.19) that

lim inf
x↓0

x2Π(x)

V (x)
> 0.
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From these we infer that

lim inf
x↓0

Π(x)

h(x)
= lim inf

x↓0

x2Π (x) /V (x)(
x |ν(x)|+ x2Π (x)

)
/V (x) + 1

≥ lim inf
x↓0

x2Π(x)/V (x)

d+ 1
> 0.

Hence (2.1) holds. Next notice that for any λ > 1

x2Π (λx)

U(x)
=

(λx)
2

Π (λx)

U (λx)

(
U (λx)

U (x)

)
1

λ2
.

If X(t) ∈ FC0, then necessarily X(t) ∈ FC at 0. By arguing as on page 2219 of [15] we
get for some 0 < c1 < 1 and K > 0 that for all small enough x > 0

x2Π (λx)

U(x)
≤ Kλ2c1−2. (3.6)

Since
Π(λx)

h(x)
=

x2Π(λx)

x |ν(x)|+ U(x)
≤ x2Π(λx)

U(x)
,

we see from (3.6) that

lim
λ→∞

lim sup
x↓0

Π(λx)

h(x)
= 0,

and thus (3.1) is also satisfied.

3.2 Continuity of subsequential limit distributions, |X(T (r))|/r
Lemma 3.3. Assume Π(0+) =∞. Suppose for a sequence rk ↓ 0

|X(T (rk))|
rk

D−→W, (3.7)

where W is a nondegenerate random variable. Suppose there exist nonnegative decreas-

ing functions Λ
+

and Λ
−

on (0,∞), which vanish at infinity, and a sequence of positive
constants {tk}k≥1, such that for all u > 0 continuity points of Λ±,

tkΠ
+

(rku)→ Λ
+

(u) and tkΠ
−

(rku)→ Λ
−

(u) (3.8)

and
lim sup
k→∞

(tkh (rk))
−1

=: κ <∞. (3.9)

Suppose in addition that Λ+ and Λ− are continuous on (0,∞). Then the distribution

function G of W is continuous on [a,∞) for any a > 1. Moreover, if Λ
+

and Λ
−

are such
that

−Λ
+

and−Λ
−

have strictly decreasing positive derivatives ϕ+ and ϕ−on (0,∞) , (3.10)

then G is Lipschitz and hence absolutely continuous on [a,∞) for any a > 1.

Proof of Lemma 3.3: Assume (3.7)–(3.9) for rk and tk as specified. Choose 1 < c < d

and apply identity (1.26) to get

P

{∣∣∣∣X(T (rk))

rk

∣∣∣∣ ∈ (c, d]

}
=

∫
|y|≤1

(
Π

+
(rk(c− y))−Π

+
(rk(d− y))

)
Urk (rkdy)
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+

∫
|y|≤1

(
Π
−

(rk(c+ y))−Π
−

(rk(d+ y))
)
Urk (rkdy)

=

∫
|y|≤1

(∆ (rkc, rky)−∆ (rkd, rky))Urk (rkdy) , (3.11)

where for u > 0 and |v| < u

∆(u, v) := Π
+

(u− v) + Π
−

(u+ v).

From (3.11) we get, using (1.25) and (1.22),

P

{∣∣∣∣X(T (rk))

rk

∣∣∣∣ ∈ (c, d]

}
≤ sup
|y|≤1

(∆ (rkc, rky)−∆ (rkd, rky))ET (rk)

≤ C2

h (rk)
sup
|y|≤1

(∆ (rkc, rky)−∆ (rkd, rky)) . (3.12)

Applying the elementary Fact B given in the Appendix, we see that the convergence
in (3.8) is uniform on [a− 1,∞) for any a > 1. Arguing via the Portmanteau theorem, as
for (2.7), and with G denoting the distribution function of W , we get from (3.7), (3.9)
and (3.12),

G(d−)−G(c) = P{c < W < d} ≤ lim sup
k→∞

( C2

tkh(rk)

)
tk sup
|y|≤1

(∆ (rkc, rky)−∆ (rkd, rky))

≤ κ sup
|y|≤1

[(
Λ

+
(c− y)− Λ

+
(d− y)

)
+
(
Λ
−

(c+ y)− Λ
−

(d+ y)
)]
, (3.13)

for all 0 < c < d. By assumption Λ
±

(x) are continuous at each x > 0, so from inequality
(3.13) it follows that G is continuous on [a,∞) for any a > 1.

Next assume, in addition, that (3.10) holds. Then, for |y| ≤ 1 and 1 < a ≤ c < d,

Λ
+

(c− y)− Λ
+

(d− y) =

∫ d−y

c−y
ϕ+(x)dx ≤ (d− c)ϕ+(c− y)

≤ (d− c)ϕ+(c− 1) ≤ (d− c)ϕ+(a− 1).

Similarly for Λ
−

, so by inequality (3.13) and the continuity of G,

G(d)−G(c) ≤ κ
(
ϕ+(a− 1) + ϕ−(a− 1)

)
(d− c) =: D(a) (d− c) ,

for all 1 < a ≤ c < d. Thus G is absolutely continuous on [a,∞) for all a > 1.

Corollary 3.4. Assume Π(0+) = ∞ and |X(T (r))| /r ∈ SC at 0. Then we can find

sequences rk ↓ 0 and tk ↓ 0 such that (3.7)–(3.9) hold. Assume that the Λ
+

and Λ
−

in
(3.8) are continuous on (0,∞). Then the rv W in (3.7) has a continuous distribution G.
Furthermore, if in addition (3.10) holds, then G is Lipschitz on [a,∞) for any a > 1.

Proof of Corollary 3.4: Assume as usual that Π(0+) =∞ and suppose |X(T (r))| /r ∈ SC
at 0. Thus for every sequence {sj}j≥1 of positive numbers converging to zero there is a
subsequence {rk}k≥1 such that

|X(T (rk))|
rk

D−→W,
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where W is a finite nondegenerate random variable. So (3.7) holds. By Theorem 3.1,
|X(T (r))| /r ∈ SC at 0 implies X(t) ∈ FC0 \DP (N) at 0. Setting tk = t(rk), where t(r) is
as defined in (1.37), we also have

X(tk)

rk

D−→ Y , (3.14)

for an infinitely divisible random variable Y . Since X(t) /∈ DP (N) at 0, Y has a nontrivial

Lévy measure Λ with positive and negative tails Λ
+

(x) and Λ
−

(x), x > 0, defined in the
usual way, and (3.14) implies by (1.8) that

tkΠ
+

(rku)→ Λ
+

(u) and tkΠ
−

(rku)→ Λ
−

(u),

at continuity points u > 0 of Λ±. Thus (3.8) holds. Further, for this choice of rk and tk,
we have

0 < lim sup
k→∞

1

tkh(rk)
= lim sup

k→∞

U(rk)

r2
k

× r2
k

rk|ν(rk)|+ U(rk)
≤ 1,

which proves (3.9). Under the further assumption that Λ
±

are continuous on (0,∞),
Lemma 3.3 applies to yield the continuity of G, and if in addition Λ± satisfy (3.10), G
has the claimed Lipschitz property, again by Lemma 3.3.

Following Lemma 3.3, we are led to ask what added conditions are needed to ensure

that for each a > 1, Λ
+

and Λ
−

have strictly decreasing positive derivatives on (0,∞).
It turns out that self-decomposable Lévy processes have this property. Recall that a
random variable Y is said to be self-decomposable if its c.f. is of the form

EeiθY = exp

(
iγY θ −

1

2
AY θ

2 +

∫
R\{0}

(
eixθ − 1− iθx1 {|x| ≤ 1}

) k(x)

|x|
dx

)
, (3.15)

where γ
Y
∈ R, AY ≥ 0, k(x) ≥ 0,

∫
R\{0}

(
|x|2 ∧1

)
k(x)dx/|x| <∞, and k(x) is increasing

on (−∞, 0) and decreasing on (0,∞) . See Corollary 15.11, p.95, of [21]. Such a Y is

clearly inf. div. and the Lévy process (Y (t))t≥0 such that Y (1)
D
= Y is said to be a

self-decomposable Lévy process.
We need the following result.

Proposition 3.5. Let (X(t))t≥0 be a self-decomposable Lévy process and b(t), t > 0,
a positive norming function such that for a sequence tk ↓ 0, X(tk)/b(tk) converges in
distribution to a nondegenerate inf. div. random variable Y . Let (Y (t))t≥0 be the Lévy

process with Y (1)
D
= Y . Then (Y (t))t≥0 is a self-decomposable Lévy process.

Proof of Proposition 3.5: Since X(t) is a self-decomposable Lévy process, X(1) has a
c.f. of the form (3.15), with γY replaced by γ

X
∈ R and AY replaced by AX ≥ 0. Then

X(tk)/b (tk) is a self-decomposable inf. div. random variable with triplet (γk, σ
2
k,Πk),

where for each k ≥ 1

σ2
k =

tkAX
b2k

, γk =
γXtk
bk

+

∫
R\{0}

x
(
1{|x|≤1} − 1{|bkx|≤1}

)
Πk (dx) ,

and Πk (dx) is the Lévy measure tkΠ(bkdx), with Π(dx) = k(x)dx/|x|, x ∈ R.
We record here the fact that Π is the Lévy measure of a self-decomposable distribution

if and only if the functions

Π
+

(e−s) and Π
−

(e−s), s ∈ R, (3.16)
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are convex on R. For this see Theorem 4.1 in Barndorff-Nielsen and Shephard (2001)
and the references therein.

Now for any z > 0 and ρ > 0

Π
+

(ρz) =

∫
(ρz,∞)

k(x)

x
dx =

∫
(z,∞)

k(ρx)

x
dx =: Π

+

ρ (z)

and

Π
−

(ρz) =

∫
(ρz,∞)

k(−x)

x
dx =

∫
(z,∞)

k(−ρx)

x
dx =: Π

−
ρ (z) .

Clearly for any ρ > 0 both

h+
ρ (s) = Π

+

ρ (e−s) and h−ρ (s) = Π
−
ρ (e−s) (3.17)

are convex on R. Using Fact C in the Appendix we can show that whenever there exists
a sequence of positive constants {ρk}k≥1 converging to zero and a sequence of positive
constants {ak}k≥1 such that both akh

+
ρk

(s) and akh
−
ρk

(s) converge to a finite limit on a
dense subset of R, they each converge to a convex function uniformly on compact subsets
of R.

Now assume that
X(tk)

b(tk)

D−→ Y (1), (3.18)

where Y (1) is a nondegenerate inf. div. random variable with Lévy measure Λ. Then by

(1.8) of Subsection 1.3, for every continuity point u of Λ
±

,

tkΠ
±

(b(tk)u)→ Λ
±

(u). (3.19)

Setting akh±ρk(s) = tkΠ
±

(b(tk)e−s) for s ∈ R, we see that (3.19) in combination with the

above mentioned Fact C finishes the proof, since both Λ
+

(e−s) and Λ
−

(e−s) are convex
on R, which implies that Y (1) is a self-decomposable inf. div. random variable.

Theorem 3.6. Suppose X is a self-decomposable Lévy process such that |X(T (r))| /r
is in SC at 0. Then every subsequential limit rv W of |X(T (rk))| /rk along sequences
rk ↓ 0, as k →∞, has a distribution function G that is absolutely continuous on [a,∞) for
any a > 1; further, G(1)−G (1−) = G(1) < 1.

Proof of Theorem 3.6: Assume that X is a self-decomposable Lévy process such that
|X(T (r))| /r is in SC at 0. Then by Theorem 3.1 X ∈ FC0 with a norming function
b(t) which we can assume satisfies (1.17), and X(t) /∈ DP (N) at 0. So necessarily
AX = 0 in its c.f. By Proposition 3.5, each subsequential limit law G of X(t)/b(t) is
self-decomposable with a necessarily nontrivial Lévy measure Λ of the form (3.15) with
AY = 0. To see why AX = AY = 0 refer to Fact D in the Appendix. It follows that

− d

dx
Λ

+
(x) = − d

dx

∫ ∞
x

k(y)

y
dy =

k(x)

x

is strictly decreasing on (0,∞). Similarly −dΛ
−

(x)/dx is strictly decreasing on (0,∞).
Consequently G is absolutely continuous on [a,∞) for any a > 1 by Lemma 3.5.

It remains to note that G(1)−G (1−) = G(1) < 1 because clearly G attributes positive
mass to (1,∞), completing the proof of Theorem 3.6.
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Example 3.7. Suppose (X(t))t>0 is a subordinator in the domain of attraction of a stable
law of index 0 < α < 1 as t ↓ 0, hence, in FC0 \DP (N). Then

X(T (r))

r

D→W, as r ↓ 0,

where for w > 1

G (w) = P {W ≤ w} =
sinαπ

π

∫ w

1

(x− 1)
−α

x−1dx.

When X is in fact the stable subordinator of index α, this follows by setting ρ = 1, a = r

and b = rw, where w > 1, in Ex.3, p.238 of [2] and changing the variable, or similarly
from Ex. 44.24, p. 331, of [21]. Clearly G is Lipschitz on [a,∞) for any a > 1.

An analogous result holds for X(T (r)−), the position of X before exit. In this case
all subsequential limit laws of |X(T (r)−)| /r have support contained in [0, 1] . Again
supposing X is a stable subordinator of index 0 < α < 1, we have as r ↓ 0

X(T (r)−)

r

D→W, as r ↓ 0,

where W is the generalized standard arcsine random variable with density f(w;α)

defined by

sinαπ

π
wα−1 (1− w)

−α
, for 0 < w < 1.

For this result see Thm. 6, p.81, of [2]. This example agrees with Theorem 2.4.

4 The jump causing ruin

In this section we confine our attention to ∆X(T (r)). We say that |∆X(T (r))| /r is
stochastically compact at 0 (is in SC at 0) if every sequence rk ↓ 0 has a subsequence rk′

such that |∆X(T (rk′))|/rk′ converges in distribution to a finite nondegenerate random
variable.

Theorem 4.1. Assume Π(0+) =∞.

(i) |∆X(T (r))| /r is tight as r ↓ 0 if and only if |X(T (r))| /r is tight as r ↓ 0.

(ii) |∆X(T (r))| /r is in SC at 0 if and only if |X(T (r))| /r is in SC at 0.

Proof of Theorem 4.1: (i) Since |X(T (r)−)| ≤ r ≤ |X(T (r))| and

|X(T (r))|
r

− 1 ≤ |∆X(T (r))|
r

=
∣∣∣X(T (r))

r
− X(T (r)−)

r

∣∣∣ ≤ |X(T (r))|
r

+ 1,

we see that |∆X(T (r))| /r is tight as r ↓ 0 iff |X(T (r))| /r is tight as r ↓ 0.

(ii) Suppose |∆X(T (r))| /r is in SC at 0. Then by Part (i) |X(T (r))| /r is tight at 0, so
(3.1) holds. Suppose (1.49) holds. By Theorem 1.8 this happens if and only there is a
sequence rk ↓ 0 such that for all c > 0

P

(
|∆X(T (rk))|

rk
> c

)
→ 0, as k →∞, (4.1)

which implies that
|∆X(T (rk))|

rk
→ 0, as k →∞.
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This contradicts the assumption that |∆X(T (r))| /r is in SC at 0. So (1.49) cannot hold
and hence we must have (2.1). Thus by Theorem 3.1, |X(T (r))| /r is in SC at 0.

Conversely if |X(T (r))| /r is in SC at 0 then |X(T (r))| /r is tight so |∆X(T (r))| /r is
tight. We claim there can be no sequence rk ↓ 0 and constant b ≥ 0 such that

|∆X(T (rk))|
rk

→ b, as k →∞, (4.2)

since this would imply that (4.1) is satisfied for some c > b, which by Theorem 1.8 implies
(1.49). But again this contradicts (2.1), so by Theorem 3.1, (4.2) cannot happen. Thus
|∆X(T (r))| /r is in SC at 0.

Lemma 4.2. Assume Π(0+) =∞. Suppose for a sequence rk ↓ 0

|∆X(T (rk))|
rk

D−→ D, (4.3)

where D is a nondegenerate random variable. Suppose there exist nonnegative continu-

ous decreasing functions Λ
+

and Λ
−

on (0,∞), which vanish at infinity, and a sequence
of positive constants {tk}k≥1, such that for all u > 0, (3.8) and (3.9) hold. Then the

distribution function H of D is continuous on (0,∞). Moreover, if Λ
+

and Λ
−

are such
that (3.10) is satisfied, then H is Lipschitz and hence absolutely continuous on [a,∞) for
any a > 0.

Proof of Lemma 4.2: We get, using (1.33), (1.25) and (1.22), that

P

{∣∣∣∣∆X(T (rk))

rk

∣∣∣∣ ∈ (c, d)

}
≤ tk

(
Π(rkc)−Π(rkd)

)
t−1
k Urk([−rk, rk])

≤ tk
(
Π(rkc)−Π(rkd)

)
ET (rk)

≤ tk
(
Π(rkc)−Π(rkd)

) t−1
k C2

h (rk)
.

Now the remainder of the proof is very similar to that of Lemma 3.3, so the details are
omitted.

Remark 4.3. Assume Π(0+) =∞ and X(t) ∈ FC0\DP (N) at 0, so that both |X(T (r))| /r
and |∆X(T (r))| /r are in SC at 0. Let t(r) = r2/U(r), for r > 0. By arguing as in Corollary
3.4, for every sequence sj , j ≥ 1, of positive numbers converging to zero there is a
subsequence rk, k ≥ 1, such that for nondegenerate random variables D and W

|∆X(T (rk))|
rk

D−→ D, and
|X(T (rk))|

rk

D−→W,

and, with tk = t(rk),

X(tk)

rk

D−→ Y , (4.4)

for an infinitely divisible random variable Y with a nontrivial Lévy measure Λ. Then if Λ
+

and Λ
−

are continuous, (4.4) implies that (3.8) holds. Also it was pointed out in Corollary

3.4 that X(t) ∈ FC0 \DP (N) at 0 implies that (3.9) is satisfied. Hence, if Λ
+

and Λ
−

are
continuous on (0,∞) or satisfy (3.10), then Lemma 4.2 applies.
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5 The symmetric St. Petersburg process

This interesting process is an example of an X(t) in FC0 such that the Lévy measure
of any of its subsequential limit rvs is not continuous. Consider the St. Petersburg
game-type Lévy tail functions:

R
+

(x) = R{(x,∞)} = R
−

(x) = R{(−∞,−x)} = 2−blog2(x)c, x > 0,

and set
R(x) = R

+
(x) +R

−
(x) = 2R

+
(x).

Let R be the corresponding measure and notice that R(0+) =∞. Let X = (X(t))t≥0 be
the symmetric St. Petersburg Lévy process with Lévy triplet (0, 0, R(dx)). Then, defining
a centering function as in (1.3), by symmetry we have, for all x > 0,

νR(x) = 0. (5.1)

Since
x

2
≤ 2blog2(x)c ≤ x and so

1

x
≤ 1

2
R(x) = 2−blog2(x)c ≤ 2

x
, (5.2)

we have for x > 0

2

∫ x

0

yR(y)dy ≥ 4

∫ x

0

dy = 4x ≥ x2R(x),

hence by (1.14), X(t) ∈ FC0 at 0.
Define the norming function

b(t) = 2blog2(t)c, t > 0.

Then for integers k ≥ 1 and t > 0 such that 2−k ≤ t < 2−k+1 we have b(t) = 2−k. Further,
for integers m ≥ 1 and u > 0 such that 2−m ≤ u < 2−m+1, we have

R
±

(b(t)u) = R
±

(b(2−k)u) = 2m+k. (5.3)

Now fix λ ∈ [1, 2] and take tk = tk(λ) such that 2−k ≤ tk < 2−k+1 and tk2k → λ. Then
for all u > 0 such that 2−m ≤ u < 2−m+1 we have

2m+k = 2mb(tk) ≤ ub(tk) < 2m+1b(tk) = 2m+k+1

and consequently

tkR
±

(b(tk)u)→ λ2m = λR
±

(u) . (5.4)

Next take u ∈ (0, 1] and consider

tk
b2(tk)

∫ ub(tk)

−ub(tk)

x2R(dx) = −u2tkR(b(tk)u) + 2tk

∫ 1

0

xR(b(tk)x)dx. (5.5)

The first term on the RHS tends to −λu2R(u) as k →∞, by (5.4). In the second term on
the RHS, by (5.2), we have

tkxR(b(tk)x) ≤ 4tkx

xb(tk)
≤ 2tkxR(b(tk)) ≤ 2λ,

for k large enough, not depending on x. So we can apply dominated convergence in the
integral on the RHS of (5.5), and deduce that, for 0 < u ≤ 1,

lim
k→∞

tk
b2(tk)

∫ ub(tk)

−ub(tk)

x2R(dx) = −λu2R(u) + 2λ

∫ u

0

xR(x)dx = λ

∫ u

−u
x2R(dx). (5.6)

EJP 25 (2020), paper 51.
Page 22/26

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP451
http://www.imstat.org/ejp/


Compactness and continuity properties for two-sided Lévy exit times

When u > 1 we write

tk
b2(tk)

∫ ub(tk)

−ub(tk)

x2R(dx) =
tk

b2(tk)

(∫ b(tk)

−b(tk)

+

∫
1<|y|<ub(tk)

)
x2R(dx).

On the RHS the first integral tends to λ
∫ 1

−1
x2R(dx) by (5.6). Apply (5.4) and dominated

convergence to the second integral to get the limit λ
∫

1<|y|<u x
2R(dx). Adding this to the

first expression we see that (5.6) in fact holds for all u > 0.
Taking together (5.4), (5.6) and (5.1), we see from the convergence criteria in Sub-

section 1.3 that X(tk)/b(tk)
D−→ Yλ as k →∞, where Yλ has Lévy triplet (0, 0, λR(dx)).

Now set Y = {Yλ : λ ∈ [1, 2]}. We pointed out above that the symmetric St. Petersburg
Lévy process (X(t))t≥0 is in the centered Feller class at 0 (at∞). It is readily shown that
every random variable in Y is obtainable as a distributional limit of X(tk)/b(tk) for an
appropriately chosen sequence of positive constants {tk}. But the Lévy tail function R(x)

is obviously not continuous on [a− 1,∞) for any a > 1.

6 Appendix: Proofs of facts A, B, C and D

6.1 Fact A

We prove here Fact A: A nondegenerate Lévy processX(t) with infinite Lévy measure
Π is in FC at 0 whenever (3.4) holds.

Proof of Fact A:. We can assume σ2 = 0, since whenever σ2 > 0, there exists a positive
norming function b(t) such that

X(t)

b(t)

D−→ Z, as t ↓ 0,

where Z is a standard normal random variable. (See [15].) In this case there is nothing
to prove, since X(t) is already in FC at 0 and condition (3.4) is irrelevant.

The proof that follows is a modification of arguments in [6]. For λ > 0 let

lim sup
t↓0

Π (tλ)

Π(t)
= ϕ (λ) . (6.1)

Without loss of generality we can assume that ϕ (λ) is finite and positive for all λ > 0. By
a standard argument, (3.4) implies

lim
λ→∞

lim sup
x↓0

Π (λx)

Π(x)
= 0, (6.2)

hence ϕ (λ)→ 0 as λ→∞. From (6.1) we get for all 0 < x < 1

lim inf
t↓0

Π(t)

Π (t/x)
= lim inf

t↓0

Π (tx)

Π(t)
=

1

ϕ (1/x)
=: ψ(x) ≥ 1,

which gives by Fatou’s lemma

lim inf
t↓0

∫ t
0
yΠ (y) dy

t2Π(t)
= lim inf

t↓0

∫ 1

0
xΠ (tx) dx

Π(t)
≥
∫ 1

0

xψ(x)dx.

Clearly ψ(x) = 1/ϕ(1/x)→∞ as x ↓ 0. Thus for any M > 1 there exists x0 ∈ (0, 1) such
that ψ(x) > M for all 0 < x < x0. This implies that∫ 1

0

xψ(x)dx ≥
∫ x0

0

xMdx+

∫ 1

x0

xdx =
1

2
x2

0(M − 1) +
1

2
>

1

2
.

EJP 25 (2020), paper 51.
Page 23/26

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP451
http://www.imstat.org/ejp/


Compactness and continuity properties for two-sided Lévy exit times

Thus, keeping in mind that σ2 = 0,

lim inf
t↓0

(
1

2
+

V (t)

2t2Π(t)

)
= lim inf

t↓0

∫ t
0
yΠ (y) dy

t2Π(t)
>

1

2
,

and thus (1.14) holds, i.e.

lim inf
t↓0

V (t)

t2Π(t)
> 0.

This implies that X(t) ∈ FC at 0.

6.2 Fact B

We need the following elementary Fact B. Its proof is very similar to that of Polya’s
theorem (see Theorem B.7.7 of [3]).

Let (fk)k≥1 be a sequence of decreasing functions on (0,∞) such that for each
x ∈ (0,∞), fk (x) → f(x), where f is a continuous function on (0,∞) that vanishes at
infinity. Then for all c > 0, supx≥c |fk(x)− f(x)| → 0.

Proof of Fact B:. Choose any ε > 0 and C > 0 such that |f(x)| ≤ ε/4 for all x ≥ C.
Select c ∈ (0, C). Since f is uniformly continuous on [c, C], we can select m ≥ 1 and
c = c0 < c1 < · · · < cm < cm+1 = C such that

max
0≤n≤m

sup {|f(x)− f (y)| : x, y ∈ [cn, cn+1]} ≤ ε/8.

Now for any k ≥ 1, 0 ≤ n ≤ m and z ∈ [cn, cn+1],

fk (cn+1) ≤ fk (z) ≤ fk (cn) .

Thus for all x, y ∈ [cn, cn+1]

|fk (y)− fk(x)| ≤ |fk (cn)− fk (cn+1)| .

Choose K ≥ 1 so large such that for all k ≥ K

max
0≤n≤m

|fk (cn)− f (cn)| ≤ ε/8.

We get then that for all k ≥ K, 0 ≤ n ≤ m and x ∈ [cn, cn+1],

|f(x)− fk(x)| ≤ |f (cn)− fk(x)|+ |f (cn)− f(x)|

≤ |f (cn)− fk (cn)|+ |f (cn)− f (cn+1)| ≤ ε/4.

This gives for all k ≥ K

sup
x≥c
|fk(x)− f(x)| ≤ max

0≤n≤m
sup

x∈[cn,cn+1]

|fk(x)− f(x)|+ |f (C)|+ |fk(c)|

≤ 2 max
0≤n≤m

sup
x∈[cn,cn+1]

|fk(x)− f(x)|+ 2 |f (C)| ≤ ε,

as required.

6.3 Fact C

The following Fact C is a consequence of Exercise 7, p.20, of [20]: let (fk)k≥1 be a
sequence of convex functions on R that converges to a finite limit on a dense subset of R.
Then fk(x) converges for all x ∈ R to a convex function and the convergence is uniform
on compact subsets of R.
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6.4 Fact D

The following Fact D is used in the proof of Theorem 3.6: Suppose X(t) is a Lévy
process with triplet (γ, σ2,Π) and for tk ↓ 0, ak ∈ R and bk > 0, (1.7) holds where Y is
an inf. div. rv with triplet (β, τ2,Λ) such that β ∈ R, τ2 ≥ 0, and Λ is a Lévy measure on
R. If σ2 > 0 or τ2 > 0, then X(t) ∈ DP (N).

Proof of Fact D:. We keep the notation of Subsection 1.3.

Case 1. Suppose σ2 > 0, then since x2Π(x)→ 0 as x ↓ 0,

lim sup
x↓0

x2Π(x)/V (x) ≤ lim sup
x↓0

x2Π(x)/σ2 = 0.

Case 2. Suppose τ2 > 0. Then by (1.8), for every continuity point h of Λ,

h2b2kΠ(hbk)

V (hbk)
=

h2tkΠ(hbk)

tkV (hbk)/b2k
→ h2Λ(h)

τ2 +
∫

0<|x|≤h x
2Λ(dx)

≤ h2Λ(h)

τ2
.

Since h2Λ(h)/τ2 converges to 0 as h ↓ 0, we can argue that

lim inf
x↓0

x2Π(x)/V (x) = 0.

Thus in either case, by Theorem 1.2, X(t) ∈ DP (N).

Acknowledgments. We are grateful to a referee for a close and careful reading of the
paper which enabled us to make some significant clarifications.
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