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Abstract

This paper is devoted to uniform versions of the Hanson-Wright inequality for a random
vector X ∈ Rn with independent subgaussian components. The core technique of the
paper is based on the entropy method combined with truncations of both gradients
of functions of interest and of the components of X itself. Our results recover, in
particular, the classic uniform bound of Talagrand [28] for Rademacher chaoses and
the more recent uniform result of Adamczak [2] which holds under certain rather
strong assumptions on the distribution of X. We provide several applications of
our techniques: we establish a version of the standard Hanson-Wright inequality,
which is tighter in some regimes. Extending our results we show a version of the
dimension-free matrix Bernstein inequality that holds for random matrices with a
subexponential spectral norm. We apply the derived inequality to the problem of
covariance estimation with missing observations and prove an almost optimal high
probability version of the recent result of Lounici [21]. Finally, we show a uniform
Hanson-Wright-type inequality in the Ising model under Dobrushin’s condition. A
closely related question was posed by Marton [22].
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Uniform Hanson-Wright

1 Introduction

The concentration properties of quadratic forms of random variables is a classic
topic in probability. A well-known result is due to Hanson and Wright (we refer to the
form of this inequality presented in [25]), which claims that if A is an n× n real matrix
and X = (X1, . . . , Xn) is a random vector in Rn with independent centered components
satisfying maxi ‖Xi‖ψ2 ≤ K (we will recall the definition of ‖ · ‖ψ2 below), then for all
t ≥ 0

P(|X>AX − EX>AX| ≥ t) ≤ 2 exp

(
−cmin

{
t2

K4‖A‖2HS

,
t

K2‖A‖

})
, (1.1)

for some absolute c > 0, where ‖A‖HS =
√∑

i,j A
2
i,j defines the Hilbert-Schmidt norm

and ‖A‖ is the operator norm of A. An important extension of these results is when
instead of just one matrix A we have a family of matrices A and want to understand the
behaviour of random quadratic forms simultaneously for all matrices in the family. As a
concrete example we consider an order-2 Rademacher chaos: given a family A ⊂ Rn×n
of n×n real symmetric matrices with zero diagonal, that is for all A ∈ A we have Aii = 0

for all i = 1, . . . , n, one wants to study the following random variable

ZA(ε) = sup
A∈A

n∑
i,j=1

Aijεiεj = sup
A∈A

ε>Aε,

where ε = (ε1, . . . , εn)> is a sequence of independent Rademacher signs taking values
±1 with equal probabilities. In the celebrated paper by Talagrand [28] it was shown, in
particular, that there is an absolute constant c > 0, such that for any t ≥ 0

P(|ZA(ε)− EZA(ε)| ≥ t) ≤ 2 exp

−cmin

 t2

(E sup
A∈A
‖Aε‖)2

,
t

sup
A∈A
‖A‖

 . (1.2)

Similar inequalities in the Gaussian case follow from the results in [8] and [6]. Apart
from the new techniques that were used to prove (1.2), the significance of this result
is that previously (see, for example, [20]) similar bounds were one-sided and had a
multiplicative constant greater than 1 before EZA(ε). Results with a multiplicative factor
not equal to 1 are usually called deviation inequalities in contrast to concentration
bounds of the form (1.2) that are studied below. A simplified proof of the upper tail of
(1.2), that is the upper bound on P(ZA(ε)− EZA(ε) ≥ t), appeared later in [10]. We will
refer to inequalities of this form as (one-sided) concentration inequalities.

It is worth mentioning in advance that our main results are one-sided concentration
inequalities. This is because the entropy method, used extensively in our proofs, is
known to have some limitations when applied to prove lower tail inequalities (see the
discussions in [19, 11]). It would be interesting for future work to consider similar
bounds for the lower tails.

Observe that when for every A ∈ A the diagonal elements are zero, the corresponding
quadratic forms are centered, that is EεTAε = 0. In the general situation we will be
interested in the analysis of

ZA(X) = sup
A∈A

(X>AX − EX>AX), (1.3)

for a random vector X taking its values in Rn. The analysis of both the expectation and
the concentration/deviation properties of this random variable has appeared recently in
many papers. To name several deviation inequalities: Krahmer, Mendelson, and Rauhut
[18] study EZA(X) and deviations of ZA(X) for classes of positive semidefinite matrices
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Uniform Hanson-Wright

with applications to compressive sensing, Dicker and Erdogdu [12] prove deviation
inequalities for supA∈A(X>AX−EX>AX) and subgaussian vectors X under some extra
assumptions. Additionally, a recent paper by Adamczak, Latała and Meller [4] studies
deviation bounds for Z = ‖X>AX−EX>AX‖ with Banach space-valued matrices A and
Gaussian variables, providing upper and lower bounds for the moments. The deviation
inequality for general subgaussian vectors and a single positive semi-definite matrix was
obtained by Hsu, Kakade, and Zhang [15]. Returning to concentration inequalities, it
was shown by Adamczak [2] that if X satisfies the so-called concentration property with
constant K, that is for every 1-Lipschitz function ϕ : Rn → R and any t ≥ 0 we have
E|ϕ(X)| <∞ and

P (|ϕ(X)− Eϕ(X)| ≥ t) ≤ 2 exp
(
−t2/2K2

)
, (1.4)

then the following bound, similar to (1.2), holds for every t ≥ 0,

P(|ZA(X)−EZA(X)| ≥ t) ≤ 2 exp

−cmin

 t2

K2(E sup
A∈A
‖AX‖)2

,
t

K2 sup
A∈A
‖A‖

 . (1.5)

This result has application to covariance estimation and recovers another recent concen-
tration result by Koltchinskii and Lounici [17]; this is discussed further in Section 2. The
drawback of (1.5) is that the required concentration property places strong restrictions
on the distribution of X: while it is satisfied by the standard Gaussian distribution
as well as by some log-concave distributions (see [19]), it is not known whether the
concentration property holds for general subgaussian entries and even in the simplest
case of Rademacher random vectors.

In this paper we extend the aforementioned results in two directions. We extend
the result from [10] for bounded variables by allowing non-zero diagonal values of the
matrices and unbounded subgaussian variables Xi. First, let us recall the following
definition. For α > 0 denote the ψα-norm of a random variable Y by

‖Y ‖ψα = inf

{
t ≥ 0 : E exp

(
|Y |α

tα

)
≤ 2

}
,

which is a proper norm whenever α ≥ 1. A random variable Y with ‖Y ‖ψ1
< ∞ is

referred to as subexponential and ‖Y ‖ψ2
< ∞ is referred to as subgaussian and the

corresponding norm is usually named a subgaussian norm. We also use the Lp(P ) norm.

For p ≥ 1 we set ‖Y ‖Lp = (E|Y |p)
1
p . One of our main contributions is the following

upper-tail bound.

Theorem 1.1. Suppose that the components of X = (X1, . . . , Xn) are independent
centered random variables and A is a finite family of n × n real symmetric matrices.
Denote M =

∥∥maxi |Xi|
∥∥
ψ2

. Then, for any t ≥ max{ME supA∈A ‖AX‖,M2 supA∈A ‖A‖}
we have

P(ZA(X)− EZA(X) ≥ t) ≤ exp

−cmin

 t2

M2(E sup
A∈A
‖AX‖)2

,
t

M2 sup
A∈A
‖A‖

 , (1.6)

where c > 0 is an absolute constant and ZA(X) is defined by (1.3).

Remark 1.2. In Theorem 1.1 and below we assume that all A ∈ A are symmetric. This
was done only for convenience of presentation and in fact, the analysis may be performed
for general square matrices. The only difference will be that in many places A should be
replaced by 1

2 (A+AT ).
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Uniform Hanson-Wright

Remark 1.3. Notice that even though the above result is stated for finite sets A,
it also holds for arbitrary bounded sets. Indeed, for a bounded set of matrices A,
since these matrices are finite dimensional we can consider an increasing sequence
A1 ⊂ A2 ⊂ . . . ... ⊂ A of finite epsilon-nets of A such that the pointwise convergence
ZAk(X)→ ZA(X) holds. This pointwise convergence implies convergence in probability,
in particular,

lim
k→∞

P(ZAk(X)− EZAk(X) ≥ t) = P(ZA(X)− EZA(X) ≥ t).

Since for a subset Ak ⊂ A the values E supA∈Ak ‖AX‖
2 and supA∈Ak ‖A‖ are not greater

than those for the original set A, we obtain the bound (1.6) for arbitrary bounded sets.
For the sake of simplicity, we only consider finite sets below.

In particular, Theorem 1.1 recovers the right-tail of the result of Talagrand (1.2) up to
absolute constants, since in this case we obviously have

∥∥maxi |εi|
∥∥
ψ2

. 1. Furthermore,
the result of Theorem 1.1 works without the assumption used in [28] and [10] that
diagonals of all matrices in A are zero. Moreover, it is also applicable in some situations
when the concentration property (1.4) holds: indeed, if X is a standard normal vector
in Rn then it is well known (see [20]) that M =

∥∥maxi |Xi|
∥∥
ψ2
∼
√

log n. If moreover the

identity matrix In ∈ A then E supA∈A ‖AX‖ ≥ E‖X‖ &
√
n. Therefore, in this case the

factor M is only of at most logarithmic order when compared to E supA∈A ‖AX‖.
In the special case that A consists of just one matrix, our bound recovers the bound

that is similar to the original Hanson-Wright inequality. On the one hand, our bound
may have an extra logarithmic factor that depends on the dimension n. On the other
hand, the original term maxi ‖Xi‖ψ2

‖A‖HS is replaced by the better term E‖AX‖. We
discuss this phenomenon below. The core of the proof of the Hanson-Wright inequality in
[25] is based on the decoupling technique which may be used (at least in a straightfor-
ward way) to prove the deviation inequality—but not the concentration inequality—for
supA∈A(X>AX − EX>AX) in the case that A consists of more than one matrix.

A natural question to ask is whether one may improve Theorem 1.1 and replace
M =

∥∥maxi |Xi|
∥∥
ψ2

by K = maxi
∥∥Xi

∥∥
ψ2

. In Section 2 we discuss that in the deviation
version of Theorem 1.1 this replacement is not possible in some cases. This is quite
unexpected in light of the fact that

∥∥maxi |Xi|
∥∥
ψ2

does not appear in the original Hanson-
Wright inequality. Therefore, we believe that the form of our result is close to optimal.
We also provide the following extension of Theorem 1.1 which may be better in some
cases.

Proposition 1.4. Suppose that the components of X = (X1, . . . , Xn) are independent
centered random variables. Suppose also that the variables Xi are distributed symmetri-
cally (Xi has the same distribution as −Xi). Let A be a finite family of n×n real symmet-
ric matrices. Denote M =

∥∥maxi |Xi|
∥∥
ψ2

and K = maxi
∥∥Xi

∥∥
ψ2

and let G be a standard

Gaussian vector in Rn. Then, for any t ≥ max{MKE supA∈A ‖AG‖,MK supA∈A ‖A‖} we
have

P(ZA(X)− EZA(X) ≥ t) ≤ exp

−cmin

 t2

M2K2(E sup
A∈A
‖AG‖)2

,
t

MK sup
A∈A
‖A‖

 ,

where c > 0 is an absolute constant and ZA(X) is defined by (1.3).

Remark 1.5. Proposition 1.4 is closer to the standard Hanson-Wright inequality (1.1).
Indeed, in the case that A = {A} we have E‖AG‖ ∼ ‖A‖HS. The difference is that K4

and K2 are replaced by M2K2 and MK respectively.
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Uniform Hanson-Wright

We proceed with some notation that will be used below. For a non-negative random
variable Y , define its entropy as

Ent(Y ) = EY log Y − EY logEY.

Instead of the concentration property (1.4), we also discuss the following closely related
property:

Assumption 1.6. We say that a random vector X taking values in Rn satisfies the
logarithmic Sobolev inequality with constant K > 0 if for any continuously differentiable
function f : Rn → R we have

Ent(f2(X)) ≤ 2K2E‖∇f(X)‖2, (1.7)

whenever both sides of the inequality are not infinite.

One of the technical contributions of this paper is that we use a similar scheme
to prove Theorem 1.1 and to recover (1.5) under the logarithmic Sobolev Assumption
1.6. The application of logarithmic Sobolev inequalities requires computation of the
gradient of the function of interest, that is, in our case, the gradient of ZA(X) =

sup
A∈A

(XTAX − EXTAX). In the analysis that we present, there is a need to control

the behaviour of ∇ZA(X) (or its analogs) and, as in [10] and [2], we use a truncation
argument to do so. However, in both cases our proofs make use of the entropy variational
formula from [11], that states that for random variables Y,W with E exp(W ) < ∞ we
have

E(W exp(λY )) ≤ E exp(λY ) log(E exp(W )) + Ent(exp(λY )). (1.8)

Doing so allows us to shorten the proofs and avoid some technicalities appearing in
previous papers. Finally, to prove Theorem 1.1 we use a second truncation argument:
this argument is based on the Hoffman-Jørgensen inequality (see [20]). We also present
two lemmas which are used several times in the text. Both results have short proofs and
may be of independent interest.

Lemma 1.7. Suppose that for random variables Z,W and any λ > 0 we have

Ent(eλZ) ≤ λ2EWeλZ and P(W > L+ θt) ≤ e−t, (1.9)

where θ, L are positive constants. Then, the following concentration result holds

P(Z − EZ > t) ≤ exp

(
−cmin

{
t2

L+ θ
,
t√
θ

})
, (1.10)

where c > 0 is an absolute constant. If, moreover, (1.9) holds for any λ ≤ 0, we have

P(|Z − EZ| > t) ≤ 2 exp

(
−cmin

{
t2

L+ θ
,
t√
θ

})
.

The second technical result is a version of the convex concentration inequality in [28]
which does not require the boundedness of the components of X.

Lemma 1.8. Let f : Rn → R be a convex, L-Lipschitz function with respect to the
Euclidean norm on Rn and X = (X1, . . . , Xn) be a random vector with independent
components. Then, for any t ≥ CL ‖maxi |Xi|‖ψ2

we have

P (|f(X)− Ef(X)| > t) ≤ exp

(
−c t2

L2 ‖maxi |Xi|‖2ψ2

)
,

where c, C > 0 are absolute constants.
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Uniform Hanson-Wright

Despite generalizing existing results on convex concentration, the result of Lemma
1.8 follows easily from the truncation approach combined with the Hoffman-Jørgensen
inequality. As another application of this technique we provide a version of the matrix
Bernstein inequality that holds for random matrices with subexponential spectral norm.
For clarity of presentation, this inequality is first presented in Section 4. Finally, the
same argument showing that it is not possible to replace M =

∥∥maxi |Xi|
∥∥
ψ2

by K =

maxi
∥∥Xi

∥∥
ψ2

in Theorem 1.1 is used to show that the same is not possible in Lemma 1.8.

We sum up the structure of the paper:

• Section 2 is devoted to applications and discussions and consists of several parts.
At first, we give a simple proof of the uniform bound from [2] under the logarithmic
Sobolev assumption. The second paragraph is devoted to improvements of the
non-uniform Hanson-Wright inequality (1.1) in the subgaussian regime. Further-
more, we apply our techniques to obtain a uniform concentration result similar to
Theorem 1.1 in a particular case of non-independent components. We consider the
Ising model under Dobrushin’s condition, a setting that has been studied recently in
[3] and [13]. The question we study was raised by Marton [22] in a closely related
scenario. Finally, we show that it is not possible in general to replace ‖maxi |Xi|‖ψ2

with maxi ‖Xi‖ψ2
in Theorem 1.1 by providing an appropriate counterexample.

• In Section 3 we present our proof of Theorem 1.1. While doing so, we prove Lemma
1.7 and Lemma 1.8. Finally, we give a proof of Proposition 1.4.

• In Section 4 we formulate and prove the dimension-free matrix Bernstein inequality
that holds for random matrices with subexponential spectral norm. We demonstrate
how our Bernstein inequality can be used in the context of covariance estimation
for subgaussian observations improving the state-of-the-art result from [21] for
covariance estimation with missing observations.

2 Some applications and discussions

We begin with some notation that will be used throughout the paper. For a random
vector X taking its values in Rn let X1, . . . , Xn denote its components. When all com-
ponents of X are independent let X ′i denote an independent copy of the component Xi.
Throughout the paper C, c > 0 are absolute constants that may change from line to line.
We write a . b if a ≤ Cb for some absolute constant C > 0. Moreover, if a . b and b . a

we write a ∼ b.
Furthermore, for a square matrix A, denote by Diag(A) the diagonal matrix that

has the same elements on the diagonal as A. The off-diagonal part of A is defined
by Off(A) = A − Diag(A); we define diag(a) as a n × n diagonal matrix with diagonal
elements a ∈ Rn. Finally, for two symmetric (Hermitian) matrices A,B we write A ≺ B
if B −A is positive-definite and A � B if B −A is positive-semidefinite. In what follows
we also use the following equivalent formulations of tail inequalities. Assume that for a
random variable Y and some a, b > 0 we have that for any t ≥ 1,

P(Y > max(a
√
t, bt)) ≤ e−t.

The last inequality implies for any u ≥ max(a, b),

P(Y > u) ≤ exp

(
−min

{
u2

a2
,
u

b

})
,

and vice versa.
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Uniform Hanson-Wright

Uniform Hanson-Wright inequalities under the logarithmic Sobolev condition

In this paragraph we recover a result from [2] under Assumption 1.6. Consider a random
variable ZA(X) defined by (1.3), a function of X that satisfies logarithmic Sobolev
assumption (1.7).

Following [2] we assume without loss of generality, that A is a finite set of matrices.
Then ZA is Lebesgue-a.e. differentiable and

‖∇ZA(X)‖ ≤ 2 sup
A∈A
‖AX‖,

bounded by a Lipschitz function of X with good concentration properties.

Remark 2.1. Note that Assumption 1.6 applies only for smooth functions, so that a stan-
dard smoothing argument should be used (see e.g. [19]). For the sake of completeness
we recall this argument in Section A. In what follows in this section we assume that none
of these potential technical problems appear.

In particular, since X satisfies the logarithmic Sobolev condition with constant K, we
have by Theorem 5.3 in [19] that

P

(
sup
A∈A
‖AX‖ ≥ E sup

A∈A
‖AX‖+K

√
t sup
A∈A
‖A‖

)
≤ e−t.

Taking squares and using (a+ b)2 ≤ 2a2 + 2b2 we get

P

(
sup
A∈A
‖AX‖2 ≥ 2

(
E sup
A∈A
‖AX‖

)2

+ 2K2 sup
A∈A
‖A‖2t

)
≤ e−t.

Furthermore, the logarithmic Sobolev condition implies for any λ ∈ R

Ent(eλZA(X)) ≤ 4K2λ2E sup
A∈A
‖AX‖2eλZA(X).

Therefore, by Lemma 1.7 it holds for any t ≥ 0 that

P

(
|ZA(X)− EZA(X)| > C

(
KE sup

A∈A
‖AX‖

√
t+K2 sup

A∈A
‖A‖t

))
≤ 2e−t,

which coincides with (1.5) for K-concentrated vectors up to absolute constant factors.

Remark 2.2. This result may be used directly to prove the concentration for ‖Σ̂− Σ‖,
where Σ̂ is the sample covariance defined as Σ̂ = 1

N

∑N
i=1XiX

>
i and X1, . . . , XN are

centered Gaussian vectors with the covariance matrix Σ (see Theorem 4.1 in [2]). We
return to the covariance estimation problem in Section 4.

Remark 2.3. We note some additional connections between the convex concentration
property (1.4) and Assumption 1.6. It is known that (1.4) follows from the logarithmic
Sobolev inequality by taking f(X) = exp(λ(ϕ(X)− Eϕ(X))/2) for λ > 0 which implies

Ent (exp(λ(ϕ(X)− Eϕ(X)))) ≤ K2λ2

2
E exp(λ(ϕ(X)− Eϕ(X))).

This immediately implies (1.4) via the standard Herbst argument, see [11]. Moreover, the
last inequality is equivalent to the concentration property. Indeed, from the concentration
property we know that ‖ϕ(X) − Eϕ(X)‖ψ2 . K and this implies (see [31]) that for all
λ ∈ R

Ent(exp(λ(ϕ(X)− Eϕ(X)))) . K2λ2E exp(λ(ϕ(X)− Eϕ(X))).
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Improving Hanson-Wright inequality in the subgaussian regime

Our analysis implies, in particular, an improved version of Hanson-Wright inequality
(1.1) in some cases. We consider a centered random vector X = (X1, . . . , Xn) with
independent subgaussian components and set K = maxi ‖Xi‖ψ2 , M = ‖maxi |Xi|‖ψ2 . In
this case (1.1) implies that with probability at least 1− 2e−t we have

X>AX − EX>AX . K2
(
‖A‖HS

√
t+ ‖A‖t

)
.

At the same time, Theorem 1.1 for a single matrix A = {A} implies with the same
probability

X>AX − EX>AX .ME‖AX‖
√
t+M2‖A‖t. (2.1)

Observe that when |Xi| ≤ L almost surely for every i ≤ n, we have M . min{K
√

log n,L}.
The following example illustrates the difference between these two bounds.

Example 2.4. Assume, δ1, . . . , δn are independent Bernoulli random variables with the
same mean δ and let δ ≤ 1

4 . For X = (δ1 − δ, . . . , δn − δ) we easily get

E‖AX‖ ≤
√
EXTA2X ≤

√
δ‖A‖HS.

On the other hand, for δ ≤ 1
4 we have

‖X1‖2ψ2
= ‖δ1 − δ‖2ψ2

∼ sup
λ∈R

log(E exp(λ(δ1 − δ)))
λ2

= sup
λ∈R

log(δ exp(λ(1− δ)) + (1− δ) exp(−λδ))
λ2

=
1− 2δ

4 log((1− δ)/δ)
∼ 1

| log δ|
,

where the last line follows directly from Theorem 1.1 in [26] (a result equivalent to
Theorem 1.1 was also obtained in [7]). Therefore, the standard Hanson-Wright inequality
implies that with probability at least 1− e−t we have

X>AX − EX>AX .
1

| log δ|

(
‖A‖HS

√
t+ ‖A‖t

)
,

while (2.1) and M . min{K
√

log n, 1} imply that for t ≥ 1 and δ ≤ 1
4 it holds with

probability at least 1− 2e−t that

X>AX − EX>AX . min

{√
δ log n

| log δ|
,
√
δ

}
‖A‖HS

√
t+ min

{
log n

| log δ|
, 1

}
‖A‖t. (2.2)

It is easy to verify that lim
δ→0+

√
δ| log δ| = 0, thus the inequality (2.2) is better than Hanson-

Wright inequality for this X in the subgaussian regime (when the t-term is dominated by
the
√
t-term).

Uniform concentration results in the Ising model

Consider a random vector σ ∈ {−1, 1}n with the distribution defined by

π(σ) =
1

Z ′
exp

 n∑
i,j=1

Jijσiσj −
n∑
i=1

hiσi

 ,

where Z ′ is a normalizing factor. This distribution defines the Ising model with param-
eters J = (Jij)

n
i,j=1 and h = (hi)

n
i=1. For an arbitrary function f on {−1, 1}n denote a

difference operator,

|df |2(σ) =
1

2

n∑
i=1

(f(σ)− f(Tiσ))2π(−σi | σ1, . . . , σi−1, σi+1, . . . ),
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where the operator Tiσ = (σ1, . . . , σi−1,−σi, σi+1, . . . ) flips the sign of the i-th component,
and π(· | σ1, . . . , σi−1, σi+1, . . . ) is conditional distribution of the i-th component given
the rest of the elements. The following recent result provides the logarithmic Sobolev
inequality for σ under Dobrushin-type conditions.

Theorem 2.5 (Proposition 1.1, [13]). Suppose, ‖h‖∞ ≤ α and J satisfies Jii = 0 and

‖J‖17→1 = max
i=1,...,n

n∑
j=1

|Jij | ≤ 1− ρ (2.3)

There is a constant C = C(α, ρ), such that for an arbitrary function f on {−1, 1}n we
have

Ent(f2) ≤ 2CE|df |2.

Remark 2.6. Following [13] the condition (2.3) will be called Dobrushin’s condition.

We may obtain the following uniform concentration result which is a simple outcome
of our Lemma 1.7 and Theorem 2.5.

Proposition 2.7. Let A be a finite set of symmetric matrices with zero diagonal. It holds
in the Ising model under Dobrushin’s condition and ‖h‖∞ ≤ α that for any t ≥ 0

P

(
sup
A∈A

σ>Aσ − E sup
A∈A

σ>Aσ ≥ t
)

≤ exp

−C min

 t2

(E sup
A∈A
‖Aσ‖+ supA∈A ‖A‖)2

,
t

sup
A∈A
‖A‖

 ,

where C depends only on α, ρ.

Proof. Let σ′(i) = (σ1, . . . , σi−1, σ
′
i, σi+1, . . . ), where given all but the i-th element of σ, the

variables σi and σ′i are independent and are distributed as π(· | σ1, . . . , σi−1, σi+1, . . . ).
Obviously, we may have all σ1, . . . , σi and σ′1, . . . , σ

′
n defined on the same discrete proba-

bility space, and thus we will use the notation π(·) and π(· | ·) for the distribution and the
conditional distribution. Therefore, we have

E|df |2(σ) =
1

2

n∑
i=1

E(f(σ)− f(Tiσ))2π(−σi | σ1, . . . , σi−1, σi+1, . . . )

=

n∑
i=1

∑
σ∈{−1,1}n

π(σ)
∑

σ′i∈{−1,1}

(f(σ)− f(σ′(i)))
2
+π(σ′i | σ1, . . . , σi−1, σi+1, . . . )

where we switched from 1
2 (f(σ) − f(σ′(i)))

2 to (f(σ) − f(σ′(i)))
2
+ due to the symmetry

between σi and σ′i.
Denoting σ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) and using the independence of σi and σ′i

given σ−i we observe that π(σi, σ
′
i | σ−i) = π(σi | σ−i)π(σ′i | σ−i). Moreover, it follows

from the definition of conditional probability that

π(σ)π(σ′i | σ1, . . . , σi−1, σi+1, . . . ) = π(σ−i)π(σi | σ−i)π(σ′i | σ−i)
= π(σ−i)π(σi, σ

′
i | σ−i) = π(σ′i, σi, σ

−i).

Finally, we get

E|df |2(σ) =

n∑
i=1

∑
(σ,σ′i)∈{−1,1}n+1

(f(σ)− f(σ′(i)))
2
+π(σ, σ′i) =

n∑
i=1

E(f(σ)− f(σ′(i)))
2
+ .
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Now we want to consider the function

ZA(σ) = sup
A∈A

σ>Aσ, (2.4)

where A is a given finite set of symmetric matrices with zero diagonal (the diagonal is
not important here, since σ2

i = 1). Let us apply Theorem 2.5 to f(σ) = eλZA(σ)/2. Since

for x ≥ y and λ ≥ 0 we have (eλx/2 − eλy/2)2 = eλx(1 − e−λ(x−y)/2)2 ≤ λ2

4 e
λx(x − y)2, it

holds that

E|df |2(σ) = E

n∑
i=1

(f(σ)− f(σ′(i)))
2
+ = EeλZA(σ)

n∑
i=1

(1− e−λ(ZA(σ)−ZA(σ′(i)))/2)2
+

≤ λ2

4
EeλZA(σ)

n∑
i=1

(ZA(σ)− ZA(σ′(i)))
2
+,

where for Ã (maximizer of (2.4)) we have,

n∑
i=1

(ZA(σ)− ZA(σ′(i)))
2
+ ≤

n∑
i=1

(
σ>Ãσ − [σ′(i)]

>Ãσ′(i)

)2

+
=

n∑
i=1

2(σi − σ′i)
n∑
j=1

Ãijσj

2

+

≤ 16 sup
A∈A
‖Aσ‖2.

Note that concentration for supA∈A ‖Aσ‖ is implied by the same result. Indeed, we have

n∑
i=1

(
sup

A∈A,γ∈Sn−1

γ>Aσ − sup
A∈A,γ∈Sn−1

γ>Aσ′(i)

)2

+

≤
n∑
i=1

(w̃>σ − w̃>σ′(i))
2
+

=

n∑
i=1

(w̃i(σi − σ′i))2
+ ≤ 4 sup

A∈A
‖A‖,

where w̃> = γ>A is such that supA∈A ‖Aσ‖ = w̃>σ. Thus, the expectation of the
corresponding difference operator is bounded by 4 supA∈A ‖A‖. Therefore, due to the
standard Herbst argument (Proposition 6.1 in [11]) Theorem 2.5 implies

P

(
sup
A∈A
‖Aσ‖ > E sup

A∈A
‖Aσ‖+ C sup

A∈A
‖A‖
√
t

)
≤ e−t.

To sum up, by Theorem 2.5 we have

Ent(eλZA(σ)) ≤ λ2E(4 sup
A∈A
‖Aσ‖)eλZA(σ).

It is left to apply Lemma 1.7 which finishes the proof of the following inequality

P

(
sup
A∈A

σ>Aσ − E sup
A∈A

σ>Aσ > C(
√
tE sup

A∈A
‖Aσ‖+ (

√
t+ t) sup

A∈A
‖A‖)

)
≥ 1− e−t,

where C only depends on α, ρ from Theorem 2.5. The claim follows.

Remark 2.8. In the case that A = {A} our result implies the upper tail of the recent
concentration inequality proved in [3] (see Theorem 2.2 and Example 2.5). To show this
fact (denoting σ = σ − Eσ) we observe that

E‖Aσ‖ ≤ E‖Aσ‖+ ‖AEσ‖ = E‖Aσ‖+
( n∑
i=1

(

n∑
j=1

Ai,jEσj)
2
) 1

2 .
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Now, it is well known that Ent(f2) ≤ 2cE|df |2 implies the Poincare inequality Var(f) ≤
cE|df |2. Therefore, we have

‖Eσ σ>‖ = sup
u∈Sn−1

Var(uTσ) ≤ (c(α, ρ)/2) sup
u∈Sn−1

4‖u‖2 = 2c(α, ρ).

This implies,

E‖Aσ‖2 = ETr(A2σ σ>) ≤ ‖A‖2HS‖Eσ σT ‖ ≤ 2c(ρ, α)‖A‖2HS ,

where we used that Tr(BD) ≤ Tr(B)‖D‖ which holds for any pair of symmetric and
nonnegative matrices B,D. Finally, we have

E‖Aσ‖ ≤ C(ρ, α)‖A‖HS +

 n∑
i=1

 n∑
j=1

Ai,jEσj

2


1
2

.

The right-hand side term appears instead of E‖Aσ‖ in aforementioned Example 2.5.

Replacing ‖maxi |Xi|‖ψ2 with maxi ‖Xi‖ψ2 in Theorem 1.1 and Lemma 1.8

Essentially, we show that it is not possible to substitute ‖maxi |Xi|‖ψ2
with maxi ‖Xi‖ψ2

in Theorem 1.1 by presenting a concrete counterexample which was kindly suggested by
Radosław Adamczak. Suppose the opposite: there is an absolute constant C > 0 such
that for any set of matrices A and any subgaussian random variables X1, . . . , Xn it holds
with probability at least 1− e−t that

ZA(X) ≤ C
(
EZA(X) + max

i
‖Xi‖ψ2

√
tE sup

A∈A
‖AX‖+ max

i
‖Xi‖2ψ2

sup
A∈A
‖A‖t

)
, (2.5)

which implies that for some other constant C ′ > 0 we have

E1/2ZA(X)2 ≤ C ′
(
EZA(X) + max

i
‖Xi‖ψ2E sup

A∈A
‖AX‖+ max

i
‖Xi‖2ψ2

sup
A∈A
‖A‖

)
.

Notice that here we allow a multiplicative constant not equal to 1 in front of the expecta-
tion. Let us take A = {A(1), . . . , A(n)} with A(i) having only one nonzero element A(i)

ii = 1.
For the sake of simplicity we take i.i.d. X1, . . . , Xn with EX2

i = 1. This implies

ZA(X) = max
i≤n

(X2
i − 1), sup

A∈A
‖AX‖ = max

i≤n
|Xi|, sup

A∈A
‖A‖ = 1.

Assuming that ‖X1‖ψ2
≤ 4 we have∥∥max

i≤n
X2
i − 1

∥∥
L2
≤ C ′

(
Emax

i≤n
(X2

i − 1) + 4Emax
i≤n
|Xi|+ 16

)
,

which, since ‖maxi≤nX
2
i ‖L1 ≥ maxi≤n ‖Xi‖L2 = 1, implies

‖max
i≤n

X2
i ‖L2

≤ 1 + C ′(‖max
i≤n

X2
i ‖L1

+ 4Emax
i≤n
|Xi|+ 15) ≤ (1 + 20C ′)‖max

i≤n
X2
i ‖L1

.

Note that this inequality also holds if we rescale X ′i = αXi for an arbitrary α > 0.
Therefore, if ‖X1‖ψ2

≤ 4‖X1‖L2
, we can always rescale our random variables to have

‖X1‖L2
= 1 and ‖X1‖ψ2

≤ 4, so that the above inequality still holds.
Taking the latter into account we conclude that there is a constant D > 0, such that

if a centered random X1 satisfies ‖X1‖ψ2
≤ 4‖X1‖L2

, then for any n ≥ 1 the following
inequality holds

‖max
i≤n

X2
i ‖L2

≤ D‖max
i≤n

X2
i ‖L1

. (2.6)
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It is known that such hypercontractivity of maxima implies certain regularity of tails
of X2

1 . In this case by Theorem 4.6 in [14] for any ρ, ε > 0 there is another constant
A = A(D, ρ, ε) > 1 such that for every t ≥ t0 = ρ‖X1‖L1

we have

AP(X2
1 > At) ≤ εP(X2

1 > t),

so that taking ρ = ε = 1, there is A = A(D) > 1 such that for all t ≥ ‖X1‖L1
we have

P(X2
1 > At) ≤ 1

A
P(X2

1 > t). (2.7)

The latter does not have to hold for every subgaussian random variable X1. For instance,
taking a symmetric random variable X1 with P(|X1| = 1) = 1− e−r and P(|X1| =

√
r) =

e−r for r ≥ 4 > 4 log 2 we have E exp
(
|X1|2

2

)
= e

1
2 (1 − e−r) + e−r+

r
2 ≤ e

1
2 + e−

r
2 ≤ 2,

which implies ‖X1‖ψ2 ≤
√

2. Moreover, for r ≥ 4 we also have EX2
1 ≥ 1− e− r2 ≥ 1

2 , thus
‖X1‖L2 ≥ 1/

√
2 and the conditions of (2.6) are satisfied. But for large enough r > At and

for t = t0, we have
P
(
X2

1 > At
)

= P(X2
1 > t) = e−r,

therefore breaking the tail regularity (2.7). Therefore, it is impossible to establish an
inequality of the form (2.5). We note that it is also possible to prove that (2.6) may not
hold for X1 defined above via some direct calculations.

For the same reason it is not possible to replace ‖maxi≤n |Xi|‖ψ2
with maxi≤n ‖Xi‖ψ2

in Lemma 1.8. Indeed, suppose that for any convex L-Lipschitz function f we have

P

(
f(X) ≤ C(Ef(X) + Lmax

i≤n
‖Xi‖ψ2

√
t)

)
≤ e−t.

Taking f(X) = maxi≤n |Xi|, which is convex and 1-Lipschitz, we get∥∥max
i≤n

X2
i

∥∥
L2

=
∥∥max
i≤n
|Xi|

∥∥
L4
≤ C ′

(
Emax

i≤n
|Xi|+ max

i≤n
‖Xi‖ψ2

)
.

The same choice of X1 implies (2.6) and leads to a contradiction.

3 Proof of Theorem 1.1

In this section we assume that the components of X are independent. We recall that
X ′i denotes an independent copy of the component Xi. The main tool of the proof is the
modified logarithmic Sobolev inequality (see Theorem 2 in [10] or Theorem 6.15 in [11]).
For the sake of brevity we denote Z = ZA(X) in this section. Let us set

Z ′i = ZA(X(i)), X(i) = (X1, . . . , Xi−1, X
′
i, Xi, . . . , Xn).

Then by the symmetrized version of the inequality we have that for any λ,

Ent(eλZ) ≤
n∑
i=1

EeλZτ(−λ(Z − Z ′i)+),

where τ(x) = x(ex − 1). Since τ(x) ≤ x2 for x ≤ 0, we have for all λ ≥ 0,

Ent(eλZ) ≤ λ2EV+e
λZ , V+ := E′

n∑
i=1

(Z − Z ′i)2
+. (3.1)

The right-hand side of the inequality can be “decoupled” by the variational entropy
formula (1.8), as it is done in the proof of Lemma 1.7 which was presented in the
introduction.
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Proof of Lemma 1.7. We have

Ent(eλZ) ≤ λ2LEeλZ + λ2E(W − L)+e
λZ .

Due to the deviation bound for W it holds for some absolute constant C > 0 that

E exp

(
(W − L)+

Cθ

)
≤ e.

Therefore, by (1.8) we have

E(W − L)+/(Cθ)e
λZ ≤ EeλZ + Ent(eλZ),

which implies
(1− Cθλ2)Ent(eλZ) ≤ λ2(L+ Cθ)EeλZ .

By the standard Herbst argument (see e.g., Proposition 6.1 in [11]) we have for any
0 < λ ≤ (2Cθ)−1/2,

logE exp(λ(Z − EZ)) ≤ 2(L+ Cθ)λ2.

This moment generating function bound is known to immediately imply the right-tail
concentration bound (see the properties of subgamma random variables in [11]). Finally,
if (1.9) holds for all λ ∈ R, the two sided inequality can be derived in the same way.

Remark 3.1. Note, there is as well a moment version of the modified logarithmic Sobolev
inequality, see e.g., Theorem 2 in [9]. By this theorem it holds for all q ≥ 2 that

‖(Z − EZ)+‖Lq ≤
√

2κq‖
√
V+‖Lq ,

where κ < 2 is an absolute constant. Then if we have

‖
√
V+‖Lq ≤

√
L+

√
θq, ∀q ≥ 2,

which is equivalent to the second inequality in (1.9) up to absolute constant factors, then
it holds for any q ≥ 2

‖(Z − EZ)+‖Lq ≤
√

4Lq +
√

4θq.

The last inequality implies (1.10) up to absolute constant factors. We note that similar
moment computations were used in [9] to analyze the Rademacher chaos. Similarly, one
can introduce the moment analog of the logarithmic Sobolev inequality (see equation 3
in [5]):

‖Z(X)− EZ(X)‖Lq ≤ K
√
q‖|∇Z(X)|‖Lq ,

where K > 0 is a constant, | · | stands for the standard Euclidean norm and q ≥ 2. Now, if
it holds (which in some cases may be derived by the second application of the moment
analog of the logarithmic Sobolev inequality)

‖|∇Z(X)|‖Lq ≤ E|∇Z(X)|+ ‖|∇Z(X)| − E|∇Z(X)|‖Lq ≤
√
L+K

√
θq, ∀q ≥ 2

then
‖Z − EZ‖Lq ≤ K(

√
Lq +K

√
θq),

which implies the result similar to (1.10).

Finally, we establish a version of our result that requires neither that Xi is centered
nor that Xi has variance one. It can happen that EX>AX 6= Tr(A), but in fact, the
value we subtract does not really affect the concentration properties. In general we can
consider the random variable

Z = sup
A∈A

(X>AX − g(A)), (3.2)

where g : Rn×n → R is an arbitrary function.
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Lemma 3.2. Suppose that the components Xi are independent but not necessarily
centered, and |Xi| ≤ K almost surely. Then for Z defined by (3.2) and for any t ≥ 1 it
holds with probability at least 1− e−t that

Z − EZ ≤ C
(
K(E sup

A∈A
‖AX‖+ E sup

A∈A
‖Diag(A)X‖)

√
t+K2 sup

A∈A
‖A‖t

)
,

where C is an absolute constant.

Proof. Let Ã be the matrix that maximizes Z(X) given X. We have∑
i≤n

(Z − Z ′i)2
+ ≤

∑
i≤n

(
X>ÃX − [X(i)]>ÃX(i)

)2

=
∑
i≤n

2(Xi −X ′i)
∑
j 6=i

ãijXj + ãii(X
2
i −X ′ 2i )

2

=
∑
i≤n

(Xi −X ′i)2

2
∑
j 6=i

ãijXj + ãii(Xi +X ′i)

2

≤ (2K)2
∑
i≤n

2
∑
j

ãijXj + ãii(X
′
i −Xi)

2

,

where the last line follows from |Xi −X ′i| ≤ 2K. The factor 2 appears in the second line
because Ã is symmetric and thus X ′i is counted twice. Applying the triangle inequality
we get

V+ = E′
∑
i≤n

(Z − Z ′i)2
+ ≤ (2K)2E′ sup

A∈A
(2‖AX‖+ ‖Diag(A)X‖+ ‖Diag(A)X ′‖)2,

where E′[·] = E[·| X] denotes the expectation with respect to the variables X ′1, . . . , X
′
n

only. Thus,

V+ ≤ 12K2

(
4 sup
A∈A
‖AX‖2 + sup

A∈A
‖Diag(A)X‖2 + E sup

A∈A
‖Diag(A)X‖2

)
,

where we used (a + b + c)2 ≤ 3(a2 + b2 + c2). Since |Xi| ≤ K, we have by convex
concentration for Lipschitz functions (see e.g. Theorem 6.10 in [11])

P

(
sup
A∈A
‖AX‖ > E sup

A∈A
‖AX‖+ 2

√
2K sup

A∈A
‖A‖
√
t

)
≤ e−t. (3.3)

Using (a+ b)2 ≤ 2a2 + 2b2 we have

P

(
sup
A∈A
‖AX‖2 > 2

(
E sup
A∈A
‖AX‖

)2

+ 16K2 sup
A∈A
‖A‖2t

)
≤ e−t.

Similar inequality holds for the term supA∈A ‖Diag(A)X‖2. Moreover, by the Poincare
inequality (Theorem 3.17 in [11]) we have

E sup
A∈A
‖Diag(A)X‖2 =

(
E sup
A∈A
‖Diag(A)X‖

)2

+ Var

(
sup
A∈A
‖Diag(A)X‖

)
≤
(
E sup
A∈A
‖Diag(A)X‖

)2

+ (2K)2 sup
A∈A
‖Diag(A)‖2.
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Since ‖Diag(A)‖ ≤ ‖A‖, we get for L ∼ K2(E supA∈A ‖AX‖ + E supA∈A ‖Diag(A)X‖)2

and θ ∼ K4 (supA∈A ‖A‖)
2 that

P (V+ > L+ θ + θt) ≤ e−t.

Therefore, due to the modified logarithmic Sobolev inequality (3.1) we can use Lemma
1.7. This provides us with the inequality

P(Z − EZ > C(
√
L+ θ

√
t+
√
θt)) ≤ e−t,

where we can neglect the θ in front of
√
t when t ≥ 1.

Note that our bound has the term E supA∈A ‖Diag(A)X‖ which can be avoided in the
case of centered variables Xi. Therefore, we obtain the bound matching the previous
results (1.5) and (1.2).

Corollary 3.3. Suppose that |Xi| ≤ K almost surely and EXi = 0. Then for any t ≥ 1 it
holds with probability at least 1− e−t that

Z − EZ≤ C
(
KE sup

A∈A
‖AX‖

√
t+K2 sup

A∈A
‖A‖t

)
,

where C > 0 is an absolute constant.

In the next two lemmas we show how to get rid of the diagonal term. This finishes
the proof of the corollary above.

Lemma 3.4. Suppose that Y ∈ Rn has the i.i.d. components with symmetric distribution
and let B be a finite set of n× n positive-semidefinite symmetric matrices. Then we have

E sup
B∈B

Y >Diag(B)Y ≤ E sup
B∈B

Y >BY.

Proof. Since any B ∈ B is positive-semidefinite, supB∈B x
>Bx is a convex function of

x ∈ Rn. Moreover, Y
d
= diag(ε)Y for an independent Rademacher vector ε ∈ {1,−1}n.

Therefore, by Jensen’s inequality

E sup
B∈B

Y >BY = EEε sup
B∈B

Y >diag(ε)Bdiag(ε)Y

≥ E sup
B∈B

EεY
>diag(ε)Bdiag(ε)Y

= E sup
B∈B

Y >Diag(B)Y,

where Eε denotes the expectation with respect to ε given Y .

Lemma 3.5. For X with the components that are independent and mean zero, we have

E sup
A∈A
‖Diag(A)X‖ ≤ CE sup

A∈A
‖AX‖,

where C > 0 is an absolute constant.

Proof. Let X ′ be an independent copy of X. By the standard symmetrization argument
together with Jensen’ inequality and the triangle inequality we have

E sup
A∈A
‖AX‖ ≤ E sup

A∈A
‖A(X −X ′)‖ ≤ 2E sup

A∈A
‖AX‖. (3.4)
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Observe that X − X ′
d
= diag(ε)(X −X ′) = diag(X − X ′)ε where ε ∈ {1,−1}n is an

independent Rademacher vector. Therefore, we have

E sup
A∈A
‖A(X −X ′)‖ = EEε sup

A∈A
‖A diag(X −X ′)ε‖,

where Eε denotes the expectation with respect to ε. Conditionally on (X − X ′) set
AX,X′ = {A diag(X − X ′) : A ∈ A}. Let a1, . . . ,an be the columns of A. Notice that
for any matrix A we have Diag(A>A) = diag(‖a1‖2, . . . , ‖an‖2) � diag(A2

11, . . . , A
2
nn) =

Diag(A)2. Therefore, by Lemma 3.4 we have

Eε sup
A∈AX,X′

‖Diag(A)ε‖2 ≤ Eε sup
A∈AX,X′

‖Aε‖2. (3.5)

We now want to get rid of the squares in (3.5). Let B be an arbitrary set of symmetric
n× n matrices and let us fix some B ∈ B. We have E‖Bε‖2 = ‖B‖2HS and by Khinchin’s
inequality we have

E‖Bε‖ ≥ 1√
2
‖B‖HS ,

with the optimal constant due to [27]. Thus, we have

E sup
B∈B
‖Bε‖ ≥ sup

B∈B
E‖Bε‖ ≥ 1√

2
sup
B∈B
‖B‖.

Furthermore, by the convex Poincare inequality (Theorem 3.17, [11]) we have

Var(sup
B∈B
‖Bε‖) = E sup

B∈B
‖Bε‖2 −

(
E sup
B∈B
‖Bε‖

)2

≤ 4 sup
B∈B
‖B‖2.

Therefore, E supB∈B ‖Bε‖2 ≤ (E supB∈B ‖Bε‖)
2

+ 4 supB∈B ‖B‖2 ≤ 9 (E supB∈B ‖Bε‖)
2

and we get
(E sup

B∈B
‖Bε‖)2 ≤ E sup

B∈B
‖Bε‖2 ≤ 9(E sup

B∈B
‖Bε‖)2.

The last inequality combined with (3.5) implies

Eε sup
A∈AX,X′

‖Diag(A)ε‖ ≤

(
Eε sup

A∈AX,X′
‖Diag(A)ε‖2

) 1
2

≤ 3Eε sup
A∈AX,X′

‖Aε‖.

Now, taking the expectation with respect to X,X ′ and applying (3.4) again we finish the
proof.

3.1 Truncation for unbounded variables

In this section we finish the proof of Theorem 1.1. In order to apply the bounded
version of our inequality, we want to truncate each variable Xi, which can be done by
the approach from [1] (see references therein for more details on various applications of
this method), where it was used in the context of Talagrand’s concentration inequality.
Suppose that ‖maxi |Xi|‖ψ2 <∞ and set

Yi = Xi1(|Xi| ≤M), Wi = Xi − Yi, (3.6)

with M = 8Emax |Xi|. We have,

ZA(X) = sup
A∈A

(Y >AY − EX>AX +W>AX +W>AY )

≤ sup
A∈A

(Y >AY − EX>AX) + sup
A∈A
|W>AX|+ sup

A∈A
|W>AY |

≤ sup
A∈A

(Y >AY − EX>AX) + ‖W‖ sup
A∈A
‖AX‖+ ‖W‖ sup

A∈A
‖AY ‖. (3.7)
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The variables Yi are now bounded by the value M . Therefore, the first term of the last
line can be analyzed by Lemma 3.2.

To bound the rest we need to control the deviations of ‖W‖. We have ‖W‖2 =

W 2
1 + · · ·+W 2

n is a sum of independent random variables with bounded ψ1-norm. Thus,
we can control it’s expectation via the Hoffman-Jørgensen inequality. Due to the choice
of the truncation level we have by Markov’s inequality

P

(
max
i≤n

W 2
i > 0

)
= P

(
max
i≤n
|Xi| > M

)
≤
Emax

i≤n
|Xi|

M
≤ 1

8
.

Denoting Sk = W 2
1 + · · ·+W 2

k we have ‖W‖2 = Sn. Then,

P

(
max
k≤n
|Sk| > 0

)
≤ P

(
max
i≤n

W 2
i > 0

)
≤ 1

8
.

Therefore, by Proposition 6.8 in [20] we have

E‖W‖2 = ESn ≤ 8Emax
i≤n

W 2
i . ‖max

i≤n
|Xi|‖2ψ2

,

where the latter holds since ‖max
i≤n

W 2
i ‖ψ1

≤ ‖max
i≤n
|Xi|‖2ψ2

. Furthermore, by Theorem 6.21

in [20] we have∥∥∥∥∥
n∑
i=1

W 2
i − EW 2

i

∥∥∥∥∥
ψ1

≤ K1

(
E
∣∣‖W‖2 − E‖W‖2∣∣+

∥∥max
i≤n
|W 2

i − EW 2
i |
∥∥
ψ1

)

≤ 2K1

(
E‖W‖2 +

∥∥max
i≤n

W 2
i

∥∥
ψ1

)
. ‖max

i≤n
|Xi|‖2ψ2

,

where K1 is an absolute constant. Given the bound on the expectation of ‖W‖2 we have∥∥‖W‖∥∥
ψ2

. ‖max
i≤n
|Xi|‖ψ2 .

Finally, we obtain the deviation bound: for every t > 0 we have

P

(
‖W‖ ≥ C

√
t‖max

i≤n
|Xi|‖ψ2

)
≤ 2e−t. (3.8)

Now we apply Lemma 3.2 to the bounded variables Y . Notice that our theorem does
not require the variables to be centered. This assumption is only used in Corollary 3.3.
Taking this into account, Lemma 3.2 can be applied to the variables Y as follows. Set
g(A) = EX>AX and ZA(Y ) = supA∈A(Y >AY − g(A)). By Lemma 3.2 we have

ZA(Y )− EZA(Y ) .M
√
t

(
E sup
A∈A
‖AY ‖+ E sup

A∈A
‖Diag(A)Y ‖

)
+M2t sup

A∈A
‖A‖ (3.9)

with probability at least 1− e−t. Finally, we have to replace the expectations EZA(Y ),
E sup
A∈A
‖AY ‖ and E sup

A∈A
‖Diag(A)Y ‖ in (3.9) by their counterparts, taken with respect to

X, as in the original formulation of the result.
First, we want to provide a concentration bound for the convex function sup

A∈A
‖AX‖

that accounts for unbounded variables. As a matter of fact, we prove the following
Lemma which is even slightly stronger than Lemma 1.8.
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Lemma 3.6. Let f : Rn → R be separately convex1 L-Lipschitz with respect to the
Euclidean norm in Rn and X = (X1, . . . , Xn) be a random vector with the independent
components. Then it holds for t ≥ 1 that

P

(
f(X) > Ef(X) + C

∥∥max
i≤n
|Xi|

∥∥
ψ2
L
√
t

)
≤ e−t,

where C > 0 is an absolute constant. Additionally, if f is convex and L-Lipschitz, then
for any t > 0,

P

(
|f(X)− Ef(X)| > C

∥∥max
i≤n
|Xi|

∥∥
ψ2
L
√
t

)
≤ 4e−t.

Proof. By convex concentration (Theorem 6.10 in [11]) for bounded Yi defined by (3.6)
we have that for any t > 0,

P

(
f(Y ) > Ef(Y ) + C‖max

i≤n
|Xi|‖ψ2

L
√
t

)
≤ e−t.

Moreover, due to the Lipschitz assumption and (3.8) we have

|f(X)− f(Y )| ≤ L‖W‖ . L‖max
i≤n
|Xi|‖ψ2

√
1 + t,

where the latter holds with probability at least 1− e−t. Integrating these two bounds we
also get

|Ef(X)− Ef(Y )| . L‖max
i≤n
|Xi|‖ψ2

, (3.10)

which together implies that with probability at least 1− e−t we have

f(X)− Ef(X) ≤ f(Y )− Ef(Y ) + |f(X)− f(Y )|+ |Ef(X)− Ef(Y )|

. L‖max
i≤n
|Xi|‖ψ2

√
t.

The proof of the lower tail bound follows from Theorem 7.12 in [11] and the standard
relation between the median and the expectation which holds in our case.

From Lemma 3.6 due to the fact that sup
A∈A
‖AX‖ is sup

A∈A
‖A‖-Lipschitz we have

P

(
sup
A∈A
‖AX‖ > E sup

A∈A
‖AX‖+ C‖max

i≤n
|Xi|‖ψ2

sup
A∈A
‖A‖
√
t

)
≤ 2e−t. (3.11)

Moreover, similar to (3.10) we have∣∣∣∣E sup
A∈A
‖AY ‖ − E sup

A∈A
‖AX‖

∣∣∣∣ . ‖max
i≤n
|Xi|‖ψ2

sup
A∈A
‖A‖. (3.12)

Next, we bound the difference between EZA(X) and EZA(Y ).

Lemma 3.7. We have

|EZA(Y )− EZA(X)| . ‖max
i≤n
|Xi|‖ψ2

E sup
A∈A
‖AX‖+

∥∥max
i≤n
|Xi|

∥∥2

ψ2
sup
A∈A
‖A‖.

1This means that for every i = 1, ..., n it is a convex function of i-th variable if the rest of the variables are
fixed. Any convex function is separately convex.
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Proof. Similarly to (3.7) we have

|EZA(Y )− EZA(X)| ≤ E‖W‖ sup
A∈A
‖AX‖+ E‖W‖ sup

A∈A
‖AY ‖

≤ E1/2‖W‖2(E1/2 sup
A∈A
‖AX‖2 + E1/2 sup

A∈A
‖AY ‖2), (3.13)

where by (3.8) E1/2‖W‖2 . ‖maxi≤n |Xi|‖ψ2 and by (3.11),

E sup
A∈A
‖AX‖2 .

(
E sup
A∈A
‖AX‖

)2

+ ‖max
i≤n
|Xi|‖2ψ2

sup
A∈A
‖A‖2.

Taking the square root we get

E1/2 sup
A∈A
‖AX‖2 . E sup

A∈A
‖AX‖+ ‖max

i≤n
|Xi|‖ψ2

sup
A∈A
‖A‖.

Similarly and using (3.12) we have,

E1/2 sup
A∈A
‖AY ‖2 . E sup

A∈A
‖AY ‖+ ‖max

i≤n
|Xi|‖ψ2

sup
A∈A
‖A‖

. E sup
A∈A
‖AX‖+ ‖max

i≤n
|Xi|‖ψ2

sup
A∈A
‖A‖.

Plugging it in (3.13) we get the required inequality.

Therefore, in (3.9) we can use Lemma 3.7 to get

EZA(Y ) ≤ EZA(X) + C

(
‖max
i≤n
|Xi|‖ψ2E sup

A∈A
‖AX‖+ ‖max

i≤n
|Xi|‖2ψ2

sup
A∈A
‖A‖

)
, (3.14)

and by Lemma 3.12 (neglecting the diagonal term for centered X due to Lemma 3.5)

E sup
A∈A
‖AY ‖+ E sup

A∈A
‖Diag(A)Y ‖ ≤ C

(
E sup
A∈A
‖AX‖+ ‖max

i≤n
|Xi|‖ψ2

sup
A∈A
‖A‖

)
. (3.15)

Finally, with probability at least 1− e−t for t ≥ 1 we have from (3.7), (3.12) and (3.11)

|ZA(X)− ZA(Y )| ≤ ‖W‖ sup
A∈A
‖AY ‖+ ‖W‖ sup

A∈A
‖AX‖

. ‖W‖E sup
A∈A
‖AX‖+ ‖W‖‖max

i≤n
|Xi|‖ψ2 sup

A∈A
‖A‖
√
t,

which using (3.8) turns into

|ZA(X)− ZA(Y )| . ‖max
i≤n
|Xi|‖ψ2

E sup
A∈A
‖AX‖

√
t+ ‖max

i≤n
|Xi|‖2ψ2

sup
A∈A
‖A‖t.

Combining the last inequality together with (3.14) and (3.15) we finish the proof of
Theorem 1.1.

3.2 Proof of Proposition 1.4

The proof is essentially based on the application of the next standard deviation bound
instead of the concentration bound of (3.11) in the proof of Theorem 1.1. Since we did
not find an exact reference, we derive this inequality here.

Lemma 3.8. Suppose that X1, . . . , Xn are independent centered random variables and
A is a finite set of symmetric matrices. Let G be a standard normal vector in Rn. Then it
holds with probability at least 1− Ce−t that

sup
A∈A
‖AX‖ . max

i≤n

∥∥Xi

∥∥
ψ2

(
E sup
A∈A
‖AG‖+ sup

A∈A
‖A‖
√
t

)
,

where C > 0 is an absolute constant.
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Proof. At first, we observe that supA∈A ‖AX‖ = sup
A∈A,γ∈Sn−1

γTAX. Consider the metric

ρ defined by ρ(a, b) = ‖a− b‖max
i≤n
‖Xi‖ψ2

for any a, b ∈ Rn. By Theorem 2.2.26 in [29] it

holds for t ≥ 0 and an absolute constant C > 0 that with probability at least 1−C exp(−t),

sup
A∈A,γ∈Sn−1

γTAX . diam(ASn−1, ρ)
√
t+ γ2(ASn−1, ρ),

where diam(ASn−1) = sup
x,y∈ASn−1

‖x − y‖max
i≤n
‖Xi‖ψ2

≤ 2 sup
A∈A
‖A‖max

i≤n

∥∥Xi

∥∥
ψ2

and the

functional γ2 is also defined in [29]. For the sake of brevity, we will not introduce its
definition here. Finally, applying Talagrand’s majorizing measure theorem (Theorem
2.4.1 in [29]) we have

γ2(ASn−1, ρ) . max
i≤n

∥∥Xi

∥∥
ψ2
E sup
x∈ASn−1

xTG = max
i≤n

∥∥Xi

∥∥
ψ2
E sup
A∈A
‖AG‖.

The claim follows.

Setting M = 8Emaxi |Xi| and K = maxi ‖Xi‖ψ2
consider the truncation scheme that

is used in (3.6). Due to the assumption that all Xi are symmetrically distributed, we have
EYi = 0. Therefore, Lemma 3.8 implies

P

(
sup
A∈A
‖AY ‖ > CK(E sup

A∈A
‖AG‖+ sup

A∈A
‖A‖
√
t)

)
≤ e−t,

which can be used instead of the convex concentration inequality (3.3) when dealing
with the modified logarithmic Sobolev inequality. Following this proof and using the fact
that maxi |Yi| ≤M almost surely, we end up with the concentration bound

ZA(Y )− EZA(Y ) .MK

(
E sup
A∈A
‖AG‖

√
t+ sup

A∈A
‖A‖t

)
,

which holds with probability at least 1 − e−t for any t > 1. Furthermore, we slightly
modify the derivations of the previous section by using Lemma 3.8 instead of (3.11). In
particular, we get with probability at least 1− e−t for any t > 1,

|ZA(X)− ZA(Y )| .MK(E sup
A∈A
‖AG‖

√
t+ sup

A∈A
‖A‖t),

and taking expectation we also get |EZA(X)− EAZ(Y )| .MKE sup
A∈A
‖AG‖. The claim

follows from (3.7).

4 The matrix Bernstein inequality in the subexponential case

As we mentioned above, one of the prominent applications of the uniform Hanson-
Wright inequalities is a recent concentration result in the Gaussian covariance estimation
problem. It is known that covariance estimation may be alternatively approached by
the matrix Bernstein inequality, see e.g., [33, 21]. Following the truncation approach,
which was taken above, we provide a version of matrix Bernstein inequality that does
not require uniformly bounded matrices. The standard version of the inequality (see
[30] and reference therein) may be formulated as follows: consider random independent
matrices X1, . . . , XN ∈ Rn×n, such that almost surely maxi ‖Xi‖ ≤ L. It holds

P

(∥∥∥∥∥
N∑
i=1

Xi − EXi

∥∥∥∥∥ > u

)
≤ n exp

(
−c
(
u2

σ2

∧ u

L

))
,
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where c is an absolute constant and σ2 =
∥∥E∑N

i=1(Xi − EXi)
2
∥∥. The first problem with

this result is that it does not hold in general cases when maxi ‖Xi‖ψ1
or maxi ‖Xi‖ψ2

are
bounded. The second problem is the bound depends on the dimension n. This does not
allow to apply this result to operators in infinite-dimensional Hilbert spaces.

For a positive-definite real square matrix A we define the effective rank as r̃(A) =
Tr(A)
‖A‖ . We show the following bound.

Proposition 4.1. Consider the set of independent Hermitian matrices X1, . . . , XN ∈
Cn×n such that

∥∥‖Xi‖
∥∥
ψ1
<∞. Set M =

∥∥maxi≤N ‖Xi‖
∥∥
ψ1

and let the positive definite

Hermitian matrix R be such that E
∑N
i=1X

2
i � R. Finally, set σ2 = ‖R‖. There are

absolute constants c, C, c1 > 0 such that for any u ≥ c1 max{M,σ} we have

P

(∥∥∥∥∥
N∑
i=1

Xi − EXi

∥∥∥∥∥ > u

)
≤ C r̃ (R) exp

(
−c
(
u2

σ2

∧ u

M

))
.

Remark 4.2. Using the well known bound for the maximum of subexponential random
variables (see [20]) we have∥∥max

i≤N
‖Xi‖

∥∥
ψ1

. logN max
i≤N

∥∥‖Xi‖
∥∥
ψ1
.

Therefore, we may state the bound for M = logN maxi≤N
∥∥‖Xi‖

∥∥
ψ1

up to absolute
constant factors. When n = 1 the effective rank plays no role and our bound recovers
the version of classical Bernstein inequality which is due to [1]. In this paper, it is
also shown that the logN factor cannot be removed in general. This means that M =∥∥maxi≤N ‖Xi‖

∥∥
ψ1

can not be replaced by maxi≤N
∥∥‖Xi‖

∥∥
ψ1

in general.

Proof. Fix U > 0 and consider the decomposition

Xi = Yi + Zi, Yi = Xi1(‖Xi‖ ≤ U), Zi = Xi1(‖Xi‖ > U),

so that the matrices Yi are uniformly bounded by U in the operator norm. By the triangle
inequality and the union bound we have

P

(∥∥∥∥∥
N∑
i=1

Xi − EXi

∥∥∥∥∥ > 2u

)
≤ P

(∥∥∥∥∥
N∑
i=1

Yi − EYi

∥∥∥∥∥ > u

)
+ P

(∥∥∥∥∥
N∑
i=1

Zi − EZi

∥∥∥∥∥ > u

)
.

Therefore, two parts can be treated separately. Throughout this proof c > 0 is an
absolute constant which may change from line to line. It is known that uniformly
bounded random matrices satisfy the Bernstein-type inequality (see Theorem 3.1 in [24])
for u ≥ 1

6 (U +
√
U2 + 36σ2)

P

(∥∥∥∥∥
N∑
i=1

Yi − EYi

∥∥∥∥∥ > u

)
≤ 14r̃

(
E

N∑
i=1

(Yi − EYi)2

)
exp

− cu2∥∥∥∥ N∑
i=1

E(Yi − EYi)2

∥∥∥∥+ Uu

 ,

where we used ‖Yi‖ ≤ U . However, since we want to present this bound in terms of Xi

and not Yi, we need the following modification of the proof of Minsker’s theorem. Using
the notation of his proof, it follows from Lemma 3.1 in [24]:

logE exp(θ(Yi − EYi)) �
φ(θU)

U2
E(Yi − EYi)2 � φ(θU)

U2
2EY 2

i �
φ(θU)

U2
2EX2

i ,

where φ(t) = et − t− 1. Now, using the same lines of the proof, instead of formula (3.4)
we have

ETrφ

(
θ

N∑
i=1

(Yi − EYi)

)
≤ Tr

(
exp

(
φ(θU)

U2
2

N∑
i=1

EX2
i

)
− Id

)
,
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and lines (3.5) with the condition
∑n
i=1EX

2
i � R imply

exp

(
φ(θU)

U2
2

N∑
i=1

EX2
i

)
− Id � exp

(
2φ(θU)

U2
R

)
− Id �

R

σ2
exp

(
2φ(θU)

U2
σ2

)
,

where σ2 = ‖R‖. Following the last lines of the proof of Theorem 3.1, we finally have

P

(∥∥∥∥∥
N∑
i=1

Yi − EYi

∥∥∥∥∥ > u

)
≤ 14r̃ (R) exp

(
− cu2

σ2 + Uu

)
, (4.1)

for u ≥ C max{U, σ}.
We proceed with the analysis of Zi. Set U = 8Emax

i≤N
‖Xi‖, then we have by Markov’s

inequality

P

(
max
k≤N

∥∥∥∥∥
k∑
i=1

Zi

∥∥∥∥∥ > 0

)
≤ P

(
max
i≤N
‖Zi‖ > 0

)
= P

(
max
i≤N
‖Xi‖ > U

)
≤ 1/8.

Thus, we can apply Proposition 6.8 from [20] to Zi taking its values in the Banach space
(Cn×n, ‖ · ‖) equipped with the spectral norm. We have

E

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥ ≤ 8Emax
i≤N
‖Zi‖,

which implies that for some absolute constant K > 0,

E

∥∥∥∥∥
N∑
i=1

Zi − EZi

∥∥∥∥∥ ≤ 2E

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥ ≤ 16Emax
i≤N
‖Zi‖ ≤ K

∥∥max
i≤N
‖Zi‖

∥∥
ψ1
.

Using Theorem 6.21 from [20] in (Cn×n, ‖ · ‖) we have,∥∥∥∥∥
∥∥∥∥∥
N∑
i=1

Zi − EZi

∥∥∥∥∥
∥∥∥∥∥
ψ1

≤ K1

(
E

∥∥∥∥∥
N∑
i=1

Zi − EZi

∥∥∥∥∥+
∥∥max
i≤N
‖Zi‖

∥∥
ψ1

)
≤ K2

∥∥max
i≤N
‖Zi‖

∥∥
ψ1
,

where K1,K2 > 0 are absolute constants. This implies that for any u ≥
∥∥maxi≤N ‖Zi‖

∥∥
ψ1

we have

P

(∥∥∥∥∥
N∑
i=1

Zi − EZi

∥∥∥∥∥ > u

)
≤ exp

(
− cu∥∥maxi≤N ‖Zi‖

∥∥
ψ1

)
,

where c > 0 is an absolute constant. Combining it with (4.1) and that for some absolute
C > 0 we have U ≤ C

∥∥maxi≤N ‖Xi‖
∥∥
ψ1

and
∥∥maxi≤N ‖Zi‖

∥∥
ψ1
≤
∥∥maxi≤N ‖Xi‖

∥∥
ψ1

, we
prove the claim.

To the best of our knowledge, the Proposition 4.1 is the first to combine two important
properties: it simultaneously captures the effective rank instead of the dimension n and
is valid for matrices with subexponential operator norm (the matrix Bernstein inequality
in the unbounded case was previously granted under the so-called Bernstein moment
condition; we refer to [30] and the references therein). We should also compare our
results with Proposition 2 in [16]. His inequality has the same form as our bound, but
instead of the effective rank, the original dimension n is used and M =

∥∥maxi≤N ‖Xi‖
∥∥
ψ1

is replaced by maxi≤N
∥∥‖Xi‖

∥∥
ψ1

log

(
N
(

maxi≤N
∥∥‖Xi‖

∥∥
ψ1

)2

/σ2

)
.
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An application to covariance estimation with missing observations

Now we turn to the problem studied in [17] and [21]. Suppose, we want to estimate the
covariance structure of a random subgaussian vector X ∈ Rn (which will be assumed
centered) based on N i.i.d. observations X1, . . . , XN . For the sake of brevity, we work
with the finite-dimensional case, while as in [17] our results do not depend explicitly on
the dimension n. Recall that a centered random vector X ∈ Rn is subgaussian if for all
u ∈ Rn we have

‖〈X,u〉‖ψ2
. (E〈X,u〉2)

1
2 . (4.2)

Observe that this definition does not require any independence of the components of X.
In what follows we discuss a more general framework suggested in [21]. Let δi,j ,

i ≤ N, j ≤ n be independent Bernoulli random variables with the same mean δ. We
assume that instead of observing X1, . . . , XN we observe vectors Y1, . . . , YN which are
defined as Y ji = δi,jX

j
i . This means that some components of vectors X1, . . . , XN are

missing (replaced by zero), each with probability 1− δ. Since δ can be easily estimated,
we assume it to be known. Following [21], denote

Σ̂(δ) =
1

N

N∑
i=1

YiY
>
i .

It can be easily shown that the estimator

Σ̂ = (δ−1 − δ−2)Diag(Σ̂(δ)) + δ−2Σ̂(δ)

is an unbiased estimator of Σ = EXiX
>
i . In particular,

Σ = (δ−1 − δ−2)Diag(EYiY
>
i ) + δ−2EYiY

>
i . (4.3)

Theorem 4.3. Under the assumptions defined above, it holds with probability at least
1− e−t for t ≥ 1 that

‖Σ̂− Σ‖ . ‖Σ‖max

(√
r̃(Σ) log r̃(Σ)

Nδ2
,

√
t

Nδ2
,
r̃(Σ)(log r̃(Σ) + t) logN

Nδ2

)
.

Remark 4.4. The upper bound above provides some important improvements upon
Proposition 3 in [21], which is

‖Σ̂− Σ‖ . ‖Σ‖max

(√
r̃(Σ) log n

Nδ2
,

√
r̃(Σ)t

Nδ2
,
r̃(Σ)(log n+ t)(logN + t)

Nδ2

)
(4.4)

The bound (4.4) depends on n and therefore is not applicable in the infinite dimensional
scenarios. It also contains a term proportional to t2, which appeared due to a straightfor-
ward truncation of each observation. Moreover, this result has an unnecessary factor

r̃(Σ) in the term
√

r̃(Σ)t
Nδ2 . Finally, when δ = 1 tighter results may be obtained using high

probability generic chaining bounds for quadratic processes. In particular, Theorem 9 in
[17] implies with probability at least 1− e−t,

‖Σ̂− Σ‖ . ‖Σ‖max

(√
r̃(Σ)

N
,

√
t

N
,
r̃(Σ)

N
,
t

N

)
. (4.5)

Unfortunately, this analysis may not be implied for δ < 1 in general, since the assumption
(4.2) does not hold for the vector Y , defined by Y ji = δi,jX

j
i . Therefore, our technique is

a reasonable alternative that works for general δ and is almost as tight as (4.5) when
δ = 1. We also remark that for δ = 1 even sharper versions of (4.5) were obtained in [23].
However, their statistical procedure differs from the sample covariance matrix Σ̂.
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To prove Theorem 4.3 we need the following technical lemma, parts of which may as
well be found in [21].

Lemma 4.5. Let X ∈ Rn satisfy (4.2) with covariance matrix Σ, and set

Y = (δ1X
1, . . . , δnX

n),

where δi, i ≤ n are independent Bernoulli random variables with the mean δ. We have∥∥‖Diag(Y Y >)‖
∥∥
ψ1

. r̃(Σ)‖Σ‖,
∥∥‖Off(Y Y >)‖

∥∥
ψ1

. r̃(Σ)‖Σ‖.

Additionally, it holds for some absolute constant C > 0 that

EOff(Y Y >)2 � Cδ2Tr(Σ)(Σ + Diag(Σ)), and EDiag(Y Y >)2 . CδTr(Σ)Diag(Σ).

Proof. Observe that ‖Diag(Y Y >)‖ ≤ ‖Y ‖2 and ‖Off(Y Y >)‖ ≤ ‖Y Y >‖+ ‖Diag(Y Y >)‖ ≤
2‖Y ‖2. Therefore, ∥∥‖Off(Y Y >)‖

∥∥
ψ1
≤ 2‖‖Y ‖‖2ψ2

≤ 2‖‖X‖‖2ψ2
. Tr(Σ),

and the same bound holds for
∥∥‖Diag(Y Y >)‖

∥∥
ψ1

.

Let A be an arbitrary symmetric matrix and let us calculate E(A � δδ>)2 where
� denotes the Hadamard product and δ = (δ1, . . . , δn) is a vector with independent
components having Bernoulli distribution with the same mean δ. We have,[

E(A� δδ>)2
]
ii

= E
∑
k

AikδiδkAkiδiδk =
∑
k

AikAikEδ
2
i δ

2
k = δ2[A2]ii + (δ − δ2)A2

ii.

If i 6= j we have for the i, j-th element[
E(A� δδ>)2

]
ij

= E
∑
k

AikδiδkAkjδjδk =
∑
k

AikAkjEδiδjδ
2
k

= δ3[A2]ij + (δ2 − δ3)(AiiAij +AijAjj).

This can be put together in the following expression,

E(δδ> �A)2 = δ3A2 + (δ2 − δ3)
[
Diag(A2) + Off(A)Diag(A) + Diag(A)Off(A)

]
+ (δ − δ2)Diag(A)2.

All these matrices are positive semi-definite, apart from the term Off(A)Diag(A) +

Diag(A)Off(A), which we can obviously bound by 1
2 (Off(A) + Diag(A))2 = A2/2. Taking

into account δ ≤ 1, we have the following

E(δδ> �A)2 � 1

2
(δ3 + δ2)A2 + (δ2 − δ3)Diag(A2) + (δ − δ2)Diag(A)2

� δ2(A2 + Diag(A2)) + δDiag(A)2.

Recall that Y = diag(δ)X. Therefore, we have Off(Y Y >) = δδ> �Off(XX>). Since the
latter has zero diagonal, the term with δ in the formula above disappears. Therefore,

EOff(Y Y >)2 � δ2
[
EOff(XX>)2 + Diag

(
EOff(XX>)2

)]
. (4.6)

It holds EOff(XX>)2 � 2E(XX>)2 + 2EDiag(XX>)2, and we also have from [21] that
E(XX>)2 � CTr(Σ)Σ. Additionally, due to (4.2) we immediately have EX4

i . Σ2
ii. Finally,

the following bound holds

EDiag(XX>)2 � CDiag(Σ)2 � CTr(Σ)Diag(Σ).

Plugging these bounds into (4.6) we get the second inequality. As for the diagonal case
we have for A = Diag(XX>),

EDiag(Y Y >)2 � CδEDiag(XX>)2 � CδTr(Σ)Diag(Σ).

EJP 25 (2020), paper 22.
Page 24/30

http://www.imstat.org/ejp/

https://doi.org/10.1214/20-EJP422
http://www.imstat.org/ejp/


Uniform Hanson-Wright

Lemma 4.6. For Y as in Lemma 4.5 and any unit vector u ∈ Rn we have

E(u>Off(Y Y >)u)2 . δ2‖Σ‖2, E(u>Diag(Y Y >)u)2 . δ‖Σ‖2.

Proof. First, we want to check that

‖u>Diag(XX>)u‖L4
. ‖Σ‖, ‖u>Off(XX>)u‖L4

. ‖Σ‖. (4.7)

Obviously, ‖u>XX>u‖L4 ≤ ‖u>X‖2L8
. ‖Σ‖, so it is enough to check that only for the

diagonal. Let us apply the symmetrization argument. Let ε = (ε1, . . . , εn)> denote
independent Rademacher variables. Then,

u>Diag(XX>)u = Eεε
>diag(u)XX>diag(u)ε = EεuεXX

>uε,

where uε = (u1ε1, . . . , unεn)>, and Eε denotes the conditional expectation with respect
to ε given X. Then, by Jensen’s inequality,

E
(
u>Diag(XX>)u

)4 ≤ E (u>ε XX>uε)4 =EεE[(u>ε X)8 | ε] . ‖Σ‖4,

thus implying (4.7).
Next, consider a vector a ∈ Rn. We show the following bound,

E

∑
i 6=j

δiδjaiaj

2

. δ2‖a‖4 + δ4

(
n∑
i=1

ai

)4

. (4.8)

First, using (x+ y)2 ≤ 2x2 + 2y2 we have,

E

∑
i 6=j

δiδjaiaj

2

≤ 2E

∑
i 6=j

(δi − δ)(δj − δ)aiaj

2

+ 2E

∑
i 6=j

(δiδ + δjδ − δ2)aiaj

2

.

To the first term we apply the decoupling inequality (Theorem 6.1.1 in [32]). Namely,
defining δ′1, . . . , δ

′
n as independent copies of δ1, . . . , δn we have,

E

∑
i 6=j

(δi − δ)(δj − δ)aiaj

2

≤ 16E

∑
i 6=j

(δi − δ)(δ′j − δ)aiaj

2

= 16
∑
i 6=j

∑
k 6=l

E(δi − δ)(δ′j − δ)(δk − δ)(δ′l − δ)aiajakal,

where in the last sum only the terms with k = i and l = j do not vanish. Since
E(δi − δ)2 = δ(1− δ), we have

E

∑
i 6=j

(δi − δ)(δj − δ)aiaj

2

≤ 16
∑
i 6=j

a2
i a

2
jδ

2(1− δ)2 ≤ 16δ2‖a‖4.

It remains to bound the second term. Using EZ2 = E(Z − EZ)2 + (EZ)2, we have

E

∑
i 6=j

(δiδ + δjδ − δ2)aiaj

2

= E

∑
i 6=j

((δi − δ)δ + (δj − δ)δ)aiaj

2

+

∑
i6=j

δ2aiaj

2

.

The last term is simple to bound:∑
i 6=j

δ2aiaj

2

= δ4

( n∑
i=1

ai

)2

−
n∑
i=1

a2
i

2

≤ δ4‖a‖4 + δ4

(
n∑
i=1

ai

)4

.
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Furthermore, we can rewrite the centred sum as a sum of independent random variables,
so that

E

∑
i 6=j

((δi − δ)δ + (δj − δ)δ)aiaj

2

= 4δ2E

 n∑
i=1

(δi − δ)ai
∑
j: j 6=i

aj

2

= 4δ3(1− δ)
n∑
i=1

−a2
i + ai

n∑
j=1

aj

2

≤ 8δ3

 n∑
i=1

a4
i + ‖a‖2

 n∑
j=1

aj

2
 .

Finally, using
∑n
i=1 a

4
i ≤ ‖a‖4 and 2‖a‖2

(∑n
j=1 aj

)2

≤ ‖a‖4 +
(∑n

j=1 aj

)4

we get the

required inequality. Since

u>Off(Y Y >)u = δ>diag(u)Off(XX>)diag(u)δ,

we can apply (4.8) with a = diag(u)X. This implies

E
(
u>Off(Y Y >)u

)2
. δ2E‖diag(u)X‖4 + δ4E(u>X)4.

Due to (4.2) we have E1/4(u>X)4 . ‖Σ‖1/2. Moreover, the vector diag(u)X also satis-
fies the subgaussian assumption (4.2) and has the covariance matrix diag(u)Σdiag(u).
Therefore, we have

E1/2‖diag(u)X‖4 . Tr(diag(u)Σdiag(u)) =

n∑
i=1

u2
iΣii . max

i≤n
Σii ≤ ‖Σ‖,

where we used that ‖u‖ = 1. Therefore, we conclude that

E
(
u>Off(Y Y >)u

)2
. δ2‖Σ‖2.

Finally, we have for the diagonal term

E
(
u>Diag(Y Y >)u

)2
=E

(
n∑
i=1

δiu
2
iX

2
i

)2

=δ2E
(
u>Diag(XX>)u

)2
+(δ−δ2)

∑
i

u4
iEX

4
i

. δ2‖Σ‖2 + (δ − δ2)

n∑
i=1

u4
i ‖Σ‖2 . δ‖Σ‖2.

Before we present the proof of the deviation bound, let us recall the following
version of Talagrand’s concentration inequality for empirical processes. Remarkably, the
following result can be proven using very similar techniques: at first, one may use the
modified logarithmic Sobolev inequality to prove a version of Talagrand’s concentration
inequality in the bounded case and then use the same truncation argument as in the
proof of Theorem 1.1 to get the result in the unbounded case.

Theorem 4.7 (Theorem 4 in [1]). Let X1, . . . , XN ∈ X be a sample of independent
random variables and F be a countable class of measurable functions X 7→ R such that
supf∈F ‖f(Xi)‖ψ1 <∞. Define

ZF = sup
f∈F

∣∣∣∣∣
N∑
i=1

f(Xi)− Ef(Xi)

∣∣∣∣∣ (4.9)

and σ2 = supf∈F
∑N
i=1Ef

2(Xi). There is an absolute constant C > 0 such that

P (ZF > 2EZF + t) ≤ exp

(
− t2

4σ2

)
+ 3 exp

(
− t

C‖maxi supf |f(Xi)|‖ψ1

)
.
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Proof of Theorem 4.3. At first, using (4.3) we have

‖Σ̂− Σ‖ . δ−1
∥∥∥Diag(Σ̂(δ))− EDiag(Σ̂(δ))

∥∥∥+ δ−2
∥∥∥Off(Σ̂(δ))− EOff(Σ̂(δ))

∥∥∥ .
Let us apply Proposition 4.1 to the term NOff(Σ̂(δ)) =

∑N
i=1 Off(YiY

>
i ), where

R = CNδ2Tr(Σ)(Σ + Diag(Σ)).

We have r̃(R) ≤ 2r̃(Σ) and ‖R‖ . Nδ2Tr(Σ)‖Σ‖. Therefore, with probability at least
1− e−t,

‖Off(Σ̂(δ))− EOff(Σ̂(δ))‖ . max

(√
δ2Tr(Σ)‖Σ‖(log r̃(Σ) + t)

N
,

Tr(Σ)(log r̃(Σ) + t) logN

N

)

= ‖Σ‖max

(√
δ2r̃(Σ)(log r̃(Σ) + t)

N
,
r̃(Σ)(log r̃(Σ) + t) logN

N

)
.

Integrating this bound (see e.g. Theorem 2.3 in [11]) we easily get

E‖Off(Σ̂(δ))− EOff(Σ̂(δ))‖ . ‖Σ‖max

(√
δ2r̃(Σ) log r̃(Σ)

N
,
r̃(Σ) log r̃(Σ) logN

N

)
.

Finally, we apply Theorem 4.7 to the set of functions F indexed by γ ∈ Sn−1 and defined
by

fγ(Xi) = γ>Off(YiY
>
i )γ,

so that ZF = N‖Off(Σ̂(δ)) − EOff(Σ̂(δ))‖ in (4.9). Then, by Lemma 4.6 we have σ2 .
δ2N‖Σ‖2 and by Lemma 4.5,∥∥∥max

i
sup
f∈F
|f(Xi)|

∥∥∥
ψ1

=
∥∥∥max

i

∥∥Off(YiY
>
i )
∥∥∥∥∥

ψ1

. r̃(Σ) ‖Σ‖ logN,

so that with probability at least 1− e−t for t ≥ 1,

‖Off(Σ̂(δ))− EOff(Σ̂(δ))‖

. E‖Off(Σ̂(δ))− EOff(Σ̂(δ))‖+ δ‖Σ‖
√

t

N
+ ‖Σ‖ r̃(Σ)t logN

N

. ‖Σ‖max

(√
δ2r̃(Σ) log r̃(Σ)

N
,

√
δ2t

N
,
r̃(Σ)(log r̃(Σ) + t) logN

N

)
.

We proceed with the diagonal term. Applying Proposition 4.1 to NDiag(Σ̂(δ)) =∑N
i=1 Diag(YiY

>
i ) with R = CNδTr(Σ)Diag(Σ) we have ‖R‖ . NδTr(Σ)‖Σ‖ and r̃(R) .

r̃(Σ). Therefore, with probability at least 1− e−t we have

‖Diag(Σ̂(δ))− EDiag(Σ̂(δ))‖

. ‖Σ‖max

(√
δr̃(Σ)(log r̃(Σ) + t)

N
,
r̃(Σ)(log r̃(Σ) + t) logN

N

)
.

Again, integrating this inequality we get

E‖Diag(Σ̂(δ))− EDiag(Σ̂(δ))‖ . ‖Σ‖max

(√
δr̃(Σ) log r̃(Σ)

N
,
r̃(Σ) log r̃(Σ) logN

N

)
.
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We have E(u>Diag(YiY
>
i )u)2 . δ‖Σ‖2 and ‖maxi ‖Off(YiY

>
i )‖‖ψ1

. r̃(Σ)‖Σ‖ logN by
Lemma 4.6 and Lemma 4.5 respectively. By Theorem 4.7 we have with probability at
least 1− e−t,

‖Diag(Σ̂(δ))− EDiag(Σ̂(δ))‖

. E‖Diag(Σ̂(δ))− EDiag(Σ̂(δ))‖+ ‖Σ‖
√
δt

N
+ ‖Σ‖ r̃(Σ)t logN

N

. ‖Σ‖max

(√
δr̃(Σ) log r̃(Σ)

N
,

√
δt

N
,
r̃(Σ)(log r̃(Σ) + t) logN

N

)
.

Finally, we combine the off-diagonal and diagonal bounds via the triangle inequality and
get

‖Σ̂− Σ‖ ≤ δ−2‖Off(Σ̂(δ))− EOff(Σ̂(δ))‖+ δ−1‖Diag(Σ̂(δ))− EDiag(Σ̂(δ))‖ .
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A An approximation argument for non-smooth functions

In order to apply the logarithmic Sobolev assumption (1.7) rigorously we need to
take smooth approximations of the function

ZA(X) = sup
A∈A

(X>AX − EX>AX).

Notice that we have,

|ZA(X)− ZA(Y )| ≤ ‖X − Y ‖
(

sup
A∈A
‖AX‖+ sup

A∈A
‖AY ‖

)
.
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The following simple lemma shows how to apply the logarithmic Sobolev inequality to
non-differentiable functions.

Lemma A.1. Suppose that X satisfies Assumption 1.6. Let f : Rn → R be such that

|f(x)− f(y)| ≤ |x− y|max(L(x), L(y)),

for some continuous non-negative function L(x). Then for some absolute constant C > 0

and any λ ∈ R it holds
Ent(eλf ) ≤ CK2λ2EL(x)2eλf

Proof. Set h(x) = x2(1− x)2
+ and consider the smoothing kernel supported on the unit

ball defined by

φ(u) =
1

Zh
h(‖u‖2), Zh =

∫
h(‖u‖2)du = Sn−1

∫ ∞
0

h(r2)dr,

where Sn−1 is a surface area of the unit sphere in Rn. Note that since φ is radial,
∇φ(u) = −∇φ(−u) and also,∫

‖u‖‖∇φ(u)‖du =
2Sn−1

Zh

∫ ∞
0

r2|g′(r)|dr =
2
∫∞

0
r2|h′(r)|dr∫∞

0
h(r2)dr

= Ch.

Setting φm(u) = m−1φ(u/m) for m ∈ N we have ∇φm(u) = m−2(∇φ)(u/m). Therefore,
we have ∫

‖u‖‖∇φm(u)‖du =

∫ ∥∥∥ u
m

∥∥∥∥∥∥(∇φ)
( u
m

)∥∥∥ d u
m

= Ch.

Take F (x) = eλf(x)/2 and let us consider a sequence of smooth approximations
Fm(x) =

∫
φm (x− u)F (u)du, so that Fm(x) tends to F pointwise. This is possible due to

the fact that F is continuous. Moreover, we have due to the symmetry

∇Fm(x) =

∫
(∇φm)(x− u)F (u)du =

∫
(∇φm)(u)F (x− u)du

=
1

2

∫
(∇φm)(u)[F (x− u)− F (x+ u)]du.

Since φm(u) vanishes for ‖u‖ ≥ 1/m, we have

‖∇Fm(x)‖ ≤ 1

2
sup

‖u‖≤m−1

|F (x− u)− F (x+ u)|
‖u‖

∫
‖u‖‖∇φm(u)‖du

= Ch sup
‖u‖≤m−1

|F (x− u)− F (x+ u)|
2‖u‖

.

It is easy to see that

|F (x)− F (y)| = |eλf(x)/2 − eλf(y)/2| ≤ λ

2
‖x− y‖max(eλf(x)/2, eλf(y)/2) max(L(x), L(y)),

and therefore,

‖∇Fm(x)‖ ≤ λCh
2
F̃m(x)× Lm(x),

where we set Lm(x) = supy : ‖x−y‖≤m−1 L(y) and F̃m(x) = sup‖x−y‖≤m−1 eλf(y)/2 that tend
pointwise to L(x) and F (x), respectively, as m→∞. Since each function fm is smooth,
we have by Assumption 1.6 that

Ent(F 2
m) ≤ K2E‖∇Fm(x)‖2 ≤ λ2C2

h

4
K2EL2

m(x)F̃m(x)2.

Taking the limit m→∞ we prove the the required inequality.
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