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Abstract

This work is devoted to the study of semimartingales on the dual of a general nuclear
space. We start by establishing conditions for a cylindrical semimartingale in the
strong dual Φ′ of a nuclear space Φ to have a Φ′-valued semimartingale version
whose paths are right-continuous with left limits. Results of similar nature but for
more specific classes of cylindrical semimartingales and examples are also provided.
Later, we will show that under some general conditions every semimartingale taking
values in the dual of a nuclear space has a canonical representation. The concept
of predictable characteristics is introduced and is used to establish necessary and
sufficient conditions for a Φ′-valued semimartingale to be a Φ′-valued Lévy process.

Keywords: cylindrical semimartingales; semimartingales; dual of a nuclear space; regularization
theorem; semimartingale canonical representation; Lévy processes.
AMS MSC 2010: 60B11; 60G17; 60G20; 60G48.
Submitted to EJP on March 14, 2019, final version accepted on March 6, 2020.

1 Introduction

In recent years, there has been an increasing interest in the study of cylindrical
stochastic processes in infinite dimensional spaces. One of the main motivations is the
use of these random objects to construct stochastic integrals and as the driving noise to
a stochastic partial differential equation (see e.g. [1, 11, 14, 27, 29, 30, 38]). Due to the
great importance of the semimartingales in the theory of stochastic calculus, it is only
natural to consider cylindrical semimartingales as the driving force for these types of
stochastic equations.

Let Φ be a nuclear space and let Φ′ its strong dual. Under the assumption that Φ′ is a
complete nuclear space, the concept of Φ′-valued semimartingales was firstly introduced
by Üstünel in [33]. There, Üstünel used the fact that under these assumptions Φ′ can
be expressed as a projective limit of Hilbert spaces with Hilbert-Schmidt embeddings
and defined the Φ′-valued semimartingales as a projective system of Hilbert space
valued semimartingales. Further properties of Φ′-valued semimartingales and stochastic
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calculus with respect to them where explored by Üstünel in his subsequent works
[34, 35, 36], by Pérez-Abreu [24], and by other authors (e.g. [3, 6, 25]). However,
Üstünel’s approach for semimartingales as projective systems can no longer be applied
if one assumes that Φ is a general nuclear space, because in that case Φ′ is usually not
nuclear nor complete (e.g. if S is any uncountable set, RS is nuclear but (RS)′ is not
nuclear; see Remark 51.1 in [32]). Therefore, if Φ is assumed only to be nuclear, a new
theory of semimartingales has to be developed and this is exactly the purpose of this
paper; to begin a systematic study of cylindrical semimartingales and semimartingales
in the strong dual Φ′ of a general nuclear space Φ. Our main motivation is the further
introduction of a theory of stochastic integration and of stochastic partial differential
equations driven by semimartingales in duals of nuclear spaces. This program was
carried out by the author in [11] for the Lévy case, but for the semimartingale case
a new approach has to be considered. The necessary properties of semimartingales
are developed in this paper. The corresponding application to stochastic integration
and existence of solutions to stochastic partial differential equations will appear in
forthcoming papers.

We start in Sect. 2 by setting our notation and by reviewing some useful properties
of nuclear spaces, cylindrical processes, and the space S0 of real-valued semimartin-
gales. Then, in Sect. 3 we address the first main problem of our study; it consists
in to establish conditions under which a cylindrical semimartingale X = (Xt : t ≥ 0)

in Φ′ does have a semimartingale version with càdlàg (i.e. right-continuous with left
limits) paths. In the literature this procedure is often known as “regularization” (see
[10, 13, 24]). Our main result is Theorem 3.7 where it is shown that a sufficient con-
dition is equicontinuity for each T > 0 of the family (Xt : t ∈ [0, T ]) as operators
from Φ into the space of real-valued random variables L0 (Ω,F ,P) defined on a given
probability space (Ω,F ,P). In Proposition 3.14 we show that this condition is equiv-
alent to the condition that X as a linear map from Φ into S0 be continuous. As a
consequence of our result we show that if the nuclear space is ultrabornological (e.g.
Fréchet), then each Φ′-valued semimartingale with Radon laws has a càdlàg version.
Regularization theorems for more specific classes of semimartingales and examples
are also considered. Our regularization results generalize those obtained by Üstünel
in [33, 34] and by Pérez-Abreu [24] where only Φ′-valued semimartingales (but not
cylindrical semimartingales) were considered and it is assumed that Φ′ is complete
nuclear.

Our second main aim on this work is to find a canonical representation for Φ′-valued
semimartingales. This is done in Sect. 4 by using our regularization results from Sect. 3.
Our main result is Theorem 4.2 where we show that if for a Φ′-valued semimartingale we
assume equicontinuity for each T > 0 of the induced cylindrical process (Xt : t ∈ [0, T ]),
then X possesses a canonical representation similar to that for semimartingales in finite
dimensions. This equicontinuity assumption is always satisfied if the nuclear space is
ultrabornological and the semimartingale has Radon laws. Furthermore, we introduce
the concept of predictable characteristics for Φ′-valued semimartingales. To the extend
of our knowledge the only previous work that considered the existence of a canonical
representation for semimartingales in the dual of a nuclear Fréchet space was carried
out by Pérez-Abreu in [24]. Observe that our result generalize that of Pérez-Abreu to
semimartingales in the dual of a general nuclear space.

Finally, in Sect. 5 we examine in detail the canonical representation of a Φ′-valued
Lévy process and its relation with their Lévy-Itô decomposition studied by the author
in [12]. It is shown that the predictable characteristics of a Lévy process coincide with
those of its Lévy-Khintchine formula and that the particular form of these characteristics
distinguish the Lévy process among the Φ′-valued semimartingales.
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We hope that our semimartingale canonical representation and our definition of
characteristics could be used in the future to study further properties of Φ′-valued
semimartingales, as for example to study functional central limit theorems.

2 Definitions and notation

Let Φ be a locally convex space (we will only consider vector spaces over R). If p is a
continuous semi-norm on Φ and r > 0, the closed ball of radius r of p given by Bp(r) =

{φ ∈ Φ : p(φ) ≤ r} is a closed, convex, balanced neighborhood of zero in Φ. A continuous
semi-norm (respectively a norm) p on Φ is called Hilbertian if p(φ)2 = Q(φ, φ), for all
φ ∈ Φ, where Q is a symmetric, non-negative bilinear form (respectively inner product)
on Φ × Φ. Let Φp be the Hilbert space that corresponds to the completion of the pre-
Hilbert space (Φ/ker(p), p̃), where p̃(φ+ ker(p)) = p(φ) for each φ ∈ Φ. The quotient map
Φ→ Φ/ker(p) has an unique continuous linear extension ip : Φ→ Φp. Let q be another
continuous Hilbertian semi-norm on Φ for which p ≤ q. In this case, ker(q) ⊆ ker(p).
Moreover, the inclusion map from Φ/ker(q) into Φ/ker(p) is linear and continuous, and
therefore it has a unique continuous extension ip,q : Φq → Φp. Furthermore, we have the
following relation: ip = ip,q ◦ iq.

We denote by Φ′ the topological dual of Φ and by 〈f , φ〉 the canonical pairing of
elements f ∈ Φ′, φ ∈ Φ. Unless otherwise specified, Φ′ will always be consider equipped
with its strong topology, i.e. the topology on Φ′ generated by the family of semi-norms
(ηB), where for each B ⊆ Φ bounded we have ηB(f) = sup{|〈f , φ〉| : φ ∈ B} for all f ∈ Φ′.
If p is a continuous Hilbertian semi-norm on Φ, then we denote by Φ′p the Hilbert space
dual to Φp. The dual norm p′ on Φ′p is given by p′(f) = sup{|〈f , φ〉| : φ ∈ Bp(1)} for all
f ∈ Φ′p. Moreover, the dual operator i′p corresponds to the canonical inclusion from Φ′p
into Φ′ and it is linear and continuous.

Let p and q be continuous Hilbertian semi-norms on Φ such that p ≤ q. The space of
continuous linear operators (respectively Hilbert-Schmidt operators) from Φq into Φp
is denoted by L(Φq,Φp) (respectively L2(Φq,Φp)) and the operator norm (respectively
Hilbert-Schmidt norm) is denote by ||·||L(Φq,Φp) (respectively ||·||L2(Φq,Φp)). We employ an
analogous notation for operators between the dual spaces Φ′p and Φ′q.

A locally convex space is called ultrabornological if it is the inductive limit of a
family of Banach spaces. A barreled space is a locally convex space such that every
convex, balanced, absorbing and closed subset is a neighborhood of zero. For equivalent
definitions see [16, 23].

Let us recall that a (Hausdorff) locally convex space (Φ, T ) is called nuclear if its
topology T is generated by a family Π of Hilbertian semi-norms such that for each
p ∈ Π there exists q ∈ Π, satisfying p ≤ q and the canonical inclusion ip,q : Φq → Φp is
Hilbert-Schmidt. Other equivalent definitions of nuclear spaces can be found in [26, 32].

Let Φ be a nuclear space. If p is a continuous Hilbertian semi-norm on Φ, then the
Hilbert space Φp is separable (see [26], Proposition 4.4.9 and Theorem 4.4.10, p.82).
Now, let (pn : n ∈ N) be an increasing sequence of continuous Hilbertian semi-norms
on (Φ, T ). We denote by θ the locally convex topology on Φ generated by the family
(pn : n ∈ N). The topology θ is weaker than T . We will call θ a (weaker) countably
Hilbertian topology on Φ and we denote by Φθ the space (Φ, θ) and by Φ̂θ its completion.
The space Φ̂θ is a (not necessarily Hausdorff) separable, complete, pseudo-metrizable
(hence Baire and ultrabornological; see Example 13.2.8(b) and Theorem 13.2.12 in [23])
locally convex space and its dual space satisfies (Φ̂θ)

′ = (Φθ)
′ =

⋃
n∈N Φ′pn (see [10],

Proposition 2.4).

Example 2.1. It is well-known (see e.g. [26, 31, 32]) that the space of test functions
EK := C∞(K) (K: compact subset of Rd), E := C∞(Rd), the rapidly decreasing functions
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S (Rd), and the space of harmonic functions H(U) (U : open subset of Rd; see [26],
Section 6.3), are all examples of Fréchet nuclear spaces. Their (strong) dual spaces E ′K ,
E ′, S ′(Rd),H′(U), are also nuclear spaces. On the other hand, the space of test functions
D(U) := C∞c (U) (U : open subset of Rd), the space of polynomials Pn in n-variables, the
space of real-valued sequences RN (with direct sum topology) are strict inductive limits
of Fréchet nuclear spaces (hence they are also nuclear). The space of distributions
D ′(U) (U : open subset of Rd) is also nuclear. All the above are examples of (complete)
ultrabornological nuclear spaces. Other interesting examples of nuclear spaces are the
space of continuous linear operators between a semi-reflexive dual nuclear space into a
nuclear space, and tensor products of arbitrary nuclear spaces. These spaces need not
be ultrabornological as for example happens with the space D(R)⊗̂S (Rd) (see [4]).

Throughout this work we assume that (Ω,F ,P) is a complete probability space and
consider a filtration (Ft : t ≥ 0) on (Ω,F ,P) that satisfies the usual conditions, i.e. it is
right continuous and F0 contains all subsets of sets of F of P-measure zero. We denote
by L0 (Ω,F ,P) the space of equivalence classes of real-valued random variables defined
on (Ω,F ,P). We always consider the space L0 (Ω,F ,P) equipped with the topology
of convergence in probability and in this case it is a complete, metrizable, topological
vector space.

A cylindrical random variable in Φ′ is a linear map X : Φ → L0 (Ω,F ,P) (see [10]).
If X is a cylindrical random variable in Φ′, we say that X is n-integrable (n ∈ N) if
E (|X(φ)|n) < ∞, ∀φ ∈ Φ, and has zero-mean if E (X(φ)) = 0, ∀φ ∈ Φ. The Fourier
transform of X is the map from Φ into C given by φ 7→ E(eiX(φ)).

Let X be a Φ′-valued random variable, i.e. X : Ω → Φ′ is a F/B(Φ′)-measurable
map. For each φ ∈ Φ we denote by 〈X , φ〉 the real-valued random variable defined by
〈X , φ〉 (ω) := 〈X(ω) , φ〉, for all ω ∈ Ω. The linear mapping φ 7→ 〈X , φ〉 is called the
cylindrical random variable induced/defined by X. We will say that a Φ′-valued random
variable X is n-integrable (n ∈ N) if the cylindrical random variable induced by X is
n-integrable.

Let J = R+ := [0,∞) or J = [0, T ] for T > 0. We say that X = (Xt : t ∈ J) is a
cylindrical process in Φ′ if Xt is a cylindrical random variable for each t ∈ J . Clearly,
any Φ′-valued stochastic processes X = (Xt : t ∈ J) induces/defines a cylindrical process
under the prescription: 〈X , φ〉 = (〈Xt , φ〉 : t ∈ J), for each φ ∈ Φ.

If X is a cylindrical random variable in Φ′, a Φ′-valued random variable Y is called a
version of X if for every φ ∈ Φ, X(φ) = 〈Y , φ〉 P-a.e. A Φ′-valued process Y = (Yt : t ∈ J)

is said to be a Φ′-valued version of the cylindrical process X = (Xt : t ∈ J) on Φ′ if for
each t ∈ J , Yt is a Φ′-valued version of Xt.

For a Φ′-valued process X = (Xt : t ∈ J) terms like continuous, càdlàg, purely
discontinuous, adapted, predictable, etc. have the usual (obvious) meaning.

A Φ′-valued random variable X is called regular if there exists a weaker countably
Hilbertian topology θ on Φ such that P(ω : X(ω) ∈ (Φ̂θ)

′) = 1. Furthermore, a Φ′-valued
process Y = (Yt : t ∈ J) is said to be regular if Yt is a regular random variable for each
t ∈ J . In that case the law of each Yt is a Radon measure in Φ′ (see Theorem 2.10 in
[10]).

If Ψ is a separable Hilbert space, recall that a Ψ-valued adapted càdlàg process
X = (Xt : t ≥ 0) is a semimartingale if it admit a representation of the form

Xt = X0 +Mt +At, ∀ t ≥ 0,

where M = (Mt : t ≥ 0) is a càdlàg local martingale and A = (At : t ≥ 0) is a càdlàg
adapted process of finite variation, and M0 = A0 = 0. The reader is referred to [21] for
the basic theory of Hilbert space valued semimartingales and to [7, 15, 28] for Rd-valued
semimartingales.
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We denote by S0 the linear space of (equivalence classes) of real-valued semimartin-
gales. We consider on S0 the topology given in Memin [22]: define |·|0 on S0 by

|z|0 =

∞∑
k=1

2−k |z|k ,

where for each k ∈ N,

|z|k = sup
h∈E1

E (1 ∧ |(h · z)k|) ,

E1 is the class of real-valued predictable processes h of the form

h =

n−1∑
i=1

ai1(ti,ti+1]×Ω,

for 0 < t1 < t2 < . . . tn < ∞, ai is an Fti -measurable random variable, |ai| ≤ 1, i =

1, . . . , n− 1, and

(h · z)k =

∫ k

0

hsdzs =

n−1∑
i=1

ai
(
zti+1∧k − zti∧k

)
.

Then, d(y, z) = |y − z|0 is a metric on S0 and (S0, d) is a complete, metric, topological
vector space (is not in general locally convex). Unless otherwise specified, the space S0

will always be consider equipped with this topology.
If x = (xt : t ≥ 0) is a real-valued semimartingale, we denote by ||x||Sp (1 ≤ p < ∞)

the following quantity:

||x||Sp = inf

{∣∣∣∣∣∣∣∣[m,m]1/2∞ +

∫ ∞
0

|das|
∣∣∣∣∣∣∣∣
Lp(Ω,F ,P)

: x = m+ a

}
,

where the infimum is taken over all the decompositions x = m + a as a sum of a local
martingale m and a process of finite variation a. Recall that ([m,m]t : t ≥ 0) denotes
the quadratic variation process associated to the local martingale m, i.e. [m,m]t =

〈〈mc,mc〉〉t +
∑

0≤s≤t(∆ms)
2, where mc is the (unique) continuous local martingale part

of m and (〈〈mc,mc〉〉t : t ≥ 0) its angle bracket process (see Section I in [15]). The set
of all semimartingales x for which ||x||Sp <∞ is a Banach space under the norm ||·||Sp
and is denoted by Sp (see VII.98 in [7]). Furthermore, if x = m+ a is a decomposition of
x such that ||x||Sp <∞ it is known that in such a case a is of integrable variation (see
VII.98(c) in [7]).

3 Cylindrical semimartingales in the dual of a nuclear space

Assumption 3.1. Throught this section and unless otherwise specified Φ will always
denote a nuclear space.

3.1 Regularization of cylindrical semimartigales

In this section our main objective is to establish sufficient conditions for a cylindrical
semimartingale in Φ′ to have a Φ′-valued càdlàg semimartingale version. Following
[10] and [24], we call such a result as regularization of cylindrical semimartingales
(see Theorem 3.7). As a consequence of our results for cylindrical semimartingales
we will show that if we assume some extra structure on the space Φ then every Φ′-
semimartingale has a càdlàg version (see Proposition 3.12). We begin by introducing our
definition of cylindrical semimartingales in duals of nuclear spaces.
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Definition 3.2. A cylindrical semimartingale in Φ′ is a cylindrical process X = (Xt :

t ≥ 0) in Φ′ such that ∀φ ∈ Φ, X(φ) is a real-valued semimartingale. A cylindrical local
martingale (resp. cylindrical martingale) in Φ′ is a cylindrical process M = (Mt : t ≥ 0)

for which M(φ) = (Mt(φ) : t ≥ 0) is a real-valued local martingale (resp. a martingale).
In a similar way, a cylindrical finite variation process in Φ′ is a cylindrical process
A = (At : t ≥ 0) for which A(φ) = (At(φ) : t ≥ 0) is a real-valued process of finite
variation (i.e. if P-a.a. of its paths have locally bounded variation).

If X is a cylindrical semimartingale in Φ′, then each X(φ) has the decomposition

Xφ
t = Xφ

0 +Mφ
t +Aφt , ∀ t ≥ 0, (3.1)

where Mφ = (Mφ
t : t ≥ 0) is a real-valued càdlàg local martingale with Mφ

0 = 0, and
Aφ = (Aφt : t ≥ 0) is a real-valued càdlàg adapted process of finite variation and Aφ0 = 0.
If there exists a decomposition (3.1) with each Aφ predictable, we will say that X is a
special cylindrical semimartingale. It is important to stress the fact that in general the
maps φ 7→Mφ and φ 7→ Aφ do not define a cylindrical local martingale and a cylindrical
finite variation process because they might be not linear operators. For more details see
the discussion in Example 3.10 in [1] and Remark 2.2 in [17].

Definition 3.3. A Φ′-valued process X = (Xt : t ≥ 0) is a semimartingale if the induced
cylindrical process is a cylindrical semimartingale. In a completely analogue way we
define the concepts of Φ′-valued special semimartingale, martingale, local martingale
and process of finite variation.

Example 3.4. One important example of a cylindrical semimartingale in Φ′ is a cylin-
drical Lévy process, i.e. a cylindrical process L = (Lt : t ≥ 0) in Φ′ such that ∀n ∈ N,
φ1, . . . , φn ∈ Φ, the Rn-valued process ((Lt(φ1), . . . , Lt(φn)) : t ≥ 0) is a Lévy process.

In a similar way, an example of a Φ′-valued semimartingale is a Lévy processes. Recall
that a Φ′-valued process L = (Lt : t ≥ 0) is called a Lévy process if (i) L0 = 0 a.s., (ii) L
has independent increments, i.e. for any n ∈ N, 0 ≤ t1 < t2 < · · · < tn <∞ the Φ′-valued
random variables Lt1 , Lt2 − Lt1 , . . . , Ltn − Ltn−1 are independent, (iii) L has stationary
increments, i.e. for any 0 ≤ s ≤ t, Lt − Ls and Lt−s are identically distributed, and
(iv) For every t ≥ 0 the probability distribution µt of Lt is a Radon measure and the
mapping t 7→ µt from R+ into the space of Radon probability measures on Φ′ (equipped
with the weak topology) is continuous at the origin.

Properties of cylindrical and Φ′-valued Lévy processes were studied by the author
in [12]. The reader is referred also to [25, 35] for other studies on Lévy and additive
processes in the dual of some particular classes of nuclear spaces.

Example 3.5. Another important example of semimartingales in the dual of a nuclear
space are the solutions to certain stochastic evolution equations. Let Φ be a nuclear
Fréchet space and M = (Mt : t ≥ 0) be a Φ′-valued square integrable càdlàg martingale.
Let A be a continuous linear operator on Φ that is the infinitesimal generator of a
(C0, 1)-semigroup (S(t) : t ≥ 0) of continuous linear operators on Φ (see Definition 1.2
in [19]). Denote by A′ the dual operator of A and by (S′(t) : t ≥ 0) the dual semigroup
to (S(t) : t ≥ 0). If γ is a Φ′-valued square integrable random variable, it is proved in
Corollary 2.2 in [19] that the homogeneous stochastic evolution equation

dXt = A′Xtdt+ dMt, X0 = γ,

has a unique solution X = (Xt : t ≥ 0) given by

Xt = Mt + S′(t)γ +

∫ t

0

S′(t− s)A′Msds.

In particular, X is a Φ′-valued càdlàg semimartingale (see Remark 2.1 in [19]).
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Remark 3.6. Under the additional assumption that Φ′ is a complete nuclear space,
another definition of Φ′-valued semimartingales was introduced by Üstünel in [33] by
means of the concept of projective system of stochastic process. To explain this concept,
let (qi : i ∈ I) be a family of Hilbertian seminorms generating the nuclear topology
on Φ′ and let ki : Φ′ → (Φ′)qi denotes the canonical inclusion. A projective system
of semimartingales is a family X = (Xi : i ∈ I) where each Xi is a (Φ′)qi -valued
semimartingale, and such that if qi ≤ qj then kqi,qjX

j and Xi are indistinguishable.
A Φ′-valued processes Y is a semimartingale if kiY = Xi for each i ∈ I. It is clear that
any semimartingale defined in the above sense is also a semimartingale in the sense
of Definition 3.3. If Φ is a Fréchet nuclear space the converse is also true as proved
by Üstünel in [34] (Theorem II.1 and Corollary II.3). Observe that the definition of
Φ′-valued semimartingales as projective systems of semimartingales only makes sense
if the strong dual Φ′ is complete and nuclear. The above because if Φ′ does not satisfy
these assumptions it might not be possible to express Φ′ as a projective limit of Hilbert
spaces with Hilbert-Schmidt embeddings.

The following result provides sufficient conditions for the existence of càdlàg versions:

Theorem 3.7 (Regularization of cylindrical semimartingales). Let X = (Xt : t ≥ 0)

be a cylindrical semimartingale in Φ′ such that for each T > 0, the family of linear
maps (Xt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is equicontinuous (at the origin). Then,
there exists a weaker countably Hilbertian topology θ on Φ and a (Φ̂θ)

′-valued càdlàg
semimartingale Y = (Yt : t ≥ 0), such that for every φ ∈ Φ, 〈Y , φ〉 = (〈Yt , φ〉 : t ≥ 0)

is a version of X(φ) = (Xt(φ) : t ≥ 0). Moreover, Y is a Φ′-valued, regular, càdlàg
semimartingale that is a version of X and it is unique up to indistinguishable versions.
Furthermore, if for each φ ∈ Φ the real-valued semimartingale X(φ) is continuous, then
Y is a continuous process in (Φ̂θ)

′ and in Φ′.

Proof. Since for each φ ∈ Φ, the real-valued semimartingale (Xt(φ) : t ≥ 0) has a càdlàg
version (see [7], Section VII.23), the theorem follows using the Regularization Theorem
(Theorem 3.2 in [10]).

Corollary 3.8. If Φ is an ultrabornological nuclear space, the conclusion of Theorem 3.7
remains valid if we only assume that each Xt : Φ → L0 (Ω,F ,P) is continuous (at the
origin).

Proof. If Φ is ultrabornological, the continuity of each Xt implies the equicontinuity of
the family (Xt : t ∈ [0, T ]) for each T > 0 (see [10], Proposition 3.10). The corollary then
follows from Theorem 3.7.

Remark 3.9. Let X = (Xt : t ≥ 0) be a cylindrical process in Φ′. The following
statements are equivalent (see [37], Proposition IV.3.4):
(1) For each T > 0, the family of linear maps (Xt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is

equicontinuous (at the origin).
(2) For each T > 0, the Fourier transforms of the family (Xt : t ∈ [0, T ]) are equicontinu-

ous (at the origin) in Φ.
Hence the statement of Theorem 3.7 can be formulated in terms of Fourier transforms.

Example 3.10. Consider the space D(Rd) := C∞c (Rd) of test functions and its dual
D ′(Rd) the space of distributions. Let z = (zt : t ≥ 0) be a Rd-valued semimartingale.
Following [34], we can consider the following cylindrical processes in D ′(Rd): for each
t ≥ 0, define the map Xt : D(Rd)→ L0 (Ω,F ,P) by

Xt(φ) = δzt(φ) = φ(zt), ∀φ ∈ D(Rd),
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where δx denotes the Dirac measure at x ∈ Rd. Each Xt is continuous from D(Rd) into
L0 (Ω,F ,P). Moreover, it is a consequence of Itô’s formula that for each φ ∈ D(Rd),
(φ(zt) : t ≥ 0) is a real-valued semimartingale. Then, (Xt : t ≥ 0) satisfies the conditions
in Corolary 3.8, and hence there exists a D ′(Rd)-valued càdlàg semimartingale (Yt : t ≥ 0)

with Radon distributions such that ∀φ ∈ D(Rd), P-a.e. 〈Yt , φ〉 = φ(zt) for all t ≥ 0.

Example 3.11. Let X = (Xt : t ≥ 0) is a cylindrical Lévy process in Φ′ such that
or each T > 0, the family of linear maps (Xt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is
equicontinuous (at the origin). Then its regularized Φ′-valued semimartingale version
Y = (Yt : t ≥ 0) is indeed a Φ′-valued càdlàg Lévy process (see Theorem 3.8 in [12]).
Moreover, if Φ is a barrelled space, and L = (Lt : t ≥ 0) is a Φ′-valued Lévy process, the
condition of equicontinuity of the family (Lt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) for all
T > 0 is always satisfied (see Corollary 3.11 in [12]).

If X is a Φ′-valued semimartingale satisfying the equicontinuity condition in the
statement of Theorem 3.7, then X has a càdlàg semimartingale version. However, as
the next result shows there is a large class of examples of nuclear spaces where every
Φ′-valued semimartingale always have a càdlàg semimartingale version.

Proposition 3.12. The conclusion of Theorem 3.7 remains valid if Φ is an ultrabornolog-
ical nuclear space and X = (Xt : t ≥ 0) is a Φ′-valued semimartingale such that the
probability distribution of each Xt is a Radon measure.

Proof. If the probability distribution of Xt is a Radon measure, then by Theorem 2.10
in [10] and the fact that Φ being ultrabornological is also barrelled (see [23], Theorem
11.12.2) imply that each Xt : Φ → L0 (Ω,F ,P) is continuous. The result now follows
from Corollary 3.8.

Corollary 3.13. If Φ is a Fréchet nuclear space or the countable inductive limit of
Fréchet nuclear spaces, then each Φ′-valued semimartingale X = (Xt : t ≥ 0) possesses
a càdlàg semimartingale version (unique up to indistinguishable versions).

Proof. If Φ is a Fréchet nuclear space or a countable inductive limit of Fréchet nuclear
spaces, then every Borel measure on Φ′ is a Radon measure (see Corollary 1.3 of Dalecky
and Fomin [5], p.11). In particular, for each t ≥ 0 the probability distribution of Xt is
Radon. The result now follows from Proposition 3.12.

Let X = (Xt : t ≥ 0) be a cylindrical semimartingale in Φ′. Clearly X induces a linear
map φ 7→ X(φ) from Φ into S0. The next result shows that the continuity of this map is
equivalent to the equicontinuity condition in the statement of Theorem 3.7.

Proposition 3.14. Let X = (Xt : t ≥ 0) be a cylindrical semimartingale in Φ′. The
following statements are equivalent:
(1) The linear mapping X : Φ→ S0, φ 7→ X(φ), is continuous.
(2) For each T > 0, the family of linear maps (Xt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is

equicontinuous (at the origin).
If any of the above is satisfied, there exists exists a weaker countably Hilbertian topology
θ on Φ such that X extends to a continuous map from Φ̂θ into S0.

Proof. We first prove (1) ⇒ (2). Observe that because convergence in S0 under the
metric d implies uniform convergence in probability on compact subsets in R+ (see [22],
Remarque II.2), then the continuity of the mapping X : Φ → S0 implies that for each
T > 0, the family of mappings (Xt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is equicontinuous
(see the proof of Lemma 3.7 in [10]).

Now we will prove (2)⇒ (1) and the last implication in the statement of Proposition
3.14. Let θ be a weaker countably Hilbertian topology on Φ and a (Φ̂θ)

′-valued càdlàg
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process Y = (Yt : t ≥ 0) as in the conclusion of Theorem 3.7. Because for each φ ∈ Φ,
〈Y , φ〉 = (〈Yt , φ〉 : t ≥ 0) is a version of X(φ) = (Xt(φ) : t ≥ 0) ∈ S0, and because Φ is
dense in Φ̂θ, then Y defines a linear map from Φ̂θ into S0. Furthermore, the continuity
for each t ≥ 0 of Yt on Φ̂θ easily implies that Y is a closed linear map from Φ̂θ into S0.
But because Φ̂θ is ultrabornological and S0 is a complete, metrizable, topological vector
space, the closed graph theorem (see [23], Theorem 14.7.3, p.475) implies that the map
defined by Y is continuous from Φ̂θ into S0. However, because for each φ ∈ Φ we have
〈Y , φ〉 = X(φ) in S0, then X extends to a continuous map from Φ̂θ into S0. Furthermore,
because the inclusion from Φ into Φ̂θ is linear and continuous, then X : Φ → S0 is
continuous.

If in the proof of Proposition 3.14 we use Corollary 3.8 instead of Theorem 3.7 we
obtain the following conclusion:

Proposition 3.15. If Φ is an ultrabornological nuclear space, we can replace (2) in
Proposition 3.14 by the assumption that each Xt : Φ→ L0 (Ω,F ,P) is continuous (at the
origin).

Remark 3.16. The implication (1)⇒ (2) in Proposition 3.14 remains true if Φ is only a
locally convex space (see the proof of Lemma 3.7 in [10]).

3.2 Regularization of some classes of cylindrical semimartingales

In this section we study how the results obtained in the above section specialize when
we restrict our attention to cylindrical local martingales and cylindrical processes of
finite variation. We start with the following regularization result that follows easily from
Theorem 3.7.

Proposition 3.17. If in Theorem 3.7 or in Corollary 3.8 the cylindrical process X is
a cylindrical local martingale (resp. a cylindrical process of finite variation), then the
regularized version Y of X is a local martingale (resp. a process of finite variation).

Remark 3.18. If X = (Xt : t ≥ 0) is a cylindrical local martingale (resp. a cylindrical
process of finite variation) satisfying condition (2) in Proposition 3.14, then it is not true
in general that X defines a continuous operator from Φ into the space of real-valued
local martingalesMloc (resp. of real-valued processes of finite variation V). This is a
consequence of the fact thatMloc and V are not closed subspaces of S0 (see [9]).

Regularization of cylindrical martingales were studied by the author in [10]. Observe
that if the cylindrical martingale has n-moments, for n ≥ 2, we obtain a regularized
version taking values in some Hilbert space Φ′q.

Theorem 3.19 ([10], Theorem 5.2). Let X = (Xt : t ≥ 0) be a cylindrical martingale in
Φ′ such that for each t ≥ 0 the map Xt : Φ→ L0 (Ω,F ,P) is continuous. Then, X has a
Φ′-valued càdlàg version Y = (Yt : t ≥ 0). Moreover, we have the following:

(1) If X is n-th integrable with n ≥ 2, then for each T > 0 there exists a continuous
Hilbertian semi-norm qT on Φ such that (Yt : t ∈ [0, T ]) is a Φ′qT -valued càdlàg

martingale satisfying E
(

supt∈[0,T ] q
′
T (Yt)

n
)
<∞.

(2) Moreover, if for n ≥ 2, supt≥0E (|Xt(φ)|n) < ∞ for each φ ∈ Φ, then there exists a
continuous Hilbertian semi-norm q on Φ such that Y is a Φ′q-valued càdlàg martingale
satisfying E

(
supt≥0 q

′(Yt)
n
)
<∞.

If for each φ ∈ Φ the real-valued process (Xt(φ) : t ≥ 0) has a continuous version, then Y
can be chosen to be continuous and such that it satisfies (1)−(2) above replacing the
property càdlàg by continuous.

Example 3.20. The following simple example illustrates the usefulness of Theorem 3.19.
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Let B = (Bt : t ≥ 0) denotes a real-valued Brownian motion. For every t ≥ 0 define

Xt(φ) =

∫ t

0

φ(s)dBs, ∀φ ∈ S(R).

From the properties of the Itô stochastic integral we have that X = (Xt : t ≥ 0)

is a cylindrical square integrable continuous martingale in the space of tempered
distributions S ′(R). Moreover, from Itô isometry we have E |Xt(φ)|2 =

∣∣∣∣1[0,t]φ
∣∣∣∣2
L2(R)

∀φ ∈ S(R) and since the canonical inclusion from S(R) into L2(R) is continuous, it
follows that each Xt : S(R) → L0 (Ω,F ,P) is also continuous. Theorefore, Theorem
3.19 shows that X has a version Y = (Yt : t ≥ 0) that is a square integrable continuous
martingale in the space of tempered distributions S ′(R).

We can learn more about X if we analyse further some families of norms on S(R).
For every p ∈ R, define on S(R) the norm:

||φ||2p =

∞∑
n=1

(
n+

1

2

)2p

〈φ , φn〉2L2(R) ,

where the sequence of Hermite functions (φn : n = 1, 2, . . . ) is defined as:

φn+1(x) =
√
g(x)hn(x), n = 0, 1, 2, . . . ,

for g(x) = (
√

2π)−1 exp(−x2/2) and where (hn : n = 0, 1, 2, . . . ) is the sequence of Hermite
polynomials:

hn(x) =
(−1)n√
n!

g(x)−1 d
n

dxn
g(x), n = 0, 1, 2, . . . .

It is known (see e.g. Theorem 1.3.2 in [20]) that the topology in S(R) is generated by the
increasing sequence of Hilbertian norms (||·||p : p = 0, 1, . . . ). Moreover, if Sp denotes
the completion of S(R) when equipped with the norm ||·||p, it follows that S ′p = S−p.

Then since supt≥0E |Xt(φ)|2 = ||φ||2L2(R) <∞ ∀φ ∈ S(R), Theorem 3.19(2) shows that
there exists some p ∈ N such that Y is a continuous square integrable martingale in S−p
satisfying E

(
supt≥0 ||Yt||

2
−p

)
<∞.

In the next result we study regularization for cylindrical processes of locally integrable
variation. Observe that in this case one can obtain a regularized version with paths that
on a bounded time interval are of bounded variation in some Hilbert space Φ′ρ. We denote
by A the Banach space of real-valued processes of integrable variation a = (at : t ≥ 0)

equipped with the norm of expected total variation ||a||A = E
∫∞

0
|dat|. Similarly, Aloc

denotes the linear space of real-valued predictable processes of finite variation with
locally integrable variation, equipped with the topology of uniform convergence in
probability in the total variation on every compact interval [0, T ] of R+.

Theorem 3.21. Let Ã = (Ãt : t ≥ 0) be a cylindrical process of locally integrable
variation, i.e. such that Ã(φ) ∈ Aloc for each φ ∈ Φ. Assume further that for each T > 0,
the family of linear maps (Ãt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is equicontinuous
(at the origin). Then, the cylindrical process Ã has a Φ′-valued regular càdlàg version
A = (At : t ≥ 0) (unique up to indistinguishable versions) satisfying that for every ω ∈ Ω

and T > 0, there exists a continuous Hilbertian semi-norm % = %(ω, T ) on Φ such that
the map t 7→ At(ω) defined on [0, T ] has bounded variation in Φ′%.

Proof. First, from Proposition 3.17 there exists a weaker countably Hilbertian topology
θ on Φ, and a (Φ̂θ)

′-valued adapted càdlàg process A = (At : t ≥ 0) such that P-a.e.
〈At , φ〉 = Ãt(φ) ∀t ≥ 0, φ ∈ Φ. From the above equality it follows that for each φ ∈ Φ,
〈A , φ〉 ∈ Aloc. Therefore, from Proposition 3.14 and since Aloc is a closed subspace of
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S0 (see [22], Théorème IV.7), the process A defines a linear and continuous map from Φ̂θ
into Aloc. We will use the above to show that the paths of A satisfy the bounded variation
properties indicated in the statement of the theorem. We will benefit from ideas taken
from [2].

Fix T > 0. For every ε > 0, using the linearity and continuity of the map A from Φ̂θ
into Aloc, and by following similar arguments to those used in the proof of Lemma 3.3 in
[2] there exists a θ-continuous Hilbertian seminorm p on Φ, such that

sup
∆
E

 sup
||y||l∞

∆
≤1

∣∣∣1− ei〈A∆(φ) , y〉
∣∣∣
 ≤ ε+ 2p(φ)2, ∀φ ∈ Φ, (3.2)

where the sup is taken with respect to an increasing sequence of finite partitions ∆ of
[0, T ] in such a way that the supremum can be attained as a monotone limit. Let us
explain the notation used in (3.2). If ∆ = {0 = t0 < t1 < · · · < tn = T} is a finite partition
of [0, T ], A∆ denotes the linear and continuous map:

φ 7→ A∆(φ) := (A(φ)(t1)−A(φ)(t0), . . . , A(φ)(tn)−A(φ)(tn−1)),

from Φ̂θ into L0(l1∆), where l1∆ denotes the space Rn equipped with the l1-norm ||y||l1∆ =∑n
k=1 |yk| for y = (y1, . . . , yn) ∈ Rn. Recall that in Rn the dual norm to the l∞-norm

||y||l∞∆ = max1≤k≤n |yk| for y = (y1, . . . , yn) ∈ Rn is the l1-norm, i.e. we have that

||x||l1∆ = sup{|〈x , y〉| : ||y||l∞∆ ≤ 1}, where 〈· , ·〉 denotes the scalar product in Rn and l∞∆
denotes the space Rn equipped with the l∞-norm.

Let (pm : m ∈ N) be an increasing sequence of continuous Hilbertian seminorms on
Φ generating the topology θ. Since Φ is a nuclear space, we can find and increasing
sequence of continuous Hilbertian seminorms (qm : m ∈ N) on Φ such that ∀m ∈ N,
pm ≤ qm, and the inclusion ipm,qm is Hilbert-Schmidt. We denote by α the countably
Hilbertian topology on Φ generated by the seminorms (qm : m ∈ N). By construction, the
topology α is finer than θ.

Let (εn : n ∈ N) be a sequence of positive real numbers such that
∑
n εn <∞. Then,

there exists a subsequence (pmn : n ∈ N) of (pm : m ∈ N) such that for each n ∈ N, εn
and pmn satisfy (3.2). To keep the notation simple, we will denote pmn by pn and the
corresponding qmn by qn.

Let C > 0 and let ∆ be any member of the increasing sequence of finite partitions of
[0, T ] for which the supremum in (3.2) is attained. Let (φqnj : j ∈ N) ⊆ Φ be a complete
orthonormal system in Φqn . Then, similar arguments to those used in the proof of Lemma
3.8 in [10] shows that

P

(
sup

qn(φ)≤1

∣∣∣∣A∆(φ)
∣∣∣∣
l1∆
> C

)

= P

 sup
qn(φ)≤1

sup
||y||l∞

∆
≤1

∣∣〈A∆(φ) , y
〉∣∣ > C


≤

√
e√

e− 1
E

1− exp

− 1

2C2
sup

qn(φ)≤1

sup
||y||l∞

∆
≤1

〈
A∆(φ) , y

〉2


= lim
m→∞

√
e√

e− 1
E

 sup
||y||l∞

∆
≤1

1− exp

− 1

2C2

m∑
j=1

〈
A∆(φqnj ) , y

〉2


≤ lim
m→∞

√
e√

e− 1

∫
Rm
E

 sup
||y||l∞

∆
≤1

∣∣∣∣∣∣1− exp

i
m∑
j=1

zj
〈
A∆(φqnj ) , y

〉
∣∣∣∣∣∣
⊗mj=1 NC(dzj),
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where NC denotes the centred Gaussian measure on R with variance 1/C2. Now, from
(3.2) the last term can be majorated by

lim
m→∞

√
e√

e− 1

∫
Rm

εn + 2pn

 m∑
j=1

zjφ
qn
j

2
⊗mj=1 NC(dzj)

≤ lim
m→∞

√
e√

e− 1

εn +
2

C2

m∑
j=1

pn
(
φqnj
)2

=

√
e√

e− 1

[
εn +

2

C2
||ipn,qn ||

2
L2(Φqn ,Φpn )

]
.

From the above bound we have

P

(
sup

qn(φ)≤1

∫ T

0

|dAt(φ)| > C

)
= P

(
sup

qn(φ)≤1

sup
∆

∣∣∣∣A∆(φ)
∣∣∣∣
l1∆
> C

)

= sup
∆
P

(
sup

qn(φ)≤1

∣∣∣∣A∆(φ)
∣∣∣∣
l1∆
> C

)

≤
√
e√

e− 1

[
εn +

2

C2
||ipn,qn ||

2
L2(Φqn ,Φpn )

]
,

where, as before, the sup is taken with respect to an increasing sequence of finite
partitions of [0, T ] for which the supremum in (3.2) is attained.

Then, by taking limit as C →∞ we get that

P

(
sup

qn(φ)≤1

∫ T

0

|dAt(φ)| <∞

)
≥ 1−

√
e√

e− 1
εn. (3.3)

Now, if for every n ∈ N we take

Λn =

{
sup

qn(φ)≤1

∫ T

0

|dAt(φ)| <∞

}
and ΩT =

⋃
N∈N

⋂
n≥N

Λn,

it follows from (3.3), our assumption
∑
n εn < ∞, and the Borel-Cantelli lemma that

P(ΩT ) = 1.
Now, recall that the process A was obtained from regularization of the cylindrical

process Ã. It is a consequence of the construction of this regularized version (see
Remark 3.9 in [10]) that there exists Γ ⊆ Ω with P(Γ) = 1 such that for all ω ∈ Γ, for
every t > 0 there exists a θ-continuous Hilbertian semi-norm p = p(ω, t) on Φ such that
the map s 7→ As(ω) is càdlàg from [0, t] into the Hilbert space Φ′p.

If ω ∈ Γ∩ΩT , from the construction of the set ΩT there exists an α-continuous Hilber-
tian seminorm q = q(ω, T ) on Φ, with p ≤ q, and such that supq(φ)≤1

∫ T
0
|dAt(φ)(ω)| <∞.

The above clearly implies that φ 7→
〈
i′p,qA(ω) , φ

〉
is a linear and continuous mapping

from Φq into the Banach space BV ([0, T ]) of real-valued functions that are of bounded
variation on [0, T ] equipped with the total variation norm.

Let % be a continuous Hilbertian semi-norm on Φ such that q ≤ % and iq,% is Hilbert-
Schmidt. Then, the dual operator i′q,% is Hilbert-Schmidt and hence is 1-summing (see
[8], Corollary 4.13, p.85). Then, from the Pietsch domination theorem (see [8], Theorem
2.12, p.44) there exists a constant C > 0, and a Radon probability measure ν on the unit
ball B∗q (1) of Φq (equipped with the weak topology) such that,

%′(i′q,%f) ≤ C
∫
B∗q (1)

|〈f , φ〉| ν(dφ), ∀ f ∈ Φ′q. (3.4)
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Then, the continuity of the map φ 7→ 〈A(ω) ◦ ip,q , φ〉 and (3.4) implies that∑
∆

%′
(
i′p,%Ati+1

(ω)− i′p,%Ati(ω)
)

=
∑
∆

%′
(
i′q,%

(
i′p,qAti+1

(ω)− i′p,qAti(ω)
))

≤ C

∫
B∗q (1)

∑
∆

∣∣〈i′p,qAti+1
(ω)− i′p,qAti(ω) , φ

〉∣∣ ν(dφ)

≤ ||ip,q||L2(Φq,Φp) sup
q(φ)≤1

∫ T

0

|dAt(φ)| <∞.

The above bound is uniform on ∆, therefore

sup
∆

∑
∆

%′
(
i′p,%Ati+1(ω)− i′p,%Ati(ω)

)
<∞,

and hence A is a Φ′-valued version of Ã whose paths satisfy the properties on the
statement of the theorem.

We finalize this section by studying regularization of Sp-cylindrical semimartingales.
The next results is a generalization of Theorem III.1 in [33].

Theorem 3.22. Let X = (Xt : t ≥ 0) be a Sp-cylindrical semimartingale (1 ≤ p < ∞),
i.e. such that X(φ) ∈ Sp for each φ ∈ Φ. Assume further that for each T > 0, the family
of linear maps (Xt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is equicontinuous (at the origin).
Then there exists a continuous Hilbertian seminorm q on Φ such that X has a càdlàg
version Y = (Yt : t ≥ 0) that is a Sp-semimartingale in Φ′q. Moreover, Y is unique up to
indistinguishable versions as a Φ′-valued process.

Proof. First, a closed graph theorem argument similar to the one used in the proof of
Proposition 3.14 shows that X defines a continuous and linear operator from Φ into Sp.
Since Φ is a nuclear space and Sp is Banach, the map X : Φ→ Sp is nuclear and then it
has a representation (see [31], Theorems III.7.1-2):

X =

∞∑
i=1

λiFi ⊗ xi,

where (λi) ∈ l1, (Fi) ⊆ Φ′ equicontinuous, and (xi) ⊆ Sp bounded. Choose any ε > 0,
and for each i a local martingale mi and a process of integrable variation ai such that
xi = mi + ai and ∣∣∣∣∣∣∣∣[mi,mi]1/2∞ +

∫ ∞
0

∣∣dais∣∣∣∣∣∣∣∣∣∣
Lp(Ω,F ,P)

<
∣∣∣∣xi∣∣∣∣

Sp
+ ε.

Now, since (Fi) is equicontinuous and Φ is nuclear, there exists a continuous Hilbertian
seminorm q on Φ such that (Fi) ⊆ Bq(1)0, where Bq(1)0 denotes the polar set of the unit
ball Bq(1) of q. Define

Mt(ω) =

∞∑
i=1

λiFim
i
t(ω), ∀ t ≥ 0, ω ∈ Ω,

and

At(ω) =

∞∑
i=1

λiFi a
i
t(ω), ∀ t ≥ 0, ω ∈ Ω.

Then, following similar arguments to those used in the proof of Theorem III.1 in [33])
we can show that M = (Mt : t ≥ 0) defines a Φ′q-valued càdlàg local martingale with
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E(supt≥0 q
′(Mt)

p) < ∞, therefore E
(

[M,M ]
p/2
∞

)
< ∞ by the Burkholder’s inequality

in Hilbert spaces, and that A = (At : t ≥ 0) defines a Φ′q-valued càdlàg process of

p-integrable variation, that is E
(∣∣∫∞

0
q′(dAt)

∣∣p) <∞. Hence, if we define Y = (Yt : t ≥ 0)

by Yt = Mt +At ∀t ≥ 0, then Y is is a Φ′q-valued càdlàg Sp-semimartingale. Moreover, it
is clear from the definition of Y that it is a version of X.

Corollary 3.23. If Φ is an ultrabornological nuclear space, the result in Theorem 3.22 is
valid if we only assume that each Xt : Φ→ L0 (Ω,F ,P) is continuous (at the origin).

4 Canonical representation of semimartingales in duals of nu-
clear spaces

Assumption 4.1. Throught this section and unless otherwise specified Φ will always
denote a nuclear space.

The aim of this section is to prove the following theorem that provides a detailed
canonical representation for Φ′-valued semimartingales satisfying the equicontinuity
condition in the statement of Theorem 3.7. We will show later (see Proposition 4.7) that
this equicontinuity condition can be discarded if the nuclear space is ultrabornological,
therefore generalizing the canonical representation for semimartingales in the dual
Fréchet nuclear space obtained by Pérez-Abreu in [24] (see Corollary 4.8 below).

Theorem 4.2 (Semimartingale canonical representation). Let X = (Xt : t ≥ 0) be
Φ′-valued, adapted, càdlàg semimartingale such that for each T > 0, the family of
linear maps (Xt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is equicontinuous (at the origin).
Given a continuous Hilbertian seminorm ρ on Φ, for each t ≥ 0, Xt admits the unique
representation

Xt = X0 +At +M c
t +

∫ t

0

∫
Bρ′ (1)

fd(µ− ν)(s, f) +

∫ t

0

∫
Bρ′ (1)c

fdµ(s, f), (4.1)

where
(1) X0 is a F0-measurable Φ′-valued regular random variable,
(2) A = (At : t ≥ 0) is a Φ′-valued regular predictable process with uniformly bounded

jumps satisfying that for every ω ∈ Ω and T > 0, there exists a continuous Hilbertian
semi-norm % = %(ω, T ) on Φ such that the map t 7→ At(ω) defined on [0, T ] has
bounded variation in Φ′%,

(3) M c = (M c
t : t ≥ 0) is a Φ′-valued regular continuous local martingale with M c

0 = 0,
(4) µ(ω; (0, t]; Γ) =

∑
0<s≤t 1{∆Xs∈Γ}, Γ ∈ B(Φ′0) with 0 /∈ Γ (here Φ′0 := Φ′ \ {0}), is the

integer-valued random measure of the jumps of X with (predictable) compensator
measure ν = ν(ω, dt, df) that satisfies the conditions:
(a) ν(ω; {0}; Φ′) = ν(ω;R+; {0}) = 0,
(b) ν(ω; {t}; Φ′) ≤ 1 ∀t > 0,
(c)

∫ t
0

∫
Φ′
|〈f , φ〉|2 ∧ 1 ν(ds, df) <∞, ∀φ ∈ Φ, t > 0,

(5)
(∫ t

0

∫
Bρ′ (1)

fd(µ− ν)(s, f) : t ≥ 0
)

, is a Φ′-valued regular purely discontinuous local

martingale with uniformly bounded jumps satisfying〈∫ t

0

∫
Bρ′ (1)

fd(µ− ν)(s, f) , φ

〉
=

∫ t

0

∫
Bρ′ (1)

〈f , φ〉 d(µ− ν)(s, f), ∀φ ∈ Φ, t ≥ 0,

and Bρ′(1) := Bρ(1)0 = {f ∈ Φ′ : ρ′(f) ≤ 1},
(6)

(∫ t
0

∫
Bρ′ (1)c

fdµ(s, f) : t ≥ 0
)

is a Φ′-valued regular adapted càdlàg process which

has P-a.a. paths with only a finite number of jumps on each bounded interval of R+
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(in particular is a finite variation process) satisfying∫ t

0

∫
Bρ′ (1)c

fdµ(s, f) =
∑
s≤t

∆Xs1{∆Xs∈Bρ′ (1)c}, ∀ t ≥ 0.

In order to prove Theorem 4.2 we will need to go through several steps. We benefit
from ideas taken from [2] and [24].

First, from Theorem 3.7 there exists a weaker countably Hilbertian topology ϑ on
Φ such that X has an indistinguishable version that is a (Φ̂ϑ)′-valued adapted càdlàg
semimartingale. We will identify X with this version. Moreover, from Proposition 3.14
the topology ϑ can be chosen such that X defines a continuous linear map from Φ̂ϑ into
S0. Without loss of generality we can assume that ρ is continuous with respect to the
topology ϑ. Otherwise, we can just consider another countably Hilbertian topology on
Φ generated by ρ toguether with the countable family of generating seminorms of ϑ.
An important consequence of this remark is that the unit ball Bρ′(1) of ρ′ is a bounded

subset in (Φ̂ϑ)′.
Now we show the existence of the different components of the representation (4.1).

Observe that since X is adapted, then X0 is a (Φ̂ϑ)′-valued random variable that is
F0-measurable. The continuity of the canonical inclusion from (Φ̂θ)

′ into Φ′ shows that
X0 satisfies Theorem 4.2(1).

Now, consider the random measure of the jumps of X:

µ(ω; (0, t]; Γ) =
∑

0<s≤t

1{∆Xs(ω)∈Γ}, ∀ t ≥ 0, Γ ∈ B(Φ′0). (4.2)

Since µ(ω; (0, t]; ·) has its support on (Φ̂ϑ)′, we only need to check that it is finite for
Γ ∈ B((Φ̂ϑ)′ \ {0}), 0 /∈ Γ. But since the (indistinguishable version of) X satisfies that for
P-a.e. ω ∈ Ω and t ≥ 0, there exists a ϑ-continuous Hilbertian semi-norm % = %(ω, t) on Φ

such that the map s 7→ Xs(ω) is càdlàg from [0, t] into the Hilbert space Φ′% (see Remark
3.9 in [10]), and because Φ′% is a complete separable metric space, then ∆Xs(ω) 6= 0 for

a finite number of s ∈ [0, t]. Therefore µ(ω; (0, t]; Γ) <∞ P-a.e. for each Γ ∈ B(Φ′0), 0 /∈ Γ,
and hence µ is a well-defined integer-valued random measure. Furthermore, since µ
can be regarded as a random measure on R+ × (Φ̂ϑ)′, and because ((Φ̂ϑ)′,B((Φ̂ϑ)′)) is a
standard measurable space (see Theorem 2.1.7 in [13]), then by VIII.66(b) in [7] µ admits
a (predictable) compensator measure ν such that for each non-negative predictable
function g = g(ω, t, f):

E

∫ ∞
0

∫
(Φ̂ϑ)′

gdµ = E

∫ ∞
0

∫
(Φ̂ϑ)′

gdν, (4.3)

and

ν(ω; {0}; (Φ̂ϑ)′) = ν(ω;R+; {0}) = 0,

ν(ω; {t}; (Φ̂ϑ)′) ≤ 1, ∀t > 0.

Moreover, since for each φ ∈ Φ̂ϑ, X(φ) is a real-valued semimartingale, then the process
(
∑
s≤t(|〈∆Xs , φ〉|2 ∧ 1) : t ≥ 0) is locally integrable (see [15], Theorem I.4.47), hence

from (4.3) we have ∀φ ∈ Φ̂ϑ, t > 0, P-a.e.∫ t

0

∫
(Φ̂ϑ)′

|〈f , φ〉|2 ∧ 1 ν(ds, df) <∞.

Since the canonical inclusion from (Φ̂ϑ)′ into Φ′ is linear and continuous, the compensator
measure ν can be lifted to Φ′ and satisfy (4)(a)-(c) in Theorem 4.2. In a similar way one
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can show that (see e.g. VIII.68.4 in [7])∫ t

0

∫
Φ′
|〈f , φ〉|2 ∧ |〈f , φ〉| ν(ds, df) <∞ ∀φ ∈ Φ, t > 0. (4.4)

Now, from the properties of µ it is clear that the integral∫ t

0

∫
Bρ′ (1)c

fdµ(s, f) =
∑
s≤t

∆Xs1{∆Xs∈Bρ′ (1)c}, ∀ t ≥ 0,

is a (Φ̂ϑ)′-valued adapted càdlàg process which has P-a.a. paths with only a finite number
of jumps on each bounded interval of R+. Since the canonical inclusion from (Φ̂θ)

′ into

Φ′ is linear and continuous, then
(∫ t

0

∫
Bρ′ (1)c

fdµ(s, f) : t ≥ 0
)

as a Φ′-valued process

satisfying Theorem 4.2(6).
Define Y = (Yt : t ≥ 0) by the prescription

Yt = Xt −X0 −
∫ t

0

∫
Bρ′ (1)c

fdµ(s, f), ∀t ≥ 0. (4.5)

Then, Y is a (Φ̂ϑ)′-valued adapted càdlàg process with Y0 = 0. Moreover, we have the
following:

Lemma 4.3. The process Y = (Yt : t ≥ 0) admits a (unique up to indistinguishable
versions) representation

Yt = M c
t +Md

t +At, ∀t ≥ 0, (4.6)

where M c = (M c
t : t ≥ 0) is a (Φ̂ϑ)′-valued continuous local martingale with M c

0 = 0,
Md = (Md

t : t ≥ 0) is a (Φ̂ϑ)′-valued purely discontinuous local martingale and Md
0 = 0,

A = (At : t ≥ 0) is a (Φ̂ϑ)′-valued predictable càdlàg process of locally integrable
variation and A0 = 0.

Proof. First, observe that by construction the set of jumps {∆Yt : t ≥ 0} of Y is contained
in the bounded subset Bρ′(1) in (Φ̂ϑ)′, and consequently {∆Yt : t ≥ 0} is itself bounded

in (Φ̂ϑ)′. Therefore, the definition of strong boundedness implies that for every bounded
subset C in Φ̂ϑ there exists a KC > 0 such that

sup
φ∈C

sup
t≥0
|〈∆Yt , φ〉| < KC . (4.7)

However, since for each φ ∈ Φ̂ϑ the set {φ} is bounded in Φ̂ϑ, then (4.7) shows that
the real-valued semimartingale 〈Y , φ〉 has uniformly bounded jumps, hence is a special
semimartingale and has a (unique) representation (see the proof of Theorem III.35 in
[28], p.131)

〈Yt , φ〉 = Mφ
t +Aφt , ∀t ≥ 0,

where (Mφ
t : t ≥ 0) is a real-valued càdlàg local martingale, (Aφt : t ≥ 0) is a real-

valued predictable càdlàg process of locally integrable variation, and Mφ
0 = Aφ0 = 0.

Furthermore, each Mφ has a (unique) representation (see [7], Theorem VIII.43)

Mφ
t = M c,φ

t +Md,φ
t , ∀t ≥ 0,

where (M c,φ
t : t ≥ 0) is a real-valued continuous local martingale, (Md,φ

t : t ≥ 0) is
a real-valued purely discontinuous local martingale; these two local martingales are
orthogonal. Therefore, 〈Y , φ〉 has the (unique) representation

〈Yt , φ〉 = M c,φ
t +Md,φ

t +Aφt , ∀t ≥ 0. (4.8)
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If for every t ≥ 0 we define the mappings M̃ c
t : Φ̂ϑ → L0 (Ω,F ,P), φ 7→ M̃ c

t (φ) := M c,φ
t ,

M̃d
t : Φ̂ϑ → L0 (Ω,F ,P), φ 7→ M̃d

t (φ) := Md,φ
t , and Ãt : Φ̂ϑ → L0 (Ω,F ,P), φ 7→

Ãt(φ) := Aφt , then by uniqueness of the decomposition (see the arguments in the proof of
Theorem 3.1 in [2]) the maps M̃ c

t , M̃d
t and Ãt are linear. Therefore, M̃ c = (M̃ c

t : t ≥ 0),
M̃d = (M̃d

t : t ≥ 0) and Ã = (Ãt : t ≥ 0) are cylindrical semimartingales in (Φ̂ϑ)′ and
hence define linear maps from Φ̂ϑ into S0. Our next objective is to show they are also
continuous. Since Φ̂ϑ is ultrabornological, it is enough to show that the maps M̃ c, M̃d

and Ã are sequentially closed, because in that case the closed graph theorem shows that
they are continuous ([23], Theorem 14.7.3, p.475).

Let φn → φ in Φ̂ϑ and suppose that M̃ c(φn) → mc, M̃d(φn) → md and Ã(φn) → a

in S0. By the continuity of Y from Φ̂ϑ into S0, we have Y (φn) → Y (φ) in S0. Since
the set C = {φn : n ∈ N} is bounded in Φ̂θ, then from (4.7) the family of real-valued
semimartingales {〈Y , φn〉 : n ∈ N} has jumps uniformly bounded by KC . But as the
collection of all the real-valued semimartingales with jumps uniformly bounded by KC is
a closed subspace in S0 (see [22], Theorem IV.4), then 〈Y , φ〉 also has jumps uniformly
bounded by KC . Therefore, because Y (φn)→ Y (φ) in S0 we have that (see Remarque
IV.3 in [22]) M̃ c(φn) → M̃ c(φ), M̃d(φn) → M̃d(φ) and Ã(φn) → Ã(φ) in S0. Hence, by
uniqueness of limits we get that mc = M̃ c(φ), md = M̃d(φ) and a = Ã(φ). Thus, the
mappings M̃ c, M̃d and Ã are continuous from Φ̂ϑ into S0.

Hence, from Propositions 3.14 and 3.17, there exists another weaker countably
Hilbertian topology θ on Φ, larger than ϑ, and a (Φ̂θ)

′-valued continuous local martingale
M c = (M c

t : t ≥ 0), a (Φ̂θ)
′-valued purely discontinuous local martingale Md = (Md

t :

t ≥ 0), and a (Φ̂θ)
′-valued predictable càdlàg process of locally integrable variation

A = (At : t ≥ 0) with A0 = 0, all of them such that P-a.e. ∀t ≥ 0, φ ∈ Φ,

〈M c
t , φ〉 = M̃ c

t (φ), (4.9)〈
Md
t , φ

〉
= M̃d

t (φ), (4.10)

〈At , φ〉 = Ãt(φ). (4.11)

But then, (4.8), (4.9), (4.10) and (4.11) imply that P-a.e. ∀t ≥ 0, φ ∈ Φ,

〈Yt , φ〉 = 〈M c
t , φ〉+

〈
Md
t , φ

〉
+ 〈At , φ〉 . (4.12)

Now, since the processes Y , M c, Md and A are regular processes, then (4.12) together
with Proposition 2.12 in [10] imply that Y , M c, Md and A satisfy (4.6).

Lemma 4.4. The processes Md = (Md
t : t ≥ 0) and A = (At : t ≥ 0) defined in Lemma

4.3 have P-a.e. uniformly bounded jumps in Φ̂θ.

Proof. Let φ ∈ Φ̂θ. By the definition of local martingale and of process of integrable
variation, there exists a sequence of stopping times (τn : n ∈ N) increasing to∞ such
that for all n ∈ N, (

〈
M c
t∧τn , φ

〉
: t ≥ 0) and (

〈
Md
t∧τn , φ

〉
: t ≥ 0) are uniformly integrable

martingales and (〈At∧τn , φ〉 : t ≥ 0) is of integrable total variation. Moreover, since
(〈At , φ〉 : t ≥ 0) is predictable and (〈M c

t , φ〉 : t ≥ 0) is continuous, it then follows from
(4.12) that P-a.e. ∀t ≥ 0,

E (〈∆Yt∧τn , φ〉 Ft−) = E
(〈

∆Md
t∧τn , φ

〉
+ 〈∆At∧τn , φ〉 |Ft−

)
= 〈∆At∧τn , φ〉 . (4.13)

Now, recall that the set of jumps {∆Yt : t ≥ 0} of Y is bounded in (Φ̂ϑ)′, but since the
topology θ is finer than ϑ the canonical inclusion from (Φ̂ϑ)′ into (Φ̂θ)

′ is continuous; then
{∆Yt : t ≥ 0} is bounded in (Φ̂θ)

′. Hence, from (4.7) with C = {φ} and taking limits as
n→∞ in (4.13), we have that P-a.e. ∀t ≥ 0,

E (〈∆Yt , φ〉 |Ft−) = 〈∆At , φ〉 .
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Therefore, for any given bounded subset C in Φ̂θ (recall that this space is separable), it
follows from (4.7) that P-a.e.

sup
t≥0

sup
φ∈C
|〈∆At , φ〉| < KC .

But the above inequality together with (4.12) shows that P-a.e.

sup
t≥0

sup
φ∈C

∣∣〈∆Md
t , φ

〉∣∣ < 2KC .

Hence, the processes Md and A have P-a.e. uniformly bounded jumps in Φ̂θ.

Lemma 4.5. For each t > 0 and φ ∈ Φ,〈
Md
t , φ

〉
=

∫ t

0

∫
Bρ′ (1)

〈f , φ〉 d(µ− ν)(s, f). (4.14)

Proof. First, for each φ ∈ Φ it is a consequence of (4.4) (see Theorem 2.1 in [18])

that
(∫ t

0

∫
Bρ′ (1)

〈f , φ〉 d(µ− ν)(s, f) : t ≥ 0
)

is a purely discontinuous local martingale

satisfying

∆

(∫ t

0

∫
Bρ′ (1)

〈f , φ〉 d(µ− ν)(s, f)

)
=

∫
Bρ′ (1)

〈f , φ〉µ({t}, f)−
∫
Bρ′ (1)

〈f , φ〉 ν({t}, f).

Thus, since (
〈
Md
t , φ

〉
: t ≥ 0) is also a purely discontinuous local martingale, to prove

(4.14) it is enough to show that

∆
〈
Md
t , φ

〉
=

∫
Bρ′ (1)

〈f , φ〉µ({t}, f)−
∫
Bρ′ (1)

〈f , φ〉 ν({t}, f).

But the above equality follows from exactly the same arguments to those used in the
proof of Theorem 3 in [24], so we leave the details to the reader.

To finallize the proof of Theorem 4.2, observe that since the canonical inclusion from
(Φ̂θ)

′ into Φ′ is linear and continuous, then A, M c and Md define Φ′-valued processes.
From Lemma 4.3 we have that M c satisfies Theorem 4.2(3). For A, it follows from
Lemmas 4.3 and 4.4, and Theorem 3.21, that A has an indistinguishable version that
satisfies Theorem 4.2(2). If for each t ≥ 0 we denote Md

t by
∫ t

0

∫
Bρ′ (1)

fd(µ−ν)(s, f), then

it is a consequence of Lemmas 4.3, 4.4 and 4.5 that
(∫ t

0

∫
Bρ′ (1)

fd(µ− ν)(s, f) : t ≥ 0
)

satisfies Theorem 4.2(5). Finally, the fact that X admits the representation (4.1) follows
from (4.5) and (4.6).

Remark 4.6. In the proof of Theorem 4.2 we have used a (Φ̂ϑ)′-valued indistinguishable
version of X, which at a first glance might lead us to conclude that the random measure
µ of the jumps of X depends on the countably Hilbertian topology ϑ on Φ. However, this
is not the case as the aforementioned version of X is unique (up to indistinguishable
versions) as a Φ′-valued process (see Theorem 3.7). Therefore, the random measure µ of
the jumps of X defined in (4.2) is unique and consequently its compensated measure
ν. Hence µ and ν do not depend on the given seminorm ρ. Similarly, the continuous
local martingale part M c is independent of the given seminorm ρ. To prove this, suppose
M1,c and M2,c denote the continuous local martingale part of any two representations
of X as in (4.1). For any given φ ∈ Φ, let Xc,φ denotes the real-valued continuous
local martingale corresponding to the canonical representation of 〈X , φ〉. Then, by
uniqueness of Xc,φ we have P-a.e.〈

M1,c
t , φ

〉
= Xc,φ

t =
〈
M2,c
t , φ

〉
, ∀t ≥ 0.
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But since M1,c and M2,c are regular processes, Proposition 2.12 in [10] shows that
M1,c = M2,c.

Under additional assumptions on Φ, the next result shows that the representation
(4.1) remains valid for any Φ′-valued semimartingale:

Proposition 4.7. The conclusion of Theorem 4.2 remains valid if Φ is an ultrabornologi-
cal nuclear space and X = (Xt : t ≥ 0) is a Φ′-valued càdlàg semimartingale such that
the probability distribution of each Xt is a Radon measure.

Proof. The result follows if in the proof of Theorem 4.2 we use Corollary 3.8 instead of
Theorem 3.7 and if instead of Proposition 3.14 we use Corollary 3.15.

Corollary 4.8. If Φ is a Fréchet nuclear space or the countable inductive limit of Fréchet
nuclear spaces, then each Φ′-valued càdlàg semimartingale X = (Xt : t ≥ 0) possesses a
representation satisfying the conditions in Theorem 4.2.

Proof. When Φ is a Fréchet nuclear space or a countable inductive limit of Fréchet
nuclear spaces, then every Borel measure on Φ′ is a Radon measure (see Corollary 1.3
of Dalecky and Fomin [5], p.11). In particular, for each t ≥ 0 the probability distribution
of Xt is Radon. The result now follows from Proposition 4.7.

The representation in Theorem 4.2 leads naturaly to the following definition:

Definition 4.9. Let X = (Xt : t ≥ 0) be Φ′-valued adapted càdlàg semimartingale such
that for each T > 0, the family of linear maps (Xt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is
equicontinuous (at the origin). Given a continuous Hilbertian seminorm ρ on Φ, we call
characteristics of X relative to ρ the triplet (A,C, ν) consisting in:
(1) A is the Φ′-valued process defined in Theorem 4.2(2).
(2) C : Ω×R+ × Φ× Φ is the map defined by

C(ω, t, φ, ϕ) = 〈〈 〈M c , φ〉 , 〈M c , ϕ〉 〉〉t(ω), ∀ (ω, t, φ, ϕ) ∈ Ω×R+ × Φ× Φ,

where M c is as given in Theorem 4.2(3), and 〈〈 〈M c , φ〉 , 〈M c , ϕ〉 〉〉 is the angle
bracket process of the continuous local martingales 〈M c , φ〉 and 〈M c , ϕ〉.

(3) ν is the (predictable) compensator measure of the random measure µ associated to
the jumps of X, as given in Theorem 4.2(4).

Remark 4.10. It follows from Remark 4.6 that C and ν do not depend on the choice of
the seminorm ρ on Φ, while A = A(ρ) does.

5 Characteristics and Lévy processes

In this section we study in detail the canonical decomposition and characteristics of
a Φ′-valued Lévy process and how they relate with their Lévy-Itô decomposition studied
in [12].

Let L = (Lt : t ≥ 0) be a Φ′-valued càdlàg Lévy process. Suppose that for every T > 0,
the family (Lt : t ∈ [0, T ]) of linear maps from Φ into L0 (Ω,F ,P) is equicontinuous (at
the origin) (see Example 3.11). Under the above conditions it is proved in Section 4
in [12] that the random measure µ of the jumps of L is a Poisson Random measure,
that we denote by N , and that its (predictable) compensator measure is of the form
ν(ω; dt; df) = dtν(df), where ν is a Lévy measure on Φ′ in the following sense (see [12],
Theorem 4.11):
(1) ν({0}) = 0,
(2) for each neighborhood of zero U ⊆ Φ′, the restriction ν

∣∣
Uc

of ν on the set U c belongs
to the space Mb

R(Φ′) of bounded Radon measures on Φ′,
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(3) there exists a continuous Hilbertian semi-norm ρ on Φ such that∫
Bρ′ (1)

ρ′(f)2ν(df) <∞, and ν
∣∣
Bρ′ (1)c

∈Mb
R(Φ′), (5.1)

where recall that ρ′ is the dual norm of ρ (see Sect. 2) and Bρ′(1) := Bρ(1)0 = {f ∈
Φ′ : ρ′(f) ≤ 1}.

Here is important to stress the fact that the seminorm ρ satisfying (5.1) is not unique.
Indeed, any continuous Hilbert semi-norm q on such that ρ ≤ q satisfies (5.1).

It is shown in Theorem 4.17 in [12] that relative to a continuous Hilbertian seminorm
ρ on Φ satisfying (5.1), for each t ≥ 0, Lt admits the unique representation

Lt = tm +Wt +

∫
Bρ′ (1)

fÑ(t, df) +

∫
Bρ′ (1)c

fN(t, df) (5.2)

that is usually called the Lévy-Itô decomposition of L. In (5.2), we have that m ∈ Φ′,
Ñ(dt, df) = N(dt, df)− dt ν(df) is the compensated Poisson random measure, and (Wt :

t ≥ 0) is a Φ′-valued Lévy process with continuous paths (also called a Φ′-valued Wiener
process) with zero-mean (i.e. E(〈Wt , φ〉) = 0 for each t ≥ 0 and φ ∈ Φ) and covariance
functional Q satisfying

E (〈Wt , φ〉 〈Ws , ϕ〉) = (t ∧ s)Q(φ, ϕ), ∀φ, ϕ ∈ Φ, s, t ≥ 0. (5.3)

Observe that Q is a continuous, symmetric, non-negative bilinear form on Φ× Φ. It is
important to remark that all the random components of the representation (5.2) are
independent.

Observe that when we compare (5.2) with (4.1), we conclude that At = tm, M c
t = Wt,

and that
∫ t

0

∫
Bρ′ (1)

fd(µ − ν)(s, f) and
∫ t

0

∫
Bρ′ (1)c

fdµ(s, f) corresponds to the Poisson

integrals
∫
Bρ′ (1)

fÑ(t, df) and
∫
Bρ′ (1)c

fN(t, df) (for details on the definition of Poisson

integrals see [12]). Moreover, since for each φ ∈ Φ we have that 〈W , φ〉 is a real-valued
Wiener process, then (see Theorem II.4.4 in [15]) it follows from (5.3) that

C(ω, t, φ, ϕ) = 〈〈 〈W , φ〉 , 〈W , ϕ〉 〉〉t(ω) = E (〈Wt , φ〉 〈Wt , ϕ〉) = tQ(φ, ϕ),

for all (ω, t, φ, ϕ) ∈ Ω×R+ ×Φ×Φ. Therefore, we conclude that the characteristics of L
relative to ρ satisfying (5.1) are deterministic and have the form:

At = tm, C(ω, t, φ, ϕ) = tQ(φ, ϕ), ν(ω; dt; df) = dt ν(df). (5.4)

The next result shows that the above form of the characteristics is exclusive of the
Φ′-valued Lévy processes:

Theorem 5.1. Let L = (Lt : t ≥ 0) be Φ′-valued, adapted, càdlàg process such that
for each T > 0, the family of linear maps (Lt : t ∈ [0, T ]) from Φ into L0 (Ω,F ,P) is
equicontinuous (at the origin). Then, L is a Φ′-valued Lévy process if and only if it is
a Φ′-valued semimartingale and there exists a continuous Hilbertian semi-norm ρ on Φ

such that the characteristics of L relative to ρ are of the form (5.4), where m ∈ Φ′, Q is a
continuous, symmetric, non-negative bilinear form on Φ× Φ, and ν is a Lévy measure on
Φ for which ρ satisfy (5.1). Moreover, for all t ≥ 0, φ ∈ Φ,

E
(
ei〈Lt , φ〉

)
= etη(φ), with

η(φ) = i 〈m , φ〉 − 1

2
Q(φ, φ) +

∫
Φ′

(
ei〈f , φ〉 − 1− i 〈f , φ〉1Bρ′ (1) (f)

)
ν(df).

(5.5)
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Proof. We have already proved that if L is a Φ′-valued Lévy process then its characteris-
tics relative to ρ are of the form (5.4). Moreover, in that case (5.5) corresponds to its
Lévy-Khintchine formula (see Theorem 4.18 in [12]).

Assume now that L is a Φ′-valued semimartingale with canonical representation (4.1)
and such that the characteristics of L with respect to ρ are of the form (5.4). We will
show that L induces a cylindrical Lévy process in Φ′.

Let φ1, . . . , φn ∈ Φ and let L(φ1, . . . , φn) = (Lt(φ1, . . . , φn) : t ≥ 0) defined by

Lt(φ1, . . . , φn) := (〈Lt , φ1〉 , . . . , 〈Lt , φn〉), ∀t ≥ 0.

From the corresponding properties of L, it is clear that L(φ1, . . . , φn) is a Rn-valued
càdlàg adapted semimartingale. We now study the form of its characteristics (a, c, λ)

(Definition II.2.6 in [15]) relative to the truncation function h(x) = x1B, where B =

πφ1,...,φn(Bρ′(1)) and πφ1,...,φn : Φ′ → Rn is the projection

πφ1,...,φn(f) = (〈f , φ1〉 , . . . , 〈f , φn〉), ∀ f ∈ Φ′.

We study first c = (cij)i,j≤n. Let M c(φ1, . . . , φn) denotes the continuous local martin-
gale part of the Rn-valued process L(φ1, . . . , φn). From (4.1) and the uniqueness of the
continuous martingale part it follows that:

M c
t (φ1, . . . , φn) = (〈M c

t , φ1〉 , . . . , 〈M c
t , φn〉), ∀ t ≥ 0. (5.6)

Then, from the definition of c = (cij)i,j≤n, (5.4) and the corresponding properties of Q,
for each i, j ≤ n we have

ci,j(t, ω) = 〈〈 〈M c , φi〉 , 〈M c , φj〉 〉〉t(ω) = tqi,j , ∀ω ∈ Ω, t ≥ 0, (5.7)

where q = (qij)i,j≤n, defined by qi,j = Q(φi, φj), is a symmetric non-negative n×n matrix.

Now, λ is the predictable compensator measure of the random measure ξ of the jumps
of L(φ1, . . . , φn). For a set D ∈ B(Rn0 ) (Rn0 = Rn \ {0}), we have that

ξ(ω; (0, t];D) =
∑

0≤s≤t

1D (∆Ls(φ1, . . . , φn)(ω))

=
∑

0≤s≤t

1π−1
φ1,...,φn

(D) (∆Ls(ω))

= µ(ω; (0, t], π−1
φ1,...,φn

(D)). (5.8)

But since the predictable compensated measure is unique, we have that for each D ∈
B(Rn0 ),

λ(ω; t;D) = ν(ω; t;π−1
φ1,...,φn

(D)). (5.9)

Then, from (5.4) we have that

λ(ω; dt; dy) = dt ν ◦ π−1
φ1,...,φn

(dy). (5.10)

Moreover, ν ◦ π−1
φ1,...,φn

is a Lévy measure on Rn since Theorem 4.2(4)(c) implies that

t

∫
Rn
|y|2 ∧ 1 ν ◦ π−1

φ1,...,φn
(dy) =

∫ t

0

∫
Rn
|y|2 ∧ 1 ds ν ◦ π−1

φ1,...,φn
(dy)

=

∫ t

0

∫
Φ′
|πφ1,...,φn(f)|2 ∧ 1 ν(ds, df) <∞.
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We now study the Rn-valued predictable finite variation process a = (at : t ≥ 0). First,
observe that (5.8) and (5.9) show that for all t ≥ 0,(〈∫ t

0

∫
Bρ′ (1)

f d(µ− ν)(s, f) , φ1

〉
, . . . ,

〈∫ t

0

∫
Bρ′ (1)

f d(µ− ν)(s, f) , φn

〉)

=

∫ t

0

∫
B

y d(ξ − λ)(s, y), (5.11)

and (〈∫ t

0

∫
Bρ′ (1)c

f dµ(s, f) , φ1

〉
, . . . ,

〈∫ t

0

∫
Bρ′ (1)c

f dµ(s, f) , φn

〉)

=

∫ t

0

∫
Bc
y dξ(s, f). (5.12)

Then, by considering the canonical decomposition of L(φ1, . . . , φn), (4.1), (5.4), (5.6),
(5.11), and (5.12), it follows that

at(ω) = (〈At(ω) , φ1〉 , . . . , 〈At(ω) , φn〉) = tm, ∀ω ∈ Ω, t ≥ 0, (5.13)

where m = (〈m , φ1〉 , . . . , 〈m , φn〉) ∈ Rn.
Now, the particular form of the characteristics (a, c, λ) of the Rn-valued semimartin-

gale L(φ1, . . . , φn) given in (5.13), (5.7), (5.10) respectively, and from Corollary II.4.19
in [15], it follows that L(φ1, . . . , φn) is a Rd-valued Lévy process. Therefore, L induces
a cylindrical Lévy process in Φ′. But then, Theorem 3.8 in [12] shows that L has an
indistinguishable version that is a Φ′-valued Lévy process. Hence, L is itself a Φ′-valued
Lévy process.
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