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Abstract

We provide necessary and sufficient conditions for convergence of exponential inte-
grals of Markov additive processes. By contrast with the classical Lévy case studied
by Erickson and Maller we have to distinguish between almost sure convergence and
convergence in probability. Our proofs rely on recent results on perpetuities in a
Markovian environment by Alsmeyer and Buckmann.

Keywords: exponential functional; Lévy process; Markov additive process; Markov modulated
perpetuity; Markov switching model.
AMS MSC 2010: Primary 60H10; 60J75, Secondary 60G51; 60J25.
Submitted to EJP on September 3, 2019, final version accepted on March 4, 2020.

1 Introduction

Given a bivariate Lévy process (ξt, ηt)t≥0 the corresponding exponential functional is
defined as ∫

(0,∞)

e−ξt−dηt, (1.1)

provided that the integral converges a.s. Necessary and sufficient conditions for this
convergence in terms of the Lévy characteristics of (ξt, ηt)t≥0 have been given in [15,
Thm. 2].

As shown in [25] exponential functionals of Lévy processes describe exactly the
stationary distributions of generalized Ornstein-Uhlenbeck processes, a class of pro-
cesses that stems from physics, and nowadays has numerous applications e.g. in finance
and insurance, see e.g. [21, 28]. Due to this connection, the resulting importance in
applications, and their complexity, exponential functionals have gained a lot of attention
from various researchers over the last decades, see e.g. [6, 7, 9, 23, 26, 27] to name just
a few.

Dating back to [18] Markov switching models have become a popular tool in financial
mathematics and elsewhere. Thus it is a natural attempt to study exponential functionals
with a Markov switching behaviour. In our paper, given a bivariate Markov additive
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Exponential functionals of Markov additive processes

process (ξt, ηt, Jt)t≥0 with Markovian component (Jt)t≥0, we denote the exponential
integral of the Markov additive process (ξt, ηt, Jt)t≥0 by

E(ξ,η)(t) :=

∫
(0,t]

e−ξs−dηs, 0 < t <∞, (1.2)

and – in analogy to the Lévy case – refer to its limit

E∞(ξ,η) :=

∫
(0,∞)

e−ξs−dηs (1.3)

as exponential functional, whenever it exists.
We prove necessary and sufficient conditions for convergence of Eξ,η(t) as t→∞. As

it will turn out, by contrast with the classical Lévy setting here we have to distinguish
between almost sure convergence and convergence in probability. We also provide an
example of an integral that converges in probability but not almost surely. Another
somewhat surprising contrast to the classical setting is the fact that limt→∞ ξt =∞ a.s.
is no longer necessary for convergence of the integral. Thirdly, the possible degenerate
behaviour of Eξ,η(t) allows for much more flexibility compared to the Lévy setting.

Note that exponential functionals of (Markov) additive processes have recently
attracted the attention of other researchers as well. Finiteness and tails of the functional
(1.3) with ηt = t are treated in the recent manuscript [1]. In [30, 31] the functional
(1.3) with ηt = t is studied with an emphasis on moments, while [33] considers similar
questions and relations to discrete random structures for the special case of (1.3) for
ηt = t and ξ being a Markov modulated subordinator. Further, exponential integrals of
Markov additive processes (1.2) with ηt = t appear in the Lamperti-Kiu representation
of real self-similar Markov processes, see e.g. [12, 13, 24] and references therein.

The paper is organized as follows. Section 2 briefly reviews known results on
convergence of exponential integrals of (bivariate) Lévy processes and on perpetuities in
a Markovian environment. The class of bivariate Markov additive processes that we shall
work with together with some relevant properties are introduced in Section 3. In Section
4 we present and prove our main result giving necessary and sufficient conditions for
convergence of the exponential integral (1.3) and discuss the degenerate cases. Finally,
Section 5 is devoted to deriving sufficient conditions for convergence of (1.3) that are
easier applicable than those from Section 4.

2 Preliminaries

2.1 Exponential functionals of Lévy processes

Let (ξt, ηt)t≥0 be a bivariate Lévy process and denote by (γξ, σ
2
ξ , νξ) and (γη, σ

2
η, νη) the

characteristic triplets of the two marginal processes. We refer to [32] for any relevant
background on Lévy processes.

As mentioned in the introduction, Erickson and Maller showed in [15, Thm. 2] that
the exponential functional of a bivariate Lévy process (1.1) exists as a.s. limit as t→∞
of
∫ t

0
e−ξs−dηs if and only if

lim
t→∞

ξt =∞ a.s. and Iξ,η =

∫
(ea,∞)

(
log y

Aξ(log y)

)
|dν̄η(y)| <∞, (2.1)

where

Aξ(x) = γξ + ν̄+
ξ (1) +

∫
(1,x)

ν̄+
ξ (y)dy, (2.2)

with
ν̄+
ξ (x) = νξ((x,∞)), ν̄−ξ (x) = νξ((−∞,−x)), ν̄ξ(x) = ν̄+

ξ (x) + ν̄−ξ (x),
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Exponential functionals of Markov additive processes

and ν̄+
η , ν̄−η and ν̄η defined likewise. Hereby a > 0 is chosen such that Aξ(x) > 0 for all

x > a and its existence is guaranteed whenever limt→∞ ξt =∞ a.s.
Further it is shown in [15, Thm. 2] that if limt→∞ ξt =∞ a.s. but Iξ,η =∞, then∣∣∣∣∣

∫
(0,t]

e−ξs−dηs

∣∣∣∣∣ P−→∞, as t→∞, (2.3)

while for limt→∞ ξt = −∞ a.s. or oscillating ξ either (2.3) holds, or there exists some
k ∈ R \ {0} such that∫

(0,t]

e−ξs−dηs = k(1− e−ξt) for all t > 0 a.s. (2.4)

Note that for any h > 0 the exponential functional (1.1) can be discretized in the sense
that for all n ∈ N∫

(0,nh]

e−ξs−dηs =

n−1∑
i=0

∫
(ih,(i+1)h]

e−ξs−dηs

=
n−1∑
i=0

i−1∏
j=0

e−(ξ(j+1)h−ξjh)

∫
(ih,(i+1)h]

e−(ξs−−ξih)dηs,

and hence convergence of the integral is strongly connected to the convergence of
discrete-time perpetuities as studied in [16]. Indeed, the proof of the above results given
in [15] relies heavily on choosing an appropriate discretization of (1.1) and afterwards
applying results from [16].

2.2 Markov modulated perpetuities

Recently Alsmeyer and Buckmann [2] generalized the results from [16] to a Markovian
environment. More precisely they study convergence of

Zn :=

n∑
i=1

i−1∏
j=1

Aj

Bi (2.5)

as n→∞, where (An, Bn)n∈N is a sequence of random vectors in R2 which is modulated
by an ergodic Markov chain (Mn)n∈N0

with countable state space S and stationary law
π in the sense that conditionally on Mn = jn ∈ S, n = 0, 1, 2, . . . the random vectors
(A1, B1), (A2, B2), . . . are independent, and for all n ∈ N the conditional law of (An, Bn)

is temporally homogeneous and depends only on (jn−1, jn) ∈ S2.
We write Pj := P(·|M0 = j) and Pπ =

∑
j∈S πjPj . Then, under the non-degeneracy

conditions
Pπ(A = 0) = 0 and Pπ(B = 0) < 1 (2.6)

for a generic copy (A,B) of the (An, Bn) under Pπ, it follows from [2, Thm. 3.1] that
(2.5) converges a.s. as n→∞ to a proper random variable given by Z∞ if and only if

lim
n→∞

τn(i)∏
k=1

Ak = 0 Pπ-a.s. and (2.7)∫
(1,∞)

log q∫
(0,log q)

Pj(− log |
∏τ1(j)
`=1 A`| > x)dx

Pj(Wj ∈ dq) <∞ for all j ∈ S,

where
τ0(j) := 0, τn(j) = inf{k > τn−1(j) : Mk = j}, j ∈ S
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are the return times of (Mn)n∈N0
, and

Wj := max
1≤k≤τ1(j)

∣∣ k−1∏
`=1

A`Bk
∣∣, j ∈ S. (2.8)

Note that limn→∞
∏τn(j)
k=1 Ak = 0 Pπ-a.s. necessarily implies that Pj(|

∏τ1(j)
`=1 A`| ≥ 1) < 1

and hence the denominator in the integral in (2.7) is non-zero.
We remark that in [2, Thm. 3.1 and Rem. 3.3] the authors state that (2.7) for

some j ∈ S is equivalent to (2.7) for all j ∈ S. As we were not able to follow their
argumentation in the discrete time setting or to derive a similar result in the continuous
time setting, we stick to the stronger assumption here.

Interestingly, by contrast with the case of i.i.d. sequences (An, Bn)n∈N, if almost sure
convergence fails, the perpetuity (2.5) can still converge in probability. More precisely,
from [2, Thm. 3.4] we derive under the assumption (2.6) that Pj(Zn ∈ ·) for some j ∈ S
converges weakly to some probability measure Qj as n→∞ if

lim
n→∞

τn(j)∏
k=1

Ak = 0 Pπ-a.s. and (2.9)∫
(1,∞)

log q∫
(0,log q)

Pj(− log |
∏τ1(j)
`=1 A`| > x)dx

Pj(|Zτ1(j)| ∈ dq) <∞.

In this case, there exists a random variable Z∞ such that Qj(·) = Pj(Z∞ ∈ ·) and

Zn
Pj→ Z∞. Moreover, if (2.9) holds for some j ∈ S, convergence in probability is valid for

all j ∈ S.
Furthermore, if (2.9) is violated and the degeneracy condition

Pπ(A1cM1
+B1 = cM0

) = 1 for suitable constants cj ∈ R, j ∈ S, (2.10)

fails, then

|Zn|
Pπ−→∞, n→∞. (2.11)

3 Bivariate Markov additive processes

The theory of Markov additive processes (MAPs) goes back to Çinlar [10, 11] and has
been enhanced since then by various researchers (see e.g. [5, 13, 17, 22]). In this paper
we restrict to the most popular framework of MAPs, that is to Markov modulated Lévy
processes similar to the setting in [5] and [22]. We refer to [4] for a standard modern
treatment of the topic and set notation as follows.

Let (Jt)t≥0 be a right-continuous, ergodic, continuous time Markov chain with finite
or countable state space S ⊆ N, intensity matrix Q = (qi,j)i,j∈S and stationary law
π = (πj)j∈S . We denote the jump times of (Jt)t≥0 by {Tn, n ∈ N0}, with T0 := 0, while

τ0(j) := 0, and τn(j) := inf{Tk > τn−1(j) : JTk = j}, n ∈ N, j ∈ S, (3.1)

are its return times and

τ−0 (j) = 0, and τ−n (j) := inf{Tk > τn−1(j) : JTk 6= j}, n ∈ N, j ∈ S, (3.2)

are the corresponding exit times under Pj . The sojourn time of (Jt)t≥0 in a state j ∈ S is
denoted as

Tj := {t ≥ 0 : Jt = t}

and clearly under Pj we have Tj =
⋃
n∈N[τn−1(j), τ−n (j)).

EJP 25 (2020), paper 37.
Page 4/25

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP441
http://www.imstat.org/ejp/


Exponential functionals of Markov additive processes

Further, let (ξ
(j)
t , η

(j)
t )t≥0, j ∈ S, be bivariate Lévy processes with characteristic

triplets (γ(j),Σ(j), ν(j)) where γ(j) = (γξ(j) , γη(j)), ν
(j) denotes the Lévy measure and

Σ(j) =
( σ2

ξ(j)
σ2

ξ(j),η(j)

σ2

ξ(j),η(j)
σ2

η(j)

)
.

Set
(ξt, ηt) := (X

(1)
t , Y

(1)
t ) + (X

(2)
t , Y

(2)
t ), t ≥ 0, (3.3)

where (X
(1)
t , Y

(1)
t ) behaves in law like (ξ

(j)
t , η

(j)
t ) whenever Jt = j, while (X

(2)
t , Y

(2)
t ) is a

pure jump process given by

(X
(2)
t , Y

(2)
t ) =

∑
n≥1

∑
i,j∈S

Z(i,j)
n 1{JTn−=i,JTn=j,Tn≤t}, (3.4)

for i.i.d. random variables (Z
(i,j)
n )n∈N in R2 with distribution functions F (i,j), i, j ∈ S

(possibly with all mass/an atom in 0). As starting value we use (ξ0, η0) = (0, 0) and
throughout we assume that neither ξ nor η is degenerate constantly equal to 0 a.s.

The joint process (ξt, ηt, Jt)t≥0 is a MAP and we refer to (Jt)t≥0 as its Markovian
component, while (ξt, ηt)t≥0 is its additive component. Clearly the marginal processes
(ξt, Jt)t≥0 and (ηt, Jt)t≥0 are MAPs as well.

We assume that the introduced processes are defined on a complete filtered probabil-
ity space (Ω,F ,F = (Ft)t≥0,P) where F is the augmented natural filtration induced by
(ξt, ηt, Jt)t≥0. We write Pj := P(·|J0 = j) and Pπ =

∑
j∈S πjPj , with the corresponding

expectations Ej and Eπ defined accordingly.
Note that for simplicity we will sometimes abuse notation and – given Jt = j – identify

the processes X(1)
t and ξ(j)

t or Y (1)
t and η(j)

t where this is suitable.
Due to the switching Lévy process character of the first summand in the additive com-

ponent it is not surprising that, given the Markovian component, these components admit
a Lévy-Itô-type decomposition (see e.g. [32, Thm. 19.3]). Exemplarily we decompose
(ηt)t≥0 as

ηt =

∫
(0,t]

γη(Js)ds+

∫
(0,t]

σ2
η(Js)dWs +

∫
(0,t]

∫
|x|≥1

xNη(Js)(ds, dx)+

+ lim
ε→0

∫
(0,t]

∫
ε≤|x|<1

x(Nη(Js)(ds, dx)− ds νη(Js)(dx)) + Y
(2)
t

=: γηt +W η
t + Y b,ηt + Y s,ηt + Y

(2)
t , (3.5)

where (Wt)t≥0 is a standard Brownian motion and Nη(j) are Poisson random measures
with intensity measures ds νη(j)(dx), respectively. Using this decomposition it is straight-
forward to define integration with respect to the additive component of a MAP given its
Markovian component.

Another property of the additive components that carries over from Lévy processes
and which will be of importance in our results is the well-known fact that Lévy processes
in R either drift to ±∞ or oscillate. To formulate the analoguous result for MAPs, we
introduce their long-term mean (here for the MAP (ξt, Jt)t≥0)

κξ :=
∑
j∈S

πj

(
γξ(j) +

∫
|x|≥1

xνξ(j)(dx)

)
+

∑
(i,j)∈S×S

i 6=j

πiqi,j

∫
R

xF
(i,j)
ξ (dx), (3.6)

which is finite whenever E[|ξ(j)
1 |] <∞ and

∫
R
|x|F (i,j)

ξ (dx) <∞ for all i, j ∈ S. Whenever
S is finite, κξ fully determines the long-term behaviour of (ξt)t≥0 as follows (see [4, Prop.
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XI.2.10]):

κξ > 0 ⇒ lim
t→∞

ξt =∞ Pπ-a.s., (3.7)

κξ < 0 ⇒ lim
t→∞

ξt = −∞ Pπ-a.s., while (3.8)

κξ = 0 and Pπ
(

sup
t≥0
|ξt| <∞

)
< 1 ⇒ lim sup

t→∞
ξt =∞ and lim inf

t→∞
ξt = −∞ Pπ-a.s.

(3.9)

For countable S, as noted in [19, Cor. 2.2], 0 < κξ <∞ implies limt→∞ ξt/t = κξ Pπ-a.s.
such that in particular limt→∞ ξt =∞ Pπ-a.s.

4 Main results and Discussion

4.1 Main theorem

Recall from (1.3) that given a bivariate Markov additive process (ξt, ηt, Jt)t≥0 with
Markovian component (Jt)t≥0 as introduced above, we denote the exponential integral
of (ξt, ηt)t≥0 as

E(ξ,η)(t) :=

∫
(0,t]

e−ξs−dηs, 0 < t <∞.

The following theorem provides necessary and sufficient conditions for almost sure
and weak convergence of E(ξ,η)(t) as t→∞. To formulate the conditions, we set

Ajξ(x) := Aξ(j)(x)− qj,j
(
Pj
(
ξτ1(j)− ξτ−1 (j) ∈ (1,∞)

)
+

∫
(1,x)

Pj
(
ξτ1(j)− ξτ−1 (j) ∈ (y,∞)

)
dy
)
,

with Aξ(j) from (2.2), and

ν̄jη(dy) := νη(j)(dy)−qj,j
(
Pj(ητ1(j)−ητ−1 (j) ∈ dy)+Pj

(∫
[τ−1 (j),τ1(j)]

e
−(ξs−−ξτ−1 (j)

)
dηs∈dy

))
.

Theorem 4.1. Assume limt∈Tj ,t→∞ ξt = ∞ Pj-a.s. for some hence all j ∈ S. Then
E(ξ,η)(t) → E∞(ξ,η) Pπ-a.s. as t → ∞ for some random variable E∞(ξ,η) if and only if for all
j ∈ S ∫

(1,∞)

log q∫
(0,log q]

Pj(ξτ1(j) > u)du
Pj

(
sup

0<t≤τ1(j)

∣∣∣ ∫
(0,t]

e−ξs−dηs

∣∣∣ ∈ dq) <∞. (4.1)

Further, if limt∈Tj ,t→∞ ξt =∞ Pj-a.s. and∫
(1,∞)

log q

Ajξ(log q)
|dν̄jη(q)| <∞, (4.2)

for some j ∈ S, then E(ξ,η)(t)→ E∞(ξ,η) in Pj-probability as t→∞ for all j ∈ S.
Conversely, if lim inft∈Tj ,t→∞ ξt < ∞ Pj-a.s. for some j ∈ S or if (4.2) fails for

all j ∈ S, then either there exists a (unique) sequence {cj , j ∈ S} in R such that the
functional is degenerate in the sense that

E(ξ,η)(t) =

∫
(0,t]

e−ξs−dηs = cJ0 − cJte−ξt Pπ-a.s. (4.3)

for all t ≥ 0, or

|E(ξ,η)(t)|
Pπ−→∞ as t→∞.
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The proof of this theorem is given in Sections 4.4, 4.5 and 4.6 below, which are devoted
to almost sure convergence, convergence in probability and divergence, respectively. In
particular Lemma 4.10 proves equivalence of limt∈Tj ,t→∞ ξt =∞ Pj-a.s. for some and
for all j ∈ S.

Remark 4.2. If S is finite and (4.3) is not valid, but E(ξ,η)(t) converges in Pj -probability,
then E(ξ,η)(t) also converges Pπ-a.s., i.e. the two types of convergence are equivalent
in this case. This is also true in the discrete setting as argued in [2, Rem. 3.8] and the
argumentation given there carries over to the continuous-time setting studied here: By
the above theorem, convergence in probability implies limt∈Tj ,t→∞ ξt =∞ a.s. and (4.2).
From the proof of the convergence in probability part of Theorem 4.1 (Proposition 4.12
below) we will see, that this implies Pj-a.s. convergence of the “conflated exponential
integrals” Ê(ξ,η)(t) for all j ∈ S as they are defined in that proof. But for these one easily
verifies

lim
t→∞

|E(ξ,η)(t)− E∞(ξ,η)| ≤ lim
t→∞

max
j∈S
|Êj(ξ,η)(t)− E∞(ξ,η)| = 0 Pπ-a.s.

because S is finite.

4.2 Examples

Note that by contrast with the standard Lévy case, ξt →∞ is not necessary for almost
sure convergence of the exponential integral. This is further outlined by the following
example.

Example 4.3. Let S = N and let (Jt)t≥0 be a continuous time petal flower Markov chain
(see e.g. [3]) with intensity matrix

Q = (qi,j)i,j∈N =


−q q1,2 q1,3 . . .

q −q 0 . . .

q 0 −q
...

...
. . .


for some q > 0 fixed and q1,j = qp1,j j = 2, 3, . . . for transition probabilities p1,j > 0,
j ∈ N\{1}. Then (Jt)t≥0 is an irreducible and recurrent Markov process with stationary
distribution

π1 =
1

2
, and πj =

p1,j

2
=
q1,j

2q
, j = 2, 3, . . .

As additive component we choose ξ and η to be conditionally independent with Y (2)
t ≡ 0,

that is the second component of (ξt, ηt)t≥0 has no common jumps with (Jt)t≥0. Further

ξt := X
(2)
t :=

∑
n≥1

∑
i,j∈N

Z(i,j)
n 1{JTn−=i,JTn=j,Tn≤t},

where

Z(i,j)
n := Z(i,j) :=


−p−1

1,j , i = 1,

2 + p−1
1,i , j = 1,

0, otherwise,

such that E1[Z(1,JT1 )] = −∞. We then directly observe that

ξτn(1) = 2n→∞ P1-a.s.

Nevertheless (ξt)t≥0 does not tend to∞ as t→∞. Indeed, as

ξTn =

{
n, n even,

n− 1− p−1
1,JTn

, n odd,
under P1,
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and as (ξt)t≥0 is constant between two jumps of (Jt)t≥0, setting Nt :=
∑
n≥1 1{Tn≤t} we

clearly obtain

lim sup
t→∞

ξt
t

= lim sup
t→∞

ξTNt
t

= lim
t→∞

Nt
t

= q P1-a.s.

This is consistent with the (only formal!) computation of κξ which would yield∑
(i,j)∈N×N

i 6=j

πiqi,jE[Z(i,j)] =
∑
i∈N

πi
∑

j∈N,j 6=i

qi,jZ
(i,j)

= π1

∞∑
j=2

qp1,j

(
−p−1

1,j

)
+

∞∑
i=2

πiqi,1(2 + p−1
1,i ) = q.

On the other hand

E1[ξT2n+1
] = 2n+ E1[ξT1

] = 2n+ E1[Z(1,JT1 )] = −∞, n ∈ N,

which implies for any x > 0∑
n≥0

P1

(
−ξT2n+1

> x
)

=
∑
n≥0

P1 (−ξT1
> x+ 2n) =∞

such that by the Borel-Cantelli lemma we conclude

lim inf
t→∞

ξt = −∞ P1-a.s..

Thus ξ is oscillating.
Still, choosing ηt =

∫
(0,t]

γη(Js)ds with

γη(j) =

{
1, j = 1,

0, otherwise,

we observe that under P1 the exponential integral∫
(0,t]

e−ξs−dηs =

∫
(0,t]

e−ξs−γη(Js)ds =

∫
(0,t]

e−Ns−1{Js=1}ds

converges P1-a.s. as t→∞.

The following example provides a scenario where the exponential integral converges
in probability but not almost surely.

Example 4.4. Set S = N0 = N ∪ {0} and let (Jt)t≥0 be a continuous time Markov chain
which behaves like the petal flower chain described in Example 4.3 on N, but has an
additional special state 0 connected solely to state 2. More precisely, we set

Q = (qi,j)i,j∈N0 =


−q 0 q 0 . . .

0 −q q1,2 q1,3 . . .

q/2 q/2 −q 0 . . .

0 q 0 −q
...

...
...

. . .


for some q > 0 fixed and q1,j = qp1,j j = 2, 3, . . . for transition probabilities p1,j > 0,
j ∈ N\{1}. Then (Jt)t≥0 is an irreducible and recurrent Markov chain.

Further we assume the bivariate Lévy process (ξ
(0)
t , η

(0)
t )t≥0 to be such that the

exponential integral (1.1) of (ξ
(0)
t , η

(0)
t )t≥0 converges a.s., i.e. such that (2.1) is fulfilled.
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Apart we set (ξ
(j)
t , η

(j)
t ) ≡ (0, 0) for all j ∈ N. Additionally X

(2)
t ≡ 0, that is the first

component of (ξ, η) has no common jumps with (Jt)t≥0. As second component we assume

Y
(2)
t =

∑
n≥1

∑
i,j∈S

Z(i,j)1{JTn−=i,JTn=j,Tn≤t}

with
Z(0,2) = Z(2,0) = 0, and Z(1,j) = −Z(j,1) = e1/p1,j a.s.

Then A0
ξ(x) = Aξ(0)(x) and ν0

η(dy) = νη(0)(dy) and hence (4.2) is fulfilled by assumption
for j = 0. Hence the exponential integral converges in Pj-probability. Nevertheless,
almost sure convergence is impossible as the integral oscillates with

−∞ = lim inf
t→∞

E(ξ,η)(t) < lim sup
t→∞

E(ξ,η)(t) =∞ a.s.

as can be shown again using the Borel-Cantelli lemma.

4.3 Degeneracy of E(ξ,η)(t)

Before we prove Theorem 4.1 we will discuss the possible degenerate behaviour of
E(ξ,η) in more detail. This study of degeneracy will rely on a combination of results from
[2] and [15].

Recall first that degeneracy in the classical Lévy case S = {1} is characterized by
(2.4). To study degeneracy for larger state spaces S, note that at jump times of (Jt)t≥0

we can rewrite E(ξ,η) as

E(ξ,η)(Tn) =

n∑
i=1

(
i−1∏
k=1

e−(ξTk−ξTk−1
)

)∫
(Ti−1,Ti]

e−(ξs−−ξTi−1
)dηs

=:

n∑
i=1

(
i−1∏
k=1

Ak

)
Bi, (4.4)

where

(An, Bn)n∈N =

(
e−(ξTn−ξTn−1

),

∫
(Tn−1,Tn]

e−(ξs−−ξTn−1
)dηs

)
n∈N

is a sequence of random vectors modulated by a Markov chain (Mn)n∈N which is the
discrete time jump chain of (Jt)t≥0. W.l.o.g. we assume that (Mn)n∈N inherits the
ergodicity from (Jt)t≥0 (see the proof of Prop. 5.5 for more details). Then its stationary
law πM is equivalent to π and as shown in [2, Eq. (17) and Lemma 4.1] degeneracy of the
Markov modulated perpetuity (4.4) in the sense of (2.10) is equivalent to the existence
of a unique sequence {cj , j ∈ S} in R such that

Pj(A
1
jcj +B1

j = cj) = 1 for all/some j ∈ S, (4.5)

where in our setting

A1
j = e−ξτ1(j) , and B1

j =

∫
(0,τ1(j)]

e−ξs−dηs.

Further, by [2, Prop. 4.6] validity of (4.5) implies (and is thus equivalent to)

E(ξ,η)(Tn) =

∫
(0,Tn]

e−ξs−dηs = cM0
− cMn

e−ξTn PπM -a.s. (4.6)

for any n ∈ N, which in turn is equivalent to (4.3) for all t ≥ 0 as will be shown in the
following proposition.
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Proposition 4.5. Assume there exists a sequence {cj , j ∈ S} in R such that (4.6) holds
for any n ∈ N. Then (4.3) holds for all t ≥ 0.

Proof. We show this by contradiction and assume there exists a sequence {cj , j ∈ S} in
R such that (4.6) holds for all n ∈ N, but for any sequence {cj , j ∈ S} there is t′ ≥ 0 such
that

Pπ

(∫
(0,t′]

e−ξs−dηs = cJ0 − cJt′ e
−ξt′

)
< 1. (4.7)

We choose the sequence {cj , j ∈ S} such that (4.6) holds for all n and then choose t′

such that (4.7) holds for the given {cj , j ∈ S}.
We will first show that

Pπ

(∫
(0,t′]

e−ξs−dηs = c̃J0 − c̃Jt′ e
−ξt′

)
< 1 for all sequences {c̃j , j ∈ S}. (4.8)

To do so, let T ′ be the first jump time of J after t′, i.e. T ′ := inf{t ≥ t′ : Jt 6= Jt−}. Then
from (4.6) Pπ-a.s.∫

(0,t′]

e−ξs−dηs +

∫
(t′,T ′]

e−ξs−dηs =

∫
(0,T ′]

e−ξs−dηs = cJ0 − cJT ′ e
−ξT ′ . (4.9)

Assume there exists a sequence {c̃j , j ∈ S} such that

Pπ

(∫
(0,t′]

e−ξs−dηs = c̃J0 − c̃Jt′ e
−ξt′

)
= 1, (4.10)

then from (4.9) Pπ-a.s.

c̃J0 − c̃Jt′ e
−ξt′ = cJ0 − cJT ′ e

−ξT ′ −
∫

(t′,T ′]

e−ξs−dηs

⇔ c̃J0 − cJ0 = e−ξt′

(
c̃Jt′ − cJT ′ e

−(ξT ′−ξt′ ) −
∫

(t′,T ′]

e−(ξs−−ξt′ )dηs

)
,

where the two factors on the right hand side are (conditionally on (Jt)t≥0) independent,
while the left hand side is a constant. Thus we deduce

c̃J0 − cJ0 = 0 = c̃Jt′ − cJT ′ e
−(ξT ′−ξt′ ) −

∫
(t′,T ′]

e−(ξs−−ξt′ )dηs Pπ-a.s.

which implies {cj , j ∈ S} = {c̃j , j ∈ S} in contradiction to (4.10), such that (4.8) is true.
Finally, to prove the assertion of the proposition note that from (4.9) we have Pπ-a.s.∫

(0,t′]

e−ξs−dηs =

∫
(0,T ′]

e−ξs−dηs −
∫

(t′,T ′]

e−ξs−dηs

= cJ0 − cJT ′ e
−ξT ′ − e−ξt′

∫
(t′,T ′]

e−(ξs−−ξt′ )dηs

= cJ0 − e−ξt′
(
cJT ′ e

−(ξT ′−ξt′ ) +

∫
(t′,T ′]

e−(ξs−−ξt′ )dηs

)
.

Conversely, from (4.8) and due to independence

Pπ

(∫
(0,t′]

e−ξs−dηs = cJ0 − e−ξt′
(
cJT ′ e

−(ξT ′−ξt′ ) +

∫
(t′,T ′]

e−(ξs−−ξt′ )dηs

)
︸ ︷︷ ︸

=:f((ξs,ηs,Js)t′<s≤T ′ )

)

= E

[
Pπ

(∫
(0,t′]

e−ξs−dηs = cJ0 − Ce−ξt′
)∣∣f((ξs, ηs, Js)t′<s≤T ′) = C

]
< 1
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which yields the desired contradiction.

Remark 4.6. Note that uniqueness of the sequence {cj , j ∈ S} in (4.6) as shown in [2]
directly implies uniqueness of the sequence {cj , j ∈ S} in (4.3).

The following proposition gives a necessary and sufficient condition for a degenerate
behaviour of the exponential integral in terms of (ξt, ηt, Jt)t≥0.

Proposition 4.7. Assume (4.3) holds for all t ≥ 0 and some sequence {cj , j ∈ S}. Then

ηt = −
∫

(0,t]

cJs−dUs −
∫

(0,t]

dcJs , t ≥ 0, Pπ-a.s. (4.11)

where (Ut)t≥0 = (Log(e−ξt))t≥0 is the stochastic logarithm of (e−ξt)t≥0, i.e. the unique
solution of the SDE dUt = eξt−de−ξt , t ≥ 0, U0 = 0, given by

Ut = −ξt +
∑

0<s≤t

(e−∆ξs − 1 + ∆ξs) +
1

2

∫
(0,t]

σ2
ξ(Js)ds, t ≥ 0. (4.12)

Conversely, if (4.11) holds for some sequence {cj , j ∈ S}, then (4.3) is fulfilled for all
t ≥ 0.

Proof. Recall first that by [29, Thm. II.37] for all j ∈ S it holds e−ξ
(j)
t = E(U (j))t for some

Lévy processes U (j) defined by

U
(j)
t = −ξ(j)

t +
∑

0<s≤t

(e−∆ξ(j)s − 1 + ∆ξ(j)
s ) + t

σ2
ξ(j)

2
, t ≥ 0, j ∈ S, (4.13)

where (E(U (j))t)t≥0 denotes the Doléans-Dade stochastic exponential of (U
(j)
t )t≥0, i.e.

the unique solution of the SDE

dE(U (j))t = E(U (j))t−dU
(j)
t , E(U (j))0 = 1. (4.14)

Now assume (4.3) for all t ≥ 0, then for all j ∈ S we observe immediately Pj-a.s. for
t < T1∫

(0,t]

e−ξ
(j)
s−dη(j)

s =

∫
(0,t]

e−ξs−dηs = cJ0 − cJte−ξt = cj − cje−ξ
(j)
t = cj(1− e−ξ

(j)
t ),

that is, in terms of U (j) from (4.13),∫
(0,t]

E(U (j))s−dη
(j)
s = cj(1− E(U (j))t) a.s.

and as (E(U (j))t)t≥0 uniquely solves (4.14) this implies η(j)
t = cjU

(j)
t a.s. for all t < T1

which prolonges to t ≥ 0 due to the Lévy properties. Thus

η
(j)
t = −cjU (j)

t = −cjLog(e−ξ
(j)
t ) for all j ∈ S, (4.15)

is a necessary condition for (4.3).
Further, if S = {1}, then the computation leading to (4.15) extends to all t ≥ 0 and

there is nothing more to show. Thus assume S consists of at least two different states
such that T1 <∞ Pπ-a.s. due to the recurrency of (Jt)t≥0. Then from (4.3) Pj -a.s. for all
j ∈ S with k = J(T1)∫

(0,T1)

e−ξ
(j)
s−dη(j)

s + e−ξ
(j)
T1−Z

(j,k)
1 (η) =

∫
(0,T1]

e−ξs−dηs = cJ0 − cJT1 e
−ξT1

= cj − cke−ξT1−−Z
(j,k)
1 (ξ),
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where Z(i,j)
1 (ξ) = ∆ξT1

and Z(i,j)
1 (η) = ∆ηT1

are the first and second component of Z(i,j)
1

in (3.4), respectively. But as we already know that∫
(0,T1)

e−ξ
(j)
s−dη(j)

s = cj − cje−ξT1− , Pj-a.s. for all j ∈ S,

we conclude Pj-a.s. for all j ∈ S

cj − cke−ξT1−−Z
(j,k)
1 (ξ) − e−ξ

(j)
T1−Z

(j,k)
1 (η) = cj − cje−ξT1−

⇒ cke
−Z(j,k)

1 (ξ) + Z
(j,k)
1 (η) = cj

which yields that necessarily for all (i, j) in S2, i 6= j,

supp (F (i,j)) = {(x, y) ∈ R2 : y = ci − cje−x}. (4.16)

Finally, to show (4.11) note first that by [29, Thm. II.37] it follows directly from the
definition of (Ut)t≥0 in (4.12) that E(U)t = e−ξt . Further it is clear that

∆Ut + 1 = e−∆ξt for all t ≥ 0,

such that (4.16) implies for all n ∈ N

∆ηTn = cJTn− − cJTn e
−∆ξTn = cJTn− − cJTn (1 + ∆UTn) = −cJTn∆UTn −∆cJTn .

Together with (4.15) this yields

ηt = −
∫

(0,t]

cJsdU
(Js)
s +

∑
n:Tn≤t

∆ηTn = −
∫

(0,t]

cJsdU
(Js)
s −

∑
n:Tn≤t

(cJTn∆UTn + ∆cJTn )

= −
∫

(0,t]

cJsdUs −
∫

(0,t]

dcJs ,

which is (4.11).

The converse can be shown by direct computation.

Remark 4.8. From Equation (4.11) it follows that in the case (X
(2)
t , Y

(2)
t ) ≡ 0 (that is

∆ξTn = 0 = ∆ηTn Pπ-a.s. for all n) the sequence {ci, i ∈ S} has to be constant equal to
some c ∈ R and (4.11) can be simplified to

ηt = −cUt = −cLog(e−ξt) for all t ≥ 0,

which is equivalent to (2.4) in the Lévy case where S = {1} (see e.g. [8, Cor. 2.3]).

If (4.11) holds and ∆ξTn = 0 Pπ-a.s. for all n, then F (i,j)
η degenerates to an atom in

ci − cj , while if ∆ηTn = 0 Pπ-a.s. for all n, then F
(i,j)
ξ degenerates to an atom in log

cj
ci

which implies that this can only happen if either ci > 0,∀i ∈ S, or ci < 0,∀i ∈ S, (or
ci ≡ 0 which would correspond to the trivial and excluded case η ≡ 0).

4.4 Proof of Theorem 4.1: Almost sure convergence

For the proof of the convergence statements in Theorem 4.1 we need the following
lemma. Note that the introduced process ξ̂ is obtained from ξ by “conflating” the
excursions of ξ for t 6∈ Tj to single jumps and identifying the n-th exit and n-th return
time of j. Other appearing processes will be conflated likewise when this is necessary.
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Lemma 4.9. Fix j ∈ S and recall the sojourn time Tj := {t ≥ 0 : Jt = t}. Then under Pj
the conflated process (ξ̂t)t≥0 := (ξ̂jt )t≥0 given by

ξ̂jt := ξt+
∑n
k=1(τk(j)−τ−k (j)) for t ∈

[
τ−n (j)−

n−1∑
k=1

(τk(j)−τ−k (j)), τ−n+1(j)−
n∑
k=1

(τk(j)−τ−k (j))
)
,

is a Lévy process with characteristic triplet (γξ(j) , σ
2
ξ(j)

, ν̂), where

ν̂(dx) = νξ(j)(dx)− qj,jPj(ξτ1(j) − ξτ−1 (j) ∈ dx).

Proof. Clearly ξ̂0 = 0 Pj -a.s. since ξ0 = 0 Pj -a.s. Further for t ∈ Tj the process ξt equals
in law a Lévy process with triplet (γξ(j) , σ

2
ξ(j)

, νξ(j)) and thus ξ̂ inherits independent
increments and càdlàg paths of ξ. Stationarity of the increments follows from a standard
property of MAPs, namely by [4, Eq. XI.2.1]

Ej [f(ξ̂t+s − ξ̂t))] = Ej [f(ξ
t+s+

∑n(s+t)
k=1 (τk(j)−τ−k (j))

− ξ
t+

∑n(t)
k=1(τk(j)−τ−k (j))

)]

= Ej
[
Ej [f(ξ

t+s+
∑n(s+t)
k=1 (τk(j)−τ−k (j))

− ξ
t+

∑n(t)
k=1(τk(j)−τ−k (j))

)|F
t+

∑n(t)
k=1(τk(j)−τ−k (j))

]
]

= Ej [f(ξ
s+

∑n(t+s)

k=n(t)+1
(τk(j)−τ−k (j))

)], ∀f ∈ Cc(R),

where
∑n(t+s)
k=n(t)+1(τk(j)− τ−k (j))

d
=
∑n(s)
k=1(τk(j)− τ−k (j)), such that we conclude

Ej [f(ξ̂t+s − ξ̂t))] = Ej [f(ξ̂s)] ∀f ∈ Cc(R).

Finally, the form of the jump measure ν̂ results from adding the jumps due to conflation
which happen at rate −qj,j to the Lévy measure νξ(j) .

We also observe the following useful solidarity property.

Lemma 4.10. Consider the process (ξ̂jt )t≥0 as in Lemma 4.9. Then limt→∞ ξ̂jt = ∞
Pj-a.s. for some j ∈ S if and only if limt∈Tj ,t→∞ ξt =∞ Pj-a.s. for all j ∈ S.

Proof. Assume limt→∞ ξ̂jt =∞ Pj -a.s. for some j ∈ S, then clearly the subsequence ξτn(j)

tends to∞ Pj -a.s. as well for n→∞. By [3, Lemma 7.1] it follows that limn→∞ ξτn(j) =∞
for all j ∈ S. Now note that the sequence (ξτn(j))n∈N takes exactly the same values as

(ξ̂jSt)t≥0 where (St)t≥0 is a subordinator with exponentially distributed jumps, namely

St =
∑Mt

i=1(τ−i (j) − τi−1(j)) for an arbitrary Poisson process (Mt)t≥0. By [14, Thm.
3.2(IV)] this implies the claim.

We now prove the statement on almost sure convergence in Theorem 4.1, that is we
show:

Proposition 4.11. Assume limt∈Tj ,t→∞ ξt = ∞ Pj-a.s. for some hence all j ∈ S. The
exponential integral E(ξ,η)(t) converges Pπ-a.s. as t→∞ to some random variable E∞(ξ,η)

if and only if (4.1) holds for all j ∈ S.

Proof. We start with the “if” statement. Fix any j ∈ S and let Nt =
∑
n∈N 1{τn(j)≤t} for

t ≥ 0. Then for any t ≥ 0

E(ξ,η)(t) =

∫
(0,τNt (j)]

e−ξs−dηs +

∫
(τNt (j),t]

e−ξs−dηs

=

Nt∑
k=1

eξτk−1(j)

∫
(τk−1(j),τk(j)]

e−(ξs−−ξτk−1(j))dηs + e
−ξτNt (j)

∫
(τNt (j),t]

e
−(ξs−−ξτNt (j))dηs

=: I1 + I2.
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Here, I1 is a classical perpetuity, namely I1 =
∑Nt
k=1(

∏k−1
`=1 A`)Bk with

(Ak, Bk) = (e−(ξτk(j)−ξτk−1(j)),

∫
(τk−1(j),τk(j)]

e−(ξs−−ξτk−1(j))dηs),

such that (Ak, Bk)k∈N is an i.i.d. sequence under Pj . Thus by [16, Thm. 2.1] I1 converges
a.s. since ξτn(j) →∞ a.s. and∫

(1,∞)

log q∫
(0,log q]

Pj(ξτ1(j) > u)du
Pj

(∣∣∣ ∫
(0,τ1(j)]

e−ξs−dηs

∣∣∣ ∈ dq)

≤
∫

(1,∞)

log q∫
(0,log q]

Pj(ξτ1(j) > u)du
Pj

(
sup

0<t≤τ1(j)

∣∣∣ ∫
(0,τ1(j)]

e−ξs−dηs

∣∣∣ ∈ dq) <∞

by our assumptions.
To find an appropriate bound for I2 note first that

|I2| ≤ e
−ξτNt (j) sup

τNt (j)<t≤τNt+1(j)

∣∣∣ ∫
(τNt(j),t]

e
−(ξs−−ξτNt(j) )

dηs

∣∣∣ =: e
−ξτNt (j)WNt ,

where (Wn)n∈N is an i.i.d. sequence. We will show that for some c > 0

lim
t→∞

ecτNt(j)e
−ξτNt (j)WNt = 0 Pj-a.s.,

which is equivalent to state that

lim
t→∞

(ξτNt (j) − cτNt(j) − log+WNt) = lim
t→∞

ξτNt (j)
(
1− c

τNt(j)

ξτNt (j)
− log+WNt

ξτNt (j)

)
=∞ Pj-a.s.

(4.17)
Since limt∈Tj ,t→∞ ξt =∞ and since by Lemma 4.9 the conflated process (ξ̂jt )t≥0 is a Lévy

process under Pj , it holds that 0 < Ej [ξ̂
j
1] ≤ ∞. This clearly implies 0 < Ej [ξτ1(j)] ≤ ∞

and we fix c = 1
2Ej [ξτ1(j)]) whenever the appearing expectation is finite, and set c = 1

otherwise. This then yields (in case of infinite expectation using Kesten’s trichotomy
[20]; also see [3, Proof of Thm. 3.1])

lim sup
t→∞

τNt(j)

ξτNt(j)
= lim sup

t→∞

Nt(j)

ξτNt(j)

τNt(j)

Nt(j)
≤ 1

2c
E[τ1(j)] <∞ Pj-a.s.

Further, whenever Ej [log+W1]+Ej [ξτ1(j)] =∞, by [3, Lemma 8.1] Equation (4.1) implies
directly that

lim sup
t→∞

log+WNt

ξτNt (j)
= 0 Pj-a.s. (4.18)

On the other hand, if Ej [log+W1] + Ej [ξτ1(j)] <∞, then

0 = lim sup
t→∞

WNt

t
≥ lim sup

t→∞

log+WNt

t
= lim sup

t→∞

log+WNt

ξτNt (j)

ξτNt (j)

t
Pj-a.s.

which again implies (4.18) since limt→∞ ξτNt(j)/t > 0. Hence (4.17) follows and the
growth of |I2| is bounded by e−ct which proves the almost sure convergence under Pj .
As j ∈ S was arbitrary this implies Pπ-a.s. convergence.

For the “and only if” statement, assume (4.1) fails. Then Ej [log+W1] = ∞ as well,
since Ej [ξ

+
τ1(j) ∧ log q] is bounded away from zero by assumption. Thus by [3, Lemma 8.1]

it follows that

lim sup
t→∞

log+WNt

ξτNt (j)
=∞ Pj-a.s. (4.19)
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such that

lim sup
t→∞

log+(e
−ξτNt (j)WNt) = lim sup

t→∞
(−ξτNt (j) + log+WNt)

= lim sup
t→∞

ξτNt (j)
(
− 1 +

log+WNt

ξτNt (j)

)
=∞,

and |I2| is not converging. Thus, by conditional independence given (Jt)t≥0 of I1 and I2,
also E(ξ,η)(t) does not converge Pj-a.s. as we had to show.

4.5 Proof of Theorem 4.1: Convergence in probability

In this section we prove:

Proposition 4.12. If limt∈Tj ,t→∞ ξt =∞ Pj-a.s. and (4.2) hold for some j ∈ S, then for
all j ∈ S E(ξ,η)(t)→ E∞(ξ,η) in Pj-probability.

Proof. Fix j ∈ S such that limt∈Tj ,t→∞ ξt =∞ and (4.2) hold. Under Pj we split up the
exponential integral as follows:

E(ξ,η)(t) =

∫
(0,t]

e−ξs−1{s∈Tj}dηs +

∫
(0,t]

e−ξs−1{s6∈Tj}dηs

=

N−t∑
k=1

∫
(τk−1(j),τ−k (j))

e−ξs−dηs +

Nt∑
k=1

∫
[τ−k (j),τk(j)]

e−ξs−dηs (4.20)

+


∫

(τNt (j),t]
e−ξs−dηs, t ∈ Tj ,∫

(τ−Nt+1(j),t]
e−ξs−dηs, t 6∈ Tj ,

where Nt := Nt(j) :=
∑
n∈N 1{τn(j)≤t} and N−t := N−t (j) :=

∑
n∈N 1{τ−n (j)≤t} count the

returns to and exits from j up to time t, respectively.
Define

F̃k :=

∫
[τ−k (j),τk(j)]

e
−(ξs−−ξτ−

k
(j)

)
dηs =

∫
(τ−k (j),τk(j)]

e
−(ξs−−ξτ−

k
(j)

)
dηs + ∆ητ−k (j), k ∈ N,

and

Ft :=

N−t∑
k=1

F̃k, t ≥ 0,

then clearly (F̃k)k∈N forms an i.i.d. sequence and the conflated process (F̂t)t≥0 (in the
same sense as in Lemma 4.9) is a compound Poisson process since the sojourn times
τ−k (j) − τk−1(j), i.e. the interarrival times of (F̂t)t≥0, are exponentially distributed.
Further

Nt∑
k=1

∫
[τ−k (j),τk(j)]

e−ξs−dηs =

Nt∑
k=1

e
−ξ

τ
−
k

(j) F̃k =

∫
(0,τNt (j)]

e−ξs−dFs =

∫
(0,t]

e−ξs−dFs.

Thus for any t ∈ Tj

E(ξ,η)(t) =

∫
(0,t]

e−ξs−1{s∈
⋃
k∈N(τk−1(j),τ−k (j))}dηs +

∫
(0,t]

e−ξs−dF̂s,

and the conflated version (Êj(ξ,η)(t)) of this process (which is constant on Tcj anyway) is

an exponential integral of the bivariate Lévy process (ξ̂jt ,
ˆ̂ηjt + F̂t)t≥0, where ˆ̂η is a variant
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of η̂ that has no jumps at conflation times. Since ξ̂jt → ∞ a.s. by assumption, we see
from [15, Thm. 2] (also see Equation (2.1)) that (Êj(ξ,η)(t)) converges almost surely under
Pj if and only if ∫

(1,∞)

(
log y

Aξ̂j (log y)

)
|ν̄ ˆ̂ηj+F̂ (dy)| <∞ (4.21)

which is equivalent to (4.2) by Lemma 4.9.
It remains to show that for t /∈ Tj the appearing perturbation term

∫
(τ−Nt+1(j),t]

e−ξs−dηs

in (4.20) is bounded appropriately. To see this, set

Mt := M̃Nt := sup
s∈(τ−Nt

(j),τNt (j)]

∣∣ ∫
(τ−Nt

(j),s]

e
−(ξu−−ξτ−

Nt
(j)

)∣∣dηu
such that

Pj(Mt ≤ x) = Pj(M̃Nt ≤ x) =
∑
k∈N0

Pj(M̃k ≤ x,Nt = k)

=
∑
k∈N0

Pj(M̃k ≤ x, τk(j) ≤ t, τk+1(j) > t)

=
∑
k∈N0

∫
(0,t]

Pj(M̃k ≤ x, τk(j)− τ−k (j) ≤ t− s, τk+1(j)− τ−k (j) > t− s)Pj(τ−k (j) ∈ ds)

=

∫
(0,t]

Pj(M̃1 ≤ x, τ1(j)− τ−1 (j) ≤ t− s, τ2(j)− τ−1 (j) > t− s)
( ∑
k∈N0

Pj(τ
−
k (j) ∈ ds)

)
.

This convolution integral has a distributional limit by the key renewal theorem [4, Thm.
V.4.3], i.e.

Pj(Mt ≤ x)
d−→

t→∞

1

Ej [τ
−
1 (j)]

∫ ∞
0

Pj(M̃1 ≤ x, τ1(j)− τ−1 (j) ≤ s, τ2(j)− τ−1 (j) > s)ds.

Hence

E(ξ,η)(t) = 1{t∈Tj}

∫
(0,t]

e−ξs−dηs

+ 1{t 6∈Tj}

( ∫
(0,τ−Nt+1]

e−ξs−dηs︸ ︷︷ ︸
converges Pj -a.s. as τ−Nt+1∈T̄j

+ e
−ξ

τ
−
Nt+1

(j)︸ ︷︷ ︸
→0Pj -a.s.

∫
(τ−Nt+1(j),t]

e
−(ξs−−ξτ−

Nt+1
(j)

)
dηs︸ ︷︷ ︸

sup |·| converges in distribution

)

converges in Pj-probability as t→∞ by Slutzky’s theorem as claimed.
Finally note that convergence under Pj′ follows due to the positive recurrency of

(Jt): After reaching state j the exponential integral converges in probability as shown,
while up to τ1(j) it cannot diverge as this would imply divergence under Pj by the same
argument.

4.6 Proof of Theorem 4.1: Divergence

We will prove divergence of the exponential integral E(ξ,η) in the two possible cases
separately and start with:

Proposition 4.13. Assume that the degeneracy condition (4.3) fails and that further
lim inft∈Tj ,t→∞ ξt <∞ for some j ∈ S, then

|E(ξ,η)(t)|
Pπ−→∞.
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Proof. As seen in (4.8) in the proof of Proposition 4.5, whenever (4.3) fails, we find u > 0

such that for any sequence {ci, i ∈ S}

Pπ

(∫
(0,u]

e−ξs−dηs = cJ0 − cJue−ξu
)
< 1. (4.22)

Now consider

Zun := E(ξ,η)(nu) =

∫
(0,nu]

e−ξs−dηs =:

n∑
k=1

(
k−1∏
`=1

Au`

)
Buk ,

with

(Auk , B
u
k ) = (e−(ξku−ξ(k−1)u),

∫
((k−1)u,ku]

e−(ξs−−ξ(k−1)u)dηs).

Here (Auk , B
u
k )k∈N is a sequence of random vectors that is modulated by an ergodic

Markov chain (Jun )n∈N0
which is a skeleton chain of (Jt)t≥0. Denoting the k-th return

time of (Jun )n∈N to j as τuk (j), we note that
∏τuk (j)
`=1 Au` = exp(−ξτuk (j)u) does not tend to 0

a.s. for k →∞ due to our assumption. Together with (4.22) we thus conclude from [2,

Thm. 3.4] that |Zun |
Pπu−→ ∞, n → ∞, where the invariant distribution πu of (Jun )n∈N0

is
equivalent to π.

Further, with nt := sup{n ∈ N : nu ≤ t} and rt = t− ntu ∈ [0, u), under Pπ

E(ξ,η)(t) =

∫
(0,rt]

e−ξs−dηs + e−ξrt
∫

(rt,t]

e−(ξs−−ξrt )dηs
d
=

∫
(0,rt]

e−ξs−dηs + e−ξrt (Zunt)
′,

where (Zunt)
′ is a copy of Zunt that is independent of the past up to time rt. Since

|Zunt |
Pπ−→∞, t→∞, while e−ξrt is bounded away from zero and

∫
(0,rt]

e−ξs−dηs is finite,

we observe that |E(ξ,η)(t)|
Pπ−→∞ as stated.

To complete the proof of Theorem 4.1 it remains to show:

Proposition 4.14. Assume that both the degeneracy condition (4.3) and (4.2) fail for
all j, then

|E(ξ,η)(t)|
Pπ−→∞.

Proof. Assume (4.2) fails for all j ∈ S. Fixing j we follow the lines of the proof of
Proposition 4.12 up to failure of (4.21) and conclude by [15, Thm. 2] that∣∣Êj(ξ,η)(t)

∣∣ Pj−→∞, t→∞, (4.23)

whenever the conflated integral is not degenerate, i.e. if there is no constant cj ∈ R such
that

Êj(ξ,η)(t) = cj − cje−ξ̂t for all t ≥ 0 Pj-a.s. (4.24)

This follows from failure of (4.3) as (4.24) is either true for all j ∈ S or none. More
precisely, (4.24) is equivalent to η̂jt = −cjÛ jt , which is a consequence of Proposition 4.7.

This in turn is equivalent to η(j)
t = −cjU (j)

t Pj-a.s. and

ητk(j) − ητ−k (j) = −cj(Uτk(j) − Uτ−k (j)) Pj-a.s. (4.25)

However, if (4.24) fails for some j′ 6= j, then (4.25) necessarily fails as well.
By the same argumentation as at the end of the proof of Proposition 4.12, the

divergence (4.23) implies divergence of |E(ξ,η)(t)| in Pj-probability. As j was chosen
arbitrarily this yields the result.
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5 Sufficient conditions

Although Theorem 4.1 provides necessary and sufficient conditions for convergence
of E(ξ,η)(t) it is hardly applicable as the given assumptions are difficult to check. Thus
this section aims at additional, easy to check conditions for convergence of E(ξ,η)(t). In
particular we will formulate conditions in terms of the long term mean κξ.

To this end we decompose the exponential integral E(ξ,η)(t) using the Lévy-Itô-type
decomposition (3.5) as follows.

E(ξ,η)(t) =

∫
(0,t]

e−ξs−d(γηs +W η
s + Y b,ηs + Y s,ηs + Y (2)

s )

=

∫
(0,t]

e−ξs−d(γηs +W η
s + Y s,ηs ) +

∫
(0,t]

e−ξs−d(Y b,ηs + Y (2)
s )

=: E(1)(t) + E(2)(t). (5.1)

We now treat the two exponential integrals in (5.1) separately. First, to study E(1) we
need the following technical lemma.

Lemma 5.1. The process (W η
t + Y s,ηt )t≥0 is a martingale. Furthermore (W η

t + Y s,ηt )t≥0

is square-integrable if supj∈S(σ2
η(j)

+
∫

(0,1)
x2νη(j)(dx)) <∞.

Proof. For the martingale property note that for 0 ≤ s ≤ t

E[W η
t + Y s,ηt |Fs] = E

[
E[W η

t + Y s,ηt |Fs, Ju = j(u), s < u ≤ t]|Fs
]

= E
[
E[W η

s + Y s,ηs |Fs, Ju = j(u), s < u ≤ t]|Fs
]

+ E
[
E
[ ∫

(s,t]

σ2
η(j(u))dWu + lim

ε→0

∫
(s,t]

∫
ε≤|x|<1

x(Nη(j(u))(du, dx)− du νη(j(u))(dx))∣∣∣Fs, Ju = j(u), s < u ≤ t
]∣∣∣Fs]

= W η
s + Y s,ηs ,

where in the last step we have used that W η(j)

t and Y s,η
(j)

t are (square-integrable)
martingales for any j ∈ S. Square-integrability of (W η

t + Y s,ηt )t≥0 under the given
condition follows from [29, Cor. II.3] and

E[〈W η + Y s,η〉t] = E

[∫
(0,t]

d〈W η(Js) + Y s,η
(Js)〉s

]

= E

[∫
(0,t]

(σ2
η(Js) +

∫
(0,1)

x2νη(Js)(dx))ds

]

≤ t · sup
j∈S

(
σ2
η(j) +

∫
(0,1)

x2νη(j)(dx)

)
<∞.

Following ideas from [15] we now show a.s. convergence of E(1)(t) as t→∞ under
rather weak conditions.

Proposition 5.2. Assume that 0 < κξ <∞ and

sup
j∈S

(
|γη(j) |+ σ2

η(j) +

∫
(0,1)

x2νη(j)(dx)

)
<∞. (5.2)

Then E(1)(t) converges Pπ-a.s. to a finite random variable as t→∞.
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Proof. It is sufficient to prove convergence of the given integral over some interval
(L,∞), with possibly random L ∈ [0,∞). To find a suitable L fix some constant c ∈ (0, κ)

and set L := sup{t ≥ 0 : ξt− − ct ≤ 0} if the set is not empty and L := 0 otherwise. Then
L is a random variable such that ξt ≥ ct for all t > L and it remains to consider∫

(L,∞)

e−ξs−d(γηs +W η
s + Y s,ηs ) =

∫
(L,∞)

e−ξs−dγηs +

∫
(L,∞)

e−ξs−d(W η
s + Y s,ηs ), (5.3)

where ∣∣∣∣∣
∫

(L,∞)

e−ξs−dγηs

∣∣∣∣∣ =

∣∣∣∣∣
∫

(L,∞)

e−ξs−γη(Js)ds

∣∣∣∣∣ ≤
∫

(L,∞)

e−ξs− |γη(Js) |ds

≤ sup
j∈S

(
|γη(j) |

) ∫
(L,∞)

e−ξs−ds ≤ sup
j∈S

(
|γη(j) |

) ∫
(L,∞)

e−csds

<∞.

For the second integral in (5.3) define λt := ξt ∨ ct, then λt− ≥ ct for all t ≥ 0 and
λt− = ξt− for all t > L, such that in particular

lim
t→∞

∫
(L,L∨t]

e−ξs−d(W η
s + Y s,ηs ) = lim

t→∞

∫
(L,L∨t]

e−λs−d(W η
s + Y s,ηs ) Pπ-a.s.

By Lemma 5.1 the process W η
s + Y s,ηs is a square-integrable martingale with mean 0 and

quadratic variation

〈W η + Y s,η〉t =

∫
(0,t]

(σ2
η(Js) +

∫
(0,1)

x2νη(Js)(dx))ds =:

∫
(0,t]

ρ(Js)ds.

Thus using Itô’s isometry

Eπ

(∫
(0,t]

e−λs−d(W η
s + Y s,ηs )

)2


=

∫
(0,t]

E
[
e−2λs−

]
d〈W η + Y s,η〉s =

∫
(0,t]

E
[
e−2λs−

]
ρ(Js)ds

≤
∫

(0,t]

e−2csρ(Js)ds ≤ sup
j∈S

(ρ(Js))

∫
(0,t]

e−2csds

≤ 1

2c
sup
j∈S

(ρ(Js)) <∞,

such that t 7→
∫

(0,t]
e−λs−d(W η

s + Y s,ηs ) is a martingale with bounded, converging second
moments. It therefore converges Pπ-a.s. as t→∞ which yields the claim.

Remark 5.3. The above obtained sufficient condition for convergence of E(1) is not
optimal and only chosen for presentation here as it is easy to check and interpret. If
needed, necessary and sufficient conditions for convergence of E(1) could as well be
obtained by applying Theorem 4.1 in this case.

Clearly, for S finite, in Proposition 5.2 we can drop the assumptions (5.2) and κξ <∞.
Nevertheless, for countable S, (5.2) is not redundant as will be outlined by the following
example.

Example 5.4. Consider the petal flower Markov process (Jt)t≥0 as defined in Example

4.3. Choose ξ and η to be conditionally independent with Y (2)
t ≡ 0 and

ξt = X
(2)
t =

∑
n≥1

∑
i,j∈N

Z(i,j)
n 1{JTn−=i,JTn=j,Tn≤t}
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where

Z(i,j)
n := Z(i,j) :=

{
2, j = 1,

0, otherwise.

Then ξt →∞ Pπ-a.s. as t→∞ with

κξ =
∑

(i,j)∈N×N
i 6=j

πiqi,jE[Z(i,j)] = 2
∑

i∈N\{1}

πiqi,1 = 2
∑

i∈N\{1}

q1,i

2q
q = q.

Further, setting ηt =
∫

(0,t]
γη(Js)ds with

γη(j) =

{
0, j = 1,

exp
(
p−1

1,j

)
, otherwise,

we compute under P1∫
(0,t]

e−ξs−dηs =

∫
(0,t]

e−ξs−γη(Js)ds =

∫
(0,t]

exp
(
−ξs− + p−1

1,Js
1{Js 6=1}

)
ds

which diverges, as by an argumentation as in Example 4.3 using the Borel-Cantelli lemma

lim sup
t→∞

(−ξt− + p−1
1,Jt
1{Jt 6=1}) =∞ P1-a.s.

The next proposition gives conditions for almost sure convergence and convergence
in probability of the exponential integral E(2) as defined in (5.1).

Proposition 5.5. Assume 0 < κξ <∞.

1. The exponential integral E(2)(t) converges Pπ-a.s. to a finite random variable as
t→∞ if and only if∫

(1,∞)

log q Pj

(
sup

0<t≤τ1(i)

e−ξt− |∆(Y b,ηt + Y
(2)
t )| ∈ dq

)
<∞ for all j ∈ S. (5.4)

2. The exponential integral E(2)(t) converges in Pj-probability to some random vari-

able E
(2)
∞ as t→∞, if and only if∫

(1,∞)

log q Pj

(∣∣∣∣∣
∫

(0,τ1(i)]

e−ξt−d(Y b,ηt + Y
(2)
t )

∣∣∣∣∣ ∈ dq
)
<∞. (5.5)

Moreover, in this case convergence in Pj-probability holds for all j ∈ S.

Proof. Assume Y b,ηt + Y
(2)
t 6≡ 0 as otherwise E(2)(t) ≡ 0 a.s. and there is nothing to show.

Let {T̃n, n ∈ N0} be the jump times of (Y b,ηt + Jt)t≥0 with T̃0 := 0 and set Ñt =∑∞
n=1 1{T̃n≤t}. Then {Tn, n ∈ N0} ⊆ {T̃n, n ∈ N0} and further {T̃n, n ∈ N0} contains all

jump times of (Y b,ηt + Y
(2)
t )t≥0. Thus we can reformulate

E(2)(t) =

∫
(0,t]

e−ξs−d(Y b,ηs + Y (2)
s ) =

Ñt∑
i=1

e−ξT̃i−∆(Y b,η
T̃i

+ Y
(2)

T̃i
)

=

Ñt∑
i=1

i∏
k=1

e
−(ξT̃k−

−ξT̃k−1−
)
∆(Y b,η

T̃i
+ Y

(2)

T̃i
)

=:

Ñt∑
i=1

(
i∏

k=1

Ak

)
Bi, (5.6)
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where
(An, Bn)n∈N =

(
e
−(ξT̃n−−ξT̃n−1−

)
,∆(Y b,η

T̃n
+ Y

(2)

T̃n
)
)
n∈N

is a sequence of random vectors modulated by a Markov chain (J̃n)n∈N with state space
S. Hereby J̃ is a retarded discrete time version of J whose return times

τ̃0(j) := 0, and τ̃n(j) := inf{k > τ̃n−1(j) : J̃k = j, J̃k−1 6= j}, j ∈ S,

fulfil
T̃τ̃n(j) = τn(j), n ∈ N, j ∈ S.

Further J̃ inherits the positive recurrency from J and is necessarily aperiodic whenever
Y b,ηt 6≡ 0 which implies that J̃ has positive probability to stay in some state. If Y b,ηt ≡ 0

and J̃ could be periodic, we artificially add a positive probability to stay in some state(s)
and take corresponding extra jump times into account. Thus w.l.o.g. J̃ is aperiodic and
therefore ergodic and its stationary law π̃ is equivalent to π.

In our setting Pπ̃(An = 0) = 0 and Pπ̃(Bn = 0) < 1 are clearly fulfilled and we can
apply [2, Thm. 3.1] to prove almost sure convergence of E(2). Hereby

lim
n→∞

τ̃n(j)∏
k=1

Ak = lim
n→∞

exp(−(ξT̃τ̃n(j)− − ξ0)) = lim
n→∞

exp(−ξτn(j)) = 0 Pπ̃-a.s. (5.7)

holds since 0 < κξ <∞ implies ξt →∞ Pπ-a.s., and due to the recurrency of (Jt)t≥0 we
have limn→∞ τn(j) =∞ Pπ-a.s. It remains to show equivalence of (5.4) and the second
line of (2.7), which in our setting reads∫

(1,∞)

log q∫
(0,log q)

Pj(ξτ1(j) > x)dx
Pj(Wj ∈ dq) <∞ for some j ∈ S, (5.8)

where from (2.8)

Wj = max
1≤k≤τ̃1(j)

|
k∏
`=1

A`Bk| = max
1≤k≤τ̃1(j)

e
−ξT̃k− |∆(Y b,η

T̃k
+ Y

(2)

T̃k
)|

= sup
0<t≤τ1(j)

e−ξt− |∆(Y b,ηt + Y
(2)
t )|.

As 0 < κξ <∞, by dominated convergence∫
(0,log q)

Pj(ξτ1(j) > x)dx = Ej

[
ξ+
τ1(j) ∧ log q

]
q→∞−→ Ej

[
ξ+
τ1(j)

]
≥ Ej

[
ξτ1(j)

]
,

where by [3, Eq. (10)]
Ej
[
ξτ1(j)

]
= Eπ[ξT1

]Ej [N(j)] ,

with N(j) ∈ N such that TN(j) = τ1(j). Applying Wald’s equality twice yields

Eπ[ξT1 ]Ej [N(j)] =
(∑
j∈S

πj

(
E[ξ

(j)
1 ] +

∑
i∈S
i 6=j

qj,i

∫
R

xdF
(j,i)
ξ (x)

))
E[T1]Ej [N(j)]

= κξEi [τ1(j)] > 0,

and hence the denominator in the integral in (5.8) has a uniform upper bound and a
uniform lower bound which is strictly positive. Thus it can be ignored.

To prove convergence in Pj -probability of E(2) we apply [2, Thm. 3.4] on the Markov
modulated perpetuity (5.6) and recall that the non-degeneracy condition (2.6) and (5.7)
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hold under the given conditions. It remains to show equivalence of the second line
of (2.9) to (5.5) which can be done by the same arguments as in the case of almost
sure convergence. That this convergence in Pj-probability implies convergence in
Pj′ -probability for all j′ follows as in Proposition 4.12.

Remark 5.6. Alternatively to the given proof of Proposition 5.5 one could also apply
Theorem 4.1 in the case ηt = Y b,ηt + Y

(2)
t to obtain similar conditions. We decided for a

direct approach here as our resulting proofs were slightly shorter. The same is valid for
Proposition 5.7 below.

In case of a finite state space S we can also show conditions for convergence of
E(2) for infinite, well-defined κ. Observe that for finite state spaces and assuming non-
degeneracy the two types of convergence are equivalent as stated in part (iii) of the
following proposition.

To formulate our conditions we introduce

Āξ(x) :=
∑
j∈S

πj

(
γξ(j) + ν̄+

ξ(j)
(1) +

∫ x

1

ν̄+
ξ(j)

(y)dy +
∑
i∈S
i6=j

qi,j

∫
R+

yF
(i,j)
ξ (dy)

)
, (5.9)

which is in spirit of Aξ and Ajξ used in Sections 2.1 and 4, yet different.

Proposition 5.7. Assume S is finite and κξ > 0.

1. The exponential integral E(2)(t) converges Pπ-a.s. to a finite random variable as
t→∞ if and only if∫

(1,∞)

log q

Āξ(log q)
Pj

(
sup

0<t≤τ1(j)

e−ξt− |∆(Y b,ηt + Y
(2)
t )| ∈ dq

)
<∞ for all j ∈ S.

(5.10)
2. The exponential integral E(2)(t) converges in Pj-probability to some random vari-

able E
(2)
∞ as t→∞, if and only if∫

(1,∞)

log q

Āξ(log q)
Pj

(∣∣∣ ∫
(0,τ1(j)]

e−ξt−d(Y b,ηt + Y
(2)
t )

∣∣∣ ∈ dq) <∞. (5.11)

Moreover, in this case convergence in Pj-probability holds for all j ∈ S.
3. Given

Pπ

(
E(2)(t) = cJ0 − cJte−ξt for all t ≥ 0

)
< 1 (5.12)

for all sequences {ci, i ∈ S} in R, the exponential integral E(2)(t) converges Pπ-a.s.
as t→∞ if and only if it converges in Pj-probability for some/all j ∈ S.

Proof. We use the same notation as in the proof of Proposition 5.5 and follow its lines up
to proving that (5.8) is equivalent to (5.10).

Note that Wi = sup0<t≤τ1(i) e
−ξt− |∆(Y b,ηt + Y

(2)
t )| as shown in the proof of Proposition

5.5 and thus the two expressions only differ in the appearing denominator.
If κξ <∞, then as shown in the proof of Proposition 5.5 the denominator appearing

in (5.8) can be ignored. The same holds true under this assumption for the denominator
in (5.10) as

Āξ(log q) ↗
q→∞

∑
j∈S

πj

γξ(j) + ν̄+
ξ(j)

(1) +

∫ ∞
1

ν̄+
ξ(j)

(y)dy +
∑
i∈S
i 6=j

qi,j

∫
R+

yF
(i,j)
ξ (dy)


= κξ −

∑
j∈S

πj

∫
(−∞,−1]

xνξ(j)(dx)︸ ︷︷ ︸
∈(−∞,0]

∈ (0,∞).
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Thus assume κξ = ∞ such that ξt tends to ∞. Let {T̆n, n ∈ N0} be the jump times
of (Y b,ξt + Jt)t≥0 with T̆0 := 0 such that {Tn, n ∈ N0} ⊆ {T̆n, n ∈ N0} and {T̆n, n ∈ N0}
contains all jump times of (Y b,ξt +X

(2)
t )t≥0. Repeating the computation and argumentation

leading to (5.6) we note that this generates another retarded discrete time version J̆ of
J which is w.l.o.g. aperiodic and ergodic with stationary law π̆ equivalent to π and such
that its return times τ̆n(j) satisfy T̆τ̆n(j) = τn(j).

Then∫
(0,log q)

Pj(ξτ1(j) > x)dx = Ej

[
ξ+
τ1(j) ∧ log q

]
� Eπ[ξ+

T̆1
∧ log q] for q →∞,

by [3, Lemma 8.16], where we use the notation of f(x) � g(x) whenever lim infx→∞
f(x)
g(x) >

0 and lim supx→∞
f(x)
g(x) <∞. Further

Eπ[ξ+

T̆1
∧ log q] =

∫
(0,log q)

Pπ(ξT̆1
> x)dx

=

∫
(0,log q)

Pπ

(
γξ
T̆1

+W ξ

T̆1
+ Y b,ξ

T̆1
+ Y s,ξ

T̆1
+X

(2)

T̆1
> x

)
dx,

where (W ξ
t + Y s,ξt )t≥0 is a martingale and supj∈S |γξ(j) | <∞ for finite S. Thus∫

(0,log q)

Pπ

(
γξ
T̆1

+W ξ

T̆1
+ Y b,ξ

T̆1
+ Y s,ξ

T̆1
+X

(2)

T̆1
> x

)
dx �

∫
(0,log q)

Pπ

(
Y b,ξ
T̆1

+X
(2)

T̆1
> x

)
dx

as q →∞, and hence∫
(0,log q)

Pj(ξτ1(j) > x)dx �
∫

(0,log q)

Pπ

(
Y b,ξ
T̆1

+X
(2)

T̆1
> x

)
dx

= Eπ[(Y b,ξ
T̆1

+X
(2)

T̆1
)+ ∧ log q]

=
∑
j∈S

πj

∫
(1,log q)

ν̄+
ξ (y)dy +

∑
i∈S
i 6=j

qi,j

∫
(0,log q)

yF
(i,j)
ξ (dy)


� Āξ(log q),

which implies equivalence of (5.8) and (5.10).
Again, the proof for convergence in Pj-probability can be carried out analogously.

That this implies convergence in Pj-probability for all j follows as in Proposition 4.12.
Finally (iii) follows from [2, Rem. 3.8] and applying the results from Section 4.3 on

E(2).

Remark 5.8. Note that (5.12) excludes degeneracy of E(2), but this does not necessarily
imply non-degeneracy of E(ξ,η) or vice versa. This would only be the case if one assumes
additionally that E(1) is degenerate, i.e. if there exists a sequence {c̃j , j ∈ S} such that

E(1) = c̃J0 − c̃Jte−ξt Pπ-a.s. for all t ≥ 0. (5.13)

Indeed, given (5.13), (4.3) is equivalent to the existence of a (unique) sequence {čj , j ∈ S}
such that

E(2) = čJ0 − čJte−ξt Pπ-a.s. for all t ≥ 0,

can be seen by direct computations.
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The following corollary exemplarily summarizes results of Propositions 5.2 and
5.5. Similar statements for other scenarios can easily be formulated using the above
statements.

Corollary 5.9. Assume 0 < κξ < ∞ and (5.2) as well as (5.4) hold. Then E(ξ,η)(t)

converges Pπ-a.s. to a finite random variable as t→∞.
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