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Leaves on the line and in the plane
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Abstract

The dead leaves model (DLM) provides a random tessellation of d-space, representing
the visible portions of fallen leaves on the ground when d = 2. For d = 1, we establish
formulae for the intensity, two-point correlations, and asymptotic covariances for
the point process of cell boundaries, along with a functional CLT. For d = 2 we
establish analogous results for the random surface measure of cell boundaries, and
also determine the intensity of cells in a more general setting than in earlier work of
Cowan and Tsang. We introduce a general notion of dead leaves random measures
and give formulae for means, asymptotic variances and functional CLTs for these
measures; this has applications to various other quantities associated with the DLM.
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1 Introduction

1.1 Overview

The dead leaves model (or DLM for short) in d-dimensional space (d ∈ N), due
originally to Matheron [21], is defined as follows [4, 34]. Leaves fall at random onto
the ground and the visible parts of leaves on the ground (i.e., those parts that are
not covered by later arriving leaves) tessellate Rd (typically with d = 2; see Figure
1). Motivation for studying the DLM from the modelling of natural images, and from
materials science, is discussed in [4], [15], and [8], for example. The DLM provides a
natural way of generating a stationary random tessellation of the plane with non-convex
cells having possibly curved boundaries.

To define the model more formally, let Q be a probability measure on the space C
of compact sets in Rd (equipped with the σ-algebra generated by the Fell topology, as
defined in Section 1.3 below), assigning strictly positive measure to the collection of
sets in C having non-empty interior. A collection of ‘leaves’ arrives as an independently
marked homogeneous Poisson point process P =

∑∞
i=1 δ(xi,ti) in Rd ×R of unit intensity
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Leaves on the line and in the plane

with marks (Si)i≥1 taking values in C with common mark distribution Q. Each point
(xi, ti, Si) of this marked point process is said to have arrival time ti and the associated
leaf covers the region Si+xi ⊂ Rd from that time onwards (where S+x := {y+x : y ∈ S}).
At a specified time, say time 0, and at spatial location x ∈ Rd, the most recent leaf to
arrive before time 0 that covers location x is said to be visible (or exposed) at x. For
each i ∈ N, the visible portion of leaf i at time 0 is the set of sites x ∈ Rd such that leaf i
is visible at x at time 0. The connected components of visible portions of leaves (at time
0) form a tessellation of Rd, which we call the DLM tessellation.
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Figure 1: A realization of the DLM tessellation, restricted to a window, where all the
leaves are unit disks. The numbers indicate the reverse order of arrival of the leaves
visible within the window. In this paper we view the two visible components of leaf 5 as
being separate components of the DLM tessellation

Properties of the DLM itself are discussed in [4, 6, 15, 34], while percolation on the
DLM tessellation has been considered in [2, 24]. In some of these works the authors
call the DLM the ‘confetti’ model. Note that in the present paper, all cells of our
DLM tessellation are connected; the tessellation where cells are taken to be the visible
portions of leaves (rather than their connected components) is also of interest, and is
considered in some of the works just mentioned.

In this paper we consider the DLM for d = 1 and for d = 2. For d = 1, we develop the
second order theory for the point process of cell boundaries. That is, we determine its
second factorial moment measure, two-point correlation functions, asymptotic variance
and a spatial central limit theorem (CLT). Moreover, we can and do consider the point
process to be evolving as leaves continue to rain down; we establish a functional CLT
showing that the (evolving) number of cells in a large window approximates to an
Ornstein-Uhlenbeck process. For d = 2 we carry out a similar programme (asymptotic
variance and functional CLT) for the surface measure of cell boundaries within a large
window. We state our results for d = 1 in Section 2, and for d = 2 in Section 3.

For general d, we also develop (in Section 4) an extension of the DLM which we call
the dead leaves random measure (DLRM). Suppose now that each point (xi, ti) of P is
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marked with not only a random closed set Si as before, but also a random measure Mi,
for example the surface measure of ∂Si. The DLRM at time t is the sum, over those i with
ti ≤ t, of the measures Mi + xi := Mi(·+ (−xi)), restricted to the complement of leaves
arriving between times ti and t. We give results on its intensity, limiting covariances
and functional CLTs. This provides a general framework from which we may deduce
the results already mentioned as special cases, and is also applicable to other DLM
functionals and to variants of the DLM including the colour DLM and dead leaves random
function, as discussed in Section 4.

As well as the new results already mentioned, we provide some extensions to known
first-order results, giving the intensity of cell boundaries in d = 1, and the intensity of
cells in d = 2. These were already in the literature in the special cases when all of the
leaves are connected (for d = 1; see [21]), and when they all have the same shape (for
d = 2; see [6]). Finally, for d = 1 we discuss the distribution of cell sizes; essentially this
was given in [21] but we give a bit more detail here.

Exact formulae for second moment measures and for two-point correlation functions
are rarely available for non-trivial point processes in Euclidean space, and one contri-
bution of this work is to provide such formulae in one class of such models. Our CLTs
could be useful for providing confidence intervals for parameter estimation in the DLM
and related models. Our general functional CLT shows that the DLRMs are a class of
off-lattice interacting particle systems for which the limiting process of fluctuations can
be identified explicitly as an Ornstein-Uhlenbeck process. In earlier works [28, 30],
functional CLTs were obtained for certain general classes of particle systems but without
any characterisation of the limit process.

The proof of some of our results in d = 2 uses the following results. For rectifiable
curves γ and γ′ in R2 of respective lengths |γ| and |γ′|, let N(γ, γ′) (respectively Ñ(γ, γ′))
denote the number of times they cross each other (respectively, touch each other). If
one integrates N(γ, T (γ′)) (resp. Ñ(γ, T (γ′)) over all rigid motions T of the plane, one
obtains a value of 4|γ| × |γ′| (resp. zero). We discuss these results, which are related to
the classic Buffon’s needle problem, in Section 5.

t = 0

t

Figure 2: A realization of the time-reversed DLM in d = 1, with time as the vertical
coordinate. The leaves are intervals of variable length. Those leaves arriving in a given
rectangular region of space-time are shown, and the boundary points of the induced
1-dimensional DLM tessellation are shown at the bottom. The thicker lines represent
leaves which are at least partially visible

Since we prefer to work with positive rather than negative times, in this paper we
often consider a time-reversed version of the DLM where, for each site x ∈ Rd, the first
leaf to arrive at x after time 0 is taken to be visible at x. Imagine leaves falling onto a
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glass plate which can be observed from below, starting from time 0. Clearly this gives a
tessellation with the same distribution as the original DLM. This observation dates back
at least to [12]. In [17], it is the basis for a perfect simulation algorithm for the DLM.
The time-reversed DLM is illustrated for d = 1 in Figure 2.

We shall state our results in Sections 2-5, and prove them in Sections 6-8.

1.2 Motivation

We now discuss further the motivation for considering the DLM. Since we consider
the case d = 1 in some detail, we discuss the motivation for this at some length.

The phrase ‘leaves on the line’ entered the British folklore in the early 1990s as a
corporate justification for delays on the railways. To quote Wikipedia, this phrase is ‘a
standing joke ... seen by members of the public who do not understand the problem as
an excuse for poor service.’ This paper is a mathematical contribution to said public
understanding.

A one-dimensional DLM is obtained whenever one takes the restriction of a higher-
dimensional DLM (in Rd, say, with d > 1) to a specified one-dimensional subspace of Rd.
Such restrictions are considered in [34] and [4].

Moreover, the one dimensional DLM is quite natural in its own right. For example,
to quote [34], ‘Standing at the beginning of a forest, one sees only the first few trees,
the others being hidden behind.’ A less pleasant interpretation, is that if an explosion
takes place in a crowded spot, one might be interested in the number of people directly
exposed to the blast (rather than shielded by others). In these two interpretations, the
‘time’ dimension in fact represents a second spatial dimension.

In another interpretation of the one-dimensional time-reversed DLM, consider a
rolling news television or radio station. Suppose news stories arise as a homogeneous
Poisson process in the product space R×R+, where the first coordinate represents the
time at which the story starts, and the second coordinate represents its ‘newsworthiness’
(a lower score representing a more newsworthy story), and each story is active for
a random duration. Suppose at any given time the news station presents the most
newsworthy currently active story. Then the stories presented form a sequence of
intervals, each story presented continuing until it finishes or is superseded by a more
newsworthy story. The continuum time series of stories presented forms a DLM in time
rather than in space, with ‘newsworthiness’ taking the role of ‘time’ in the original DLM.
One can imagine a similar situation with, for example, the time series of top-ranked
tennis or golf players.

In these interpretations, we are taking the trajectory of a news story’s newsworthi-
ness, or a tennis player’s standard of play, to be flat but of possibly random duration. It
would be interesting in future work to allow for other shapes of trajectory. If the trajec-
tory is taken to be a fixed wedge-shape, then the sequence of top-ranked stories/players
is the sequence of maximal points (actually minimal points in our formulation), which
has been considered, for example, in [18, 37].

The two-dimensional DLM has received considerable attention in applications; see
[4] and references therein. For any two-dimensional image of a three-dimensional
particulate material with opaque particles, the closest particles obscure those lying
behind, and the DLM models this phenomenon. See for example [15, 14] for applications
to analysis of images of powders. Jeulin [13, 15] extends to the DLM to a dead leaves
random function model for further flexibility in modelling greyscale images, and some of
our results are applicable to this model. See Section 4.

Another reason to study the DLM, in arbitrary dimensions, is as an analogue to
the car parking model of random sequential adsorption. In the one-dimensional and
infinite-space version of the latter model, unit intervals (‘cars’) arrive at locations in
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space-time given by the points of a homogeneous Poisson process in R × R+. Each
car is accepted if the position (a unit interval) where it arrives does not intersect any
previously accepted cars. Ultimately, at time infinity one ends up with a random maximal
(i.e., saturated) packing of R by unit intervals. The higher-dimensional version of the car
parking model has also been studied, for example in [9] and references therein.

The problem of covering can be viewed as in some sense dual to that of packing
(see for example [31, 39]), and in this sense the (time-reversed) DLM is dual to the
car parking model; in each case, objects of finite but positive size (cars/leaves) arrive
sequentially at random in d-space, and are accepted in a greedy manner subject to a
hard-core constraint (for the packing) or a visibility constraint (for the DLM).

1.3 Notation and terminology

Let Bd denote the Borel σ-algebra on Rd. For k ∈ {0, 1, . . . , d}, let Hk denote the k-
dimensional Hausdorff measure of sets in Rd. This is a measure on (Rd,Bd). In particular,
H0 is the counting measure and Hd is Lebesgue measure. See [19].

Let ‖ · ‖ denote the Euclidean norm in Rd. Given x ∈ Rd, let δx denote the Dirac
measure at x, i.e. δx(A) = 1 if x ∈ A, otherwise δx(A) = 0. For r > 0, let B(r) := {y ∈ Rd :

‖y‖ ≤ r}, the closed Euclidean ball of radius r centred on the origin. Set πd := Hd(B(1)),
the Lebesgue measure of the unit ball in d dimensions.

We say a set γ ⊂ R2 is a rectifiable curve if there exists a continuous injective function
Γ : [0, 1]→ R2 such that γ = Γ([0, 1]) and H1(γ) <∞. If moreover there exist k ∈ N∪ {0}
and numbers 0 = x0 < x1 < · · · < xk+1 = 1, such that for 1 ≤ i ≤ k + 1 the restriction of
Γ to [xi−1, xi] is continuously differentiable with derivative that is nowhere zero, we say
that γ is a piecewise C1 curve. We then refer to the points Γ(x1), . . . ,Γ(xk) (where k is
assumed to be taken as small as possible) as the corners of γ. If we can take k = 0 (so
there are no corners), then we say γ is a C1 curve. We say that Γ(0) and Γ(1) are the
endpoints of γ. We define a rectifiable Jordan curve (respectively, a piecewise C1 Jordan
curve) similarly to a rectifiable curve (respectively, piecewise C1 curve) except that now
Γ must satisfy Γ(1) = Γ(0) but be otherwise injective.

For σ ≥ 0, let N (0, σ2) denote a normally distributed random variable having mean
zero and variance σ2 if σ > 0, and denote a random variable taking the value 0 almost
surely if σ = 0.

We now review some concepts from the theory of point processes and random
measures that we shall be using. See for example [19] or [33] for more details.

Let M be the space of locally finite measures on (Rd,Bd), equipped with the smallest
σ-algebra that makes measurable all of the functions from M to R of the form µ 7→ µ(A),
with A ∈ Bd. For µ ∈ M we shall often write |µ| for µ(Rd). A random measure on Rd

is a measurable function from an underlying probability space to M, or equivalently, a
measurable kernel from the probability space to (Rd,Bd). A random measure on Rd is
said to be stationary if its distribution is shift invariant, in which case the expected value
of the measure it assigns to a Borel set B ⊂ Rd is proportional to the Lebesgue measure
of B; the constant of proportionality is called the intensity of the random measure.

A random measure on Rd taking integer values is called a point process on Rd, and
the notions of intensity and stationarity for random measures carry through to point
processes. A point process is said to be simple if it has no multiple points.

The second factorial moment measure of a point process η in Rd is a Borel measure
α2 on Rd × Rd, defined at [19, eqn (4.22)]. For disjoint Borel sets A,B ⊂ Rd, we
have α2(A × B) = E [η(A)η(B)]. If η is simple then for x, y ∈ Rd with x 6= y, loosely
speaking α2(d(x, y)) is the probability of seeing a point of η in dx and another one in
dy. If α2(d(x, y)) = ρ(y − x)dxdy for some Borel function ρ : Rd → R+, then the pair
correlation function ρ2(·) of the point process η is defined by ρ2(z) := ρ(z)/γ2, where γ is
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the intensity of η.
The Fell topology on C is the topology generated by all sets of the form {F ∈ C :

F ∩G 6= ∅} with G ⊂ Rd open, or of the form {F ∈ C : F ∩K = ∅} with K ∈ C.
A random closed set in Rd is a measurable map from a probability space to the space

of closed sets in Rd equipped with the sigma-algebra generated by the Fell topology. See
[33, Definition 2.1.2] or [23, Definition 1.1.1′′]. A simple point process on Rd can also be
interpreted as a random, locally finite set of points in Rd.

We now elaborate on the definition of the DLM given already. Let Q be a probability
measure on C, which we call the grain distribution of the model. Assume Q assigns
strictly positive measure to the collection of sets in C having non-empty interior. Let P be
a homogeneous Poisson process in Rd ×R of unit intensity. Write P =

∑∞
i=1 δ(xi,ti) with

(xi, ti)i∈N a sequence of random elements of Rd×R. This can be done: see [19, Corollary
6.5]. Independently of P, let (Si)i≥1 be a sequence of independent random elements of C
with common distribution Q. By the Marking theorem (see (see [19, Theorem 5.6]) the
point process

∑∞
i=1 δ(xi,ti,Si) is a Poisson process in Rd ×R× C with intensity measure

Hd ⊗H1 ⊗Q.
For A ⊂ Rd, let A denote its closure and Ao its interior; let ∂A := A \ Ao, the

topological boundary of A. The boundary of the DLM tessellation at time t, which we
denote by Φt, is given by

Φt := ∪i:ti≤t[(∂Si + xi) \ ∪j:ti<tj≤t(Soj + xj)]. (1.1)

The boundary of the the time-reversed DLM tessellation is denoted by Φ, and given by

Φ := ∪i:ti≥0[(∂Si + xi) \ ∪j:0≤tj<ti(Soj + xj)]. (1.2)

The cells of our (time-reversed) DLM tessellation are then defined to be the closures of
the connected components of Rd \ Φ. Clearly Φt has the same distribution as Φ for all t.

Throughout, we let S denote a random element of C with distribution Q; that is, a
measurable function from an underlying probability space (denoted (Ω,F ,P)) to C. For
x ∈ Rd we set

λ := E [Hd(S)]; λx := E [Hd(S ∪ (S + x))]. (1.3)

Clearly 0 < λ ≤ λx ≤ 2λ. We set

R := sup{‖x‖ : x ∈ S}, (1.4)

taking R = 0 if S is empty. Observe that 2λ − λx equals the expected value of Hd(S ∩
(S + x)), sometimes called the covariogram of S. The function λx will feature in certain
formulae for limiting covariances below. It also features in certain formulae for limiting
variances arising from the Boolean model (see for example [10]). The Boolean model,
that is the random set ∪i:0≤ti≤λ(Si + xi) for some fixed λ, is another fundamental model
in stochastic geometry.

Some of our results require the following measurability condition.

Condition 1.1. Q is such that Hd−1(· ∩ ∂S) is a random measure on Rd.

For d = 1, we shall show in Lemma 6.2 that Condition 1.1 can actually be deduced
from our earlier assumption that S is a random element of C, that is, a measurable map
from a probability space to C. However, we do not know whether this is also the case for
d ≥ 2.

Given d, for n > 0 let Wn := [0, n1/d]d, a cube of volume n in d-space. Let R0 denote
the class of bounded measurable real-valued functions on Rd that are Lebesgue-almost
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everywhere continuous and have compact support (the R stands for ‘Riemann inte-
grable’). For f ∈ R0, and n > 0, define the rescaled function Tnf by Tnf(x) := f(n−1/dx),
for x ∈ Rd. Given a measure µ on Rd we shall often write µ(f) for

∫
Rd fdµ. Also, we

write ‖f‖2 for (
∫
Rd |f(x)|2dx)1/2, and for f, g ∈ R0 we write 〈f, g〉 for

∫
Rd f(x)g(x)dx.

For A,B ⊂ Rd we set A⊕B := {a+ b : a ∈ A, b ∈ B}.

2 Leaves on the line

In this section we take d = 1 and state our results for the 1-dimensional DLM. We
shall prove them in Section 7.

We define a visible interval to be a cell of the DLM tessellation. In the special case
where all of the leaves are single intervals of fixed length, a visible interval is simply the
visible part of a leaf, because this visible part cannot be disconnected.

The endpoints of the visible intervals form a stationary point process in R. In terms
of earlier notation this point process is simply the random set Φ (if viewed as a random
subset of R) or the measure H0(Φ ∩ ·) (if viewed as a random point measure). We denote
this point process (viewed as a random measure) by η, as illustrated in Figure 2. The
point process η is simple, even if some of the leaves include constituent intervals of
length zero (recall that we assume Q is such that some of the leaves have non-empty
interior).

Our main results for d = 1 concern the second factorial moment measure and the pair
correlation function of η (Theorem 2.2), asymptotic covariances and a CLT for the total
number of points of η in a large interval (Theorems 2.3, 2.4, and 2.5), and a functional
CLT for this quantity as the DLM evolves in time (Theorem 2.6).

We shall also give formulae for the intensity of η, the distribution of the length of
the visible interval containing the origin and the length of a typical visible interval
(Propositions 2.1, 2.7 and 2.8). These propositions are to some extent already known, as
we shall discuss.

Recall that λ and R are defined by (1.3) and (1.4), respectively.

Proposition 2.1 (Intensity of η). Assume that E [R] <∞ and E [H0(∂S)] <∞. Then η is
a stationary point process with intensity λ−1E [H0(∂S)].

Remarks. In the special case where all the leaves are intervals of strictly positive
length, the intensity of η simplifies to just 2/λ. This special case of Proposition 2.1 is
already documented; see [21, page 4], or [34, (XIII.41)].

Our more general statement (and proof) of Proposition 2.1 allows for disconnected
leaves. If H0(∂S) is finite, then S consists of finitely many disjoint intervals, and H0(∂S)

equals twice the number of constituent intervals of S, minus the number of these intervals
having length zero. It is quite natural to allow a leaf to have several components; for
example if the one-dimensional DLM is obtained as the restriction of a higher-dimensional
DLM (in Rd, say, for some d > 1) to a specified one-dimensional subspace of Rd. If the
leaves in the parent DLM inRd are not restricted to be convex, but have ‘nice’ boundaries
(for example the polygonal boundaries considered in [6]), then the one-dimensional DLM
induced in this manner will typically include leaves with more than one component. The
proof given here, based on a general result for DLRMs, and ultimately on the Mecke
formula from the theory of Poisson processes [19], is quite simple and may be new.

In the next two results we use the following notation. Let ν denote the distribution of
the Lebesgue measure of a leaf under the measure Q. Let H denote a random variable
with distribution ν. For x > 0, write F (x) = P[H ≤ x] and F (x) := 1 − F (x), and set
λx := E [H + min(x,H)] (this is consistent with (1.3)).

Theorem 2.2 (Second moment measure of η). Suppose that Q is concentrated on con-
nected sets (i.e., on intervals), and that F (0) = 0 and λ <∞. Then the second factorial
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moment measure α2 of the point process η is given for x < y by

α2(d(x, y)) = 4(1 + F (y − x))(λλy−x)−1dydx+ λ−1
y−xP[H + x ∈ dy]dx. (2.1)

If ν has a probability density function f , then the pair correlation function ρ2 of η is given
by

ρ2(z) =
λ(1 + F (z))

λz
+
λ2f(z)

4λz
, z > 0. (2.2)

In the particular case where ν = δλ for some λ > 0, we have for x < y that

α2(d(x, y)) =
41(0,λ)(y − x)

λ(λ+ y − x)
dydx+ 8λ−21(λ,∞)(y − x)dydx+ (2λ)−1δλ+x(dy)dx. (2.3)

We now give some limit theorems for η([0, n]), as n→∞. In these results, n does not
need to be integer-valued.

Theorem 2.3 (Asymptotic variance for η([0, n])). Suppose that E [(H0(∂S))2] < ∞ and
E [R2] <∞. Then the limit σ2

1 := limn→∞ n−1Var[η([0, n])] exists. If alsoQ is concentrated
on intervals, and F (0) = 0, then

σ2
1 =

2

λ
+ 2

∫
(0,∞)

λ−1
u P[H ∈ du] + 8

∫ ∞
0

(
1 + F (u)

λλu
− 1

λ2

)
du. (2.4)

In (2.4) the last integrand on the right hand side is equal to∫∞
u
F (t)dt− λF (u)

λ2(2λ−
∫∞
u
F (t)dt)

. (2.5)

In the special case with ν = δ1, the right hand side of (2.4) comes to 8 log 2− 5 ≈ 0.545

u

t

Figure 3: Illustration of the evolving DLM tessellation in d = 1 with the point processes
ηt and ηu shown. Here t < u.

It is interesting to consider the evolving point process of visible leaf boundaries. For
t ∈ R let ηt := H0(Φt ∩ ·), the point process of endpoints of visible intervals at time t, for
the DLM run forward in time. See Figure 3. We use the abbreviation ηt(n) for ηt([0, n]).
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Theorem 2.4 (Asymptotic covariance for ηt(n)). Suppose that E [(H0(∂S))2] < ∞ and
E [R2] <∞. Let t, u ∈ R and r, s ∈ R+ := [0,∞). Then with σ2

1 as given in the preceding
theorem,

lim
n→∞

n−1Cov(ηt(nr), ηu(ns)) = σ2
1(min(r, s)) exp(−λ(|u− t|))

=: κ1((r, t), (s, u)). (2.6)

Theorem 2.5 (CLT for ηt(n)). Suppose that there exist constants ε,K ∈ (0,∞) such that
E [(H0(∂S))2+ε] <∞ and P[R ≤ K] = 1. Then as n→∞,

n−1/2(η([0, n])− E η([0, n]))
D−→ N (0, σ2

1), (2.7)

where σ2
1 is given in Theorem 2.3. More generally, the finite-dimensional distributions

of the random field (n−1/2(ηt(ns) − E [ηt(ns)]), (s, t) ∈ R+ × R) converge to those of a
centred Gaussian random field with covariance function κ1((r, t), (s, u)) as defined in
(2.6).

By the case s = 1 of Theorem 2.5, the finite dimensional distributions of the process
(n−1/2(ηt(n) − E [ηt(n)]), t ∈ R) converge to those of a Gaussian process (Xt)t∈R with
covariance function σ2

1 exp(−λ|u − t|). This limiting process is a stationary Ornstein-
Uhlenbeck process; see [16, page 358]. That is, it is the solution to the stochastic
differential equation

dXt = −λXtdt+ (2λ)1/2σ1dBt,

where (Bt) is a standard Brownian motion. Under a stronger moment condition, we can
improve this finite dimensional convergence to a functional CLT; that is, to convergence
in D(−∞,∞) of right-continuous functions on R with left limits. We give this space the
Skorohod topology, as described in [3] and extended to non-compact time intervals in
[36].

Theorem 2.6 (Functional CLT for ηt(n)). Suppose there exist ε,K ∈ (0,∞) such that
E [(H0(∂S))4+ε] < ∞ and P[R ≤ K] = 1. Then as n → ∞, the stochastic process
(n−1/2(ηt(n)− E [ηt(n)]), t ∈ R) converges in distribution, in the space D(−∞,∞), to the
stationary Ornstein-Uhlenbeck Gaussian process with covariance function σ2

1 exp(−λ|u−
t|), t, u ∈ R.

The limiting random field in Theorem 2.5 is an Ornstein-Uhlenbeck process in Wiener
space. See for example [26] for a definition, or [22] for a more detailed discussion
of this infinite-dimensional Ornstein-Uhlenbeck process. It would be interesting, in
future work, to try to extend the finite dimensional convergence of Theorem 2.5 to
convergence in an appropriate two-parameter function space. This is beyond the scope
of the methods used here, since our proof is based ultimately on the classical approach
of [3] for showing convergence of a sequence of processes with a single time parameter,
namely finite-dimensional convergence plus tightness via moment bounds.

It would also be of interest to extend these CLTs to cases where the leaves are
intervals of unbounded length but satisfy a moment condition.

We conclude this section with results on the length of the interval of the DLM
tessellation containing the origin, and the length of a ‘typical interval’. These follow
from results in [21], as we discuss in Section 7. For an alternative proof, see the earlier
version [29] of the present paper.

Proposition 2.7 (Exposed interval length distribution). Assume that Q is concentrated
on intervals of strictly positive length, and that λ < ∞. Let ν denote the distribution
of the length of a leaf under the measure Q, and X the length of the visible interval
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covering the origin. The distribution of X is given by

P[X ∈ dx] =

(∫
(x,∞)

(
2x(λ+ u)

(λ+ x)3

)
ν(du)

)
dx+

xν(dx)

x+ λ
. (2.8)

In the special case where the measure ν is the Dirac measure δλ for some λ > 0,

P[X ∈ dx] =

(
4λx

(λ+ x)3

)
1{x<λ}dx+ (1/2)δλ(dx). (2.9)

If ν is a Dirac measure, then X is the length of the visible part of the leaf visible
at the origin. In general, X counts the length only of the connected component of the
visible part of this leaf that includes 0, ignoring any other components.

A typical visible interval, loosely speaking, is obtained by fixing a very large region of
R, and choosing at random one of the inter-point intervals of η that lie in that region. The
distribution of the length of a typical visible interval is the inverse-size-biased distribution
of X (see [19, Proposition 9.7]); that is, if Y is the length of a typical visible interval
we have P[Y ∈ dy] = y−1P[X ∈ dy]/E [X−1]. Now E [X−1] = 2/λ, which can be deduced
either from (2.8) or from Proposition 2.1 using [19, eqn (9.22)]. Hence from (2.8) we
have the following.

Proposition 2.8. Let Y denote the length of a typical visible interval. Under the
assumptions of Proposition 2.7, the distribution of Y is given by

P[Y ∈ dy] =

(∫
(y,∞)

(
λ(λ+ u)

(λ+ y)3

)
ν(du)

)
dy +

λν(dy)

2(y + λ)
. (2.10)

If all the leaves are intervals of length λ, i.e. ν = δλ for some λ > 0, then Y has a mixed
distribution with

P[Y ∈ dy] =

(
2λ21(0,λ)(y)

(λ+ y)3

)
dy + (1/4)δλ(dy).

3 Leaves in the plane

In this section we take d = 2, and state our results for the two-dimensional DLM. We
shall prove them in Section 8.

We shall say that our grain distribution Q has the rectifiable Jordan property if it is
concentrated on nonempty regular compact sets having a rectifiable Jordan curve as
their boundary. Here, we say a compact set in R2 is regular if it is the closure of its
interior. We say Q has the piecewise C1 Jordan property if it is concentrated on sets
having a piecewise C1 Jordan curve as their boundary.

Recalling the definitions (1.1) and (1.2), define the measures φ := H1(Φ ∩ ·), the
restriction of the one-dimensional Hausdorff measure to the boundaries of the DLM
tessellation, and φt := H1(Φt ∩ ·) for t ∈ R. As in (1.3), we set λ := E [H2(S)], and
λx := E [H2(S ∪ (S + x))] for x ∈ R2, where S is a random element of C with distribution
Q as per usual. Define R by (1.4).

Theorem 3.1 (Intensity of cell boundaries). Suppose that Condition 1.1 holds and
E [H2(S ⊕ B(1))] < ∞. Then φ is a stationary random measure and its intensity is
λ−1E [H1(∂S)].

As mentioned earlier, the cells of the (time-reversed) DLM tessellation are the closures
of the connected components of the set R2 \Φ. We now define Ξ to be the set of points in
R2 which lie in three or more cells of this tessellation. Later we shall view Φ as a planar
graph with the points of Ξ as the nodes, which we call branch points, in this graph. We
define the measure χ := H0(Ξ ∩ ·).

EJP 25 (2020), paper 53.
Page 10/40

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP447
http://www.imstat.org/ejp/


Leaves on the line and in the plane

For A ⊂ R2 and θ ∈ (−π, π], let ρθ(A) denote the image of A under an anticlockwise
rotation through an angle θ about the origin (elsewhere we are using ρ2 to denote pair
correlation, but this clash of notation should not be confusing). We say Q is rotation

invariant if ρθ(S)
D
= S for all θ ∈ (−π, π].

Theorem 3.2 (Intensity of branch points). Assume either that Q has the piecewise C1

Jordan property, or that Q has the rectifiable Jordan property and is rotation invariant.
Assume also that λ <∞, and E [R2] <∞, and set

β3 := λ−2

∫
C

∫
C

∫
R2

H0(∂σ ∩ (∂σ′ + x))dxQ(dσ)Q(dσ′). (3.1)

Then: (a) If β3 <∞, then χ is a stationary point process, with intensity β3.
(b) If Q is rotation invariant, then

β3 =
2

πλ2
(E [H1(∂S)])

2
. (3.2)

The next two results require Q to have a further property. We say Q has the non-
containment property if for (Q⊗Q)-almost all pairs (σ, σ′) ∈ C ×C, the set of x ∈ R2 such
that σ + x ⊂ σ′ is Lebesgue-null. One way to guarantee the non-containment property is
to have Q be such that under Q, all of the sets Si have the same area.

Theorem 3.3 (Connectivity of Φ). Suppose Q has the rectifiable Jordan and non-
containment properties, and that E [R2] < ∞. Then Φ is almost surely a connected
set.

Let Ψ be the set of centroids of cells of the DLM tessellation, and define the measure
ψ := H0(Ψ∩·). While we would expect that ψ is a point process (i.e., that it is measurable),
we have not proved this in general (unlike in the case of χ), so we leave this as an open
problem and include the measurability as an assumption in the next result.

Theorem 3.4 (Intensity of cells). Suppose Q has the rectifiable Jordan and non-
containment properties, and either has the piecewise C1 Jordan property or is rota-
tion invariant. Assume that β3 <∞, and E [R2] <∞, and that ψ is a point process. Then
ψ is a stationary point process, and its intensity, denoted β1, is given by β1 = β3/2. In
particular, if Q is rotation invariant, then

β1 = (πλ2)−1(E [H1(∂S)])2. (3.3)

Remarks. Our formula for the intensity of φ in Theorem 3.1 agrees with that of [6, p.
57] but is considerably more general. In [6] it is assumed that Q is such that a random
set S with distribution Q is a uniform random rotation of a fixed polygon S0. In [6, Sec.
7] there is some discussion on generalising to the case where S0 is non-polygonal, but
it is still taken to be a fixed set. Similarly, Equations (3.2) and (3.3) also generalize
formulae in [6].

Theorem 3.3 is perhaps intuitively obvious, but a careful proof seems to require some
effort. As well as being of interest in itself, the connectivity of Φ is required for the proof
of Theorem 3.4.

The reason we require Q to have the Jordan and non-containment properties in
Theorem 3.4, is because the proof relies on a topological argument based on the cell
boundaries of the DLM tessellation forming a connected planar graph with all vertices
of degree 3. The Jordan property (requiring all leaves to be connected with a Jordan
curve boundary) could be relaxed to a requirement that every leaf has a finite (and
uniformly bounded) number of components, each with a Jordan curve boundary; the
key requirement here is to avoid having leaves which are one-dimensional sticks or
have boundary shaped like a figure 8 or letter b, for example, since then there would
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be vertices of degree other than 3. The non-containment condition is needed to ensure
that the planar graph of boundaries is connected. If it fails (but the Jordan condition
holds) then one may still deduce in a more general version of Theorem 3.4 that β3/2 is
the density of faces minus the density of ‘holes’, where by a ‘hole’ we mean a bounded
component of the union of cell boundaries.

Examples. If the leaves are all a fixed convex set S0 with 0 < H2(S0) < ∞, then
using Theorem 3.4 and (3.1) we have

β1 = β3/2 = (H2(S0))−2H2(S0 ⊕ Š0),

where Š0 := {−x : x ∈ S0}. Therefore, if moreover S0 is symmetric (i.e. S0 = Š0; for
example if S0 is a fixed rectangle or circle centred on the origin), then β1 = 4/H2(S0).

On the other hand, if each leaf is a uniformly distributed random rotation of a unit
square, then (3.3) gives us β1 = 16/π.

Recall the definitions of R0, Wn, Tn and R from Section 1.3, and of φ, φt from the
start of this section.

Theorem 3.5 (Asymptotic covariance for edge length). Suppose E [(H1(∂S))2] < ∞
and E [R4] < ∞. Let f ∈ R0. Then n−1Var[φ(Tn(f))] → σ2

2‖f‖22 as n → ∞, with
σ2

2 := v1 + v2 − v3, where we set

v1 := E

∫
∂S

∫
∂S

λ−1
y−xH1(dx)H1(dy), (3.4)

v2 := λ−2(EH1(∂S))2

∫
R2

((2λ/λx)− 1)dx, (3.5)

and

v3 := λ−1 (E [H1(∂S)])E

∫
∂S

(∫
S

(2/λy−x)dy

)
H1(dx), (3.6)

and the quantities v1, v2, v3 are all finite. More generally, for t, u ∈ R and f, g ∈ R0,

lim
n→∞

n−1Cov(φt(Tn(f)), φu(Tn(g))) = σ2
2〈f, g〉 exp(−λ|u− t|)

=: κ2((f, t), (g, u)). (3.7)

We now provide a central limit theorem for φ(Wn), under the assumption that the
leaves are uniformly bounded together with a moment condition on H1(∂S).

Theorem 3.6 (CLT for the length of tessellation boundaries). Suppose for some ε, r0 ∈
(0,∞) that E [(H1(∂S))2+ε] <∞ and P[R ≤ r0] = 1. Then

n−1/2(φ(Wn)− Eφ(Wn))
D−→ N (0, σ2

2), (3.8)

where σ2 is as given in Theorem 3.5. More generally, the finite-dimensional distributions
of the random field (n−1/2(φt(Tn(f))−E [φt(Tn(f))]), f ∈ R0, t ∈ R) converge to those of
a centred Gaussian random field with covariance function κ2((f, t), (g, u)) given by (3.7).

Theorem 3.7 (Functional CLT for the length of tessellation boundaries). Suppose for
some ε, r0 ∈ (0,∞) that E [(H1(∂S))4+ε] < ∞ and P[R ≤ r0] = 1. Let f ∈ R0. Then
(n−1/2(φt(Tn(f)) − E [φt(Tn(f))]), t ∈ R) converges in distribution as n → ∞, in the
space D(−∞,∞), to the stationary Ornstein-Uhlenbeck process with covariance function
κ2((f, t), (f, u)).

Remarks. The limiting Gaussian process in the preceding theorem is a station-
ary Ornstein-Uhlenbeck process. Similar remarks to those made after Theorem 2.5,
regarding possible extensions to the result above, apply here.
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It should be possible to adapt the conditional variance argument of Avram and
Bertsimas [1] to show the proportionate variance of φ(Wn) is bounded away from zero,
so that σ2

2 is strictly positive.

4 Dead leaves random measures

In this section we present some results for the DLM in arbitrary dimension d ∈ N
(which we shall prove in Section 6), which enable us to consider some of the results
already stated in a unified framework and also to indicate further results on dead-leaves
type models that can be derived similarly.

It is convenient here to consider a slightly more general setting than before. We
augment our mark space (previously taken to be C) to now be the space C ×M. Let Q′

denote a probability measure on C ×M with first marginal Q. Assume that our Poisson
process P =

∑∞
i=1 δ(xi,ti) in Rd × R is now independently marked using a sequence

(Si,Mi)i≥1 of independent random elements of C ×M with common distribution Q′. With
each point (xi, ti) of P we associate a ‘leaf’ Si + xi and also a measure Mi + xi, where
(µ+ x)(A) := µ(A+ (−x)) for any (µ, x) ∈M×Rd and A ∈ Bd. For each i the measure
Mi + xi is added at time ti but is then restricted to the complement of regions covered
by later arriving leaves Sj + xj , as they arrive. Thus, at time t ∈ R we end up with a
measure

ξt :=
∑
{i:ti≤t}

(Mi + xi)(· ∩Rd \ ∪{j:ti<tj≤t}(Sj + xj)), (4.1)

which we call the dead leaves random measure (DLRM) at time t. We also define the
time-reversed DLRM (at time zero) by

ξ :=
∑
{i:ti≥0}

(Mi + xi)(· ∩Rd \ ∪{j:0≤tj<ti}(Sj + xj)), (4.2)

Here are some examples of how to specify a type of distribution Q′ that yields a
resulting DLRM of interest. In these examples, to describe Q′ we let (S,M) denote a
random element of C ×M having the distribution Q′, and we describe the interpretation
of the resulting DLRM. Often we take M to be supported by S but this is not essential.

• Let M(·) := Hd−1(∂S ∩ ·). Then (see Proposition 4.4 below), the resulting DLRM is
ξt = Hd−1(Φt ∩ ·), where Φt is the set of points in the union of all cell boundaries
of the DLM tessellation at time t. Similarly, ξ = Hd−1(Φ ∩ ·). For d = 1, this ξ is
the same as the measure η considered earlier. For d = 2, this ξ is the same as the
measure φ considered earlier.

• Take d = 2 and let M be the counting measure supported by the set of corners
of S (counting measures are defined in e.g. [19]). Here we could be assuming
that the shape S is almost surely polygonal, or more generally, that its boundary is
almost surely a piecewise C1 Jordan curve. We defined a ‘corner’ of such a curve in
Section 1.3. The resulting measure ξ is the counting measure supported by the set
of corners of the boundaries of the DLM tessellation, which has been considered in
[6].

• Colour Dead Leaves Model (CDLM). Let each leaf have a ‘colour’ (either 1 or 0) and
let M be Lebesgue measure restricted to S (if the colour is 1) or the zero measure
(if the colour is 0). Then ξ is Lebesgue measure restricted to those visible leaves
which are coloured 1. The CDLM was introduced by Jeulin in [12] (see also [15]),
and is the basis of the percolation problems considered in [2, 24].

• Dead Leaves Random function (DLRF). Let M have a density given by a random
function f : Rd → R+ with support S (representing for example the level of
‘greyscale’ on the leaf S). Then ξ is a measure with density at each site x ∈ Rd
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given by the level of greyscale on the leaf visible at x. The DLRF has been proposed
by Jeulin [15] for modelling microscopic images.

• Seeds and leaves model. Imagine that at each ‘event’ of our Poisson process the
arriving object is either a random finite set of points (seeds) or a leaf. Thus for the
random Q′-distributed pair (S,M), either M is a finite sum of Dirac measures and
S is the empty set, or M is the zero measure and S is a non-empty set in C (a leaf).
The point process ξt will then represent the set of locations of seeds on the ground
that are visible (i.e., not covered by leaves) at time t. It might be that these are
the seeds which have potential to grow into new trees, or that they are the seeds
which get eaten.

We now give some general results on the DLRM. In applying these results elsewhere
in this paper, we concentrate on the first of the examples just listed. However, the
general results could similarly be applied to the other examples. In the following results,
(S,M) denotes a random element of C ×M with distribution Q′, and we write |M | for
M(Rd). We define λ, λx, R and Wn as in Section 1.3.

Theorem 4.1 (Intensity of ξ). Assume Q′ is such that E [|M |] < ∞, and also E [Hd(S ⊕
B(1))] < ∞. Then ξ defined at (4.2) is a stationary random measure and its intensity,
denoted α, is given by

α = λ−1E [|M |]. (4.3)

Theorem 4.2 (Asymptotic covariance for the DLRM). Suppose E [|M |2] <∞ and E [R2d] <

∞. Let f ∈ R0. Then n−1Var[ξ(Tn(f))]→ σ2
0‖f‖22 as n→∞, where we set σ2

0 := v4+v5−v6

with

v4 := E

∫
Rd

∫
Rd

λ−1
y−xM(dy)M(dx), (4.4)

v5 := λ−2(E [|M |])2

∫
Rd

((2λ/λx)− 1)dx, (4.5)

and

v6 := λ−1E [|M |]E
[∫
Rd

(∫
S

(2/λy−x)dy

)
M(dx)

]
, (4.6)

and the quantities v4, v5, v6 are all finite. More generally, for t, u ∈ R, f, g ∈ R0,

lim
n→∞

n−1Cov(ξt(Tn(f)), ξu(Tn(g))) = σ2
0〈f, g〉 exp(−λ|u− t|) (4.7)

=: κ0((f, t), (g, u)). (4.8)

Theorem 4.2 does not rule out the possibility that σ0 could be zero. Our formula
for σ2

0 has some resemblance for the formula for the asymptotic variances of certain
measures associated with the Boolean model in [10, eqn (7.3)]. There is a certain
similarity between the manner in which these measures are defined in [10], and the
DLRMs considered here. However there is no time-parameter in the definition of the
Boolean model.

Theorem 4.3 (CLT for the DLRM). (a) Suppose for some ε, r0 ∈ (0,∞) that E [|M |2+ε] <∞,
M is supported by the ball B(r0) almost surely, and that R ≤ r0 almost surely. Then
with σ0 given in Theorem 4.2, the finite-dimensional distributions of the random field
n−1/2(ξt(Tn(f))−E [ξt(Tn(f))])f∈R0,t∈R converge to those of a centred Gaussian random
field with covariance function κ0((f, t), (g, u)) given by (4.8). In particular,

n−1/2(ξ(Wn)− E [ξ(Wn)])
D−→ N (0, σ2

0). (4.9)
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(b) Suppose in addition that E [|M |4+ε] <∞ for some ε > 0. Let f ∈ R0. Then as n→∞
the process n−1/2(ξt(Tn(f))−E [ξt(Tn(f))])t∈R converges in distribution (in D(−∞,∞))
to the stationary Ornstein-Uhlenbeck process with covariance function κ0((f, t), (f, u)).

Our proof of (4.9) provides a rate of convergence (using the Kolmogorov distance)
to the normal in (4.9), and hence also in Theorems 2.5 and 3.6. Under a stronger
moment condition, namely E [|M |3+ε] <∞, one can adapt the proof (which is based on
the Chen-Stein method) to make the rate of convergence presumably optimal.

It would be of interest to derive a functional CLT for the DLRM starting from the
zero measure at time 0 (rather than starting from equilibrium as we have taken here).
It may be possible to do this using [28, Theorem 3.3]; the evolving DLRM fits into the
general framework of the spatial birth, death, migration and displacement process in
[28, Section 4.1]. It is not so clear whether results from [28] can be used directly in the
present setting where the DLM starts in equilibrium, although the argument used here
is related to that in [28].

It would also be of interest to extend these CLTs to cases where there is no uniform
bound r0 on the range of the support of M and the value of R. We would expect that the
uniform boundedness condition could be replaced by appropriate moment conditions,
but we leave this for future work. There are several approaches to proving central
limit theorems for Boolean models (see for example in [10, 27, 11]), which allow for
unbounded grains and might be adaptable to the dead leaves setting.

Our last result in this section confirms that the surface measure Hd−1(Φ ∩ ·) of the
DLM can be obtained as a special case of the DLRM.

Proposition 4.4. Let Q′ be such that M(·) := Hd−1(∂S ∩ ·). Assume that Condition
1.1 holds, and that Hd−1(∂S) < ∞ almost surely. Then the resulting DLRM is ξt =

Hd−1(Φt ∩ ·), where Φt is the set of points in the union of all cell boundaries of the DLM
tessellation at time t. Similarly, ξ = Hd−1(Φ ∩ ·).

5 Buffon’s noodle and Poincaré’s formula

The classical Buffon’s needle problem may be phrased as follows. If one throws a stick
(straight, and of zero thickness) at random onto a wooden floor (so both its location and
its orientation are random and uniform), then how often does one expect to see it cross
the cracks between floorboards? The generalization to a possibly curved stick has been
wittily christened Buffon’s noodle. What we require here is a further variant, concerned
with the expected number of crossings for two curved sticks thrown at random onto
a carpeted floor. This has been referred to as Poincaré’s formula [20], although in an
earlier version of the present paper [29] we called it the two noodle formula.

Lemma 5.1 (Poincare’s ‘two noodle’ formula). Let γ and γ′ be rectifiable curves in R2.
Then ∫ π

−π

∫
R2

H0 (γ ∩ (ρθ(γ
′) + x)) dxdθ = 4H1(γ)H1(γ′). (5.1)

In other words, if γ′ is rotated uniformly at random, and translated by a random
amount uniformly distributed over a large region A, then the expected number of times
it intersects γ is equal to (2/π) times the product of the lengths of γ and γ′, divided by
the area of A. Lemma 5.1 follows from [38, Theorem 1.5.1]. In the special case where γ
and γ′ are piecewise C1, an elementary proof of (5.1) may be found in [29].

Given rectifiable curves γ and γ′ in R2, we say that γ and γ′ cross at a point x ∈ γ ∩ γ′
if x is not an endpoint of γ or γ′, and γ passes from one side of γ′ to the other at x, where
the ‘sides’ of γ′ in a neighbourhood of x can be defined by extending γ to a Jordan curve
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and taking the two components of its complement. We say that γ and γ′ touch at x if
x ∈ γ ∩ γ′ but γ and γ′ do not cross at x.

We say that γ and γ′ touch if there exists z ∈ R2 such that they touch at z. As well as
Lemma 5.1, in the proof of (3.2) and (3.3) we require the following.

Lemma 5.2. Suppose γ and γ′ are rectifiable curves in R2. For Lebesgue-almost every
(z, θ) ∈ R2 × (−π, π], the set ρθ(γ′) + z does not touch γ.

Lemma 5.3. Suppose γ and γ′ are piecewise C1 curves in R2. For Lebesgue-almost
every z ∈ R2, the set γ′ + z does not touch γ.

We shall prove Lemmas 5.2 and 5.3 later in this section. The proof of Lemma 5.2
is very short, but heavily reliant on results in [20, 38]. In the case where γ and γ′ are
piecewise C1, the conclusion of Lemma 5.2 can alternatively be derived from Lemma
5.3; we shall provide an elementary proof of the latter result.

As a slight digression, we also state the Buffon’s noodle result mentioned above.

Theorem 5.4 (Buffon’s noodle). Let γ be a rectifiable curve in R2. Let a > 0. For i ∈ Z,
let Li denote the horizontal line {(x, y) : y = i}. If Y and Θ denote independent random
variables, uniformly distributed over [0, a) and (−π, π) respectively, then

E

[∑
i∈Z
H0(Li ∩ (ρΘ(γ) + (0, Y )))

]
= (2/(πa))H1(γ). (5.2)

This result is well known, though not all of the proofs in the literature are complete.
It can be deduced from Lemma 5.1, but we do not give the details here. For further
discussion and a proof of Theorem 5.4 in the piecewise C1 case, see [29].

Proof of Lemma 5.2. Given rectifiable curves γ and γ′ in R2, let γ � γ′ be the set of
points at which γ crosses γ′. It is proved in [20] that∫ π

−π

∫
R2

H0(γ � (ρθ(γ
′) + x))dxdθ = 4H1(γ)H1(γ′),

and combined with (5.1), this gives us the result.

In the rest of this section we prove Lemma 5.3.
Given C1 curves γ and γ′ in R2, we shall say that they graze at a point z ∈ R2, if

z ∈ γ ∩ γ′ but z is not one of the endpoints of γ or γ′, and γ, γ′ have a common tangent
line at z (in [29] we used the term ‘touch’ for this notion). We say that γ and γ′ graze if
they graze at z for some z ∈ R2.

We say that a C1 curve γ in R2 is almost straight, if all lines tangent to γ are an angle
of at most π/99 to each other. Observe that if γ is almost straight, then there exists
θ ∈ [−π, π) such that ρθ(γ) is the graph of a C1 function defined on an interval.

Lemma 5.5. Suppose γ and γ′ are C1 curves in R2, and γ is almost straight. Assume
there exist an interval [a, b] and a function f ∈ C1([a, b]) such that

γ = {(x, y) : a ≤ x ≤ b, y = f(x)} (5.3)

with f ′(x) = 0 for some x ∈ (a, b). Then∫ ∞
−∞

1{γ′ + (0, v) grazes γ}dv = 0. (5.4)

Proof. Without loss of generality we may assume γ′ is also almost straight, since if not,
we may break γ′ into finitely many almost straight pieces. We claim that we may also
assume that the locus of γ′ takes a similar form to that of γ, namely

γ′ = {(x, y) : a′ ≤ x ≤ b′, y = g(x)} (5.5)
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for some a′ < b′ and and for some C1 function g : [a′, b′] → R. Indeed, if γ′ cannot be
expressed in this form then it must have a vertical tangent line somewhere, but in this
case, since both γ and γ′ are assumed almost straight and γ has at least one horizontal
tangent line, it is impossible for any translate of γ′ to be tangent to γ.

By (5.5) we have for all v ∈ R that

γ′ + (0, v) = {(x, y) : a′ ≤ x ≤ b′, y = g(x) + v}

and therefore comparing with (5.3) we see that if γ′ + (0, v) grazes γ, then for some
x ∈ [a, b]∩ [a′, b′], we have both g(x) + v = f(x), and g′(x) = f ′(x). In other words, setting
h = f − g, we have that

{v : γ′ + (0, v) grazes γ} ⊂ {h(x) : x ∈ [a, b] ∩ [a′, b′] and h′(x) = 0}
= h(A), (5.6)

where we set A := {x ∈ [a, b]∩ [a′, b′] : h′(x) = 0}. Given n ∈ N, divide [a, b]∩ [a′, b′] into n
intervals of equal length, denoted In,1, . . . , In,n. Let An be the union of those intervals
In,i having non-empty intersection with A. That is, set An := ∪i∈InIn,i with

In := {i ∈ {1, . . . , n} : In,i ∩A 6= ∅}.

Since h ∈ C1, the derivative h′ is uniformly continuous on [a, b] ∩ [a′, b′]. Therefore, given
ε > 0, we can choose n large enough so that for all i ∈ In we have |h′(x)| ≤ ε for all
x ∈ In,i. Hence, for all such i, by the mean value theorem, with H1 denoting Lebesgue
measure we have H1(h(In,i)) ≤ εH1(In,i). Thus

H1(h(A)) ≤ H1(h(An)) ≤
∑
i∈In

H1(h(In,i)) ≤ ε
∑
i∈In

H1(In,i) ≤ ε(b− a),

and hence, since ε is arbitrarily small, H1(h(A)) = 0. Therefore by (5.6) we have (5.4),
as required.

Proof of Lemma 5.3. We can and do assume without loss of generality that both γ and γ′

are C1 (not just piecewise C1), and moreover that they are almost straight. It is enough
to prove the result for ρθ(γ) and ρθ(γ′) for some θ ∈ (−π, π] (rather than for the original γ,
γ′) and therefore we can (and do) also assume there exists an interval [a, b] and function
f ∈ C1([a, b]) such that (5.3) holds.

Under these assumptions, applying (5.4) to the curve γ′x := γ′ + (x, 0) instead of γ′

shows that∫ ∞
−∞

∫ ∞
−∞

1{γ′ + (x, y) grazes γ}dydx =

∫ ∞
−∞

∫ ∞
−∞

1{γ′x + (0, y) grazes γ}dydx = 0,

and hence the set of z = (x, y) such that γ′ + z grazes γ is Lebesgue null.

Let γ0, γ1 denote the endpoints of γ and γ′0, γ
′
1 the endpoints of γ′. If γ and γ′ + z

touch but do not graze for some z ∈ R2, then either γi ∈ γ′ + z or γ′i + z ∈ γ for some
i ∈ {0, 1}. Since γ′ is rectifiable we have for i = 0, 1 that∫

R2

1γ′+z(γi)dz =

∫
R2

1γ′(γi + (−z))dz = H2(γ′) = 0,

and similarly
∫
R2 1γ(γ′i + z)dz = 0. Hence the set of z ∈ R2 such that γ and γ′ + z touch

but do not graze is also Lebesgue null.
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6 Proof of results for the DLRM

Throughout this section (S,M) and (S′,M ′) denote independent random elements of
C ×M with common distribution Q′.

Lemma 6.1. Suppose Q is such that E [Hd(S ⊕ B(1))] < ∞. Then for any K ∈ (0,∞),
with probability 1 only finitely many of the sets Sj+xj with −K ≤ tj ≤ K have non-empty
intersection with B(K).

Proof. The number of sets Sj + xj that intersect B(1) and have |tj | ≤ K is Poisson with
mean

2K

∫
Rd

dx

∫
C
Q(dσ)1{(σ + x) ∩B(1) 6= ∅} = 2K

∫
C
Q(dσ)

∫
Rd

1σ⊕B(1)(−x)dx,

which is finite by the assumption E [Hd(S⊕B(1))] <∞. Hence, almost surely, (Sj +xj)∩
B(1) 6= ∅ for only finitely many j with −K ≤ tj ≤ K. Since we can cover B(K) with
finitely many translates of B(1), the result follows.

Lemma 6.2. Suppose E [Hd(S ⊕B(1))] <∞. Then the time-reversed DLRM ξ is indeed
a random measure, and so is the DLRM ξt for all t ∈ R.

Proof. We prove just the first assertion (the proof of the second assertion is similar). It
suffices to show, for arbitrary bounded Borel A ⊂ Rd, that ξ(A) is a random variable. By
the definition (4.2),

ξ(A) =

∞∑
i=1

(Mi + xi)(A \ ∪{j:0≤tj<ti}(Sj + xj))1{ti ≥ 0},

and it suffices to prove that each summand is a random variable. Choose r1 such that
A ⊂ Bo(r1), where Bo(r1) is the interior of the ball B(r1). Fix i ∈ N. By Lemma 6.1,
with probability 1 only finitely many of the sets Sj + xj with 0 ≤ tj < ti have non-empty
intersection with Bo(r1). Therefore the set

U := Bo(r1) \ ∪{j:0≤tj<ti}(Sj + xj)

is open.

Given n ∈ N, partition Rd into cubes of the form [0, 2−n)d + 2−nz with z ∈ Zd. Let the
cubes in the partition that are contained in Bo(r1) be denoted Qn,1, . . . , Qn,mn . Let Un
be the union of cubes of the form Qn,k with 1 ≤ k ≤ mn and Qn,k ⊂ U . Since U is open
we have Un ↑ U , and so by monotone convergence,

(Mi + xi)(A \ ∪{j:0≤tj<ti}(Sj + xj))1{ti ≥ 0} = lim
n→∞

(Mi + xi)(A ∩ Un)1{ti ≥ 0}

= lim
n→∞

mn∑
k=1

(Mi + xi)(A ∩Qn,k)1{Qn,k ∩ ∪{j:0≤tj<ti}(Sj + xj) = ∅}1{ti ≥ 0},

and we claim that this is a random variable. For example, if Qn,k = [0, 1)d, then for each
j we have

{(Sj + xj) ∩Qn,k = ∅} = ∩∞n=2{(Sj + xj) ∩ [0, 1− 1/n]d} = ∅}

which is an event by the definition of the Fell topology and the fact that Sj + xj is a
random element of K by [33, Theorem 2.4.3], for example.
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Lemma 6.3. For (x, t) ∈ Rd × R+ let Ex,t be the event that the site x is exposed (i.e.,
not already covered) just before time t, in the time-reversed DLM. That is, let

Ex,t := {x /∈ ∪{i:0≤ti<t}(Si + xi)}. (6.1)

Then with λ and λx defined at (1.3), for all x, y ∈ Rd, t ≥ 0 and u ∈ [t,∞) we have

P[Ex,t ∩ Ey,u] = exp(−λy−xt− λ(u− t)). (6.2)

In particular P[Ex,t] = exp(−λt).

Proof. We first prove (6.2) in the case with u = t. The number of i with {x, y}∩(Si+xi) 6=
∅ and ti ∈ [0, t) is Poisson distributed with parameter

t

∫
C

∫
Rd

1{{x, y} ∩ (σ + z) 6= ∅}dzQ(dσ) = t

∫
C

∫
Rd

1(σ+(−x))∪(σ+(−y))(−z)dzQ(dσ)

= t

∫
C
Hd((σ + (−x)) ∪ (σ + (−y)))Q(dσ) = tλx−y,

and since λx−y = λy−x this gives us (6.2) for u = t. Taking y = x gives us also that
P[Ex,t] = e−λt. Finally, for u > t, by the independence property and time-homogeneity of
the Poisson process

∑
i δ(xi,ti,Si) we have that

P[Ex,t ∩ Ey,u] = P[Ex,t ∩ Ey,t]P[Ey,u−t] = exp(−tλy−x)× exp(−(u− t)λ),

which gives us (6.2) in general.

Proof of Theorem 4.1. By Lemma 6.2, ξ is a random measure. It is easy to see that this
random measure is stationary. Recalling (4.2), and using the Mecke formula (see [19]),
and the notation from (6.1), we have that

α = E [ξ([0, 1]d)]

=

∫
C×M

Q′(d(σ, µ))

∫ ∞
0

dt

∫
Rd

dx

∫
Rd

µ(dy)1[0,1]d(x+ y)P[Ex+y,t].

Hence by Lemma 6.3 and Fubini’s theorem,

α =

∫
C×M

∫
Rd

∫ ∞
0

exp(−λt)dtµ(dy)Q′(d(σ, µ)) = λ−1E [|M |].

That is, we have (4.3).

Proof of Theorem 4.2. Let f ∈ R0 and t ∈ R. We first prove (4.7) in the special case
where g = f and u = t. For each n set fn := Tn(f) and Zn := ξ(fn). Then E [Z2

n] = an+bn,
where we set

an := E
∑
{i:ti≥0}

(∫
Rd

fn(x)(1− 1∪{k:0≤tk<ti}(Sk+xk)(x))(Mi + xi)(dx)

)2

,

and

bn := E
∑
{i:ti≥0}

∑
{j:tj≥0,j 6=i}

∫
Rd

fn(x)(1− 1∪{k:0≤tk<ti}(Sk+xk)(x))(Mi + xi)(dx)

×
∫
Rd

fn(y)(1− 1∪{k:0≤tk<tj}(Sk+xk)(y))(Mj + xj)(dy).
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In what follows, we adopt the convention that any unspecified domain of integration is
taken to be Rd. By the Mecke formula

an =

∫
C×M

Q′(d(σ, µ))

∫
dx

∫ ∞
0

dt

×E

[(∫
fn(y)(1− 1∪{k:0≤tk<t}(Sk + xk)(y))(µ+ x)(dy)

)2
]
,

so using notation Ex,t from Lemma 6.3,

an =

∫
C×M

Q′(d(σ, µ))

∫
dx

∫ ∞
0

dtE

[∫
1Ey,t

× fn(y)(µ+ x)(dy)

×
∫

1Ez,t × fn(z)(µ+ x)(dz)

]
.

Changing variables to ỹ = y − x and z̃ = z − x we obtain that

an =

∫
C×M

Q′(d(σ, µ))

∫
dx

∫ ∞
0

dtE

[∫
1Ex+ỹ,t

fn(x+ ỹ)µ(dỹ)

×
∫

1Ex+z̃,tfn(x+ z̃)µ(dz̃)

]
.

Now writing y for ỹ and z for z̃, using Fubini’s theorem and Lemma 6.3, followed by a
change of variable x̃ = x+ y, we have

an =

∫
C×M

Q′(d(σ, µ))

∫
dx

∫ ∞
0

dt

∫
Rd

µ(dy)

∫
Rd

µ(dz)e−λz−ytfn(x+ y)fn(x+ z)

=

∫
C×M

Q′(d(σ, µ))

∫
Rd

µ(dy)

∫
Rd

µ(dz)λ−1
z−y

∫
dx̃fn(x̃)fn(x̃+ z − y).

Using the further change of variables x′ := n−1/dx̃, we have for almost all x′ ∈ Rd and
all (z, y) that fn(n1/dx′ + z − y) → f(x′) as n → ∞ (because we assume f ∈ R0), so by
the dominated convergence theorem n−1an → v4‖f‖22, with v4 given by (4.4), and v4 is
finite because we assume E [|M |2] <∞, and because λz ≥ λ > 0 for all z ∈ Rd.

By the multivariate Mecke formula (see e.g. [19, page 30]),

bn = 2

∫
C×M

Q′(d(σ, µ))

∫
C×M

Q′(d(σ′, µ′))

∫ ∞
0

ds

∫ ∞
s

dt

∫
du

∫
dv

×E
∫

1Ex,s
fn(x)(µ+ u)(dx)

∫
1Ey,t

fn(y)1{y /∈ σ + u}(µ′ + v)(dy).

Then by Fubini’s theorem and the changes of variables x̃ = x− u and ỹ = y − v,

bn = 2

∫
C×M

Q′(d(σ, µ))

∫
C×M

Q′(d(σ′, µ′))

∫ ∞
0

ds

∫ ∞
s

dt

∫
du

∫
dv

×
∫ ∫

fn(u+ x̃)fn(v + ỹ)P[Eu+x̃,s ∩ Ev+ỹ,t]1{v + ỹ /∈ σ + u}µ(dx̃)µ′(dỹ).

By the law of total probability, the two outer integrals may be written as expectations
with respect to (S,M) and (S′,M ′). Using also Lemma 6.3, and writing just x for x̃ and y
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for ỹ, we obtain that

bn = 2E

∫
du

∫
dv

∫ ∞
0

ds

∫ ∞
s

dt

∫
Rd

M(dx)

∫
Rd

M ′(dy)fn(u+ x)fn(v + y)

×1{v + y /∈ S + u} exp(−λv+y−u−xs)e
−λ(t−s)

= 2E

∫
du

∫
dv

∫
M(dx)

∫
M ′(dy)1{v + y /∈ S + u}λ−1

v+y−u−xλ
−1

×fn(u+ x)fn(v + y).

On the other hand, (EZn)2 = λ−2(E |M |)2(
∫
fn(x)dx)2 by Theorem 4.1 and Campbell’s

formula (see e.g. [19, page 128]). Setting w = v − u and ũ = u+ x, we may deduce that

bn − (EZn)2 = λ−1E

∫
dũ

∫
dw

∫
M(dx)

∫
M ′(dy)fn(ũ)fn(ũ+ w + y − x)

×(2λ−1
w+y−x1{w + y /∈ S} − λ−1).

Now take u′ = n−1/dũ. For almost every u′ ∈ Rd, and all (w, x, y), we have that fn(n1/du′+

w + y − x)→ f(u′) as n→∞. Hence using dominated convergence, we find that

n−1(bn − (EZn)2)→ λ−1‖f‖22E
∫
dw

∫
M(dx)

∫
M ′(dy)

(
21{w + y /∈ S}

λw+y−x
− 1

λ

)
= (v′5 − v′6)‖f‖22,

where we set

v′5 := λ−1E

∫
dw

∫
M(dx)

∫
M ′(dy)

(
2

λw+y−x
− 1

λ

)
,

and

v′6 := λ−1E

∫
dw

∫
M(dx)

∫
M ′(dy)

(
21{w + y ∈ S}

λw+y−x

)
.

Then we obtain that n−1Var[Zn]→ (v4 + v′5 − v′6)‖f‖22.
Now setting w′ := w + y, we obtain that

v′6 = λ−1E

∫
M(dx)

∫
M ′(dy)

∫
S

dw′(2/λw′−x) = v6,

with v6 given by (4.6). Also, setting v = w + y − x yields that

v′5 = λ−1E

∫
M(dx)

∫
M ′(dy)

∫
dv

(
2λ− λv
λλv

)
= v5,

where v5 is given by (4.5). The integral in (4.5) is finite because (2λ− λx)/λx is bounded
above by a constant times E [Hd(S ∩ (S + x))], and with R given by (1.4),

E

∫
Hd(S ∩ (S + v))dv ≤ E

[
Hd(S)

∫
B(2R)

dv

]
≤ 2dπ2

dE [R2d].

Thus we have the case t = u and f = g of (4.7). We can then deduce the case of (4.7)
with t = u but with general f, g ∈ R0, by polarisation (see e.g. [19, page 192]).

Finally we need to prove (4.7) in general. Without loss of generality, we assume u > t.
Write gn for Tn(g). Then we may write ξu(gn) := X + Y , where

X :=

∫
gn(x)(1− 1∪i:t<ti≤u(Si+xi)(x))ξt(dx),
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and Y denotes the sum, over those i for which t < ti ≤ u, of the integral of gn with
respect to the measure (Mi + xi) restricted to regions which do not subsequently get
covered between times ti and u, i.e.

Y :=
∑

i:t<ti≤u

∫
gn(x)(1− 1∪{j:ti<tj≤u}(Sj+xj)(x))(Mi + xi)(dx).

Let Ft denote the σ-algebra generated by all Poisson arrivals and associated marks up
to time t. Then by Lemma 6.3,

E [X|Ft] =

∫
Rd

gn(x)e−λ(u−t)ξt(dx) = eλ(t−u)ξt(gn).

Also Y is independent of Ft and by the Mecke formula and Fubini’s theorem,

E [Y |Ft] = E [Y ] = E

∫
dx

∫ u

t

ds

∫
M(dy)gn(x+ y) exp(−λ(u− s))

= nλ−1(1− eλ(t−u))E [|M |]
∫
g(x)dx.

Hence,

E [ξu(gn)|Ft] = E [X + Y |Ft]

=

(
nλ−1E [|M |]

∫
g(x)dx

)
+ eλ(t−u)

(
ξt(gn)− nλ−1E [|M |]

∫
g(x)dx

)
. (6.3)

For all h ∈ R0, set ξ̃t(h) = ξt(h) − E ξt(h). By Theorem 4.1 and Campbell’s formula,
E [ξt(h)] = λ−1E [|M |]

∫
h(x)dx. Therefore by (6.3), E [ξ̃u(gn)|Ft] = eλ(t−u)ξ̃t(gn). Thus,

since ξt(fn) is Ft-measurable,

n−1Cov(ξt(fn), ξu(gn)) = n−1E [ξ̃t(fn)ξ̃u(gn)] = n−1E [ξ̃t(fn)E [ξ̃u(gn)|Ft]]
= n−1E [ξ̃t(fn)eλ(t−u)ξ̃t(gn)],

and by the case of (4.7) already proved, this tends to eλ(t−u)σ2
0〈f, g〉 as n→∞. Thus we

obtain the general case of (4.7).

We now work towards proving Theorem 4.3. Recall the notation W1 := [0, 1]d.

Lemma 6.4. Suppose for some q ≥ 1, r0 ∈ (0,∞) that E [|M |q] <∞, and almost surely,
R ≤ r0 and M is supported by the ball B(r0). Then E [ξ(W1)q] <∞.

Proof. Let I := {i ∈ N : (xi, ti) ∈ B(r0 + d) × R+}, and enumerate this set as I =

{j(1), j(2), j(3), . . . } with 0 ≤ tj(1) < tj(2) < tj(3) < · · · . Let

N := min{k : W1 ⊂ ∪ki=1(Sj(i) + xj(i))}. (6.4)

We prove first that all moments of N are finite. For x ∈ Rd, r > 0 set B(x, r) := B(r) + x.
Recall from Section 4 that we assume Q′ has first marginal Q, and from Section 1.1 that
we assume there exist x∗ ∈ Rd and r2 > 0 such that Q({σ : B(x∗, 2r2) ⊂ σ}) > 0. We may
assume without loss of generality that x∗ is the origin.

Choose m ∈ N and y1, . . . , ym ∈ Rd such that W1 ⊂ ∪mi=1B(yi, r1). For k = 1, 2, . . . ,m

set
Nk := min{n ∈ N : xj(n) ∈ B(yk, r2) and B(2r2) ⊂ Sj(n)}.

Then B(yk, r2) ⊂ Sj(Nk) + xj(Nk) for each k, and hence N ≤ max(N1, . . . , Nm). Also each
of N1, . . . , Nm has a geometric distribution with strictly positive parameter. It follows
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that N has finite moments of all orders as claimed, since for each r ∈ N we have
Nr ≤

∑m
k=1N

r
k and E [Nr

k ] <∞ for each k.

For k ∈ N set Zk := |Mj(k)|. Then ξ(W1) ≤
∑N
i=1 Zi, and by Jensen’s inequality,

E

[(
N∑
i=1

Zi

)q]
≤ E

[
Nq

(
N−1

N∑
i=1

Zqi

)]
= E

[
Nq−1

N∑
i=1

Zqi

]
.

For each i ∈ N, let

Ni := min{k : W1 ⊂ ∪i+k`=i+1(Sj(`) + xj(`))},

which has the same distribution as N . Then N ≤ i+Ni for each i, so that

E [ξ(W1)q] ≤ E

[ ∞∑
i=1

Zqi 1{N≥i}N
q−1

]
≤
∞∑
i=1

E [Zqi 1{N≥i}(i+Ni)
q−1].

For each i the three random variables Zi, 1{N≥i} and Ni are mutually independent, so

E [ξ(W1)q] ≤
∞∑
i=1

E [Zq1 ]P[N ≥ i]E [2q−1(iq−1 +Nq−1)],

which is finite because E [Zq1 ] < ∞ by assumption, while E [Nq] < ∞ as explained
earlier.

Given a finite graph G with vertex set V , we say G is a dependency graph for a
collection of random variables (or random vectors) {Xi, i ∈ V } if for all pairs of disjoint
subsets V1, V2 of V such that there are no edges connecting V1 to V2, the random vectors
(Xi, i ∈ V1) and (Xi, i ∈ V2) are independent of each other. Let |V | denote the number of
elements of V . To derive a central limit theorem we are going to use the following result
from [5, Theorem 2.7]:

Lemma 6.5. Let 2 < q ≤ 3. Let Xi, i ∈ V , be random variables indexed by the vertices
of a dependency graph with maximum degree D. Let W =

∑
i∈V Xi. Assume that

E [W 2] = 1, E [Xi] = 0, and E [|Xi|q] ≤ θq for all i ∈ V and some θ > 0. Then

sup
t∈R
|P[W ≤ t]− P[N (0, 1) ≤ t]| ≤ 75D5(q−1)|V |θq.

Proof of Theorem 4.3 (a). For t ∈ R and f ∈ R0, write ξ̃t(f) for ξt(f) − E [ξt(f)]. Let
k ∈ N and f1, . . . , fk ∈ R0, and t1, . . . , tk ∈ R. Write fn,i for Tn(fi), 1 ≤ i ≤ k. By the
Cramér-Wold theorem [3, page 49], it suffices to prove that

n−1/2
k∑
i=1

ξ̃ti(fn,i)
D−→ N

0,

k∑
i=1

k∑
j=1

κ0((fi, ti), (fj , tj))

 . (6.5)

By Theorem 4.2,

lim
n→∞

Var

[
n−1/2

k∑
i=1

ξ̃ti(fn,i)

]
=

k∑
i=1

k∑
j=1

κ0((fi, ti), (fj , tj)). (6.6)

Partition Rd into half-open rectilinear unit cubes, and denote those cubes in this partition
which intersect the support of at least one of fn,1, . . . , fn,k by Qn,1, . . . , Qn,mn

. Since
f1, . . . , fk are all in R0 and therefore have bounded support, mn = O(n) as n→∞.
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Given n, for 1 ≤ m ≤ mn set

Xn,m :=

∑k
i=1 ξ̃ti(fn,i1Qn,m)√

Var
[∑k

j=1 ξ̃tj (fn,j)
] . (6.7)

Suppose the right hand side of (6.6) is strictly positive. Then the denominator in (6.7) is
Θ(n1/2), and therefore by Lemma 6.4 and the assumption that E [|M |2+ε] <∞, there is a
constant C such that

E [|Xn,m|2+ε/2] ≤ Cn−1−ε/4, 1 ≤ m ≤ mn, n ∈ N.

By our assumption that the random set S and the support of the random measure M
are uniformly bounded, the indices 1 ≤ m ≤ mn of the random variables Xn,m, have a
dependency graph structure with all vertex degrees bounded by a constant independent
of n. Moreover ∑k

i=1 ξ̃ti(fn,i)√
Var(

∑k
j=1 ξ̃tj (fn,j))

=

mn∑
m=1

Xn,m.

Therefore we obtain from Lemma 6.5 that

sup
t∈R

P
 ∑k

i=1 ξ̃ti(fn,i)√
Var(

∑k
j=1 ξ̃tj (fn,j))

≤ t

− P[N (0, 1) ≤ t]

 = O(n−ε/4).

Using (6.6) again, we thus have (6.5), if the right hand side of (6.6) is strictly positive. If
in fact this limit is zero, we still have (6.5) by Chebyshev’s inequality.

The proof of Theorem 4.3(b) is based on the following lemma.

Lemma 6.6. Let −∞ < a < b <∞. Suppose the assumptions of Theorem 4.3 (b) hold.
Let f ∈ R0, and for n ∈ N ∪ {0} set fn := Tn(f). Then there are constants C > 0, ε′ > 0

such that for all s, t, u with a ≤ s < t < u ≤ b,

E [n−2(ξt(fn)− ξs(fn))2(ξu(fn)− ξt(fn))2] ≤ C(u− s)1+ε′ . (6.8)

Proof. Assume initially that 0 ≤ f(x) ≤ 1 for all x ∈ Rd. Also let g ∈ R0 with 0 ≤ g(x) ≤ 1

for all x ∈ Rd, and set gn := Tn(g).
Partition Rd into half-open rectilinear unit cubes, and for n > 0, denote those cubes

in this partition which intersect the support of fn or the support of gn by Qn,1, . . . , Qn,mn
,

with the centres of these cubes denoted qn,1, . . . , qn,mn
respectively. Then mn = O(n) as

n→∞.
Let a ≤ s < t < u ≤ b. For 1 ≤ i ≤ mn, set

Ri := Ri(s, t, u) := ξt(fn1Qn,i
)− ξs(fn1Qn,i

);

Yi := Yi(s, t, u) := ξu(gn1Qn,i
)− ξt(gn1Qn,i

),

and observe that E [Ri] = E [Yi] = 0 by time-stationarity. Let us introduce an adjacency
relationship ∼ on {1, 2, . . . ,mn} whereby i ∼ j if and only if ‖qn,i − qn,j‖ ≤ 3(r0 + d).
Then the degrees of the resulting graph ({1, 2, . . . ,mn},∼) are bounded by a constant,
independent of n. Also, this graph is a dependency graph for the random 2-vectors
(R1, Y1), . . . , (Rmn

, Ymn
). Thus, for i, j, k, ` ∈ {1, 2, . . . ,mn}, we have E [RiRjYkY`] = 0

unless the subgraph of ({1, . . . ,mn},∼) induced by {i, j, k, `} is either connected or has
two connected components of order 2; in the latter case the expectation factorises as
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the product of two expectations of pairwise products. Since ξt(fn)− ξs(fn) =
∑mn

i=1Ri
and ξu(gn)− ξt(gn) =

∑mn

i=1 Yi, we thus have

E [(ξt(fn)− ξs(fn))2(ξu(gn)− ξt(gn))2] = E

mn∑
i=1

mn∑
j=1

mn∑
k=1

mn∑
`=1

RiRjYkY`

≤ Cmn sup
i,j,k,`∈{1,...,mn}

E [RiRjYkY`]

+Cm2
n

(
sup

i,j∈{1,...,mn}
(|E [RiRj ]|+ |E [YiYj ]|+ |E [RiYj ]|)

)2

, (6.9)

where, throughout this proof, C denotes a positive constant independent of s, t, u, n, i, j,
k, and ` which may change from line to line (or even within a line).

Given i and j, let Nij (respectively, N ′ij) be the number of arrivals of P between times
s and t (respectively, between times t and u) within Euclidean distance r0 of Qn,i ∪Qn,j .
Then Nij and N ′ij are independent Poisson variables, each with parameter bounded
by c(u − s), where we may take the constant c to be 2(2r0 + 1)d. Since we assume
a ≤ s < u ≤ b, by the law of the unconscious statistician, for any constant β > 0, and any
i, j, we have

E [Nβ
ij ] ≤

∞∑
k=1

kβ(c(u− s))k

k!
≤ (u− s)

∞∑
k=1

kβ(b− a)k−1ck

k!
. (6.10)

The last sum converges so E [Nβ
ij ] = O(u − s), uniformly in n, i, j, s, t and u. Similarly

E [(N ′ij)
β ] = O(u− s), uniformly in n, i, j, s, t and u.

Given i, j ∈ {1, 2, . . . ,mn}, let

I := {k ∈ N : (xk, tk) ∈ ((B(r0 + d) + qn,i) ∪ (B(r0 + d) + qn,j))× (s,∞)};
I ′ := {k ∈ N : (xk, tk) ∈ ((B(r0 + d) + qn,i) ∪ (B(r0 + d) + qn,j))× (t,∞)}.

Enumerate I = {k(1), k(2), k(3), . . . } with s < tk(1) < tk(2) < tk(3) < · · · , and enumerate
I ′ = {k′(1), k′(2), k′(3), . . . } with t < tk′(1) < tk′(2) < tk′(3) < · · · . For h ∈ N set Zi,j,h :=

|Mk(h)| and Z ′i,j,h := |Mk′(h)|.
By Jensen’s inequality, followed by (6.10), and our assumption that E [|M |4+ε] <∞,

for 1 ≤ β ≤ 4 we have

E


Nij∑
h=1

Zi,j,h

β
 ≤ E

E
Nijβ

 1

Nij

Nij∑
h=1

Zβi,j,h

 |Nij
 = E

[
Nβ
ij

]
E [|M |β ]

≤ C(u− s). (6.11)

Given any random variable X, let X+ := max(X, 0), and X− := max(−X, 0) be its
positive and negative parts. Since we assume 0 ≤ f ≤ 1 and 0 ≤ g ≤ 1 pointwise we have
the following estimates, which we shall use repeatedly:

R+
i ≤

Nij∑
h=1

Zi,j,h, Y +
i ≤

N ′ij∑
h′=1

Z ′i,j,h′ , (6.12)

R−i ≤ ξs(Qn,i)1{Nij ≥ 1}, and Y −i ≤ ξt(Qn,i)1{N
′
ij ≥ 1}. (6.13)

Let i, j ∈ {1, . . . ,mn}. By (6.12) and (6.13),

|Ri| ≤

Nij∑
h=1

Zi,j,h

+ ξs(Qn,i)1{Nij ≥ 1} ≤ 2 max

Nij∑
h=1

Zi,j,h, ξs(Qn,i)1{Nij ≥ 1}

 .
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Hence,

E [|Ri|2] ≤ 2E


Nij∑
h=1

Zi,j,h

2

+ ξs(Qn,i)
21{Nij ≥ 1}

 ,
Thus using (6.11), and Lemma 6.4, and the fact that Nij is independent of ξs(Qn,i), we
have that E [R2

i ] ≤ C(u − s). By the same argument we may also deduce that E [Y 2
i ] ≤

C(u− s), and then by the Cauchy-Schwarz inequality we obtain that

sup
m∈N,i,j∈{1,...,mn}

(|E [RiRj ]|+ |E [YiYj ]|+ |E [RiYj ]|) ≤ C(u− s). (6.14)

Given now i, j, k, ` ∈ {1, . . . ,mn}, by (6.12) we have

R+
i R

+
j Y

+
k Y

+
` ≤

Nij∑
h=1

Zi,j,h

2 N ′k∑̀
h′=1

Z ′k,`,h′

2

,

and the two factors on the right are independent of each other. Hence by (6.11) and a

similar estimate for
∑N ′k`

h′=1 Z
′
k,`,h′ ,

E [R+
i R

+
j Y

+
k Y

+
` ] ≤ E


Nij∑
h=1

Zi,j,h

2
E


 N ′k∑̀
h′=1

Z ′k,`,h′

2
 ≤ C(u− s)2. (6.15)

Also by (6.13),

R−i R
−
j Y
−
k Y

−
` ≤ ξs(Qn,i)ξs(Qn,j)ξt(Qn,k)ξt(Qn,`)1{Nij ≥ 1}1{N ′k` ≥ 1},

and since N ′k` is independent of ξs(Qn,i)ξs(Qn,j)ξt(Qn,k)ξt(Qn,`)1{Nij ≥ 1}, we obtain
that

E [R−i R
−
j Y
−
k Y

−
` ] ≤ E [ξs(Qn,i)ξs(Qn,j)ξt(Qn,k)ξt(Qn,`)1{Nij ≥ 1}]P[N ′k` ≥ 1].

Since we assume for some ε > 0 that E [|M |4+ε] < ∞, we have by Lemma 6.4 that
E [ξs(Qn,i)

4+ε] and E [ξt(Qn,j)
4+ε] are bounded by a constant, independent of n, i, j, s

and t. Hence by Hölder’s inequality, taking p = 1 + (ε/4), we have

E [R−i R
−
j Y
−
k Y

−
` ] ≤ E [|ξs(Qn,i)ξs(Qn,j)ξt(Qn,k)ξt(Qn,`)|p]1/p

×P[Nij ≥ 1]1−1/pP[N ′k` ≥ 1]

≤ C(u− s)2−1/p ≤ C ′(u− s)1+ε/4. (6.16)

Also by (6.12) and (6.13),

R+
i R

+
j Y
−
k Y

−
` ≤

Nij∑
h=1

Zi,j,h

2

ξt(Qn,k)ξt(Qn,`)1{N ′k` ≥ 1},

so by independence of N ′k`, and the Cauchy-Schwarz inequality,

E [R+
i R

+
j Y
−
k Y

−
` ] ≤ P[N ′k` ≥ 1]E


Nij∑
h=1

Zh

4


1/2

E [ξt(Qn,k)2ξt(Qn,`)
2]1/2.
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Hence by (6.11), Lemma 6.4, our (4 + ε)-th moment assumption on |M |, and the Cauchy-
Schwarz inequality,

E [R+
i R

+
j Y
−
k Y

−
` ] ≤ C(u− s)3/2. (6.17)

Next, observe that by (6.12) and (6.13),

R−i R
−
j Y

+
k Y

+
` ≤ ξs(Qn,i)ξs(Qn,j)1{Nij ≥ 1}

N ′k∑̀
h=1

Z ′k,`,h

2

,

and since the last factor on the right is independent of the other factors, using the
Cauchy-Schwarz inequality and Lemma 6.4 we obtain

E [R−i R
−
j Y

+
k Y

+
` ] ≤ E

[
ξs(Qn,i)

2ξs(Qn,j)
2
]1/2

P[Nij ≥ 1]1/2E


N ′k∑̀
h=1

Z ′k,`,h

2


≤ C(u− s)3/2. (6.18)

Next, note from (6.12) and (6.13) that

R+
i R
−
j Y

+
k Y

−
` ≤ ξs(Qn,j)

Nij∑
h=1

Zi,j,h

 ξt(Qn,`)

 N ′k∑̀
h′=1

Z ′k,`,h′

 ,

and since the last factor on the right is independent of the other factors, using the
Cauchy-Schwarz inequality, (6.11) and Lemma 6.4 again yields

E [R+
i R
−
j Y

+
k Y

−
` ] ≤ E [ξs(Qn,j)

2ξt(Qn,`)
2]1/2E


Nij∑
h=1

Zi,j,h

2


1/2

E

 N ′k∑̀
h′=1

Z ′k,`,h′


≤ C(u− s)3/2. (6.19)

Combining (6.15), (6.16), (6.17), (6.18) and (6.19) gives us

E [RiRjYkY`] ≤ C(u− s)1+ε′ , (6.20)

where we take ε′ := min(ε/4, 1/2). Using (6.20), (6.14), and the fact that mn = O(n),
gives us from (6.9) that

E [n−2(ξt(fn)− ξs(fn))2(ξu(gn)− ξt(gn))2] ≤ C(u− s)1+ε′ , (6.21)

for 0 ≤ f ≤ 1 and 0 ≤ g ≤ 1 pointwise (the case g = f gives (6.8) for the special case
with 0 ≤ f ≤ 1 pointwise).

Now we drop the assumption that f ≥ 0 but still assume |f | ≤ 1 pointwise. Write
ξs,t(f) for ξt(f) − ξs(f). Using the fact that for any real A,B we have (A + B)2 ≤
(2 max(|A|, |B|))2 ≤ 4(A2 +B2), we obtain that

(ξs,t(fn))2(ξt,u(fn))2 = (ξs,t(f
+
n )− ξs,t(f−n ))2(ξt,u(f+

n )− ξt,u(f−n ))2

≤ 4(ξs,t(f
+
n )2 + ξs,t(f

−
n )2)× 4(ξt,u(f+

n )2 + ξt,u(f−n )2)

= 16[ξs,t(f
+
n )2ξt,u(f+

n )2 + ξs,t(f
+
n )2ξt,u(f−n )2

+ξs,t(f
−
n )2ξt,u(f+

n )2 + ξs,t(f
−
n )2ξt,u(f−n )2].

By applying (6.21) four times, we see that (6.8) holds for arbitrary f ∈ R0 with |f | ≤ 1

pointwise. Then the general case follows by linearity.
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Proof of Theorem 4.3(b). Assume the conditions of Theorem 4.3(b) hold, and let f ∈ R0.
Suppose −∞ < a < b < ∞. By Theorem 4.3(a), the finite-dimensional distributions
of the processes n−1/2(ξt(Tn(f)) − E [ξt(Tn(f))])t∈[a,b] converge to those of a centred
Gaussian process (Xt)t∈[a,b] with covariance function ‖f‖22κ0((f, t), (f, u)) given by (4.8)
(a stationary Ornstein-Uhlenbeck process).

Given real numbers a < b, we can now apply [3, Theorem 15.6] to obtain convergence
in distribution in D[a, b]. Our Lemma 6.6 implies the condition [3, eqn (15.21)], with
F (t) = t. The continuity of the limiting Ornstein-Uhlenbeck can be seen for example
from the Kolmogorov-Čentsov theorem [16, Theorem 2.8].

Once we have the convergence in D[a, b] for all a < b we can obtain convergence in
D(−∞,∞) using [36, Theorem 2.8].

Proof of Proposition 4.4. Let Q′ be such that M(·) := Hd−1(∂S ∩ ·), and Condition 1.1
holds, and Hd−1(∂S) <∞ almost surely. We claim that almost surely, for all i, j ∈ N with
i 6= j, we have Hd−1((Si + xi) ∩ (Sj + xj)) = 0. Indeed, by the Marking theorem (see [19,
Theorem 5.6]) the point process

∑∞
i=1 δ(xi,ti,Si,Mi) is a Poisson process in Rd×R×C×M,

with intensity Hd ⊗H1 ⊗Q′, and hence by the bivariate Mecke formula,

E

∑
i∈N

∑
j∈N\{i}

Hd−1((∂Si + xi) ∩ (∂Sj + xj))


=

∫
C
Q(dσ)

∫
C
Q(dσ′)

∫ ∞
0

dt

∫ ∞
0

ds

∫
Rd

dx

∫
Rd

dyHd−1((∂σ + x) ∩ (∂σ′ + y))

=

∫
C
Q(dσ)

∫
C
Q(dσ′)

∫ ∞
0

dt

∫ ∞
0

ds

∫
Rd

dx

∫
∂σ

Hd−1(dz)

∫
Rd

dy1∂σ′+y(x+ z),

which comes to zero because, almost surely, Hd−1(∂S) <∞ and Hd(∂S) = 0. The claim
follows.

By (1.2), and the preceding claim, almost surely

Hd−1(Φ ∩ ·) =
∑
i:ti≥0

Hd−1(· ∩ (∂Si + xi) \ ∪j:0≤tj<ti(Soj + xj))

=
∑
i:ti≥0

Hd−1(· ∩ (∂Si + xi) \ ∪j:0≤tj<ti(Sj + xj)),

which is equal to ξ by (4.2), since (Mi +xi) = Hd−1((∂Si +xi)∩ ·) by our choice of Q′.

7 Proof of results for the DLM in d = 1

We start this section with a measurability result that we shall use more than once.

Lemma 7.1. Let d ∈ N. Suppose X is a random closed set in Rd that is almost surely
finite. Then H0(X ∩ ·) is a point process in Rd.

Proof. In the notation of [33, page 51], the set X is a random element of F`f . For
bounded Borel A ⊂ Rd, and k ∈ N ∪ {0}, let FA,k be the set of locally finite sets σ ⊂ Rd
such that H0(σ ∩A) = k. Then using notation from [33, Lemma 3.1.4], we have

FA,k = i({µ ∈ Ns : µ(A) = k}) ∈ is(Ns),

and therefore by [33, Lemma 3.1.4], FA,k ∈ B(F)`f so that the event {H0(X ∩A) = k} =

{X ∈ FA,k} is measurable (that is, it is indeed an event). Hence H0(X ∩ ·) is a point
process.
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Throughout the rest of this section we take d = 1. We prove the results stated in
Section 2.

Lemma 7.2. Suppose Q is such that ∂S is almost surely finite. Then Condition 1.1 holds,
that is, H0(∂S ∩ ·) is a point process in R.

Proof. We are now assuming d = 1. By [33, Theorem 2.1.1], the set ∂S is a random
closed set that is almost surely finite by assumption. Therefore H0(∂S ∩ ·) is a point
process in R by Lemma 7.1.

Proof of Proposition 2.1. By definition η = H0(Φ ∩ ·), where Φ is the set of boundary
points of our time-reversed DLM tessellation. We aim to apply Theorem 4.1. We are
given the measure Q, and let Q′ be the measure on C ×M whereby a random pair (S,M)

under Q′ is such that S has distribution Q and M = H0((∂S) ∩ ·). Note that M is a
random element of M by Lemma 7.2. Then by Proposition 4.4, η is the dead leaves
random measure ξ, defined at (4.1). Hence by Theorem 4.1, η is a point process and its
intensity is equal to E [H0(∂S)]/λ.

Proof of Theorem 2.2. Assume without loss of generality that Q is concentrated on
intervals of the form [0, x] with x ≥ 0. Let A,B ∈ B1 with 0 < H1(A) < ∞ and 0 <

H1(B) < ∞, and with x < y for all x ∈ A, y ∈ B. The product η(A)η(B) equals the
number of pairs of exposed endpoints of intervals (i.e., leaves) in the time-reversed
DLM, one arriving in A and the other in B. We can split this into several contributions
according to whether the endpoints in question are left or right endpoints, whether
they belong to the same or different intervals, and (in the latter case) which of the two
endpoints arrives first.

Consider first the contribution from pairs consisting of an exposed right endpoint
arriving in A before an exposed left endpoint arriving in B. Let N1 denote the number of
such pairs. By the multivariate Mecke formula,

E [N1] =

∫
dx

∫
ν(du)

∫
dy

∫
ν(dv)

∫ ∞
0

ds

∫ ∞
s

dt1A(x+ u)1B(y)P[Ex+u,s ∩ Ey,t],

where Ex,t is defined in Lemma 6.3, and the range of integration when unspecified
is (−∞,∞). By Lemma 6.3, for 0 < s < t and x, y ∈ R we have P[Ex,s ∩ Ey,t] =

exp(−λy−xs− λ(t− s)). Hence, using the change of variables z = x+ u, we have

E [N1] =

∫
ν(du)

∫
dy

∫
ν(dv)

∫
dz

∫ ∞
0

ds

∫ ∞
s

dt1A(z)1B(y)e−sλy−ze−(t−s)λ

=

∫
A

dz

∫
B

dyλ−1
y−zλ

−1. (7.1)

We get the same contribution as E [N1] for pairs consisting of a right endpoint in A

arriving before a right endpoint in B, and also from a left endpoint in B arriving before
a left endpoint in A, and also from a left endpoint in B arriving before a right endpoint
in A.

Let N2 denote the number of pairs that consist of an exposed left endpoint arriving in
A before an exposed left endpoint arriving in B. In this case the first of these arrivals
has to avoid covering the second endpoint, for the pair to contribute. By the multivariate
Mecke formula and Lemma 6.3,

E [N2] =

∫
A

dx

∫
B

dy

∫
ν(du)1{x+ u < y}

∫ ∞
0

ds

∫ ∞
s

dtP[Ex,s ∩ Ey,t]

=

∫
A

dx

∫
B

dyν([0, y − x))λ−1
y−xλ

−1

=

∫
A

dx

∫
B

dyF (y − x)λ−1
y−xλ

−1 (7.2)
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where we have used the fact that ν({z}) = 0 for all but countably many z ∈ R so∫
B
ν({y − x})dy = 0. We get the same contribution as E [N2] from pairs consisting of a

left endpoint arriving in A before a right endpoint in B, and from pairs consisting of a
right endpoint in B arriving before a left endpoint arriving in A, and a right endpoint in
B arriving before a right endpoint arriving in A.

Let N3 be the number of pairs consisting of an exposed left endpoint in A and an
exposed right endpoint in B, both being endpoints of the same leaf. Then

E [N3] =

∫
A

dx

∫
ν(dy)1B(x+ y)

∫ ∞
0

dtP[Ex,t ∩ Ex+y,t],

and using the change of variable z = y + x along with Lemma 6.3, we obtain that

E [N3] =

∫
A

dx

∫
B

P[H + x ∈ dz]
∫ ∞

0

exp(−λz−xt)dt

=

∫
A

dx

∫
B

λ−1
z−xP[H + x ∈ dz]. (7.3)

Then α2(A × B) = E [η(A)η(B)] = 4E [N1] + 4E [N2] + E [N3], and by (7.1), (7.2) and
(7.3) we obtain (2.1). We then obtain (2.2) from (2.1), the definition of pair correlation
function, and Proposition 2.1. Likewise, it is straightforward to deduce (2.3) from (2.1)
when ν = δλ.

Proof of Theorem 2.3. Suppose that E [(H0(∂S))2] < ∞ and E [(H1(S))2] < ∞. The
existence of the limit σ2

1 := limn→∞(n−1Var[η([0, n])]) follows from Theorem 4.2, taking
Q′ to be as in the proof of Proposition 2.1.

Now suppose also that Q is concentrated on connected intervals and F (0) = 0. Then
we can derive (2.4) using either (2.1) or the formula for σ2

0 given in Theorem 4.2. We
take the first of these options, and leave it to the reader to check that the latter option
gives the same value for σ2

1. Since η is a simple point process, we have by (2.1) and
Proposition 2.1 that

E [(η([0, n]))2] = E [η([0, n])] + 2

∫
0≤x<y≤n

α2(d(x, y))

= (2n/λ) + 2

∫ n

0

∫
(x,n]

λ−1
y−xP[H + x ∈ dy]dx+ 8

∫ n

0

∫ n

x

1 + F (y − x)

λλy−x
dydx,

while E [η([0, n])]2 = 8
∫ n

0

∫ n
x
λ−2dydx. Taking v = x/n and u = y − x, we thus have

n−1Var[η([0, n])] =
2

λ
+ 2

∫ 1

0

∫
(0,n−nv]

λ−1
u P[H ∈ du]dv

+8

∫ 1

0

∫ n(1−v)

0

(
1 + F (u)

λλu
− 1

λ2

)
dudv,

so that (2.4) holds by dominated convergence, provided the right hand side of (2.4) is
finite.

Recall from just before Theorem 2.2, and from (1.3), that λu = λ+ E [min(u,H)], for
all u ≥ 0. Since E [min(u,H)] =

∫ u
0
F (t)dt = λ −

∫∞
u
F (t)dt, in the last integral of the

right hand side of (2.4) the integrand can be re-written as

2− F (u)

λ(2λ−
∫∞
u
F (t)dt)

− 1

λ2
=

2λ− λF (u)− (2λ−
∫∞
u
F (t)dt)

λ2(2λ−
∫∞
u
F (t)dt)

which equals the expression in (2.5).
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Since we assume E [H2] < ∞, we have
∫∞

0

∫∞
u
F (t)dtdu < ∞, and therefore the

expression in (2.5) is integrable and the right hand side of (2.4) is indeed finite.
In the special case with ν = δ1 (so that λ = 1), the expression in (2.5) comes to

−u/(1 + u) for u < 1 (and zero for u ≥ 1). Therefore in this case the right hand side of
(2.4) comes to

2 + 1 + 8

(∫ 1

0

(
1

1 + u

)
du− 1

)
= 8 log 2− 5,

as asserted.

Proof of Theorem 2.4. We use the last part of Theorem 4.2, taking Q′ to be as in the
proof of Proposition 2.1, and taking f = 1[0,r] and g = 1[0,s].

Proof of Theorems 2.5 and 2.6. We use Theorem 4.3, taking Q′ to be as in the proof of
Proposition 2.1, and applying it to functions of the form f = 1[0,s].

Proof of Propositions 2.7 and 2.8. We use formulae from [21], and also provide some
extra details compared to [21].

Given h ≥ 0, let K(h) and P (h) be as defined in [21, page 3]; that is, using our
notation from Section 2, let P (h) = P[η([0, h]) = 0] and K(h) = E [(H − h)+]. Then
K(h) =

∫∞
h

(1 − F (t))dt, and K ′(h) = −(1 − F (h)). In particular K ′(0) = −1 under our
present assumptions. Also K(0) = λ. We assert that

P (h) =
K(h)

λ+ h
. (7.4)

Indeed, this is the last formula on [21, page 3], but for completeness we sketch a proof
here. In the time-reversed DLM, the time T to the first arrival (after time 0) of a leaf
that intersects [0, h] is exponentially distributed with mean 1/µ1, where

µ1 :=

∫ ∞
−∞

P[[y, y +H]] ∩ [0, h] 6= ∅]dy = h+

∫ 0

−∞
P[H ≥ −y]dy = h+ λ.

The time T ′ to the first arrival (after time 0) of a leaf that covers the whole of [0, h] is
exponential with mean 1/µ2, where

µ2 :=

∫ 0

−∞
P[[0, h] ⊂ [y, y +H]]dy =

∫ 0

−∞
P[H ≥ −y + h]dy = K(h).

Moreover the time T ′′ to the first arrival of a leaf that intersects but does not cover [0, h] is
also exponential with mean 1/(µ1 − µ2), and independent of T ′. Then P (h) = P[T ′ < T ′′],
which gives us (7.4) by a well-known result on the minimum of independent exponentials.

Let X and Y be as in the statement of Propositions 2.7 and 2.8. By stationarity, given
X = x the first point of η to the right of 0 is Unif(0, x). Hence P (h) =

∫∞
h

((x−h)/x)P[X ∈
dx], so by the discussion just before Proposition 2.8,

P (h) =

∫ ∞
h

((x− h)/x)(2x/λ)P[Y ∈ dx] = (2/λ)

∫ ∞
h

(1− FY (t))dt,

where FY := P[Y ≤ ·] is the cumulative distribution function of Y , and the last equality
comes from Fubini’s theorem. Hence by (7.4),

1− FY (y) = (−λ/2)P ′(y) =
λ

2

(
1− F (y)

λ+ y
+

K(y)

(λ+ y)2

)
.
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This formula appears on [21, page 10] (Matheron’s F0 is our F , and Matheron’s ν is the
intensity of η, which is 2/λ by Proposition 2.1). By the product rule,

−dFY (y) =
λ

2

(
−dF (y)

y + λ
− 2(1− F (y))

(y + λ)2
dy − 2K(y)

(λ+ y)3

)
.

Since K(y) = E [(H − y)+] =
∫∞
y

(u− y)dF (u), hence

dFY (y) =
λdF (y)

2(y + λ)
+

λ

(y + λ)3

[
(λ+ y)(1− F (y)) +

∫ ∞
y

(u− y)dF (u)

]
dy.

The expression inside the square brackets in the above right hand side is equal to∫∞
y

(λ+ u)dF (u), and so we have Proposition 2.8. The argument just before Proposition
2.8 shows that we can then deduce Proposition 2.7.

8 Proofs for the DLM in d = 2

Throughout this section we take d = 2. Also S, S′, S′′ denote independent random
elements of C with common distribution Q, and Θ denotes a random variable uniformly
distributed over (−π, π], independent of (S, S′).

Proof of Theorem 3.1. We obtain the result by application of Theorem 4.1. Here we are
given Q, and we take Q′ to be the probability measure on C ×M with first marginal Q
such that if (S,M) is Q′-distributed then M = H1(∂S ∩ ·).

Our proof of Theorem 3.2 requires a series of lemmas. The first is concerned with
random closed sets in R2 (or more generally, in Rd).

Lemma 8.1. Any countable intersection of random closed sets in R2 is a random closed
set in R2.

Proof. Let X1, X2, . . . be random closed sets in R2. For n ∈ N set Yn = ∩ni=1Xi. Then Yn
is a random closed set by [33, Theorem 2.1.1]. Set X = ∩∞n=1Xn = ∩∞n=1Yn. Then for any
compact K ⊂ R2, we have the event equalities

{X ∩K = ∅} = {K ⊂ ∪∞n=1Y
c
n} = ∪∞n=1{K ⊂ Y cn} = ∪∞n=1{Yn ∩K = ∅},

which is an event because each Yn is a random closed set (see [23, Definition 1.1.1]).
Therefore X is also a random closed set.

Lemma 8.2. Suppose λ < ∞ and β3 < ∞, where β3 is given by (3.1). Then, almost
surely:

(a) for all distinct i, j ∈ N the set (∂Si + xi) ∩ (∂Sj + xj) is finite, and
(b) for all distinct i, j, k ∈ N the set (∂Si + xi) ∩ (∂Sj + xj) ∩ (∂Sk + xk) is empty.

Proof. Let K > 0. By the Mecke formula,

E
∑
i∈N

∑
j∈N\{i}

H0((∂Si + xi) ∩ (∂Sj + xj))1B(K)×[−K,K]((xi, ti))1B(K)×[−K,K]((xj , tj))

= (2K)2

∫
B(K)

dx

∫
B(K)

dyE [H0((∂S + x) ∩ (∂S′ + y))]

≤ 4K2

∫
B(K)

dx

∫
R2

dzE [H0((∂S + x) ∩ (∂S′ + x+ z))] = 4K2(πK2)λ2β3,

which is finite by assumption. Therefore, almost surely

H0((∂Si + xi) ∩ (∂Sj + xj)) <∞ (8.1)
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for all (i, j) with i 6= j with (xi, ti) ∈ B(K) × [−K,K] and (xj , tj) ∈ B(K) × [−K,K].
Therefore, letting K → ∞ shows that (8.1) holds for all (i, j) with i 6= j, almost surely,
which gives us (a).

For (b), note that for K > 0, by the multivariate Mecke formula, writing
∑6=
i,j,k∈N for

the sum over ordered triples (i, j, k) of distinct elements of N, we have

E

6=∑
i,j,k∈N

H0((∂Si + xi) ∩ (∂Sj + xj) ∩ (∂Sk + xk))1[−K,K](ti)1[−K,K](tj)1[−K,K](tk)

= (2K)3E

∫
dx

∫
dy

∫
dzH0((∂S + x) ∩ (∂S′ + y) ∩ (∂S′′ + z)),

where the range of integration is taken to be R2 whenever it is not specified explicitly.
Taking y′ = y − x and z′ = z − x, we find that the last expression equals

(2K)3E

∫
dx

∫
dy′
∫
dz′H0(∂S ∩ (∂S′ + y′) ∩ (∂S′′ + z′))

= (2K)3E

∫
dx

∫
dy′
∫
dz′
∫
∂S∩(∂S′+y′)

H0(dw)1∂S′′+z′(w).

In the last line we may interchange the innermost two integrals because almost surely
and for almost all y′ the innermost integral

∫
∂S∩(∂S′+y′)

H0(dw) is finite because of the
assumption that β3 <∞. Therefore the last expression is equal to

(2K)3E

∫
dx

∫
dy′
∫
∂S∩(∂S′+y′)

H0(dw)

∫
dz′1∂S′′(w − z′),

which is zero because, almost surely, ∂S′′ is a rectifiable curve so that E [H2(∂S′′)] = 0.
Since K is arbitrary, this gives us part (b).

Lemma 8.3. Assume either that Q has the piecewise C1 Jordan property, or that Q has
the rectifiable Jordan property and is rotation invariant. Then, almost surely, there is no
pair {i, j} of distinct elements of N such that ∂Si + xi touches ∂Sj + xj .

Proof. Let K ∈ (0,∞). Let NK denote the number of ordered pairs (i, j) of distinct
elements of N such that ∂Si + xi touches ∂Sj + xj , and {ti, tj} ⊂ [−K,K].

Let us say, for any two piecewise C1 Jordan curves γ and γ′, that γ grazes γ′ if there
exists z ∈ γ ∩ γ′ that is not a corner of either γ or γ′, such that γ grazes γ’ at z.

Suppose Q has the piecewise C1 Jordan property. Then by the bivariate Mecke
formula,

E [NK ] = (2K)2

∫
C
Q(dσ)

∫
C
Q(dσ′)

∫
R2

dx

∫
R2

dy1{∂σ + x touches ∂σ′ + y}

which is zero by Lemma 5.3.
Suppose instead that Q has the rectifiable Jordan property and is rotation invariant.

Then

E [NK ] = (2K)2

∫
dx

∫
dyP[(∂S + x) touches (∂S′ + y)]

= (2K)2

∫
dx

∫
dyP[(∂S + x) touches ρΘ(∂S′ + y)]

= (2K)2

∫
dx

∫
C
Q(dσ)

∫
C
Q(dσ′)

∫
dy

∫ π

−π
dθ1{(∂σ + x) touches ρθ(∂σ

′ + y)}

which equals zero by Lemma 5.2. Thus in both cases, NK = 0 almost surely, for all K,
and the result follows.
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Before proving Theorem 3.2, we introduce some further notation. For any random
closed set X in R2 and event A, let XA be the random closed set that is X if A occurs
and is R2 if not. Let XA be the random closed set that is X if A occurs and is ∅ if not.

Given i ∈ N, write Xi for the set Si + xi, and Xo
i for the interior of Xi. Then Xi is a

random element of C, by [33, Theorem 2.4.3], for example. Hence, given also j ∈ N \ {i},
the set ∂Xi ∩ ∂Xj is also a random element of C by [33, Theorem 2.1.1], and it is almost
surely finite by Lemma 8.2. Set

Yij := (∂Xi ∩ ∂Xj)
{min(ti,tj)>0} ∩ ∩k∈N\{i,j}(Xo

k)c{0<tk<max(ti,tj)}.

Recall from Section 3 that we define Ξ to be the set of points in R2 which lie in three or
more cells of the time-reversed DLM tessellation, and χ to be the measure H0(Ξ ∩ ·).
Lemma 8.4. Assume that Q either has the piecewise C1 Jordan property, or is rotation
invariant and has the rectifiable Jordan property. Assume also that β3 <∞, where β3 is
given by (3.1), and that E [H2(S ⊕B(1))] <∞. Then, almost surely, Ξ = ∪∞i=1(∪∞j=i+1Yij)

and χ =
∑∞
i=1(

∑∞
j=i+1H0(Yij ∩ ·)).

Proof. Assume the times t1, t2, . . . are distinct (this occurs a.s.). Given x ∈ Ξ, x must lie
on the boundary of the first two shapes Xi to arrive after time zero and contain x, and
this gives us the inclusion Ξ ⊂ ∪∞i=1(∪∞j=i+1Yij).

For the reverse inclusion, let E be the event that there is no triple (i, j, k) of distinct
elements of N with ∂Xi ∩ ∂Xj ∩ ∂Xk 6= ∅, and let E′ be the event that there is no pair
(i, j) of distinct elements of N such that ∂Xi touches ∂Xj . Then E and E′ occur almost
surely, by Lemmas 8.2 and 8.3. Let E′′ be the event that for all K ≥ 0 the number of
shapes Xj with Xj ∩BK 6= ∅ and −K ≤ tj ≤ K is finite. This event also occurs almost
surely, by Lemma 6.1.

Also the times ti are all distinct, almost surely. Assume from now on that events E,
E′ and E′′ all occur and all of the times ti are distinct.

Suppose x ∈ Yij for some i, j with 0 < ti < tj . Let Tk := inf{t` : t` > 0, x ∈ Xo
` }.

Then since we assume E occurs, x /∈ ∂X` for all ` ∈ N \ {i, j}. Since we assume E′′

occurs, almost surely only finitely many of the shapes X` with 0 ≤ t` ≤ tk have non-empty
intersection with B(1) + x. Hence, x ∈ ∂Xi ∩ ∂Xj ∩Xo

k , and there exists a constant ε > 0

such that

B(ε) + x ⊂ ∩`:0≤t`≤tk,`/∈{i,j,k}X
c
` .

Now, x ∈ Xi and since Xi is a regular set, x is an accumulation point of the interior of
Xi, which is connected by the Jordan curve theorem. Thus x is on the boundary of a
component of Ξc which is contained in the interior of Xi.

Since we assume that E′ occurs, ∂Xj crosses ∂Xi at x rather than touching it. Hence
there is an arc within ∂Xj , with an endpoint at x, that lies outside Xi except for this
endpoint. On one side of this arc is a part of the interior of Xj , and hence there is a
component of Xo

j \Xi with an accumulation point at x, and hence a component of Φc

that is contained in Xo
j \Xi with an accumulation point at x.

Moreover, on the other side of the arc just mentioned is a region of Xc
j ∩Xc

i with an
accumulation point at x. Hence there is a component of Φc that is contained in Xo

k \ (Xi∪
Xj) and has an accumulation point at x. Therefore x ∈ Ξ, so that ∪∞i=1(∪∞j=i+1Yij) ⊂ Ξ.
Therefore Ξ = ∪∞i=1(∪∞j=i+1Yij), as claimed. Then since E is assumed to occur, we have
Yi′j′ 6= Yij for all (i′, j′) 6= (i, j), so that

∑∞
i=1

∑∞
j=i+1H0(Yij ∩ ·) = χ.

Proof of Theorem 3.2 (a). For each k ∈ N \ {i, j}, the set (Xo
k)c is a random closed set

by [33, Theorem 2.1.1]. Therefore (Xo
k)c{0<tk<max(ti,tj)} is also a random closed set,

and hence by Lemma 8.1 the set Yij is also a random closed set. By Lemma 8.2, Yij
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is almost surely finite. By Lemma 7.1, H0(Yij ∩ ·) is a point process in R2. Since
χ =

∑
1≤i<j<∞H0(Yij ∩ ·), also χ is a point process. The stationarity of χ is clear.

Denote the intensity of the stationary point process χ by β̃3. By Lemma 8.4 and the
multivariate Mecke formula, using notation Ex,t from Lemma 6.3, we have

β̃3 = E [χ(W1)] = E
∑
i<j

H0(Yij ∩W1)

=

∫
C
Q(dσ)

∫
C
Q(dσ′)

∫
R2

dy

∫
R2

dx

∫ ∞
0

dt

∫ t

0

ds
∑

z∈(∂σ+y)∩(∂σ′+x)

1W1(z)P[Ez,t].

Taking x′ = x− y and z′ = z − y, using Lemma 6.3 we have

β̃3 =

∫
C
Q(dσ)

∫
C
Q(dσ′)

∫
R2

dy

∫
R2

dx′
∑

z′∈∂σ∩(∂σ′+x′)

1W1(y + z′)×
∫ ∞

0

te−λtdt,

and taking the y-integral inside the x′-integral and the sum, we obtain that

β̃3 = λ−2

∫
C

∫
C

∫
R2

H0(∂σ ∩ (∂σ′ + x′))dx′Q(dσ)Q(dσ′),

and hence β̃3 = β3, as asserted.

Proof of Theorem 3.2 (b). Assume now that Q is rotation-invariant. Then ρΘ(S′)
D
= S′, so

by (3.1) we have

λ2β3 = E

∫
R2

H0(∂S ∩ (∂S′ + x))dx = E

∫
R2

H0(∂S ∩ (ρΘ(∂S′) + x))dx

= (2π)−1E

∫ π

−π

∫
R2

H0(∂S ∩ (ρθ(∂S
′) + x))dxdθ,

and hence by the ‘two noodle’ formula (Lemma 5.1),

λ2β3 = (2/π)E [H1(∂S)H1(∂S′)],

which yields (3.2).

We now work towards proving Theorem 3.3. Recall from (1.2) that Φ denotes the
boundary of our time-reversed DLM tessellation. It is helpful to represent Φ in terms of
the following sets. For each i with ti ≥ 0, define the set

Pi := (Si + xi) \ ∪{j:0≤tj<ti}(Sj + xj). (8.2)

(Here the P stands for ‘patch’.) Set Pi = ∅ if ti < 0.

Lemma 8.5. Under the assumptions of Theorem 3.3, almost surely Φ = ∪∞i=1∂Pi.

Proof. Let y ∈ Φ. Then by (1.2), y lies on the boundary of some leaf that arrives at a
non-negative time; let i be the index of the earliest-arriving leaf (at or after time 0) that
contains y in its boundary. Then by (1.2) again, y does not lie in (either the interior or the
boundary of) any leaf arriving between times 0 and ti, so y ∈ Pi, and since y ∈ ∂Si + xi,
moreover y ∈ ∂Pi. Thus Φ ⊂ ∪∞i=1∂Pi.

Conversely, let j ∈ N be such that Pj 6= ∅, and let z ∈ ∂Pj . Then z ∈ Sj + xj (since
Sj is closed). Also z /∈ Sok + xk for all k ∈ N with 0 ≤ tk < tj (else some neighbourhood
of z is disjoint from Pj). If z ∈ ∂Sj + xj , then z ∈ Φ by (1.2). If z ∈ Soj + xj , then (since
z ∈ ∂Pj) there exists some k with 0 ≤ tk < tj and z ∈ ∂Sk + xk. Hence, again z ∈ Φ by
(1.2). Thus ∪∞i=1∂Pi ⊂ Φ.
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Lemma 8.6. Let A ⊂ R2 be bounded. Under the assumptions of Theorem 3.3, it is
almost surely the case that (a) each component of R2 \ Φ is contained in the interior of
one of the patches Pi, and (b) the union of all components of R2 \ Φ that intersect A is a
bounded set.

Proof. Suppose y ∈ R2 \ Φ. Then y must lie in the interior of the first-arriving leaf (after
time 0) to contain y. Suppose this leaf has index i. Then y ∈ P oi , and since ∂Pi ⊂ Φ by
Lemma 8.5, the component of R2 \ Φ containing y is contained in P oi . This gives us part
(a). Moreover the patches Pi are almost surely bounded sets. Therefore, for part (b) it
suffices to prove that the number of patches Pi which intersect [0, 1]2 is almost surely
finite.

The number of leaves Si + xi having non-empty intersection with [0, 1]2 and arrival
time ti ∈ [0, 1] is Poisson with intensity λ0 given by

λ0 :=

∫
R2

P[(S + x) ∩ [0, 1]2 6= ∅] ≤
∫
R2

P[R ≥ ‖x‖ − 2]dx,

with R is given by (1.4). Thus λ0 <∞ since we assume E [R2] <∞. Set

I := {i ∈ N : (Si + xi) ∩ [0, 1]2 6= ∅, ti ≥ 0};

then
∑
i∈I δti is a 1-dimensional Poisson process of intensity λ0.

Define N as at (6.4); by a similar argument to the one given in the proof of Lemma
6.4, N is almost surely finite. That is, almost surely the square [0, 1]2 is completely
covered within a finite (random) time, denoted T say. The number of i for which
(Si + xi) ∩ [0, 1]2 6= ∅ and 0 ≤ ti ≤ T is almost surely finite, and provides an upper bound
for the number of patches Pi which intersect [0, 1]2, so this number is also almost surely
finite, as required.

Lemma 8.7. Under the assumptions of Theorem 3.3, it is almost surely the case that for
every connected component Z of Φ, the sets Φ, Z and Φ \ Z are all closed.

Proof. Let Q ⊂ R2 be compact. Then by Lemma 8.5,

Φ ∩Q = ∪∞i=1(∂Pi ∩Q),

and by the proof of Lemma 8.6, the number of patches Pi which intersect Q is almost
surely finite. Therefore Φ ∩Q is a finite union of closed sets, so is closed. This holds for
any compact Q, and hence Φ is also closed, almost surely.

Now suppose Z is a connected component of Φ. It is easy to see from the definition
of a connected component (see e.g. [32]) that any limit point of Z must be in Z, and
therefore Z is closed.

It remains to prove that Φ \ Z is closed. Suppose this were not the case. Then there
would exist z ∈ Z, and a sequence (zn)n≥1 of points in Φ \ Z, such that zn → z as n→∞.
Then z lies on the boundary of some leaf arriving after time 0; let i be the index of the
earliest-arriving such leaf. Also let k be the index of the earliest-arriving leaf with z

in its interior. Then without loss of generality we may assume that for all n we have
zn ∈ (Sok + xk).

For each n ∈ N, choose j(n) such that tj(n) < tk and zn ∈ ∂Sj(n) + xj(n). Since there
are almost surely only finitely many leaves arriving that intersect any given compact
region between times 0 and tk, the numbers j(n) run through a finite set of indices, and
hence by taking a subsequence if necessary we can assume there is a single index j such
that j(n) = j for all n. Since ∂Sj + xj is closed, we also have z ∈ ∂Sj + xj . By our choice
of i we then have ti ≤ tj .
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Suppose ti = tj; then i = j and zn ∈ ∂Si + xi for all n. Hence for all large enough n,
there is a path from zn to z along ∂Si + xi that does not meet any leaf arriving before
time ti, so this path lies in Φ, and hence zn ∈ Z, which is a contradiction.

Therefore we may assume that ti < tj , and zn ∈ ∂Sj + xj for all n. Then z ∈
(∂Si + xi) ∩ (∂Sj + xj). By Lemma 8.2 (b), z /∈ S` + x` for all ` ∈ N \ {i, j} with t` < tk.
Hence z has a neighbourhood that is disjoint from ∪{`∈N\{i,j}:t`<tk}(S` + x`). Hence for
all large enough n, there is a path in ∂Sj +xj from zn to z that does not intersect any leaf
arriving before tk other than possibly leaf i; then by taking this path from zn as far as
the first intersection with leaf i, and then (if this intersection is not at z) concatenating it
with a path from there along ∂Si +xi to z we have a path in Φ from zn to z, and therefore
also zn ∈ Z, which is a contradiction. Thus Φ \ Z must be closed, as claimed.

In the next two proofs, we shall use the fact that R2 is unicoherent. The unicoher-
ence property says that for any two closed connected sets in R2 having union R2, the
intersection of these two sets is connected. See e.g. [25, page 177], or [7].

Lemma 8.8. Under the assumptions of Theorem 3.3, all connected components of the
set Φ are unbounded, almost surely.

Proof. Suppose that Φ has at least one bounded component, pick one of these bounded
components, and denote this component by Z. Given ε > 0, let Zε denote the closed
ε-neighbourhood of Φ, that is, the set of x ∈ Rd such that ‖x− y‖ ≤ ε for some y ∈ Z. By
Lemma 8.7, Z is compact and Φ \ Z is closed. Hence we can and do choose ε > 0 such
that

Zε ∩ (Φ \ Z) = ∅. (8.3)

Denote by Vε the unique unbounded connected component of R2 \ Zε. The set R2 \ Vε is
connected; we can think of it as ‘Zε with the holes filled in’. Then R2 \ Vε, and Vε, are
connected closed sets with union R2, so by unicoherence their intersection, which is
simply ∂Vε, is a connected set (a kind of loop surrounding Z). Moreover ∂Vε ∩ Φ = ∅ by
(8.3), since every element of ∂Vε is distant ε from Z. Hence ∂Vε is contained in a single
component of R2 \Φ, so by Lemma 8.6 (a), there exists j0 ∈ N such that ∂Vε ⊂ P oj0 . Then
by the assumed Jordan property, and the Jordan curve theorem, ∂Vε is surrounded by
the boundary of Sj0 + xj0 . Also Z is contained in a bounded component of R2 \ ∂Vε.

Pick x ∈ Z. Then x must lie on the boundary of some leaf i arriving before leaf j0 (in
the time-reversed DLM), since otherwise x would be in the interior of Pj0 and not in Φ

at all. Therefore there is some i such that 0 ≤ ti < tj0 and the leaf boundary ∂Si + xi
includes a point in Z. Let i0 be the index of the first-arriving such leaf.

By the Jordan property the leaf Si0 + xi0 is connected, and it does not intersect ∂Vε,
since ∂Vε ⊂ Pj0 and ti0 < tj0 . Therefore it is contained in a bounded component of
R2 \ ∂Vε. Hence, this leaf is entirely surrounded by the boundary ∂Sj0 + xj0 . Thus in
this case there would exist distinct i0, j0 ∈ N such that Si0 + xi0 ⊂ Sj0 + xj0 , and the
expected number of such pairs is zero by our non-containment assumption, and a similar
argument using the Mecke formula to the proof of Lemma 8.3. Thus Φ almost surely has
no bounded component.

Proof of Theorem 3.3. Suppose that Φ has at least two unbounded components. Pick
two unbounded components of Φ, and denote them by Z0 and Z1. By Lemma 8.7, both Z0

and Φ \ Z0 are closed. By Urysohn’s lemma, we can (and do) pick a continuous function
g : R2 → [0, 1] taking the value 0 for all x ∈ Z0 and 1 for all x ∈ Φ \ Z0. For example, we
could take

g(x) :=
dist(x, Z0)

dist(x, Z0) + dist(x,Φ \ Z0)
, x ∈ R2.
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Define the set F := {x ∈ R2 : g(x) ≤ 1/2}. Then F ∩ (Φ \ Z0) = ∅, and F is a closed
subset of R2. Let V denote the component of R2 \ F containing Z1. Then R2 \ V , and V ,
are closed connected sets with union R2, so by the unicoherence of R2, their intersection,
which is ∂V , is connected; moreover, ∂V ⊂ ∂F , so g(x) = 1/2 for all x ∈ ∂V , and hence
(∂V ) ∩ Φ = ∅.

By Lemma 8.6 (b), all components of R2 \ Φ are bounded, almost surely. Since ∂V
is connected, and disjoint from Φ, it is contained in a single component of R2 \ Φ, and
therefore ∂V is bounded.

We now show, however that the set ∂V is unbounded, which is a contradiction. Let
r > 0 and recall that B(r) := {y ∈ R2 : ‖y‖ ≤ r}. Since Z0 and Z1 are unbounded, we
can pick points z0 ∈ Z0 \ B(r) and z1 ∈ Z1 \ B(r). We may then take a polygonal path
in R2 \B(r) from z0 to z1. The last point z in this path for which g(z) = 1/2, lies in ∂V .
Hence, ∂V \B(r) is non-empty. Since r is arbitrary, ∂V is unbounded.

We have proved by contradiction that Φ almost surely has at most one unbounded
component. Combined with Lemma 8.8, this shows that it is almost surely connected.

Proof of Theorem 3.4. We now view the random set Φ (the boundaries of the DLM
tessellation) as a planar graph. By Lemmas 8.2 and 8.3, there are no vertices of degree
4 or more in this graph.

The planar graph Φ has no vertices of degree 1, by the Jordan assumption. Thus, we
may view Φ as a planar graph with all of its vertices having degree 3, and χ is the point
process of these vertices.

Moreover, by Theorem 3.3 this planar graph is almost surely connected. Let τ denote
the intensity of the point process of midpoints of edges in this planar graph. By the
handshaking lemma, τ = 3β3/2. Also, by an argument based on Euler’s formula (see [35,
eqn. (10.3.1)]), β1 = τ − β3 = β3/2, as asserted. In the rotation-invariant case, by (3.2)
we have (3.3).

Proof of Theorem 3.5. Apply Theorem 4.2, using the same choice of Q′ as in the first
part of the proof of Theorem 3.1.

Proof of Theorem 3.6. We apply Theorem 4.3, using the same choice of Q′ as in the first
part of the proof of Theorem 3.1.
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