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Abstract

Let M be the space of finite measures on a locally compact Polish space, and let G
be the Gamma distribution on M with intensity measure ν ∈ M. Let ∇ext be the
extrinsic derivative with tangent bundle TM = ∪η∈ML2(η), and let A : TM → TM

be measurable such that Aη is a positive definite linear operator on L2(η) for every
η ∈M. Moreover, for a measurable function V onM, let dGV = eV dG. We investigate
the Poincaré, weak Poincaré and super Poincaré inequalities for the Dirichlet form

EA,V (F,G) :=

∫
M

〈Aη∇extF (η),∇extG(η)〉L2(η) dG
V (η),

which characterize various properties of the associated Markov semigroup. The main
results are extended to the space of finite signed measures.
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1 Introduction

Let M be the class of finite measures on a locally compact Polish space E, which is
again a Polish space under the weak topology. Recall that a sequence of finite measures
ηn → η weakly if ηn(f)→ η(f) for f ∈ Cb(E), where and in what follows, for a measure η
we denote

η(f) :=

∫
fdη, f ∈ L1(η). (1.1)

Since M is locally compact, the Borel σ-algebra B(M) induced by the weak topology
coincides with that induced by the vague topology. Let ν ∈M with ν(E) > 0. The Gamma
distribution G with intensity measure ν is the unique probability measure onM such that
for any finitely many disjoint measurable subsets {A1, · · · , An} of E, {η(Ai)}1≤i≤n are
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Functional inequalities for weighted Gamma distribution

independent Gamma random variables with shape parameters {ν(Ai)}1≤i≤n and scale
parameter 1; that is,∫

M

f(η(A1), · · · , η(An))G(dη) =

∫
[0,∞)n

f(x1, · · · , xn)

n∏
i=1

γν(Ai)(dxi), f ∈ Bb(E), (1.2)

where Bb(E) is the class of bounded measurable functions on E, for a constant r > 0

γr(ds) := 1[0,∞)(s)
sr−1e−s

Γ(r)
ds, Γ(r) :=

∫ ∞
0

xr−1e−xdx, (1.3)

and γ0 := δ0 is the Dirac measure at point 0. It is well known that G is concentrated on
the class of finite discrete measures

Mdis :=
{ ∞∑
i=1

siδxi : si ≥ 0, xi ∈ E,
∞∑
i=1

si <∞
}
.

Consider the weighted Gamma distribution GV (dη) := eV (η)G(dη), where V is a
measurable function on M. We will investigate functional inequalities for the Dirichlet
form induced by GV (dη) and a positive definite linear map A on the tangent space of
the extrinsic derivative. See [7] and references therein for Dirichlet forms induced by
both extrinsic and intrinsic derivatives, where the intensity measure ν is the Lebesgue
measure on Rd such that the Gamma distribution G is concentrated on the space of
infinite Radon measures on Rd. In this paper, we only consider finite intensity measure
ν.

Definition 1.1 ([11]). A measurable real function F on M is called extrinsically differ-
entiable at η ∈M, if

∇extF (η)(x) :=
d

ds
F (η + sδx)

∣∣∣
s=0

exists for all x ∈ E,

such that
‖∇extF (η)‖ := ‖∇extF (η)(·)‖L2(η) <∞.

If F is extrinsically differentiable at all η ∈ M, we denote F ∈ D(∇ext) and call it
extrinsically differentiable on M.

Regarding L2(η) as the extrinsic tangent space at η ∈M, we define the directional
derivatives by

∇extφ F (η) := 〈∇extF (η), φ〉L2(η) = η
(
φ∇extF (η)

)
, φ ∈ L2(η).

When φ is bounded, this coincides with the directional derivative under multiplicative
actions:

∇extφ F (η) =
d

ds
F (esφη)

∣∣∣
s=0

=
d

ds
F ((1 + sφ)η)

∣∣∣
s=0

, φ ∈ Bb(E),

where hη for h ∈ Bb(E) is a finite signed measure given by

(hη)(A) := η(1Ah) =

∫
A

hdη, A ∈ B(E).

To introduce the Dirichlet form induced by the extrinsic derivative and the weighted
Gamma distribution GV , we consider the class FC∞0 , which consists of cylindrical
functions functions of type

F (η) := f(η(A1), · · · , η(An)), n ≥ 1, f ∈ C∞0 (Rn), {Ai}1≤i≤n ∈ I(E),
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where I(E) is the set of all measurable partitions of E. Obviously, such a function F is
extrinsically differentiable with

∇extF (η) =

n∑
i=1

(∂if)(η(A1), · · · , η(An)) · 1Ai . (1.4)

We consider the square field

ΓA(F,G) := 〈Aη∇extF (η),∇extG(η)〉L2(η) =

∫
E

[
Aη∇extF (η)

]
·
[
∇extG(η)

]
dη,

and the pre-Dirichlet form

EA,V (F,G) :=

∫
M

ΓA(F,G) dGV , F,G ∈ FC∞0 ,

where A and V satisfy the following assumption.

(H) For any η ∈M, let Aη be a bounded linear operator on L2(η) such that

〈Aηh, h〉L2(η) ≥ 0, h ∈ L2(η), (1.5)

for any A ∈ B(E) and x ∈ E, Aη1A(x) is measurable in (η, x) ∈ M × E and is
extrinsically differentiable in η with

sup
η(E)≤r

{
‖Aη‖2L2(η) + ‖∇ext[Aη1A]‖L2(η)

}
<∞, r ∈ (0,∞), (1.6)

where ‖ · ‖L2(η) is the norm (or the operator norm for linear operators) in L2(η).

Moreover, V ∈ D(∇ext) such that

sup
η(E)≤r

{
|V (η)|+ ‖∇extV (η)‖L2(η)

}
<∞, r ∈ (0,∞). (1.7)

Condition (1.5) is essential for the nonnegativity of EA,V , where conditions (1.6) and (1.7)
ensure the boundedness of A, V and their extrinsic derivatives on the level sets {η(E) ≤
r} for r > 0. These conditions are standard for establishing functional inequalities by
using perturbation argument, see [14, 24] for the study of the finite-dimensional models.

We write A = 1 if Aη is the identity map on L2(η) for every η ∈ M. According to
Theorem 3.1 below, the assumption (H) implies that (EA,V ,FC∞0 ) is closable in L2(GV )

and the closure (EA,V ,D(EA,V )) is a symmetric Dirichlet form. If moreover∫
M

(
1 +
‖Aη‖L2(η)

1 + η(E)

)
GV (dη) <∞, (1.8)

then 1 ∈ D(EA,V ) with EA,V (1, 1) = 0. Let (LA,V ,D(LA,V )) be the associated generator.
We aim to investigate functional inequalities for the Dirichlet form EA,V and the spectral
gap of the generator LA,V .

We first consider the Poincaré inequality

GV (F 2) ≤ 1

λ
EA,V (F, F ) + GV (F )2, F ∈ D(EA,V ), (1.9)

where λ > 0 is a constant. The spectral gap of LA,V , denoted by gap(LA,V ), is the largest
constant λ > 0 such that (1.9) holds. If (1.9) is invalid, i.e. there is no any constant
λ > 0 satisfying the inequality, we write gap(LA,V ) = 0 and say that LA,V does not have
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spectral gap. It is well known that (1.9) is equivalent to the exponential convergence of
the associated Markov semigroup PA,Vt :

‖PA,Vt F − GV (F )‖L2(GV ) ≤ e−λt‖F‖L2(GV ), t ≥ 0, F ∈ L2(GV ).

When gap(LA,V ) = 0, the following weak Poincaré inequality was introduced in [13]:

GV (F 2) ≤ α(r)EA,V (F, F ) + r‖F‖2∞, F ∈ D(EA,V ), GV (F ) = 0, r > 0, (1.10)

where α : (0,∞)→ (0,∞) corresponds to a non-exponential convergence rate of PA,Vt as
t→∞, see [13, Theorems 2.1 and 2.3]. In particular, (1.10) implies

‖PA,Vt − GV ‖L∞(GV )→L2(GV ) ≤ inf
{
r > 0 : α(r) log r−1 ≤ 2t

}
↓ 0 as t ↑ ∞.

We also consider the super Poincaré inequality

GV (F 2) ≤ rEA,V (F, F ) + β(r)GV (|F |)2, r > 0, F ∈ D(EA,V ), (1.11)

where β : (0,∞) → (0,∞) is a decreasing function. The existence of super Poincaré
inequality is equivalent to the uniform integrability of PA,Vt for t > 0, and, when PA,Vt

has an asymptotic density with respect to GV , it is also equivalent to the compactness of
PA,Vt in L2(GV ), see [24, Theorem 3.2.1] for details. According to [24, Definition 3.1.2],
PA,Vt is said to have an asymptotic density, if ‖PA,Vt − Pn‖L2(GV ) → 0 for a sequence of
bounded linear operators {Pn}n≥1 having densities with respect to GV . We say that EA,V
does not satisfy the super Poincaré inequality, if there is no β : (0,∞)→ (0,∞) satisfying
(1.11). In particular, (1.11) holds with β(r) = ecr

−1

for some constant c > 0 if and only if
the log-Sobolev inequality

GV (F 2 logF 2) ≤ CEA,V (F, F ), F ∈ D(EA,V ),GV (F 2) = 1 (1.12)

holds for some constant C > 0. It is well known (see [2, 6]) that (1.12) is equivalent to
the hypercontractivity of PA,Vt :

‖PA,Vt ‖L2(GV )→L4(GV ) = 1 for large t > 0,

as well as the exponential convergence in entropy:

GV ((PA,Vt F ) logPA,Vt F ) ≤ e−2t/CGV (F logF ), t ≥ 0, F ≥ 0,GV (F ) = 1.

See [21, 22, 23] or [24] for more results on the super Poincaré inequalities, for instance,
estimates on the semigroup PA,Vt and higher order eigenvalues of the generator LA,V
using the function β in (1.11).

The remainder of the paper is organised as follows. In section 2, we state the main
results of the paper, and illustrate these results by a typical example with specific
interactions. In Section 3, we establish the integration by parts formula which implies
the closability of (EA,V ,FC∞0 ). Then the main results are proved in Section 4, and
extended in Section 5 to the space Ms of finite signed measures.

2 Main results and an example

We first consider E1,0 in L2(G) whose restriction on M1 := {µ ∈M : µ(E) = 1} gives
rise to the Dirichlet form of the Fleming–Viot process. Corresponding to results of
[16, 17] for the Fleming–Viot process, we have the following result. See also [12, 26] for
functional inequalities of different type measure-valued processes.

Theorem 2.1. Let V = 0 and A = 1.
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(1) gap(L1,0) = 1, i.e. λ = 1 is the largest constant such that (1.9) holds for V = 0 and
A = 1.

(2) If supp ν contains infinitely many points, then E1,0 does not satisfy the super
Poincaré inequality.

(3) There exists a constant c0 > 0 such that when supp ν is a finite set, the log-Sobolev
inequality

G(F 2 logF 2) ≤ c0
1 ∧ δ

E1,0(F, F ), F ∈ D(E1,0),G(F 2) = 1 (2.1)

holds, where δ := min{ν({x}) : x ∈ supp ν}.

To extend this result to EA,V , we will adopt a split argument by making perturbations
to E1,0 on bounded sets and estimating the principal eigenvalue of LA,V outside. To this
end, we take

ρ(η) = 2
√
η(E), η ∈M

and let BN = {η ∈M : ρ(η) ≤ N} for N > 0. Since (1.4) implies

∇extρ(η) =
1√
η(E)

, η ∈M \ {0}, (2.2)

we have

Γ1(ρ, ρ) := η
(
|∇extρ(η)|2

)
=
η(E)

η(E)
= 1. (2.3)

According to (3.1) below, we set

LA,V ρ(η) =
2

ρ(η)

[
(ν − η)(Aη1) + η

(
∇ext[Aη1(·)](·)

)
+∇extAη1V (η)

]
− 4

ρ(η)2
η(Aη1), (2.4)

where

η
(
∇ext[Aη1(·)](·)

)
:=

∫
E

∇ext[Aη1(x)](x) η(dx).

Let

ξ(r) = sup
ρ(η)=r

LA,V ρ(η), a(r) = inf
ρ(η)=r

inf
‖φ‖L2(η)=1

〈Aηφ, φ〉L2(η),

ā(r) = sup
ρ(η)=r

sup
‖φ‖L2(η)=1

〈Aηφ, φ〉L2(η), r > 0.
(2.5)

Under (H), |V (η)| + ‖Aη‖L2(η) is bounded on Br := {ρ ≤ r} for r ∈ (0,∞). So, these
functions are bounded on [k,K] for any constants K > k > 0. Moreover, define

σk := sup
t≥k

∫ ∞
t

e
∫ r
k
ξ(s)
a(s)

dsdr

∫ t

k

1

a(r)
e−

∫ r
k
ξ(s)
a(s)

dsdr, k > 0. (2.6)

Obviously, σk is non-increasing in k and might be infinite. We will see in Theorem 2.2(1)
that under certain conditions σk <∞ implies the validity of Poincaré inequality.

We have the following extension of Theorem 2.1 to EA,V . When supp ν is finite the
model reduces to finite-dimensional diffusions, for which one may derive super Poincaré
inequalities by making perturbations to (2.1). As the present study mainly focusses on
the infinite-dimensional model, we exclude this case in the following result.

Theorem 2.2. Assume (H) and (1.8). Suppose that a(r)−1 is locally bounded in r ∈ [0,∞)

and

ψ(s) :=

∫ s

0

[ā(r)]−1/2 dr ↑ ∞ as s ↑ ∞. (2.7)

Then the following assertions hold.
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(1) If limk→∞ σk <∞ (equivalently, σk <∞ for all k > 0), then

gap(LA,V ) ≥ sup

{
1

2Φ
(
ψ−1(ψ(k) + 32σk + 1)

)
+ 32σk

: k > 0

}
> 0,

where

Φ(N) :=
(

1 ∨ N2

4ν(E)

)
exp

[
sup
ρ≤N

V − inf
ρ≤N

V
]

sup
r≤N

a(r)−1, N > 0.

(2) If supp ν contains infinitely many points, then EA,V does not satisfy the super
Poincaré inequality.

(3) The weak Poincaré inequality (1.10) holds for

α(r) := inf
{

2Φ(N) : GV (ρ > N) ≤ r

1 + r

}
, r > 0.

The following result shows that the condition in Theorem 2.2(1) is sharp when Aη
and V (η) depend only on ρ(η).

Corollary 2.3. Assume (H) and (1.8). Let V (η) = v(ρ(η)) and Aη = a(ρ(η))1 for large
ρ(η) and some a, v ∈ C1([0,∞)) with a(r) > 0 for r ≥ 0. Then

ξ(r) := sup
ρ(η)=r

LA,V ρ(η) = a(r)
(1

r
+ v′(r)− r

2

)
+
r

2
a(r), for large r > 0,

and gap(LA,V ) > 0 if and only if limk→∞ σk <∞.

As in the proof of [14, Corollary 1.3] using [14, Theorem 1.1], it is easy to see that
Theorem 2.2(2) implies the following result.

Corollary 2.4. Assume (H) and (1.8). If infr≥0 a(r) > 0 and lim supr→∞
ξ(r)
a(r) < 0, then

gap(LA,V ) > 0.

The above two corollaries are concerned with the validity of Poincaré inequality. On
the other hand, according to Theorem 2.2(3), the weak Poincaré inequality always holds
under (H), (1.8) and (2.7). We will see in the proof that the rate function α is derived
by comparing EA,V with E1,0 on bounded sets BN , N > 0. However, when these two
Dirichlet forms are far away, this α is less sharp. As a principle, to derive a sharper weak
Poincaré inequality, one should compare EA,V with a closer Dirichlet form which satisfies
the Poincaré inequality. In this spirit, we present below an alternative result on the weak
Poincaré inequality. To state the result, we introduce the class H as follows.

Class H We denote h ∈ H, if 0 ≤ h ∈ C1([0,∞)) with h′(r) > 0 for r > 0, such that

ξh(r) := ξ(r)− 2

r
h(r) inf

ρ(η)=r
η(Aη1), r > 0 (2.8)

satisfies

σ1,h := sup
t≥1

∫ ∞
t

e
∫ r
1

ξh(s)

a(s)
dsdr

∫ t

1

1

a(r)
e−

∫ r
1

ξh(s)

a(s)
dsdr <∞. (2.9)

It is easy to see that H 6= ∅ under the conditions of Theorem 2.2 and inf a > 0. For any
h ∈ H, let Vh = V − h(ρ) + c(h), where c(h) ∈ R is such that GVh is a probability measure
on M. By Theorem 2.2(1) with k = 1, for any h ∈ H, the Poincaré inequality

GVh(F 2) ≤ C(h)EA,Vh + GVh(F )2, F ∈ D(EA,Vh) (2.10)

holds for
C(h) := 2Φ1,h

(
ψ−1(ψ(1) + 32σ1,h + 1)

)
+ 32σ1,h, h ∈ H. (2.11)
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Theorem 2.5. Assume (H), (1.8) and (2.7). If H 6= ∅, then (1.10) holds for

α(r) := inf
{
C(h)eh(N) : h ∈ H, N > 0 with GV (ρ > N) ≤ r

1 + r

}
, r > 0,

where C(h) is given by (2.9) and (2.11).

To conclude this section, we present below a simple example to illustrate the main
results. For simplicity, we only consider Aη = 1. But by a simple comparison argument,
the assertions apply also to Aη with 〈Aηφ, φ〉L2(η) ≥ c‖φ‖2L2(η) for some constant c > 0

and all η ∈M, φ ∈ L2(η).

Example 2.6. Consider the following potential V0 with interactions given by ψi ∈ Bb(E×
E), i = 1, 2, 3:

V0(η) =
2(η × η)(ψ1)

3η(E)3/2
+

(η × η)(ψ2)

η(E)
+ (η × η)(ψ3)− p log(1 + η(E)),

where p ∈ R is a constant. Let θi = supψi, 1 ≤ i ≤ 3. Assume that one of the following
conditions hold:

(1) min
{
θ3, θ2 − 1, θ1 · 1{θ2=1}

}
< 0;

(2) θ1 = θ2 − 1 = θ3 = 0 and p > ν(E).

Then Z := G(eV0) ≤ 1
Γ(ν(E))

∫∞
0

(1 + s)−psν(E)−1eθ1s
1/2−(1−θ2)s+θ3s

2

ds <∞, so that GV for
V := V0 − logZ is a probability measure on M, and the following assertions hold:

(a) Condition (1) implies gap(L1,V ) > 0;

(b) Under condition (2), let

θ = max
{

12× 1{‖ψ3‖∞>0}, 8× 1{‖ψ2−1‖∞>0}, 6× 1{‖ψ1‖∞>0}, 5
}
.

Then there exists a constant c > 0 such that the weak Poincaré inequality (1.10)
holds for

α(r) = cr−
θ

2(p−ν(E)) , r > 0.

Proof. Obviously, the assumptions in Theorem 2.2 hold for V and Aη = 1. By definition
it is easy to see that

∇extV (η)(x) =
η(E)η(ψ1(x, ·) + ψ1(·, x))− (η × η)(ψ1)

η(E)5/2
+ η(ψ3(x, ·) + ψ3(·, x))

+
η(E)η(ψ2(x, ·) + ψ2(·, x))− (η × η)(ψ2)

η(E)2
+

p

1 + η(E)
.

Then

∇ext1 V (η) := η
(
∇extV (η)

)
≤ θ1

√
η(E) + θ2η(E) + θ3η(E)2 +

pη(E)

1 + η(E)

=
θ1ρ(η)

2
+
θ2ρ(η)2

4
+
θ3ρ(η)4

8
+

pρ(η)2

4 + ρ(η)2
.

(a) If (1) holds, then θ3 < 0, or θ2 < 1, or θ3 = θ2 − 1 = 0 and θ1 < 0. In any case, we
have

lim sup
ρ(η)→∞

L1,V ρ(η) = lim sup
ρ(η)→∞

2

ρ(η)

(
ν(E)− ρ(η)2

4
+∇ext1 V (η)

)
< 0,

so that Corollary 2.4 implies gap(L1,V ) > 0.
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(b) Under condition (2), we prove the weak Poincaré inequality for the desired α(r).
Since one may always take α(r) ≤ 1 in (1.10) due to GV (F 2) ≤ ‖F‖2∞, it suffices to prove
for small r > 0, say r ∈ (0, 1].

It is easy to see that
GV (ρ > N) ≤ c0Nν(E)−p, N > 0 (2.12)

holds for some constant c0 > 0. For ε ∈ (0, 1], we take hε(s) = ε
√
s. Since a = 1, it is easy

to check that
σ1,hε ≤ c1ε−2

for some constant c1 > 0 independent of ε ∈ (0, 1]. Moreover, there is a constant c2
independent of ε ∈ (0, 1] such that

sup
ρ≤N

Vhε − inf
ρ≤N

Vhε ≤ c2
[
‖ψ3‖∞N4 + ‖ψ2 − 1‖∞N2 + ‖ψ1‖∞N + εN + log(1 +N)

]
.

Combining this with (2.11), we may find constants c3, c4 > 0 independent of ε ∈ (0, 1]

such that

C(hε) ≤ c3
(
‖ψ3‖∞ε−12 + ‖ψ2 − 1‖∞ε−8 + ‖ψ1‖∞ε−6 + ε−5

)
≤ c4ε−θ.

Taking this into account and applying Theorem 2.5 for

N = Nr :=
(2c0
r

) 1
p−ν(E)

,

such that (2.12) implies GV (ρ > N) ≤ r
2 as required for r ∈ (0, 1], we conclude that the

weak Poincaré inequality holds for

α(r) := inf
ε∈(0,1]

C(hε)e
hε(Nr) ≤ inf

ε∈(0,1]
c4ε
−θ exp

[
ε(2c0r

−1)
1

2(p−ν(E))
]
, r ∈ (0, 1].

Therefore, by taking ε = 1 ∧ r
1

2(p−ν(E)) , we prove (1.10) for the desired α(r).

3 The Dirichlet form

For any F ∈ FC∞0 , let

LA,V F (η) :=

∫
E

Aη[∇extF (η)](x)(ν − η)(dx)

+

∫
E

∇ext
[
Aη(∇extF (η))(x)

]
(x) η(dx) +

〈
∇extV (η),Aη[∇extF (η)]

〉
L2(η)

.

(3.1)

It is easy to see from (1.4) that when F (η) = f(η(A1), · · · , η(An)) for some n ≥ 1, f ∈
C∞0 (Rn) and a measurable partition {Ai}1≤i≤n of E, we have

LA,V F (η) =

( n∑
i=1

[
(ν − η)(Aη1Ai) + η

(
∇ext[Aη1Ai(·)](·)

)
+∇extAη1Ai

V (η)
]
∂if

+

n∑
i,j=1

η(1AiAη1Aj )(∂i∂jf)

)
(η(A1), · · · , η(An)).

Theorem 3.1. Assume (H). Then

EA,V (F,G) = −
∫
M

(GLA,V F )dGV , F,G ∈ FC∞0 . (3.2)

Consequently, (EA,V ,FC∞0 ) is closable in L2(M,GV ) whose closure (EA,V ,D(EA,V )) is a
symmetric Dirichlet form with generator (LA,V ,D(LA,V )) being the Friedrichs extension
of (LA,V ,FC∞0 ). If moreover (1.8) holds, then 1 ∈ D(EA,V ) and EA,V (1, 1) = 0.
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Functional inequalities for weighted Gamma distribution

To prove this result, we introduce the divergence operator corresponding to ∇ext. To
this end, we formulate the Gamma distribution G by using the Poisson measure πν̂ with
intensity ν̂(dx,ds) := s−1e−sν(dx)ds on Ê := E × (0,∞). Recall that πν̂ is the unique
probability measure on the configuration space

Γ(Ê) :=
{
γ =

∞∑
i=1

δ(xi,si) : γ(K) <∞ for compact K ⊂ Ê, (xi, si) ∈ Ê
}

such that for any disjoint relatively compact subsets {Âi}1≤i≤n of Ê, {γ 7→ γ(Âi)}1≤i≤n
are independent random Poisson random variables with parameters {ν̂(Âi)}1≤i≤n. Since
S(γ) :=

∑∞
i=1 si for γ =

∑∞
i=1 siδxi ∈ Γ(Ê) satisfies∫

Γ(Ê)

S(γ)πν̂(dγ) =

∫
Ê

sν̂(dx,ds) = ν(E) <∞,

the measure πν̂ is concentrated on the S-finite configuration space

Γf (Ê) :=
{
γ =

∞∑
i=1

δ(xi,si) ∈ Γ(Ê) : S(γ) :=

∞∑
i=1

si <∞
}
.

Lemma 3.2. The map Φ : Γf (Ê) 3 γ =
∑∞
i=1 siδxi 7→

∑∞
i=1 siδxi ∈M is measurable with

G = πν̂ ◦ Φ−1. (3.3)

Moreover,∫
M

G(dη)

∫
E

F (η, x)η(dx)

=

∫
M

G(dη)

∫
Ê

e−sF (η + sδx, x)ν(dx)ds, F ∈ L1
(
M× E,G(dη)η(dx)

)
.

(3.4)

Proof. Formula (3.3) was proved in [8, Theorem 6.2] for E = Rd and ν(dx) = θdx (which
is an infinite measure) with θ > 0, by identifying the Laplace transforms of G and πν̂ ◦Φ−1.
Below we explain that the same argument works to the present setting.

Firstly, the Laplace transform of G is∫
M

e−η(h)G(dη) = e−ν(log(1+h)), h ∈ B+(E), (3.5)

where B+(E) is the class of nonnegative measurable functions on E. This was given by
[18, (7)] when ν is atomless. In general, we decompose ν into ν = ν0 +

∑∞
i=1 ciδxi , where

ν0 is an atomless finite measure on E, xi ∈ E with xi 6= xj for i 6= j, and ci ≥ 0 with∑∞
i=1 ci <∞. Let E0 = E \ {xi : i ≥ 1}. By the definition of Gamma distribution,

η(h · 1E0
), η(h · 1{xi}), i ≥ 1

are independent under G, the distribution of η(h · 1E0
) under G coincides with that

under G0 (the Gamma distribution with intensity measure ν0), and the distribution of
η({xi}) under G coincides with the one-dimensional Gamma distribution γci with shape
parameter ci. So, applying (3.5) for ν0 replacing ν due to [18, (7)], and using the Laplace
transform for Gamma distributions on R+, we derive∫

M

e−η(h)G(dη) =

(∫
M

e−η(h·1E0
)G(dη)

)
·
∞∏
i=1

∫
M

e−h(xi)η({xi})G(dη)

= e−ν0(log(1+h)) ·
∞∏
i=1

e−ci log(1+h(xi)) = e−ν(log(1+h)).

EJP 25 (2020), paper 19.
Page 9/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP426
http://www.imstat.org/ejp/
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Therefore, (3.5) holds.

On the other hand, the Laplace transform for πν̂ (see for instance [1]) is∫
Γpf (Ê)

e−γ(ĥ)πν̂(dγ) = exp
[
− ν̂(1− e−ĥ)

]
, ĥ ∈ B+(Ê).

By letting ĥ(x, s) = sh(x) for (x, s) ∈ Ê, we arrive at∫
M

e−η(h)(πν̂ ◦ Φ−1)(dη) =

∫
Γpf (Ê)

e−γ(ĥ)πν̂)(dγ)

= exp
[
− ν̂
(
1− e−ĥ

)]
= e−ν(log(1+h)), h ∈ B+(E).

Combining this with (3.5) we prove (3.3).

Finally, (3.4) follows from (3.3) and the Mecke formula [10, Satz 3.1] for Poisson
measures.

To establish the integration by parts formula for ∇extφ F , we introduce the divergence

operator divext as follows.

Let φ : M× E → R be measurable. If for any x ∈ E, φ(·, x) ∈ D(∇ext) such that

(G × ν)(|φ|) +

∫
M

η
(
|φ(η, ·)|+ |∇extφ(η, ·)(·)|

)
G(dη) <∞,

where η(·) stands for the integral with respect to η as in (1.1), then we write φ ∈ D(divext)

and denote

divext(φ)(η) = (η − ν)
(
φ(η, ·)

)
− η
(
∇extφ(η, ·)(·)

)
. (3.6)

When φ(η, x) = φ(x) does not depend on η, the following integration by parts formula
follows from [9, Theorem 14]. We include below a complete proof for the η-dependent φ.

Lemma 3.3. Let φ ∈ D(divext). Then∫
M

(∇extφ F ) dG =

∫
M

[Fdivext(φ)] dG, F ∈ FC∞0 . (3.7)

Proof. By (3.4) and the Dominated Convergence Theorem, we obtain∫
M

(∇extφ F ) dG =

∫
M×E

(
lim
ε↓0

F (η + εδx)− F (η)

ε

)
φ(η, x) η(dx)G(dη)

=

∫
M

G(dη) lim
ε↓0

∫
Ê

1

ε
e−s

[
F (η + (s+ ε)δx)− F (η + sδx)

]
φ(η + sδx, x) ν(dx)ds

=

∫
M

G(dη)

∫
Ê

e−s
[
∂sF (η + sδx, x)

]
φ(η + sδx, x) ν(dx)ds

=

∫
M

G(dη)

∫
Ê

(
∂s
[
e−sF (η + sδx)φ(η + sδx, x)

]
− F (η + sδx)∂s

[
e−sφ(η + sδx, x)

])
ν(dx)ds.

Noting that F ∈ FC∞0 implies F (η + sδx) = 0 for large s, we have∫ ∞
0

∂s
[
e−sF (η + sδx)φ(η + sδx, x)

]
ds = −F (η)φ(η, x).
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Hence, by using (3.4) again,∫
M

(∇extφ F ) dG +

∫
M

F (η)ν(φ(η, ·))G(dη)

= −
∫
M

G(dη)

∫
Ê

F (η + sδx)e−s
[
∂sφ(η + sδx, x)− φ(η + sδx, x)

]
ν(dx)ds

=

∫
M

G(dη)

∫
Ê

[
φ(η + sδx, x)−∇extφ(·, x)(η + sδx)(x)

]
e−sF (η + sδx)ν(dx)ds

=

∫
M

F (η)G(dη)

∫
E

[φ(η, x)−∇extφ(η, x)(x)]η(dx).

Therefore, (3.7) holds.

Proof of Theorem 3.1. We first prove (3.2), which implies the closability of (EA,V ,FC∞0 )

and that the closure is a symmetric Dirichlet form in L2(GV ), see [4]. By the definition of
EA,V and Lemma 3.3, for any F,G ∈ FC∞0 we have

EA,V (F,G) =

∫
M

ΓA(F,G)dGV =

∫
M

(
∇exteV (η)Aη∇extF (η)G

)
(η)G(dη)

=

∫
M

G(η)divext
(
eV (η)Aη[∇extF (η)](·)

)
G(dη).

Therefore, by (3.6), (3.2) holds for

LA,V F (η) := −e−V (η)divext
(
eV (η)Aη[∇extF (η)](·)

)
=

∫
E

(
[∇extV (η)(x)]Aη[∇extF (η)](x) +∇ext

(
Aη[∇extF (η)](x)

)
(x)
)
η(dx)

+

∫
E

Aη[∇extF (η)](x) (ν − η)(dx).

Next, assume that (1.8) holds. It remains to find a sequence {Fn}n≥1 ⊂ D(EA,V ) such
that

lim
n→∞

[
GV (|Fn − 1|2) + EA,V (Fn, Fn)

]
= 0.

To this end, we consider ρn :=
√
n−1 + ρ2, n ≥ 1. By (2.3), we have ρn ∈ D(∇ext) with

Γ1(ρn, ρn) =
ρ2

ρ2
n

≤ 1.

Let h ∈ C∞0 ([0,∞)) such that h(r) = 1 for r ≤ 1 and h(r) = 0 for r ≥ 2. We have

Fn := h
(
n−1 log[1 + ρn]

)
⊂ FC∞0 , n ≥ 1.

It is easy to see that GV (|Fn − 1|2)→ 0 as n→∞ and due to (1.8),

lim sup
n→∞

EA,V (Fn, Fn) ≤ lim sup
n→∞

∫
M

‖Aη‖L2(η)‖h′‖2∞
n2(1 + ρ)2

GV (dη) = 0.

4 Proofs of the main results

In this section, we prove Theorems 2.1, 2.2, 2.5 and Corollary 2.3.

EJP 25 (2020), paper 19.
Page 11/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP426
http://www.imstat.org/ejp/


Functional inequalities for weighted Gamma distribution

4.1 Proof of Theorem 2.1 and a local Poincaré inequality

Proof of Theorem 2.1. The invalidity of the super Poincaré inequality will be included in
the proof of Theorem 2.2(3) for a more general case. So, we only prove (1) and (3).

(a) We first prove gap(L1,0) = 1, i.e. λ = 1 is the optimal constant for the Poincaré
inequality

G(F 2) ≤ 1

λ
E1,0(F, F ) + G(F )2, F ∈ FC∞0 (4.1)

to hold. Let F (η) = f(η(A1), · · · , η(An)) for some f ∈ C∞0 (Rn) and disjoint A1, · · · , An.
This Poincaré inequality reduces to

µn(f2)− µn(f)2 ≤ µn
( n∑
i=1

xi|∂if(x1, · · · , xn)|2
)
,

where according to (1.2),

µn(dx) :=

n∏
i=1

µi(dxi), µi(ds) = γν(Ai)(ds) := 1[0,∞)(s)
sν(Ai)−1e−s

Γ(ν(Ai))
ds, 1 ≤ i ≤ n. (4.2)

By the additive property of the Poincaré inequality, it suffices to prove that for every
1 ≤ i ≤ n, λ = 1 is the largest constant satisfying

µi(f
2)− µi(f)2 ≤ 1

λ

∫ ∞
0

rf ′(r)2µi(dr), f ∈ C∞0 ([0,∞)).

This follows from the fact that the generator of the Dirichlet form

Ei(f, g) :=

∫ ∞
0

rf ′(r)g′(r)µi(dr), f, g ∈W 1,2([0,∞), µi)

is
Lif(r) := rf ′′(r) + (ν(Ai)− r)f ′(r), r ∈ [0,∞),

which has spectral gap 1 with the first eigenfunction ui(r) = r − ν(Ai).
(b) Let supp ν = {x1, · · · , xn}, we have δ = min{ν({xi}) : 1 ≤ i ≤ n} > 0. It suffices to

find a universal constant c0 > 0 such that (2.1) holds for

F (η) := f(η({x1}), · · · , η({xn})), f ∈ C∞0 (Rn).

Letting µn and µi be as in (4.2) for Ai = {xi}, (2.1) for this F becomes

µn(f2 log f2) ≤ c0
1 ∧ δ

n∑
i=1

∫
[0,∞)n

si(∂if)2(s1, · · · , sn)µn(ds1, · · · ,dsn) + µn(f2) logµn(f2).

By the additive property of the log-Sobolev inequality, this follows from the following
Lemma 4.1.

Lemma 4.1. For any a, b > 0, let µa(ds) := 1[0,∞)(s)
sa−1e−s

Γ(a) ds and µa,b(ds) :=

1[0,b](s)
µa(ds)
µa([0,b]) . Then there exists a constant c0 > 0 such that for any a, b > 0,

µa,b(f
2 log f2) ≤ c0

a ∧ 1

∫ b

0

sf ′(s)2µa,b(ds), f ∈ C1([0, b]), µa,b(f
2) = 1. (4.3)

Proof. (a) Let a ≥ 2. We will use the Bakry–Émery criterion on Riemannian manifolds
with convex boundary which in particular includes [0, b] for b > 0. More precisely, let
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Laf(s) = sf ′′(s) + (a− s)f ′(s) and Γ1(f, g)(s) = sf ′(s)g′(s). By [25, Theorem 1.1(4)] with
σ = 0 and t→∞, if

Γ2(f, f) :=
1

2
LaΓ1(f, f)− Γ1(Laf, f) ≥ KΓ1(f, f)

holds for some constant K > 0 and all f ∈ C2([0, b]), then

µa,b(f
2 log f2) ≤ 2

K

∫ b

0

sf ′(s)2µa,b(ds), f ∈ C1([0, b]), µa,b(f
2) = 1.

So, the desired inequality (4.3) with c0 = 4 follows since

Γ2(f, f)(s) = s2f ′′(s)2 +
a+ s

2
f ′(s)2 + 2sf ′(s)f ′′(s)

≥ a+ s− 2

2s
Γ1(f, f)(s), s ≥ 0,

(4.4)

so that Γ2(f, f) ≥ 1
2Γ1(f, f) when a ≥ 2.

(b) Let a ∈ (0, 1
2 ]. By (4.4) we have Γ2(f, f)(s) ≥ a∧2

4 Γ1(f, f)(s) for s ≥ 2. So, by the
Bakry–Émery criterion,

µa,b1(1[2,b1]f
2 log f2) ≤ 8

a ∧ 2
µa,b1(1[2,b1]Γ1(f, f)) + µa,b1(1[2,b1]f

2) logµa,b1(1[2,b1]f
2) (4.5)

holds for any b1 > 2 and all f ∈ C1([0, b1]).
On the other hand, for any b2 > 0 and f ∈ C1([0, b2]) with µa,b2(f) = 0, there exists

r0 ∈ [0, b2] such that f(r0) = 0. So, for any r ∈ [0, b2] we have

|f(r)| =
∣∣∣∣ ∫ r

r0

f ′(s)ds

∣∣∣∣ ≤ (∫ b2

0

sf ′(s)2µa,b2(ds)

) 1
2
(∫ b2

0

s−aesΓ(a) ds

) 1
2

≤
(Γ(a)b1−a2 eb2

1− a
µa,b2(Γ1(f, f))

) 1
2

, r ∈ [0, b2].

Therefore, for µa,b2(f2) = 1 with µa,b2(f) = 0 we have

µa,b2(f2 log f2) ≤ µa,b2(f2) log
[Γ(a)b1−a2 eb2

1− a
µa,b2(Γ1(f, f))

]
≤ Γ(a)b1−a2 eb2

1− a
µa,b2(Γ1(f, f))− 1.

This implies

µa,b2(f2 log f2)− µa,b2(f2) logµa,b2(f2)

≤ Γ(a)b1−a2 eb2

1− a
µa,b2(Γ1(f, f))− µa,b2(f2), f ∈ C1([0, b2]), µa,b2(f) = 0.

(4.6)

In general, for a non-zero function f ∈ C1([0, b2]), let f̃ = f − µa,b2(f). We have (see [2])

µa,b2(f2 log f2)− µa,b2(f2) logµa,b2(f2)

≤ µa,b2(f̃2 log f̃2)− µa,b2(f̃2) logµa,b2(f̃2) + 2µa,b2(f̃2).
(4.7)

Combining this with (4.6) and using the Poincaré inequality (4.15) below, we arrive at

µa,b2(f2 log f2)− µa,b2(f2) logµa,b2(f2)

≤
(Γ(a)b1−a2 eb2

1− a
+ 1
)
µa,b2(Γ1(f, f)), b2 > 0, f ∈ C1

b ([0, b2]).
(4.8)
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In conclusion, when b ≤ 4, the desired inequality (4.3) for a ∈ (0, 1
2 ] follows from

(4.8). Finally, for b ≥ 4 we deduce from (4.5) and (4.8) that for any f ∈ C1([0, b]) with
µa,b(f

2) = 1,

µa,b(f
2 log f2) =

∫ 2

0
sa−1e−sds∫ b

0
sa−1e−sds

µa,2(f2 log f2) + µa,b(1[2,b]f
2 log f2)

≤
(Γ(a)21−ae2

1− a
+ 1
)
µa,b(1[0,2]Γ1(f, f)) + µa,b(1[0,2]f

2) log
Γ(a)∫ 2

0
sa−1e−sds

+
8

a ∧ 2
µa,b(1[2,b]Γ1(f, f)) + µa,b(1[2,b]f

2) log
Γ(a)∫ b

2
sa−1e−sds

≤ c1
a

∫ b

0

sf ′(s)2 µa,b(ds) +
c1
a
µa,b(f

2),

where c1 > 0 is a universal constant independent of a ∈ (0, 1
2 ] and b ≥ 4. Combining

this with (4.7) and the Poincaré inequality (4.15) below, we prove the inequality (4.3) for
some universal constant c0 > 0 and all a ∈ (0, 1

2 ] and b ≥ 4.
(c) Let a ∈ ( 1

2 , 2). In this case, we have a′ := a
4 ∈ (0, 1

2 ], so that by (b) there exists a
constant c0 > 0 such that

µa′,b(f
2 log f2) ≤ c0

a

∫ b

0

sf ′(s)2µa′,b(ds), a ∈
(1

2
, 2
)
, f ∈ C1([0, b]), µa′,b(f

2) = 1. (4.9)

Let µ̄a′,∞(ds1,ds2,ds3,ds4) =
∏4
i=1 µa′,∞(dsi), where µa′,∞ := limb→∞ µa′,b is the Gamma

distribution with parameter a′. By the property of Gamma distributions we have∫
[0,∞)n

f(s1 + s2 + s3 + s4)µ̄a′,∞(ds1,ds2,ds3,ds4) =

∫
[0,∞)

f(s)µa,∞(ds), f ∈ Bb([0,∞)).

Using (4.9) with b → ∞ and the additivity property of the log-Sobolev inequality, we
obtain

µ̄a′,∞(F 2 logF 2)− µ̄a′,∞(F 2) log µ̄a′,∞(F 2)

≤ c0
a

∫ b

0

4∑
i=1

si∂iF (s1, · · · , s4)2µ̄a′,b(ds1, · · · ,ds4), F ∈ C1
b ([0,∞)4).

By an approximation argument we may apply this inequality to

F (s1, · · · , s4) := f(b ∧ (s1 + · · ·+ s4))

for f ∈ C1([0, b]), so that (4.3) is derived.

To prove Theorem 2.2, we consider the local Poincaré inequality for E1,0 on the set
BN , by decomposing η into the radial part η(E) and the simplicial part η̄ := η

η(E) . It is
well known that under G these two parts are independent with

G(η(E) < r, η̄ ∈ A) = Dir(A)γν(E)([0, r)), r > 0,A ∈ B(M1), (4.10)

where γν(E)(ds) := 1[0,∞)(s)
sν(E)−1e−s

Γ(ν(E)) ds, and Dir is the Dirichlet measure with intensity
measure ν, see for instance [17] for details. According to [16] (see also [17, Proposition
3.3]), we have the Poincaré inequality

Dir(F 2) ≤ Dir(ΓD(F, F )) + Dir(F )2, F ∈ FC∞0 , (4.11)
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where for F (η) = f(η(A1), · · · , η(An)) and η ∈M1,

ΓD(F, F )(η) :=

n∑
i,j=1

[
δijη(Ai)− η(Ai)η(Aj)

]
· [(∂if)(∂jf)](η(A1), · · · , η(An)). (4.12)

Lemma 4.2. For any N > 0,

G(1BNF
2) ≤

( N2

4ν(E)
∨ 1
)
G(1BNΓ1(F, F )), F ∈ FC∞0 ,G(1BNF ) = 0. (4.13)

Proof. Since BN = {η(E) ≤ N2/4}, (4.10) implies∫
M

[
1BNF

]
(η)G(dη) =

∫
M1×[0,N2/4]

F (sη̄)Dir(dη̄)γν(E)(ds), F ∈ L1(1BNG). (4.14)

We observe that (2.1) implies

γν(E)(1[0,r]f
2) ≤

∫ r

0

sf ′(s)2γν(E)(ds), r > 0, f ∈ C1([0, r]), γν(E)(1[0,r]f) = 0. (4.15)

Indeed, applying the Poincaré inequality

G(F 2) ≤ E1,0(F, F ) + G(F )2

to F (η) := f(η(E) ∧ r), and noting that for f̃(s) := f(s ∧ r) we have

G(F i) = γν(E)(f̃
i) = γν(E)(1[0,r]f

i) + γν(E)((r,∞))f(r), i = 1, 2,

E1,0(F, F ) =

∫ ∞
0

sf̃ ′(s)2ds =

∫ N

0

sf ′(s)2ds,

it follows that

γν(E)(1[0,r]f
2) = γ(f̃2)− γν(E)((r,∞))f(r)2

≤
∫ N

0

sf ′(s)2ds+ γν(E)((r,∞))2f(r)2 − γν(E)((r,∞))f(r)2 ≤
∫ N

0

sf ′(s)2ds.

By the additivity property of the Poincaré inequality, (4.11), (4.14) and (4.15), we obtain
that for any F ∈ FC∞0 with G(1BNF ) = 0,

G(1BNF
2) ≤

∫
M1×[0,N2/4]

[ 1

ν(E)
ΓD(F (s·), F (s·))(η̄) + s

∣∣∣ ∂
∂s
F (sη̄)

∣∣∣2]Dir(dη̄)γν(E)(ds)

=

∫
BN

[ 1

ν(E)
ΓD(F (η(E)·), F (η(E)·))(η̄) + η(E)

∣∣∣ ∂

∂η(E)
F (η(E)η̄)

∣∣∣2]G(dη).

So, it remains to prove

I(η) :=
1

ν(E)
ΓD(F (η(E)·), F (η(E)·))(η̄) + η(E)

∣∣∣ ∂

∂η(E)
F (η(E)η̄)

∣∣∣2
≤
( N2

4ν(E)
∨ 1
)

Γ1(F, F )(η), η(E) ≤ N2

4
.

(4.16)

For F ∈ FC∞0 with F (η) = f
(
η(A1), · · · , f(An)) = f(η(E)η̄(A1), · · · , η(E)η̄(An)

)
, by

(4.12) we have

ΓD
(
F (η(E)·), F (η(E)·)

)
(η̄)

=

n∑
i,j=1

[
δij η̄(Ai)− η̄(Ai)η̄(Aj)

]
η(E)2[(∂if)(∂jf)](η(A1), · · · , η(An))

=

n∑
i,j=1

[
δijη(Ai)η(E)− η(Ai)η(Aj))[(∂if)(∂jf)](η(A1), · · · , η(An)).
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Functional inequalities for weighted Gamma distribution

Moreover,

η(E)
∣∣∣ ∂

∂η(E)
F (η(E)η̄)

∣∣∣2 = η(E)

∣∣∣∣ n∑
i=1

η̄(Ai)(∂if)(η(A1), · · · , η(An))

∣∣∣∣2
=

1

η(E)

n∑
i,j=1

η(Ai)η(Aj)[(∂if)(∂jf)](η(A1), · · · , η(An)).

So, when η(E) ≤ N2

4 (i.e. ρ(E) ≤ N ),

I(η) ≤ η(E) ∨ ν(E)

ν(E)

( 1

η(E)
ΓD(F (η(E)·), F (η(E)·))(η̄) + η(E)

∣∣∣ ∂

∂η(E)
F (η(E)η̄)

∣∣∣2)
=
(

1 ∨ N2

4ν(E)

)
Γ1(F, F )(η).

This implies (4.16), and hence finishes the proof.

4.2 Proofs of Theorem 2.2 and Corollary 2.3

Proof of Theorem 2.2. We will make a standard split argument by using the local Poincaré
inequality (4.13) and the principal eigenvalue of LA,V outside BN . To estimate the prin-
cipal eigenvalue, we recall Hardy’s criterion for the first mixed eigenvalue. Consider the
following differential operator on [0,∞):

Lf(r) = a(r)f ′′(r) + γ(r)f ′(r), r ≥ 0.

For any k > 0 and n ≥ 1, let λk,n be the first mixed eigenvalue of L on [k, k + n] with
Dirichlet boundary condition at k and Neumann boundary condition at k + n. Define

σk,n = sup
t∈(k,n+k)

∫ n+k

t

e
∫ r
k
γ(s)
a(s)

dsdr

∫ t

k

1

a(r)
e−

∫ r
k
γ(s)
a(s)

dsdr.

By Hardy’s criterion, see for instance [24, Theorem 1.4.2], we have

1

σk,n
≥ λk,k+n ≥

1

4σk,n
, n ≥ 1, k > 0. (4.17)

Below we prove assertions (1)–(3) respectively.
(1) By (4.13) and a standard perturbation argument, we have

GV (1{ρ≤N}F
2) ≤ GV (1{ρ≤N}F )2 + Φ(N)GV (1{ρ≤N}ΓA(F, F )), F ∈ FC2

0 . (4.18)

If σk <∞ for some k > 0, it suffices to prove the Poincaré inequality

GV (F 2) ≤ CGV (ΓA(F, F )), F ∈ FC2
0 ,GV (F ) = 0 (4.19)

for

C = 2Φ
(
ψ−1

(
ψ(k) + 8λ−1

k + 1
)

+ λk

)
+ 8λ−1

k ,

where according to (4.17),

λk := lim
n→∞

λk,n ≥
1

4σk
. (4.20)

Let F ∈ FC2
0 such that suppF ⊂ BN1 for some constant N1 > k. For any N ≥ k, let

FN = F [(ψ(ρ)− ψ(N))+ ∧ 1].
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Then FN = 0 for ρ ≤ N and FN = F for ψ(ρ) ≥ ψ(N) + 1. For n > N1, let un ≥ 0 be the
first mixed eigenfunction of L on [k, k + n] with Dirichlet boundary condition at k and
Neumann boundary condition at k + n, such that

un(k) = u′n(k + n) = 0, u′n(r) > 0 for r ∈ (k, k + n), Lun = −λk,nun ≤ 0.

Combining this with the definition of L we obtain

LA,V (un ◦ ρ) ≥ (Lun) ◦ ρ, ρ ∈ [k, k + n].

So,

λk,nGV (F 2
N ) = −

∫
{k<ρ<n+k}

F 2
N

u2
n ◦ ρ

(−Lun) ◦ ρdGV

≤ −
∫
{k<ρ<n+k}

F 2
N

un ◦ ρ
[
− LA,V (un ◦ ρ)

]
dGV .

(4.21)

To apply the integration by parts formula, we approximate un as follows. Since un(k) =

u′n(k + n) = 0, we may construct a sequence {un,m}m≥1 ⊂ C∞([0,∞)) such that

un,m(r) = un(r) for r ∈ [k +m−1, k + n−m−1],

un,m(r) = 0 for r ≤ k, u′n,m(r) = 0 for r ≥ k + n,

sup
m≥1

sup
r≥k

(
|u′n,m(r)|+ |u′′n,m(r)|

)
<∞.

Since FN = 0 for ρ ≤ N , (4.21) implies that for any k < N ,

λk,nGV (F 2
N ) = − lim

m→∞

∫
{k<ρ<n+k}

F 2
N

u2
n,m ◦ ρ

(−Lun,m) ◦ ρdGV

= lim
m→∞

∫
M

〈
Aη∇ext

F 2
N

un,m ◦ ρ
(η),∇ext(un,m ◦ ρ)(η)

〉
L2(η)

dGV .
(4.22)

On the other hand, since Aη is positive definite due to (H), for any u ∈ C2([0,∞)) with
u(r) > 0 for r ≥ N , we have〈

Aη∇ext
F 2
N

u ◦ ρ
(η),∇ext(u ◦ ρ)(η)

〉
L2(η)

=
〈
Aη∇extFN (η),∇extFN (η)

〉
L2(η)

−
〈
Aη
[
∇extFN −

FN
u ◦ ρ

∇ext(u ◦ ρ)
]
(η),∇extFN (η)− FN

u ◦ ρ
∇ext(u ◦ ρ)(η)

〉
L2(η)

≤
〈
Aη∇extFN (η),∇extFN (η)

〉
L2(η)

.

Combining this with (4.22) and the definition of FN , we obtain

λk,nGV (F 2
N ) ≤

∫
M

〈Aη∇extFN ,∇extFN 〉L2(η)dGV

≤ 2EA,V (F, F ) + 2

∫
{ψ(N)<ψ(ρ)<ψ(N)+1}

F 2ΓA(ψ(ρ), ψ(ρ))dGV .

Multiplying by λ−1
k,n and letting n→∞ leads to∫

M

F 2
NdGV ≤ 2

λk
EA,V (F, F ) +

2

λk

∫
{ψ(N)<ψ(ρ)<ψ(N)+1}

F 2ΓA(ψ(ρ), ψ(ρ))dGV . (4.23)

EJP 25 (2020), paper 19.
Page 17/27

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP426
http://www.imstat.org/ejp/
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By the definition of ψ and ā, and noting that Γ1(ρ, ρ) = 1, we have

ΓA(ψ(ρ), ψ(ρ))(η) =
〈Aη∇extρ(η),∇extρ(η)〉L2(η)

ā(ρ(η))
≤ Γ1(ρ, ρ)(η) = 1. (4.24)

So, (4.23) implies∫
M

F 2
NdGV ≤ 2

λk
EA,V (F, F ) +

2

λk

∫
{ψ(N)<ψ(ρ)<ψ(N)+1}

F 2dGV . (4.25)

Letting bsc = sup{k ∈ Z : k ≤ s} be the integer part of a real number s, we have

∫
M

F 2dGV ≥
1+b8λ−1

k c∑
i=1

∫
{ψ(k)+i−1<ψ(ρ)<ψ(k)+i]

F 2dGV .

Then there exists N ∈
[
k, ψ−1

(
ψ(k) + 8λ−1

k

)]
such that∫

{ψ(N)<ψ(ρ)<ψ(N)+1}
F 2dGV ≤ λk

8

∫
M

F 2dGV ,

so that (4.25) yields ∫
M

F 2
NdGV ≤ 2

λk
EA,V (F, F ) +

1

4

∫
M

F 2dGV . (4.26)

Combining this with (4.18) and noting that GV (F ) = 0, we may find N ∈ [k, ψ−1(ψ(k) +

8λ−1
k )] such that∫

M

F 2dGV ≤
∫
ψ(ρ)≤ψ(N)+1

F 2dGV +

∫
M

F 2
NdGV

≤ Φ(ψ−1(ψ(N) + 1))EA,V (F, F ) + GV (1{ψ(ρ)≥ψ(N)+1}F )2 +

∫
M

F 2
NdGV

≤ Φ(ψ−1(ψ(N) + 1))EA,V (F, F ) + 2

∫
M

F 2
NdGV

≤
(

Φ(ψ−1(ψ(N) + 1)) +
4

λk

)
EA,V (F, F ) +

1

2

∫
M

F 2dGV .

Since Φ(N) is increasing in N ∈
[
k, ψ−1

(
ψ(k) + 8λ−1

k

)]
, this implies (4.19) with

C = 2Φ(ψ−1(ψ(N) + 1)) +
8

λk
≤ 2Φ

(
ψ−1

(
ψ(k) + 8λ−1

k + 1
)

+ λk

)
+ 8λ−1

k .

Then the proof is finished by (4.20).
(2) Assume that supp ν is an infinite set. To disprove the super Poincaré inequality, it

suffices to construct a sequence {Fn} ⊂ D(EA,V ) such that GV (F 2
n) > 0 and

C := sup
n≥1

EA,V (Fn, Fn)

GV (F 2
n)

<∞, lim
n→∞

GV (|Fn|)2

GV (F 2
n)

= 0. (4.27)

Indeed, if (1.11) holds for some β : (0,∞)→ (0,∞), then

1 ≤ rEA,V (F,Fn)

GV (F 2
n)

+ β(r)
GV (|Fn|)2

GV (F 2
n)

, n ≥ 1, r > 0.

Combining this with (4.27) and letting n → ∞, we obtain 1 ≤ rC for all r > 0 which is
impossible.
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We now show that (4.27) holds for Fn(η) := (1 − η(E))+ η(An)
η(E) , where {An}n≥1 are

measurable subsets of E such that 1
2ν(E) > pn := ν(An) ↓ 0 as n ↑ ∞, which exist since

supp ν is an infinite set.
Obviously, {Fn}n≥1 ⊂ D(EA,V ). Since ‖Aη‖L2(η) + eV (η) + e−V (η) is bounded on the

set {η(E) ≤ 1}, we may find constants Ki, Ci > 0, i = 1, 2, 3 such that (4.10) implies for
all n ≥ 1 that

GV (F 2
n) ≥ K1G(F 2

n) = K1

∫ 1

0

(1− s)2sν(E)−1e−s

Γ(ν(E))
ds

∫ 1

0

tpn+1(1− t)ν(E)−pn−1

Γ(pn)Γ(ν(E)− pn)
dt ≥ C1pn,

GV (|Fn|)2 ≤ K2G(|Fn|)2 = K2

(∫ 1

0

(1− s)sν(E)−1e−s

Γ(ν(E))
ds

∫ 1

0

tpn(1− t)ν(E)−pn−1

Γ(pn)Γ(ν(E)− pn)
dt

)2

≤ C2p
2
n,

EA,V (Fn, Fn) ≤ K3G(‖∇extFn‖2L2(η)) = K3

∫
{η(E)≤1}

G(dη)

∫
E

|(1− η(E))− η(An)|2dη

≤ 2K3

∫
{η(E)≤1}

[
(1− η(E))2η(An) + η(An)2η(E)

]
G(dη)

≤ 4K3

∫
{η(E)≤1}

η(An)

η(E)
G(dη) ≤ C3pn.

Since pn ↓ 0 as n ↑ ∞, we prove (4.27).
(3) The local Poincaré inequality (4.13) implies that for any F ∈ FC∞0 with GV (F ) = 0,

GV (F 2) = GV (1BNF
2) + GV (F 2 · 1BcN

)

≤ 2Φ(N)EA,V (F, F ) +
1

GV (BN )
GV (1BcN

F )2 + GV (ρ > N)‖F‖2∞

≤ 2Φ(N)EA,V (F, F ) +
( GV (ρ > N)2

1− GV (ρ > N)
+ GV (ρ > N)

)
‖F‖2∞, N > 0.

So, for any r > 0, taking N > 0 such that GV (ρ>N)2

1−GV (ρ>N)
+ GV (ρ > N) ≤ r, i.e. GV (ρ > N) ≤

r
1+r , we prove (1.10).

Proof of Corollary 2.3. Let r0 ∈ (0,∞) such that Aη = a(ρ(η))1 and V (η) = v(ρ(η)) for
large ρ(η) ≥ r0. By (2.2) we have

(ν − η)(Aη1) = a(ρ(η))
(
ν(E)− η(E)

)
= a(ρ(η))

(
ν(E)− ρ(η)2

4

)
,

η
(
∇ext[Aη1(·)](·)

)
= a′(ρ(η))η

( 1√
η(E)

)
=
ρ(η)

2
a′(ρ(η)),

∇extAη1V (η) := η
(
[Aη1]∇extV (η)

)
= (av′)(ρ(η))

2η(E)

ρ(η)
=
ρ(η)

2
(av′)(ρ(η)),

4

ρ(η)3
η(Aη1) =

4a(ρ(η))η(E)

ρ(η)3
=
a(ρ(η))

ρ(η)
, ρ(η) ≥ r0.

Then (2.4) implies
LAη,V ρ(η) = ξ(ρ(η)) (4.28)

for the given function ξ. So, when σk < ∞ for some k > 0, Theorem 2.2(1) implies
gap(LA,V ) > 0.

On the other hand, let σk =∞ for all k > 0. We have

λk := lim
n→∞

λk,n = 0, k > 0, (4.29)
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where λk,n is given in the proof of Theorem 2.2. Let uk,n be the corresponding first
mixed eigenfunction of L on [k, k + n] with uk,n(r) > 0 in (k, k + n], and let

Θv(ds) =
ev(s)−ssν(E)−1

Γ(ν(E))
ds,

such that L is symmetric in L2([k, k+n],Θv) under the mixed boundary conditions. Then∫ k+n

k

uk,n(r)2Θv(dr) =
1

λk,n

∫ k+n

k

ra(r)|u′k,n(r)|2Θv(dr).

Letting Fk,n(η) = uk,n((η(E)∨k)∧(k+n)), for large enough k > 0 such that Aη = a(ρ(η))1

and V (η) = v(ρ(η)) for η(E) ≥ k, the above formula implies

GV (F 2
k,n)− GV (Fk,n)2 ≥ GV (F 2

k,n · 1{k≤ρ≤k+n}) =
1

λk,n
EA,V (Fn,k, Fn,k), n ≥ 1.

Obviously, due to (4.29) this implies gap(LA,V ) = 0.

4.3 Proof of Theorem 2.5

Let h ∈ H, i.e. h ∈ C1([0,∞)) with h(r), h′(r) > 0 for r > 0 such that (2.8) and (2.9)
hold. By (2.10) and noting that Vh = V − h(ρ) + c(h) where c(h) is a constant such that
GVh is a probability measure, for any F ∈ FC∞0 we have

GV (F 2 · 1BN )− G
V (F · 1BN )2

GV (BN )
= inf
c∈R,|c|≤‖F‖∞

GV (|F − c|2 · 1BN )

≤ eh(N)−c(h) inf
c∈R,|c|≤‖F‖∞

GVh(|F − c|2 · 1BN ) ≤ eh(N)−c(h) inf
c∈R,|c|≤‖F‖∞

GVh(|F − c|2)

= eh(N)−c(h)
[
GVh(F 2)− GVh(F )2

]
≤ C(h)eh(N)−c(h)GVh(ΓA(F, F ))

≤ C(h)eh(N)GV (ΓA(F, F )) = C(h)eh(N)EA,V (F, F ).

This implies

GV (F 2 · 1BN ) ≤ C(h)eh(N)EA,V (F, F ) +
GV (F · 1BN )2

GV (BN )
, F ∈ D(EA,V ).

Then for any F ∈ D(EA,V ) with GV (F ) = 0, we have GV (F · 1BN )2 = GV (F · 1{ρ>N})2 and

GV (F 2) ≤ GV (F 2 · 1BN ) + GV (F 2 · 1{ρ>N})

≤ C(h)eh(N)EA,V (F, F ) +
GV (F · 1BN )2

GV (BN )
+ GV (F 2 · 1{ρ>N})

≤ C(h)eh(N)EA,V (F, F ) +
(GV (ρ > N)2

GV (BN )
+ GV (ρ > N)

)
‖F‖2∞

≤ C(h)eh(N)EA,V (F, F ) +
GV (ρ > N)

GV (BN )
‖F‖2∞.

So, for any r > 0 and N > 0 such that G
V (ρ>N)
GV (BN )

≤ r, equivalently GV (ρ > N) ≤ r
1+r , we

have

GV (F 2) ≤ C(h)eh(N)EA,V (F, F ) + r‖F‖2∞, F ∈ D(EA,V ),GV (F ) = 0, h ∈ H.

Therefore, the weak Poincaré inequality (1.10) holds for

α(r) := inf
{
C(h)eh(N) : h ∈ H,GV (ρ > N) ≤ r

1 + r

}
, r > 0.
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5 Extensions to the space of finite signed measures

Consider the space of finite signed measures

Ms := {η − η′ : η, η′ ∈M}

equipped with the topology induced by the map

η 7→ (η+, η−) ∈M×M,

where η+ and η− are the positive and negative parts of η in the Hahn decomposition
respectively, and M×M is equipped with the weak topology. So, under this topology Ms

is a Polish space. Note that this topology maybe different from the weak topology, i.e.
ηn → η if ηn(f) :=

∫
E
fdηn → η(f) holds for any f ∈ Cb(E), since the latter on Ms might

be not metrizable, see [19].
To extend the Dirichlet form (EA,V ,D(EA,V )) from L2(GV ) to L2(GVs ) for a probability

measure GVs with a potential V on Ms, we introduce below the measure GVs , the extrinsic
derivative and the operator A respectively.

In [18], an analogue to the Lebesgue measure was introduced on Ms by using the
convolution of two weighted Gamma distributions. In the same spirit, we extend the
measure G to Gs on Ms as follows:∫

Ms

f(η)Gs(dη) =

∫
M×M

f(η+ − η−)G(dη+)G(dη−), f ∈ Bb(Ms). (5.1)

Let τ(η) = {x ∈ E : η({x}) 6= 0}. To ensure that τ(η+) and τ(η−) are disjoint such that
η = η+ − η− is the Hahn decomposition of η, we will assume that ν is atomless. In this
case, τ(η+) ∩ τ(η−) = ∅ for G × G-a.e. (η+, η−).

Next, we define the extrinsic derivative operator (∇ext,D(∇ext)) as in Definition 1.1
for Ms replacing M:

∇extF (η)(x) = lim
06=s→0

F (η + sδx)− F (η)

s
, η ∈Ms. (5.2)

Let FsC
∞
0 be the class of cylindrical functions of type

F (η) := f(η+(A1), · · · , η+(An), η−(A1), · · · , η−(An)), n ≥ 1, f ∈ C∞0 (R2n), (5.3)

where {Ai}1≤i≤n is a measurable partition of E, and η = η+ − η− is the Hahn decomposi-
tion. Let

Aη := {x ∈ E : η({x}) < 0}, η ∈Ms. (5.4)

It is easy to see that such a function F is extrinsically differentiable with

∇extF (η) =

2n∑
i=1

(1− 2 · 1{i>n})(∂if)(η+(A1), · · · , η+(An), η−(A1), · · · , η−(An))1Ai,nη ,

(5.5)

where

Ai,nη :=

{
Ai ∩Acη, if i ≤ n,
Ai ∩Aη, if i > n.

Since for any η ∈ Ms, Aη+εδx = Aη holds for small ε > 0 and all x ∈ E, ∇extF (η)(x) is
again extrinsically differentiable in η with

∇ext[∇extF (η)(x)](y) =

2n∑
i,j=1

[
(1− 2 · 1{i>n})(1− 2 · 1{j>n})

× (∂i∂jf)(η+(A1), · · · , η+(An), η−(A1), · · · , η−(An))1Ai,nη (x)1Aj,nη (y)
]
.

(5.6)
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Finally, for any η ∈Ms, let Aη be a positive definite bounded linear operator on L2(|η|),
where |η| := η+ + η− is the total variation of η. Consider the pre-Dirichlet form

Es
A,V (F,G) :=

∫
Ms

〈Aη∇extF (η),∇extG(η)〉L2(|η|) dGVs , F,G ∈ FC∞0 . (5.7)

To ensure the closability of this bilinear form, we assume

(H’) ν is atomless, V ∈ D(∇ext) such that GVs is a probability measure. Moreover, for any
A ∈ B(E) and x ∈ E, Aη1A∩Acη (x) and Aη1A∩Aη (x) are extrinsically differentiable
in η with ∫

Ms

[
|η|
(
|∇ext[Aη1A∩Acη ]|+ |∇ext[Aη1A∩Aη ]|

)
+ |η|

(
(|Aη1A∩Acη |+ |Aη1A∩Aη |)|∇extV (η)|

)]
GVs (dη) <∞.

Obviously, this assumption is satisfied if Aη = F (η)1 for some positive bounded extrinsi-
cally differentiable function F such that GVs is a probability measure with∫

Ms

|η|(|∇extF (η)|+ |∇extV (η)|)GVs (dη) <∞.

5.1 Integration by parts formula

Theorem 5.1. Assume (H’). Then

Es
A,V (F,G) = −

∫
Ms

(GLs
A,V F ) dGVs , F,G ∈ FsC

∞
0 (5.8)

holds for

Ls
A,V F (η) :=

∫
E

([
∇extV (η)(x)

]
Aη[∇extF (η)](x) +∇ext

(
Aη[∇extF (η)](x)

)
(x)
)
|η|(dx)

−
∫
E

Aη[∇extF (η)](x)η(dx).

Consequently, (Es
A,V ,FsC

∞
0 ) is closable in L2(GVs ) and its closure (Es

A,V ,D(Es
A,V )) is a

symmetric Dirichlet form with 1 ∈ D(Es
A,V ) and Es

A,V (1, 1) = 0.

To prove this result, we introduce the divergence operator associated with ∇ext.

Definition 5.1. A measurable function φ on Ms × E is said in the domain D(divexts ), if
for any x ∈ E we have φ(·, x) ∈ D(∇ext) and∫

Ms

(∫
E

(
|∇extφ(η, x)(x)|+ |φ(η, x)|

)
|η|(dx)

)
Gs(dη) <∞. (5.9)

In this case, the divergence operator is given by

divexts (φ)(η) :=

∫
E

φ(η, x)η(dx)−
∫
E

∇extφ(η, x)(x) |η|(dx), η ∈Ms. (5.10)

We have the following integration by parts formula for the directional derivative

∇extφ F (η) :=

∫
E

[
φ(η, x)∇extF (η)(x)

]
|η|(dx), φ ∈ D(divexts ), F ∈ D(∇ext).

Lemma 5.2. Let φ ∈ D(divexts ). Then∫
Ms

(∇extφ F ) dGs =

∫
Ms

[Fdivexts (φ)] dGs, F ∈ FsC
∞
0 .
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Proof. By a simple approximation argument, we may and do assume that φ is bounded
so that (Gs × ν)(|φ|) <∞. For F ∈ FsC

∞
0 , (5.2) implies

∇extF (η)(x) = ∇extF (· − η−)(η+)(x) = −∇extF (η+ − ·)(η−)(x), F ∈ D(∇ext). (5.11)

Next, for any η′ ∈M, let

φ+,η′(η, x) := φ(η′ − η, x), φ−,η′(η, x) := φ(η − η′, x), (η, x) ∈M× E.

By (3.6) and (5.11) we obtain

divext(φ−,η−)(η+)− divext(φ+,η+)(η−)

=

∫
E

[
φ(η+ − η−, x)−∇extφ(· − η−, x)(η+)(x)

]
η+(dx)− ν(φ(η, ·))

−
∫
E

[
φ(η+ − η−, x) +∇extφ(η+ − ·, x)(η−)(x)

]
η−(dx)− ν(φ(η, ·))

=

∫
E

φ(η+ − η−, x)(η+ − η−)(dx)−
∫
E

[
∇ext(·, x)(η+ − η−)(x)

]
(η+ + η−)(dx)

= divexts (φ)(η), η = η+ − η− with τ(η+) ∩ τ(η−) = ∅.

Combining this with Lemma 3.3, (5.1) and (5.11), we obtain∫
Ms

(∇extφ F ) dGs

=

∫
M×M

G(dη+)G(dη−)

∫
E

[
φ(η+ − η−, x)∇extF (η+ − η−)(x)

]
(η+ + η−)(dx)

=

∫
M

G(η−)

∫
M×E

[
φ(η+ − η−, x)∇extF (· − η−)(η+)(x)

]
η+(dx)

−
∫
M

G(η+)

∫
M×E

[
φ(η+ − η−, x)∇extF (η+ − ·)(η−)(x)

]
η−(dx)

=

∫
M×M

F (η+ − η−)
[
divext(φ−,η−)(η+)− divext(φ+,η+)(η−)

]
G(dη+)G(η−)

=

∫
Ms

F (η)divexts (φ)(η)Gs(dη).

Proof of Theorem 5.1. Let F ∈ FsC
∞
0 be given in (5.3), and let

φ(η, x) := eV (η)Aη[∇extF (η)](x)

= eV (η)
2n∑
i=1

(1− 2 · 1{i>n})(∂if)(η(A1, · · · , η(An))Aη1Aηi (x), (η, x) ∈Ms × E.

Then (H’) and (5.5) imply φ ∈ D(divexts ). By the definition of Es
A,V and Lemma 5.2, for

any G ∈ FsC
∞
0 we have

Es
A,V (F,G) =

∫
Ms

〈
Aη∇extF (η),∇extG(η)

〉
L2(|η|) G

V
s (dη)

=

∫
Ms

〈
φ(η, ·),∇extG(η)

〉
L2(|η|) Gs(dη) =

∫
Ms

G(η)divexts (φ)Gs(dη).

This together with (5.10) implies (5.8) for

Ls
A,V F (η) := −e−V (η)divexts (φ) = −e−V (η)divexts

(
eV (η)Aη[∇extF (η)](·)

)
=

∫
E

([
∇extV (η)(x)

]
Aη[∇extF (η)](x) +∇ext

(
Aη[∇extF (η)](x)

)
(x)
)
|η|(dx)

−
∫
E

Aη[∇extF (η)](x)η(dx).
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Next, to prove that 1 ∈ D(Es
A,V ) with Es

A,V (1, 1) = 0, we take {fn}n≥1 ⊂ C∞0 (R) such
that fn(s) = 1 for |s| ≤ n, 0 ≤ fn ≤ 1 and ‖f ′n‖∞ ≤ 1. Let Fn(η) := fn(η(E)), n ≥ 1. Then
Fn ∈ FC∞0 . By (H’) we have GVs (|Fn − 1|2)→ 0 as n→∞, and

lim sup
n→∞

Es
A,V (Fn, Fn) = lim sup

n→∞

∫
{|η(E)|>n}

‖Aη1‖L1(|η|) GVs (dη) = 0.

Therefore, 1 ∈ D(E2
A,V ) and Es

A,V (1, 1) = 0.

5.2 Functional inequalities for Es
1,0

For any N > 0, let B̃s
N = {η ∈Ms : η+(E) ∨ η−(E) ≤ N}.

Theorem 5.3. Let A = 1 and V = 0.

(1) gap(Ls
A,V ) = 1, i.e. the following Poincaré inequality

Gs(F
2) ≤ Es

1,0(F, F ) + Gs(F )2, F ∈ D(Es
1,0) (5.12)

holds, and the constant 1 in front of Es
1,0(F, F ) is optimal.

(2) If supp ν is infinite, then Es
1,0 does not satisfy the super Poincaré inequality. On the

other hand, there exists a constant c0 > 0 such that when supp ν is a finite set, the
log-Sobolev inequality

Gs(F
2 logF 2) ≤ c0

1 ∧ δ
Es

1,0(F, F ), F ∈ D(E1,0),G(F 2) = 1 (5.13)

holds, where δ := min{ν({x}) : x ∈ supp ν}.
(3) For any N > 0 and F ∈ FC∞0 with Gs(1B̃s

N
F ) = 0,

Gs(1B̃s
N
F 2) ≤

(
2 ∨ N2

2ν(E)

)
Gs

(
1B̃s

N
‖∇extF‖2L2(|η|)

)
. (5.14)

Proof. By taking F (η) depending only on η+, it is easy to see that a Poincaré inequality
for Es

1,0 implies the same inequality for E1,0. So, the optimality of (5.12), and the invalidity
of the super Poincaré inequality when supp ν is infinite, follow from Theorem 2.1. It
remains to prove the inequalities (5.12), (5.13) and (5.14). According to the additivity
property of the Poincaré and log-Sobolev inequalities, these inequalities follow from the
corresponding ones of E1,0. For simplicity, below we only prove the first inequality.

Let F ∈ FsC
∞
0 . By Theorem 2.1, (5.1), (5.7) for A = 1 and V = 0, and using (5.11),

we obtain

Gs(F
2) =

∫
M

G(dη−)

∫
M

F (η+ − η−)2G(dη+)

≤
∫
M×M

‖∇extF (· − η−)(η+)‖2L2(η+)G(dη+)G(dη−) +

∫
M

(∫
M

F (η+ − η−)G(dη+)

)2

G(dη−)

≤
∫
Ms

‖∇extF (η)‖2L2(η+)Gs(dη) +

(∫
M×M

F (η+ − η−)G(dη+)G(dη−)

)2

+

∫
M

∥∥∥∥∇ext[ ∫
M

F (η+ − ·)G(dη+)

]
(η−)

∥∥∥∥2

L2(η−)

G(dη−).

By the Jensen inequality, we have∥∥∥∥∇ext[ ∫
M

F (η+ − ·)G(dη+)

]
(η−)

∥∥∥∥2

L2(η−)

≤
∫
M

‖∇extF (η+ − ·)(η−)‖2L2(η−)G(dη+).

Therefore,

Gs(F
2) ≤ Gs(F )2 +

∫
Ms

‖∇extF (η)‖2L2(η++η−)Gs(dη) = Gs(F )2 + Es
1,0(F, F ).
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5.3 Functional inequalities for Es
A,V

According to the proof of Theorem 2.2 and the local Poincaré inequality (5.14), it
seems that we should take

ρ̃s(η) := 2
√
η+(E) ∨ η−(E), η ∈Ms

to replace the function ρ on M . But by (5.5) we have

∇extρ̃s(η)(x) =
2

ρ̃s(η)

(
1{η(E)≥0}1Acη (x)− 1{η(E)<0}1Aη (x)

)
,

which is however not extrinsically differentiable in η, so that LA,V ρ̃s is not well defined
as required. To avoid this problem, below we will use both ρ̃s and

ρs(η) := 2
√
|η|(E), η ∈Ms, (5.15)

which satisfies ‖∇extρs(η)‖L2(|η|) = 1 according to the following lemma.

Lemma 5.4. Let ρ be defined in (5.15) and let s(η, ·) := 1− 2 · 1Aη for Aη in (5.4). Then

∇extρs(η) =
2s(η, ·)
ρs(η)

, ∇exts(η, x)(y) = 0, η ∈Ms, x, y ∈ E.

Consequently, if Aηs(η, ·) is extrinsically differentiable in η ∈Ms with

sup
|η|(E)≤r

|η|
(
|Aηs(η, ·)|+ |∇ext[Aηs(η, ·)](·)|

)
<∞, r ∈ (0,∞), (5.16)

then

Ls
A,V ρs(η) =

2

ρs(η)

[
|η|
(

[∇extV (η)]Aηs(η, ·)
)

+∇ext
[
Aηs(η, ·)

]
(·)
)
− η
(
Aηs(η, ·)

)]
. (5.17)

This lemma can be proved by simple calculations using (5.2) and the definition of
LA,V in Theorem 5.1, so we omit the details.

By Lemma 5.4, we have

Γs
1(ρs, ρs) := |η|(|∇extρs|2) = 1, ∇ext[∇extρs(η)(x)](x) = − 4

ρs(η)3
.

These coincide with the corresponding properties of ρ on M.
Similarly to (2.5) and (2.6), let

ξs(r) = inf
ρs(η)=r

Ls
A,V ρs(η), as(r) = inf

ρs(η)=r
inf

‖φ‖L2(|η|)=1

〈Aηφ, φ〉L2(|η|),

ās(r) = sup
ρs(η)=r

sup
‖φ‖L2(|η|)=1

〈Aηφ, φ〉L2(|η|), r > 0,

σk,s = sup
t≥k

∫ ∞
t

e
∫ r
k
ξs(s)
as(s)

ds
dr

∫ t

k

1

as(r)
e
−

∫ r
k
ξs(s)
as(s)

ds
dr, k > 0.

(5.18)

Assume that

ψ(t) :=

∫ t

0

[ās(r)]
− 1

2 dr ↑ ∞ as t ↑ ∞. (5.19)

As in the proof of Theorem 2.2, we may use σk,s to estimate GVs (F 2
N ) for

FN :=
[
(ψ(ρs)− ψ(N))+ ∧ 1

]
· F, N > 0, F ∈ FsC

∞
0 .
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More precisely, as in (4.20) and (4.26) we conclude that for any k > 0 there exists
N ∈ [k, ψ−1(ψ(k) + 32σk,s)] such that∫

Ms

F 2
NdGVs ≤

2

λk
Es
A,V (F, F ) +

1

4

∫
M

F 2dGVs

≤ 8σk,s Es
A,V (F, F ) +

1

4

∫
M

F 2dGVs .
(5.20)

On the other hand, we estimate GVs (F 2 · 1{ρs≤N}) by using the local Poincaré inequality

(5.14). Since the bounded set in (5.14) is B̃s
N := {ρ̃s ≤ N} rather than Bs

N := {ρs ≤ N},
we change the definition of Φ(N) into

Φs(N) :=
(

2 ∨ N2

2ν(E)

)
exp

[
sup
ρ̃s≤N

V − inf
ρ̃s≤N

V

]
sup

ρ̃s(η)≤N
sup

‖φ‖L2(|η|)=1

1

〈Aηφ, φ〉L2(|η|)
, N > 0.

Noting that 1{ρs≤N} ≤ 1{ρ̃s≤N}, we may apply Theorem 5.3 to bound GVs (F 2 · 1{ρs≤N}).
For instance, corresponding to (4.18) we have

GVs (F 2 · 1{ρs≤N}) ≤ G
V
s (F 2 · 1{ρ̃s≤N}) ≤ G

V
s (1{ρ̃s≤N}F )2 + Φs(N)Es

A,V (F, F ).

Combining this with (5.20) we may extend assertions of Theorem 2.2 to the present
setting as follows, where when supp ν is infinite the super Poincaré can be disproved as

in the proof of Theorem 2.2(2) by taking Fn(η) = (1− η+(E))+ η+(An)
η+(E) for 0 < ν(An) ↓ 0.

Moreover, one may also extend Corollaries 2.3–2.4 and Theorem 2.5. We omit the details
to save space.

Theorem 5.5. In addition to (H’), assume that Aηs(η, ·) is extrinsically differentiable in
η such that (5.16) holds. Moreover, assume that as and ās in (5.18) are such that a−1

s (r)

is locally bounded in r ≥ 0 and (5.19) holds.

(1) If limk→∞ σk,s <∞, then

gap(Ls
A,V ) ≥ sup

{
1

2Φs

(
ψ−1(ψ(k) + 32σk,s + 1)

)
+ 32σk,s

: k > 0

}
> 0.

(2) If supp ν contains infinitely many points, then Es
A,V does not satisfy the super

Poincaré inequality.

(3) The weak Poincaré inequality (1.10) holds for (Es
A,V ,GVs ) replacing (EA,V ,GV ) and

α(r) := inf
{

2Φs(N) : GVs (ρ > N) ≤ r

1 + r

}
, r > 0.
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