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Abstract

We study the free energy of mixed p-spin spin glass models enriched with an addi-
tional magnetic field given by the canonical Gaussian field associated with a Ruelle
probability cascade. We prove the conjecture in [15] that this free energy converges
to the Hopf-Lax solution of a certain Hamilton-Jacobi equation. Using this result, we
give a new representation of the free energy of mixed p-spin models with soft spins.
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1 Introduction

Let (βp)p>2 be a sequence of real numbers and let ξ(r) :=
∑
p>2 β

2
pr
p for r ∈ R. We

will assume that the sequence (βp)p>2 is such that ξ is well defined on the entire real
line. This assumption can be relaxed if needed by restricting the parameters of the
models we will be working with. Denote by (HN (σ))σ∈RN the centered Gaussian field
with covariance

E [HN (σ)HN (τ)] = Nξ
(σ · τ
N

)
, σ, τ ∈ RN .

Let PN := P⊗N1 denote the N -fold product of P1, a probability measure on R with
bounded support. We aim to study the Gibbs measure built with respect to the energy
function HN (σ) and the reference measure PN . A quantity of fundamental interest is the
limit free energy

lim
N→∞

1

N
E log

∫
exp (HN (σ)) dPN (σ). (1.1)

When the support of P1 is {±1} and ξ(r) = β2r2 (the Sherrington-Kirkpatrick model [27]),
this limit was discovered by Parisi in a celebrated work [23, 24]; see also [12]. The
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Extending the Parisi formula along a Hamilton-Jacobi equation

formula was then proved rigorously for general ξ in [8, 30, 18], and was later extended to
the current setting where we only assume that the support of P1 is bounded in [16, 22].

In order to further our understanding of this object, it was proposed in [15] (following
[13, 14]) to recast the limit free energy (1.1) as a particular value of the solution
of a Hamilton-Jacobi equation. This solution depends on two parameters t > 0 and
µ ∈ M(R+), where M(R+) denotes the set of Borel probability measures over R+.
It was conjectured that an enriched version of the free energy, which would depend
additionally on the parameters t > 0 and µ ∈M(R+), may converge to the same solution
evaluated at these parameters.

The main purpose of this paper is to prove this conjecture. In order to state the
result, we start by defining the enriched model precisely. We denote by Mb(R+) the
subset ofM(R+) of measures with bounded support. By [19, Theorem 2.17], one can
associate a Ruelle probability cascade [25] to each probability measure on [0, 1]; this
Ruelle probability cascade is a random probability measure on the unit ball of a Hilbert
space. We denote by R the Ruelle probability cascade corresponding to the uniform
distribution over [0, 1], and by (α`)`>1 an i.i.d. sample from R (that is, the law of (α`)`>1 is
R⊗∞). In particular, the law of the overlap α1 ·α2 under ER⊗2 is the uniform distribution
over [0, 1]. Given a measure µ ∈Mb(R+), and conditionally on R, let zµ(α) be a Gaussian
process indexed by α ∈ supp(R) with covariance

E
[
zµ(α1)zµ(α2)

]
= µ−1(α1 · α2), α1, α2 ∈ supp(R).

In the expression above and throughout the paper, we use the shorthand notation, for
every r ∈ [0, 1],

µ−1(r) := inf{s > 0 : µ([0, s]) > r}. (1.2)

To check that the Gaussian process zµ(α) exists, it suffices to verify that µ−1(α1 · α2) is a
positive semidefinite kernel on (suppR)2, and this follows from the fact that the support
of R is ultrametric. Moreover, µ−1(r) is left-continuous and, thus, continuous at r = 1,
which implies that the process zµ(α) is stochastically continuous on supp(R). As a result,
it is jointly measurable (see e.g. [6, Theorem 3.3.1]) and we can define, for every t > 0

and µ ∈Mb(R+),

FN (t, µ) :=
1

N
E log

∫∫
exp

(√
tHN (σ) +

N∑
i=1

σiz
µ
i (α)

− 1

2
Ntξ(N−1|σ|2)− 1

2
µ−1(1)|σ|2

)
dPN (σ)dR(α), (1.3)

where zµi (α) are independent copies of zµ(α) for i > 1 (conditionally on R and indepen-
dent of HN ). For a measure of the form

µ =

k∑
`=0

(ζ`+1 − ζ`)δq` (1.4)

with
0 = ζ0 < ζ1 < . . . < ζk < ζk+1 = 1, 0 6 q0 < q1 < . . . < qk <∞, (1.5)

one can rewrite FN (t, µ) in the more familiar form

FN (t, µ) =
1

N
E log

∫
RN

∑
α∈Nk

exp
(√

tHN (σ) +

N∑
i=1

σizα,i

− 1

2
Ntξ(N−1|σ|2)− 1

2
µ−1(1)|σ|2

)
vα dPN (σ), (1.6)
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where (vα)α∈Nk are the weights of the Ruelle probability cascade with parameters
(ζ`)16`6k, and (zα,i)i>1 are independent copies of the Gaussian process with the covari-
ance Ezα1zα2 = qα1∧α2 , where α1 ∧ α2 = max{` > 0 : α1

j = α2
j for j 6 `}. The quantities

(1.3) and (1.6) are equal in this case, because, by (the proof of) [19, Theorem 1.3] and
standard properties of the Ruelle probability cascades, see [19, Theorem 4.4], both
quantities are equal to the same continuous functional of the distribution of the array
(µ−1(α` · α`′))`,`′>1 under ER⊗∞ and correspondingly of the array (qα`∧α`′ )`,`′>1 under
E(
∑
α∈Nk vαδα)⊗∞; and these distributions are equal, due to the property of the Ruelle

probability cascades that the distribution of an overlap array is determined by the distri-
bution of one overlap. Moreover, denoting by D > 0 the smallest real number such that
the support of P1 is contained in [−

√
D,
√
D], one can check (see for instance [29], [15,

Proposition 2.1], or Subsection 3.5 below) that for every µ, ν ∈Mb(R+),

|FN (t, µ)− FN (t, ν)| 6 D

2

∫
R

|µ(s)− ν(s)|ds. (1.7)

In view of this, we can whenever convenient replace the measure µ by an atomic measure.
Finally, using again standard properties of the Ruelle probability cascades (see e.g. [31,
Theorem 14.2.1] or [19, Theorem 2.9]), one can verify that FN (0, µ) does not depend on
N ; we denote this quantity by

ψ(µ) := FN (0, µ) = F1(0, µ). (1.8)

We will recall a somewhat more explicit expression for ψ(µ) in (2.3) below. Denote by U
a uniform random variable over [0, 1], and for every probability measure µ on R+, define
Xµ := µ−1(U), where we recall that µ−1 is defined in (1.2). We also define, for every
s ∈ R,

ξ∗(s) := sup
r>0

(rs− ξ(r)) .

Our first goal is to prove the following conjecture from [15] (specialized to the case
where PN is a product measure).

Theorem 1.1. For every t > 0 and µ ∈Mb(R+),

lim
N→∞

FN (t, µ) = inf
ν∈Mb(R+)

(
ψ(ν) +

t

2
Eξ∗

(
Xν −Xµ

t

))
. (1.9)

The motivation in [15] for this statement is that the right side of (1.9), seen as a
function of (t, µ), solves the formal Hamilton-Jacobi equation2∂tf +

∫
ξ(−2∂µf) dµ = 0 on R+ ×M(R+),

f(0, · ) = ψ onM(R+).

(1.10)

For discrete µ as in (1.4), one can check that

2∂tFN +

∫
ξ(−2∂µFN ) dµ = E 〈ξ(R1,2)〉t −

k∑
`=0

p` ξ
(
p−1
` E

〈
R1,21{α1∧α2=`}

〉
t

)
, (1.11)

where R1,2 := N−1σ1 · σ2 is the overlap of σ1 and σ2,

p` := µ({q`}) = ζ`+1 − ζ` = E
〈
1{α1∧α2=`}

〉
(see e.g. [15, Lemma 2.3]), and 〈 · 〉 denotes the average with respect to the Gibbs
measure

dGN (σ, α) ∼ exp
(√

tHN (σ) +

N∑
i=1

σiz
µ
i (α)− 1

2
Ntξ(N−1|σ|2)− 1

2
µ−1(1)|σ|2

)
vα dPN (σ).
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When ξ is the square function, the right side of (1.11) can be interpreted as the condi-
tional variance of the σ-overlap R1,2 given the α-overlap α1 ·α2. More generally, the right
side of (1.11) is small if and only if the conditional distribution of the overlap R1,2 given
α1 · α2 is concentrated. This evokes the synchronization phenomenon used in the proof
of the Parisi formula by Talagrand in [30] along Guerra’s interpolation [8] with nearly
optimal parameters; see also [31]. The idea of using the Hamilton-Jacobi techniques
to study replica symmetric solution of the SK model was already utilized in [7], and
one-step replica symmetry breaking analogues of the equation (1.11) were derived and
studied in various models in [3, 1].

The main step in the proof of Theorem 1.1, which is to pass to the limit N → ∞
for the left side of (1.9) and get some expression for the limit, is almost identical to
the argument in [22] (specialized to the one-dimensional case), so we only outline the
necessary modifications. The main tool is the synchronization mechanism developed in
[20, 21, 22] based on the overlap ultrametricity proved in [17] for measures that satisfy
the Ghirlanda-Guerra identities (and the fact that one has a lot of flexibility in enforcing
these identities by way of small perturbations). The synchronization has been applied in
a variety of situations, e.g. [9, 4, 11], and here we demonstrate another application. A
particular synchronization that will be needed here is the one that forces the overlaps
µ−1(α1 · α2) and R1,2 = N−1σ1 · σ2 to be deterministic functions of their sum in the
thermodynamic limit. Notice that we need to use a synchronization argument here even
in the case of Ising spins.

The reader may rightfully wonder what to make of the term ξ(N−1|σ|2) appearing
in the exponential in (1.3), which was introduced for convenience but is otherwise a
nuisance (except in the case of Ising spins, where it is deterministic and therefore causes
no harm). The second goal of this paper is to explain how to remove this term and deduce
from Theorem 1.1 the limit of the “untampered” free energy in (1.1). At present this is
perhaps not as interseting as it sounds, since the proof of Theorem 1.1 could be modified
to obtain the limit of the quantity without the term ξ(N−1|σ|2) directly. However, it is
likely that a more direct proof of Theorem 1.1 exists, in which case it is important to
notice that Theorem 1.1 is indeed all the information needed to conclude. Moreover,
we obtain in this way a somewhat different expression for the limit in (1.1) than that
obtained in [16, 22].

In order to state this second result, we introduce two more parameters to the energy
and write, for every s, t > 0, µ ∈Mb(R+) and h ∈ R,

FN (s, t, µ, h) :=
1

N
E log

∫∫
exp

(√
tHN (σ) +

N∑
i=1

σiz
µ
i (α)

− 1

2
N(t− s)ξ(N−1|σ|2)− 1

2
µ−1(1)|σ|2 + h|σ|2

)
dPN (σ)dR(α). (1.12)

Notice that when s = 0, this quantity is of the form covered by Theorem 1.1, up to a
redefinition of PN to absorb the term exp(h|σ|2). We denote

Ψ(µ, h) := F1(0, 0, µ, h) = FN (0, 0, µ, h). (1.13)

Theorem 1.2. For every s, t > 0, µ ∈Mb(R+) and h ∈ R, we have

lim
N→∞

FN (s, t, µ, h) = sup
h′∈R

inf
ν∈Mb(R+)

(
Ψ(ν, h′) +

t

2
Eξ∗

(
Xν −Xµ

t

)
− s

2
ξ∗
(

2(h′ − h)

s

))
.

The intuition for this result is simple, and consists in writing the Hopf-Lax formula
for the equation

2∂sFN − ξ(∂hFN ) ' 0. (1.14)
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By setting s = t = 1, µ = δ0, and h = 0 in Theorem 1.2, we thus get the following new
representation for the free energy of models with soft spins.

Corollary 1.3. The limit free energy can be written as

lim
N→∞

1

N
E log

∫
exp (HN (σ)) dPN (σ)

= sup
h∈R

inf
ν∈Mb(R+)

(
Ψ(ν, h) +

1

2

∫
R+

ξ∗(r) dν(r)− 1

2
ξ∗(2h)

)
. (1.15)

Organization of the paper

In order to prove Theorem 1.1, we first state a different expression for the left side of
(1.9) in Proposition 2.1 below. We then rewrite it in the form of the right side of (1.9)
in Section 3, by reasoning similarly to what was done in [15] in the case µ = δ0. We
next turn to the proof of Proposition 2.1 in Section 4. Finally, we provide the proof of
Theorem 1.2 in Section 5.

2 Parisi formula

In this section, we present the structure of the argument for identifying the limit on
the left side of (1.9) in the more “classical” form in which Parisi formulas are usually
stated. As a preparation for stating the formula we will obtain, we provide with an
alternative description of the quantities ψ and Ψ appearing in the main statements of
Section 1. Given a probability measure ν on R+, we write ν(s) := ν([0, s]). For every
ν ∈Mb(R+) and λ ∈ R, we denote by Φν,λ = Φν,λ(t, x) the solution of the equation

∂tΦν,λ = −1

2

(
∂2
xΦν,λ + ν(t)(∂xΦν,λ)2

)
on [0, ν−1(1)]×R,

Φν,λ(ν−1(1), x) = log

∫
R

exp
(
σx+ λσ2

)
dP1(σ) for x ∈ R,

(2.1)

and we set
P(ν, λ) := Φν,λ(0, 0). (2.2)

Using classical properties of Ruelle probability cascades, one can verify that the functions
ψ and Ψ defined in (1.8) and (1.13) respectively satisfy, for every µ ∈Mb(R+) and h ∈ R,

Ψ(µ, h) = P
(
µ, h− 1

2
µ−1(1)

)
and ψ(µ) = Ψ(µ, 0). (2.3)

Given a probability measure ζ on R+, let ζµ denote the probability measure on R+ whose
cumulative distribution function satisfies

ζµ
−1(x) := ξ′(ζ−1(x)) + µ−1(x). (2.4)

In other words, the c.d.f. of ζµ is

ζµ := (ξ′ ◦ ζ−1 + µ−1)−1. (2.5)

Finally, letM0,u =M([0, u]) denote the space of probability measures on [0, u].
Notice that it suffices to prove Theorem 1.1 for t = 1. Indeed, once the result is

known in this case, we recover the general statement by replacing ξ with tξ. The main
step towards the proof of Theorem 1.1 is the following result. For σ1 is distributed
according to P1, we denote by d and D the smallest and largest points of the support of
the distribution of σ2

1. We also write, for every r ∈ R,

θ(r) := rξ′(r)− ξ(r).
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Proposition 2.1. For every µ ∈Mb(R+), we have

lim
N→∞

FN (1, µ) = sup
u∈[d,D]

inf
ζ∈M0,u

λ∈R

[
−λu+ P

(
ζµ, λ+

ξ′(u)− ξ′(ζ−1(1))

2

)

− 1

2

u∫
0

ζ(s) dθ(s)− 1

2
ξ(u)− 1

2
µ−1(1)u

]
. (2.6)

We now outline the structure of the argument for obtaining Proposition 2.1. By the
definitions of d and D, when σ ∼ PN = P⊗N1 , we have that N−1|σ|2 ∈ [d,D], and any
point u ∈ [d,D] can be approximated by some N−1|σ|2 for large N and σ ∈ suppPN . For
every u ∈ [d,D] and ε > 0, let

ΩεN (u) =
{
σ ∈ RN : N−1|σ|2 ∈ (u− ε, u+ ε)

}
, (2.7)

and consider

F εN (u) :=
1

N
E log

∫ ∫
ΩεN (u)

exp
(
HN (σ) +

N∑
i=1

σiz
µ
i (α)

− 1

2
Nξ(N−1|σ|2)− 1

2
µ−1(1)|σ|2

)
dPN (σ) dR(α).

The measure µ will be fixed throughout, so we keep the dependency of F εN (u) on µ

implicit in the notation. It is clear that, denoting

pεN (u) :=
1

N
E log

∫ ∫
ΩεN (u)

exp
(
HN (σ) +

N∑
i=1

σiz
µ
i (α)

)
dPN (σ) dR(α), (2.8)

we have that as ε > 0 tends to zero,

F εN (u) := pεN (u)− 1

2
ξ(u)− 1

2
µ−1(1)u+O(ε) . (2.9)

Proposition 2.1 is a direct consequence of the following result.

Theorem 2.2. For every u ∈ [d,D],

lim
ε↓0

lim
N→∞

pεN (u) = inf
ζ∈M0,u

λ∈R

[
−λu+ P

(
ζµ, λ+

ξ′(u)− ξ′(ζ−1(1))

2

)
− 1

2

u∫
0

ζ(s) dθ(s)
]
.

The proof of Theorem 2.2 will be given in Section 4. Before doing this, we show in
the next section how to deduce Theorem 1.1 from Proposition 2.1.

3 Hopf-Lax representation

In this section, we take the validity of Proposition 2.1 for granted, and show that it
implies Theorem 1.1. We decompose the argument into five subsections.

3.1 Change of variables

In (2.6), let us make the change of variables

λ→ λ− ξ′(u)− ξ′(ζ−1(1))

2
− 1

2
ζµ
−1(1) = λ− 1

2
ξ′(u)− 1

2
µ−1(1),
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where the equality follows from (2.4) with x = 1. By the definition of Ψ in (2.3), under
this change of variables the second term in (2.6) becomes

P
(
ζµ, λ−

1

2
ζµ
−1(1)

)
= Ψ(ζµ, λ),

and by cancelling and grouping other terms (recall that θ(u) = uξ′(u)− ξ(u)),

lim
N→∞

FN = sup
u∈[d,D]

inf
ζ∈M0,u

λ∈R

[
−λu+ Ψ(ζµ, λ) +

1

2
θ(u)− 1

2

u∫
0

ζ(s) dθ(s)
]
,

where FN = FN (1, µ). An integration by parts gives that

lim
N→∞

FN = sup
u∈[d,D]

inf
ζ∈M0,u

λ∈R

[
−λu+ Ψ(ζµ, λ) +

1

2

u∫
0

θ(s) dζ(s)
]
.

Since ξ∗(ξ′(s)) = θ(s) for s > 0, if U is a uniform random variable over [0, 1], we can write
(again, recall (2.4))

u∫
0

θ(s) dζ(s) =

u∫
0

ξ∗(ξ′(s)) dζ(s) = Eξ∗(ξ′(ζ−1(U))) = Eξ∗(ζ−1
µ (U)− µ−1(U)),

and thus

lim
N→∞

FN = sup
u∈[d,D]

inf
ζ∈M0,u

λ∈R

[
−λu+ Ψ(ζµ, λ) +

1

2
Eξ∗(ζ−1

µ (U)− µ−1(U))
]
.

Notice that as ζ varies in ∈M0,u, the measures ζµ defined in (2.5) span the set

Du =
{
ν ∈Mb(R+) : ∀s, ν(s) 6 µ(s); supp(ν) ⊆ [0, ξ′(u) + µ−1(1)]

}
,

which means that, recalling that we write Xν = ν−1(U),

lim
N→∞

FN = sup
u∈[d,D]

inf
ν∈Du
λ∈R

[
−λu+ Ψ(ν, λ) +

1

2
Eξ∗(Xν −Xµ)

]
. (3.1)

3.2 Removing the constraint on the support

Let us first show that we can remove the constraint supp(ν) ⊆ [0, ξ′(u) + µ−1(1)] in
Du. without changing the value of the right side of (3.1). For ν ∈ Mb(R+), let ν̃(s) = 1

for s > ξ′(u) + µ−1(1) and ν̃(s) = ν(s) otherwise. This corresponds to the truncation

Xν̃ = min(Xν , ξ
′(u) + µ−1(1)).

Let us show that
ξ∗(Xν −Xµ) > ξ∗(Xν̃ −Xµ) + u |Xν −Xν̃ |. (3.2)

If Xν̃ = Xν then the two sides are equal. Otherwise, Xν > Xν̃ = ξ′(u) + µ−1(1). Since
µ−1(1) > Xµ, this implies that Xν −Xµ > Xν̃ −Xµ > ξ′(u). It remains to observe that
ξ∗′(s) = ξ′

−1
(s) > u if s > ξ′(u), so (3.2) holds and

Eξ∗(Xν −Xµ) > Eξ∗(Xν̃ −Xµ) + uE|Xν −Xν̃ |. (3.3)

On the other hand, if we define

Γu(ν) := inf
λ∈R

(
−λu+ Ψ(ν, λ)

)
, (3.4)
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we will show below in Subsection 3.5 below that

|Γu(ν)− Γu(ν̃)| 6 u

2
E|Xν −Xν̃ |. (3.5)

The last two inequalities imply that

Γu(ν̃) +
1

2
Eξ∗(Xν̃ −Xµ) 6 Γu(ν) +

1

2
Eξ∗(Xν −Xµ),

which means that the constraint supp(ν) ⊆ [0, ξ′(u) + µ−1(1)] can be removed and

lim
N→∞

FN = sup
u∈[d,D]

inf
ν∈Dµ
λ∈R

[
−λu+ Ψ(ν, λ) +

1

2
Eξ∗(Xν −Xµ)

]
, (3.6)

where Dµ :=
{
ν ∈Mb(R+) : ∀s, ν(s) 6 µ(s)

}
.

3.3 Using convexity

Since Xν −Xµ > 0 for ν ∈ Dµ, for such ν we have that Eξ∗(Xν −Xµ) = Eξ∗(|Xν −
Xµ|). Since ξ∗(|s|) is convex and symmetric, Eξ∗(|Xν −Xµ|) is a Wasserstein distance
between µ and ν with the cost function ξ∗(|x − y|) (see e.g. [32, Theorem 2.18 and
Remark 2.19(ii)]) and, therefore, Eξ∗(Xν −Xµ) is convex in ν on Dµ. Also, the Auffinger-
Chen representation [2] for the solution of equation (2.1) (see also [10]) implies that
Ψ(ν, λ) is convex in (ν, λ). Therefore, by Sion’s minimax theorem, see [26, Corollary 3.3],
we have

lim
N→∞

FN = inf
ν∈Dµ
λ∈R

sup
u∈[d,D]

[
−λu+ Ψ(ν, λ) +

1

2
Eξ∗(Xν −Xµ)

]
. (3.7)

Using that the boundary condition in (2.1) satisfies

log

∫
eσx+λσ2

dP1(σ) > log

∫
eσx dP1(σ) + λd1{λ>0} + λD1{λ60},

we see that

sup
u∈[d,D]

[
−λu+ Ψ(ν, λ)

]
= −λd1{λ>0} − λD1{λ60} + Ψ(ν, λ) > Ψ(ν, 0).

This implies that infimum over λ is achieved at λ = 0 and, recalling that ψ(ν) = Ψ(ν, 0),

lim
N→∞

FN = inf
ν∈Dµ

[
ψ(ν) +

1

2
Eξ∗(Xν −Xµ)

]
. (3.8)

3.4 Removing the stochastic constraint

It remains to remove the constraint in Dµ, namely, ν(s) 6 µ(s). The reason we can do
this is because, for arbitrary ν ∈Mb(R+) and ν̃ with the c.d.f. ν̃(s) = min(ν(s), µ(s)), we
have

ψ(ν̃) 6 ψ(ν) and Eξ∗(Xν̃ −Xµ) = Eξ∗(Xν −Xµ).

The second equality holds because ξ∗(s) = 0 for s 6 0 and Xν̃ = max(Xν , Xµ). The first
inequality follows from the monotonicity of ψ in ν, which can be seen as follows. First of
all, in the definition of Ψ(ν, h) in (2.3), if we take any a > ν−1(1) and let Φa(t, x) be the
solution of the equation

∂tΦ
a = −1

2

(
∂2
xΦa + µ(t)(∂xΦa)2

)
on [0, a]×R,

Φa(a, x) = log

∫
R

exp
(
σx+ λσ2

)
dP1(σ) for x ∈ R,

(3.9)
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Extending the Parisi formula along a Hamilton-Jacobi equation

and define Pa(ν, λ) := Φa(0, 0), then

Ψ(ν, h) = P
(
ν, h− 1

2
ν−1(1)

)
= Pa

(
ν, h− 1

2
a
)
. (3.10)

This means that when we compare Ψ(ν, λ) and Ψ(ν′, λ), we can solve the PDE on the
same interval that includes the support of both measures. Since the solution is monotone
in the c.d.f. ν(s), monotonicity of the mapping ν 7→ Ψ(ν, λ) follows. This proves

lim
N→∞

FN = inf
ν∈Mb(R+)

[
ψ(ν) +

1

2
Eξ∗(Xν −Xµ)

]
. (3.11)

Finally, rescaling ξ → tξ and recalling the definition of ψ in (2.3), we get

lim
N→∞

FN (t, µ) = inf
ν∈Mb(R+)

[
ψ(ν) +

t

2
Eξ∗

(Xν −Xµ

t

)]
. (3.12)

This finishes the proof that Proposition 2.1 implies Theorem 1.1, up to the verification of
(3.5).

3.5 Lipschitz continuity

We now show (3.5). Let us recall the definition of the set in (2.7) and define

fN (ν, ε) =
1

N
E log

∫ ∫
ΩεN (u)

exp
( N∑
i=1

σiz
ν
i (α)− 1

2
ν−1(1)|σ|2

)
dPN (σ)dR(α).

Let us first suppose that ν is discrete. If we recall (3.4), the results of [22, Section 7]
(specialized to the one-dimensional case) show that, for discrete ν,

Γu(ν) = lim
ε↓0

lim
N→∞

fN (ν, ε). (3.13)

Given ν, ν̃ ∈Mb(R+), we can interpolate between fN (ν, ε) and fN (ν̃, ε) by replacing zνi (α)

by
√
tzνi (α)+

√
1− tzν̃i (α) with covariance (tν−1 +(1−t)ν̃ −1)(α1 ·α2) and replacing ν−1(1)

by tν−1(1) + (1 − t)ν̃ −1(1). Then the derivative of fN (ν, ε) in t along this interpolation
path equals

−1

2
E
〈
R1,2(ν−1(α1 · α2)− ν̃ −1(α1 · α2))

〉
,

where 〈 · 〉 is the average with respect to the Gibbs measure

dGN (σ, α) ∼ exp
( N∑
i=1

σi
(√
tzνi (α) +

√
1− tzν̃i (α)

)
− 1

2

(
tν−1(1) + (1− t)ν̃ −1(1)

)
|σ|2

)
dPN (σ)dR(α)

on ΩεN (u)× supp(R). Since, by Cauchy’s inequality, |R1,2| 6 u+ ε for σ1, σ2 ∈ ΩεN (u), the
above derivative is bounded by

u+ ε

2
E
〈∣∣ν−1(α1 · α2)− ν̃ −1(α1 · α2)

∣∣〉 =
u+ ε

2
E|Xν −Xν̃ |,

where we also used the fact that the distribution of α1 · α2 ∼ U [0, 1] under EG⊗2
N is

the same as under ER⊗2 by the properties of the Ruelle probability cascades (see e.g.
[19, Theorem 4.4]). This and (3.13) imply (3.5) for discrete ν, and by extension for all
ν ∈Mb(R+).
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4 Proof of the Parisi formula

The goal of this section is to prove Theorem 2.2, which we recall implies Proposi-
tion 2.1. We first prove the upper and then the lower bound.

4.1 Upper bound

The upper bound is proved by the standard Guerra replica-symmetry-breaking inter-
polation [8]. By Lipschitz continuity (1.7), it is enough to consider discrete µ and suppose
that the infimum in Theorem 2.2 is taken also over discrete distributions ζ ∈M0,u such
that ζ−1(1) = u. Given such ζ, let z(α) and y(α) be independent Gaussian processes
(conditionally on R) indexed by α ∈ supp(R) with covariances

Ez(α1)z(α2) = ξ′(ζ−1(α1 · α2)), Ey(α1)y(α2) = θ(ζ−1(α1 · α2)),

and let zi(α) be independent copies of z(α) for i > 1. We assume these processes to
also be independent of HN and zµi (α), conditionally on R. Consider an interpolating free
energy, for t ∈ [0, 1],

ϕ(t) :=
1

N
E log

∫ ∫
ΩεN (u)

exp(HN,t(σ, α)) dPN (σ) dR(α). (4.1)

where the interpolation Hamiltonian is defined by

HN,t(σ, α) :=
√
tHN (σ) +

√
1− t

N∑
i=1

σizi(α) +
√
t
√
Ny(α) +

N∑
i=1

σiz
µ
i (α).

One can see that

2

N
E ∂tHN,t(σ

1, α1)HN,t(σ
2, α2) = ∆(R1,2, α

1 · α2)

:= ξ(R1,2)−R1,2ξ
′(ζ−1(α1 · α2)) + θ(ζ−1(α1 · α2)).

Since R1,1 = N−1|σ1|2 ∈ (u− ε, u+ ε) whenever σ1 ∈ ΩεN (u) and we also assumed that
ζ−1(α1 · α1) = ζ−1(1) = u, we have |∆(R1,1, α

1 · α1)| = O(ε). Therefore, by the usual
Gaussian integration by parts,

ϕ′(t) = −1

2
E
〈
∆(R1,2, α

1 · α2)
〉

+O(ε) ,

where 〈 · 〉 is the average with respect to the Gibbs measure

dGN (σ, α) ∼ exp(HN,t(σ, α)) dPN (σ)dR(α)

on ΩεN (u) × supp(R). When ξ is convex, ξ(a) − aξ′(b) + θ(b) > 0, which proves that
ϕ(1) 6 ϕ(0) +O(ε). When ξ is only convex on R+, one can add a small perturbation that
enforces the Ghirlanda-Guerra identities and, as a result, enforces asymptotic positivity
of R1,2 (see [28] or [19, Chapter 3]).

We can bound ϕ(0) from above by adding −Nλu+ λ|σ|2 to the Hamiltonian, which on
ΩεN (u) is bounded in absolute value by N |λ|ε and, as a result,

ϕ(0) 6 |λ|ε− λu+
1

N
E log

∫∫
exp
( N∑
i=1

σi
(
zi(α) + zµi (α)

)
+ λ|σ|2

)
dPN (σ)dR(α)

= |λ|ε− λu+ E log

∫∫
exp
(
σ1

(
z1(α) + zµ1 (α)

)
+ λσ2

1

)
dP1(σ1)dR(α)

= |λ|ε− λu+ P
(
ζν , λ

)
,
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by the standard properties of the Ruelle probability cascades and the fact that z1(α) +

zµ1 (α) has covariance ζµ
−1(α1 · α2), where ζµ(s) was defined in (2.4), (2.5). On the other

hand, again, by the standard properties of the Ruelle probability cascades (recall the
notation in (2.8)),

ϕ(1) = pεN (u) +
1

N
E log

∫
exp(
√
Ny(α)) dR(α)

= pεN (u) + E log

∫
exp(y(α)) dR(α) = pεN (u) +

1

2

u∫
0

ζ(s) dθ(s).

Putting everything together shows that

lim
ε↓0

lim
N→∞

pεN (u) 6 −λu+ P(ζµ, λ)− 1

2

u∫
0

ζ(s) dθ(s), (4.2)

for all discrete distributions ζ ∈M0,u such that ζ−1(1) = u. Since continuous extension
of P(ζµ, λ) to all ζ ∈M0,u not necessarily satisfying ζ−1(1) = u is exactly

P
(
ζµ, λ+

ξ′(u)− ξ′(ζ−1(1))

2

)
(4.3)

(this is analogous to why the term− 1
2µ
−1(1)|σ|2 was included in the definition of FN (t, µ)),

this finishes the proof of the upper bound.

4.2 Lower bound

The proof of the lower bound is identical to the one-dimensional case of [22], with
some simplifications due to the one-dimensional nature of our problem and one minor
modification to account for the presence of the term

∑N
i=1 σiz

µ
i (α) that we will now

explain.
The main effect of this term is that the cavity fields (in the first term) of the Aizenman-

Sims-Starr representation will be of the form ci(σ, α) := zi(σ)+zµi (α) for (σ, α) ∈ ΩεN (u)×
supp(R) with covariance

C`,`′ := Eci(σ
`, α`)ci(σ

`′ , α`
′
) = ξ′(R`,`′) + µ−1(α` · α`

′
). (4.4)

To understand the distribution of the array (C`,`′)`,`′>1 under the Gibbs measure that
arises in the cavity computation, we can use the synchronization mechanism from [20]
to synchronize the overlaps R1,2 and q1,2 := µ−1(α1 · α2). This can be done by including
terms in the perturbation Hamiltonian with covariances given by monomials Rn1,2q

m
1,2 and

then use Theorem 4 in [20] to show that both R1,2 and q1,2 are non-decreasing 1-Lipschitz
functions of their sum in the thermodynamic limit.

If we think of the sum S1,2 := R1,2+q1,2 as the quantile transform ν−1(U) of ν = L(S1,2)

and uniform U ∼ U [0, 1], then both R1,2 and q1,2 are non-decreasing functions of U , which
means they must be quantile transforms of their distributions. The distribution of q1,2 is
µ for all N by the properties of the Ruelle probability cascades ([19, Theorem 4.4]) and,
thus, in the limit. If the limiting distribution of R1,2 (as usual, along some subsequence)
is ζ then (recalling (2.4))

ξ′(R`,`′) + µ−1(α` · α`
′
)
d
= ξ′(ζ−1(U)) + µ−1(U) = ζ−1

µ (U).

This means that C`,`′ ∼ ζµ. Similarly, the cavity fields y(σ) coming from the Onsager
correction in the second term in the Aizenman-Sims-Starr scheme will have covariance

θ(R`,`′)
d
= θ(ζ−1(U)),
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in the thermodynamic limit. If ζ−1(1) = u then the lower bound one obtains by the cavity
computation is equal to

inf
λ∈R

[
−λu+ P(ζµ, λ)− 1

2

u∫
0

ζ(s) dθ(s)
]
. (4.5)

For general ζ ∈ M0,u, we again appeal to the fact that (4.3) is a continuous extension
from general ζ of P(ζµ, λ) for ζ satisfying ζ−1(1) = u.

5 Proof of Theorem 1.2

The goal of this section is to prove Theorem 1.2. We obtain this result by combining
Theorem 1.1 with the observation in (1.14) that FN satisfies a Hamilton-Jacobi equation,
up to a small error term. Denote by 〈 · 〉 the Gibbs measure

dGN (σ, α) ∼ exp
(√

tHN (σ) +

N∑
i=1

σiz
µ
i (α)

− 1

2
N(t− s)ξ(N−1|σ|2)− 1

2
µ−1(1)|σ|2 + h|σ|2

)
dPN (σ)dR(α).

Similarly to the observations in [13, Section 1] concerning the Curie-Weiss model (with ξ
replaced by the square function there), we have

∂sFN =
1

2
E
〈
ξ
(
N−1|σ|2

)〉
,

while
∂hFN = E

〈
N−1|σ|2

〉
, (5.1)

and
∂2
hFN = N E

〈(
N−1|σ|2 − E

〈
N−1|σ|2

〉)2〉
. (5.2)

Notice in particular that ∂hFN > 0, ∂2
hFN > 0, and since the support of the measure P1

is assumed to be bounded, the derivatives ∂sFN and ∂hFN are bounded uniformly in N .
Moreover, since ξ is locally Lispschitz continuous, there exists a constant C <∞ such
that, for every N ,

|2∂sFN − ξ(∂hFN )| =
∣∣E 〈ξ (N−1|σ|2

)〉
− ξ

(
E
〈
N−1|σ|2

〉)∣∣ (5.3)

6 CE
〈∣∣(N−1|σ|2 − E

〈
N−1|σ|2

〉∣∣〉
6 C(N−1∂2

hFN )
1
2 .

We fix t > 0 and µ ∈ Mb(R+), and denote by f = f(s, h) : R+ × R → R the candidate
limit for FN , namely

f(s, h) := sup
h′∈R

(
Ψ̂(h′)− s

2
ξ∗
(

2(h′ − h)

s

))
, (5.4)

where we set

Ψ̂(h′) := inf
ν∈Mb(R+)

(
Ψ(ν, h′) +

t

2
Eξ∗

(
Xν −Xµ

t

))
.

Notice that we do not display the dependency of f and Ψ̂ on t > 0 and µ ∈ Mb(R+);
we allow ourselves to do this since these parameters will be kept fixed throughout the
section. For the same reason, from now on, we write FN (s, h) in place of FN (s, t, µ, h).
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Recalling that, by Theorem 1.1, the quantity Ψ̂(h′) is the limit of FN (0, h′), and
using (5.1) and (5.2), it is clear that Ψ̂ is uniformly Lipschitz continuous, nondecreasing,
and convex. One can check that these properties transfer to the function f : it is
uniformly Lipschitz continuous over R+ × R, and for each fixed s > 0, the mapping
h 7→ f(s, h) is nondecreasing and convex (see for instance [5, Lemmas I.3.3.2 and
I.3.3.3]). In particular, by the Rademacher theorem, the function f is differentiable
almost everywhere. Moreover, the expression for f in (5.4) is a Hopf-Lax formula; as a
consequence, see [5, Theorem I.3.3.5], for every (s, h) ∈ (0,∞)×R, if f is differentiable
at (s, h), then

2∂sf(s, h)− ξ(∂hf(s, h)) = 0. (5.5)

Our goal is to show that FN (s, h) converges to f(s, h). While we refrain from writing
down a general statement, we list here all the properties of these functions that will be
used below:

1. the functions are uniformly Lipschitz, with a common Lipschitz constant;

2. the functions are nondecreasing and convex in h;

3. for each h, we have limN→∞ FN (0, h) = f(0, h);

4. the function f satisfies the equation (5.5) almost everywhere, while the function
FN satisfies the same equation, up to an error that we will show to be small after
integration in h, uniformly over s.

Proof of Theorem 1.2. We split the proof into two steps.
Step 1. We write down an equation for the difference between FN and f and state

some elementary bounds. We denote

wN := FN − f and errN := 2∂sFN − ξ(∂hFN ),

so that, almost everywhere in R+ ×R,

2∂swN = ξ(∂hFN )− ξ(∂hf) + errN

=

∫ 1

0

∂u (ξ(u∂hFN + (1− u)∂hf)) du+ errN

= bN∂hwN + errN ,

where we have set

bN :=

∫ 1

0

ξ′(u∂hFN + (1− u)∂hf) du.

Let φ ∈ C∞(R) be a smooth function such that φ(0) = 0 and |φ′| 6 1, and define
vN := φ(wN ). By the chain rule, we have

2∂svN − bN∂hvN = φ′(wN )errN a.e. in R+ ×R. (5.6)

It will be convenient to be allowed to differentiate bN in h. In order to make this rigorous,
we regularize bN a bit, by convolution with a smooth kernel. Let ζ ∈ C∞c (R) be a smooth
function with compact support such that

∫
R
ζ = 1, and for each ε > 0, s > 0 and h ∈ R,

denote

fε(s, h) := ε−1

∫
R

f(s, h− h′)ζ(ε−1h′) dh′,

and

bN,ε :=

∫ 1

0

ξ′(u∂hFN + (1− u)∂hfε) du.
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One can check that for each fixed N and s > 0, the function bN,ε(s, ·) converges to
bN (s, ·) almost everywhere in R as ε tends to zero (see for instance [5, Theorem C.5.7]).
Moreover,

∂hbN,ε =

∫ 1

0

(u∂2
hFN + (1− u)∂2

hfε)ξ
′′(u∂hFN + (1− u)∂hfε) du,

and since ∂hFN , ∂hfε, ∂2
hFN , and ∂2

hfε, are all nonnegative, and ξ′′ maps R+ to R+, we
deduce that

∂hbN,ε > 0. (5.7)

Notice also that, since FN and f are Lipschitz with a common Lipschitz constant, we
have that ‖bN,ε‖L∞ is bounded uniformly over N and ε. We write

R := 1 + sup
N,ε
‖bN,ε‖L∞ <∞.

Step 2. We fix S > 1 for the remainder of the proof, and study the quantity

JN (s) :=

∫ R(S−s)

−R(S−s)
vN (s, h) dh, s ∈ [0, S] .

The function JN is Lipschitz continuous, and for almost every s ∈ [0, S],

∂sJN (s) =

∫ R(S−s)

−R(S−s)
∂svN (s, h) dh−RvN (s,R(S − s))−RvN (s,−R(S − s)).

By (5.6), we also have

2

∫ R(S−s)

−R(S−s)
∂svN dh =

∫ R(S−s)

−R(S−s)
(bN,ε∂hvN + (bN − bN,ε)∂hvN + φ′(wN )errN ) dh,

where we kept it implicit in the notation that the functions in the integrands are evaluated
at (s, h). We now estimate the contribution of each term on the right side in turn. By the
definition of R and an integration by parts, we have∣∣∣∣∣

∫ R(S−s)

−R(S−s)
(bN,ε∂hvN + vN∂hbN,ε) dh

∣∣∣∣∣ 6 RvN (s,R(S − s)) +RvN (s,−R(S − s))

(recall that vN > 0). Using also (5.7), we deduce that∫ R(S−s)

−R(S−s)
bN,ε∂hvN dh−RvN (s,R(S − s))−RvN (s,−R(S − s)) 6 0.

Recalling also that for each fixed N , we have that bN,ε(s·) converges to bN (s, ·) almost
everywhere, and using the dominated convergence theorem, we see that

lim
ε→0

∫ R(S−s)

−R(S−s)
(bN − bN,ε)∂hvN dh = 0.

Summarizing, we have shown that, for almost every s ∈ [0, S],

∂sJN (s) 6
1

2

∫ R(S−s)

−R(S−s)
φ′(wN )errN dh.

Recalling that |φ′| 6 1 and using (5.3), we deduce that

∂sJN (s) 6 CN−
1
2

∫ R(S−s)

−R(S−s)

(
∂2
hFN

) 1
2 dh.
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Allowing the constant C to depend on R and S, we can use Jensen’s inequality to deduce
that, for almost every s ∈ [0, S],

∂sJN (s) 6 CN−
1
2

(∫ R(S−s)

−R(S−s)
∂2
hFN dh

) 1
2

,

and since FN is Lipschitz uniformly over N , the integral on the right side is bounded. To
sum up, we have thus shown that for every s ∈ [0, S],

JN (s) = JN (0) +

∫ s

0

∂sJN (r) dr 6 JN (0) + CsN−
1
2 .

Recalling the definition of vN , fixing s = S
2 , this implies in particular, up to a redefinition

of C <∞, ∫ RS
2

−RS2
φ(FN − f)(s, h) dh 6

∫ RS
2

−RS2
φ(FN − f)(0, h) dh+ CN−

1
2 .

Notice also that the constant C <∞ does not depend on our choice of function φ such
that |φ′| 6 1. We thus deduce that∫ RS

2

−RS2
|FN − f | (s, h) dh 6

∫ RS
2

−RS2
|FN − f | (0, h) dh+ CN−

1
2 .

Finally, by the dominated convergence theorem, the integral on the right side converges
to 0 as N tends to infinity. We have thus shown that

lim
N→∞

∫ RS
2

−RS2
|FN − f | (s, h) dh = 0.

Recall that R > 0 and that our choice of S > 1 was arbitrary. To conclude for the
pointwise convergence of FN to f , it suffices to use the Lipschitz regularity of FN .
Explicitly, for every ε > 0, we can write

FN (s, h) = FN (s, h)− 1

2ε

∫ ε

−ε
FN (s, h′) dh′ +

1

2ε

∫ ε

−ε
FN (s, h′) dh′,

and we have seen above that the last integral converges to the corresponding integral
with FN replaced by f as N tends to infinity. Moreover, by the Lipschitz continuity of
FN , ∣∣∣∣FN (s, h)− 1

2ε

∫ ε

−ε
FN (s, h′) dh′

∣∣∣∣ 6 Cε.

Hence, sending N to infinity first and then ε to zero allows us to conclude that for each
s > 0 and h ∈ R, we have indeed limN→∞ FN (s, h) = f(s, h).
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