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Are random permutations spherically uniform?
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Abstract

For large q, does the (discrete) uniform distribution on the set of q! permutations of
the vector x̄q = (1, 2, . . . , q)′ closely approximate the (continuous) uniform distribution
on the (q − 2)-sphere that contains them? These permutations comprise the vertices
of the regular permutohedron, a (q − 1)-dimensional convex polyhedron. The answer
is emphatically no: these permutations are confined to a negligible portion of the
sphere, and the regular permutohedron occupies a negligible portion of the ball.
However, (1, 2, . . . , q) is not the most favorable configuration for spherical uniformity
of permutations. A more favorable configuration x̂q is found, namely that which
minimizes the normalized surface area of the largest empty spherical cap among its q!

permutations. Unlike that for x̄q, the normalized surface area of the largest empty
spherical cap among the permutations of x̂q approaches 0 as q →∞. Nonetheless the
permutations of x̂q do not approach spherical uniformity either. The existence of an
asymptotically spherically uniform permutation sequence remains an open question.
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This paper is dedicated to the memory of Ingram Olkin, my teacher, mentor, and
friend, who introduced so many of us to the joy of majorization.

1 Introduction

Column vectors denoted by Roman letters appear in bold type, their components in
plain type; thus x = (x1, . . . , xq)

′ ∈ Rq. For any nonzero x ∈ Rq (q ≥ 2) let Π(x) denote
the set of all q! permutations of x, that is

Π(x) = {Px | P ∈ Pq}, (1.1)

where Pq is the set of all q× q permutation matrices. In this paper the following question
is examined:
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Are random permutations spherically uniform?

Question 1. For large q, do there exist nonzero vectors x ∈ Rq such that the (discrete)
uniform distribution on Π(x) closely approximates the (continuous) uniform distribu-
tion on the (q − 2)-sphere in which Π(x) is contained? More precisely, do there exist
sequences1 {xq ∈ Rq} such that Π(xq) approaches spherical uniformity as q →∞?

This question arose in a statistical context: how representative of a general design
matrix is the matrix whose columns consist of permutations of a single vector x =

(x1, . . . , xq)
′? This statistical viewpoint is mentioned briefly in Remark 4.3.

In coding theory, a finite set N of points on a d-sphere is called a spherical code, cf.
[13, 14]. A question of substantial interest has been the construction of sequences of
spherical codes that are asymptotically spherically uniform, that is, closely approximate
the uniform distribution on the sphere, as |N | → ∞ with d held fixed. Departure from
spherical uniformity is usually measured by the normalized spherical cap discrepancy
(NSCD) or by the weaker largest empty cap discrepancy (LECD). These discrepancies
are defined in Definition 3.2; in general LECD ≤ NSCD, cf. (3.20).

A good deal of previous work has been aimed at determining the rate at which the
optimal (smallest possible) discrepancy for spherical codes of size n approaches 0 as
n→∞ with d fixed; cf. [5, 17, 19]. A recent survey of the literature appears in [6].

The set Π(x), consisting of all permutations of x, is a spherical code of special type,
which we shall call a permutation code. The second part of Question 1 can be re-stated as
follows: which if any sequences {Nq} ≡ {Π(xq)} of permutation codes are asymptotically
spherically uniform, that is, have small NSCD and/or small LECD as q → ∞? Here,
however, if the components of xq are distinct then |Nq| = q! and d = q − 2, so both
|Nq| → ∞ and d→∞. Thus general results of the form discrepancy(N) ∼ c(d)g(|N |) as
|N | → ∞, where the constant c(d) is not known explicitly, are not helpful for permutation
codes. Instead, the permutation structure of Π(x) can be exploited.

In this paper three configuration sequences {xq} are studied in detail: the regular
configuration x̄q = (1, 2, . . . , q)′ in Section 4, the L-minimal configuration x̂q (which mini-
mizes the LECD of Π(xq)) in Section 5, and the normal configuration x̆q = (1, 2, . . . , q)′

(constructed from standard normal quantiles) in Section 6.

Proposition 4.2 shows that the regular configurations deviate greatly from spherical
uniformity, measured by LECD, as q →∞. Proposition 5.3 shows that the LECD of the
L-minimal configuration does approach 0, but the univariate marginal distributions of
this configuration do not converge to normality (Proposition 5.5), which is a necessary
condition for asymptotic spherical uniformity (Proposition 3.10). The univariate marginal
distributions of the normal configuration do approach normality (by construction), but,
like the regular configuration, the LECD of the normal configuration does not approach
0 (Proposition 6.1).

These results are summarized and compared in Section 7 (see Table 1). Some
comments relating these results to the volumes of permutohedra appear in Section 8.
The existence or non-existence of an asymptotically spherically uniform sequence of
permutation codes, as measured by NSCD, is left as an open question.

2 Translation and rotation of coordinates

Because Π(x) is invariant under permutations of x, we may always assume that the
components of x and xq are ordered, i.e., x,xq ∈ Rq≤, where

R
q
≤ := {x ∈ Rq | x1 ≤ · · · ≤ xq}. (2.1)

1Superscripts denote indices, not exponents, unless the contrary is evident.
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Clearly ‖Px‖ = ‖x‖ for all P ∈ Pq, so

Π(x) ⊂ Sq−1
‖x‖ ∩M

q−1
x , (2.2)

where Sq−1
ρ denotes the 0-centered (q − 1)-sphere of radius ρ in Rq and

Mq−1
x := {v ∈ Rq | v′eq = x′eq} (2.3)

is the (q − 1)-dimensional hyperplane containing x that is orthogonal to eq := (1, . . . , 1)′.
BecauseMq−1

x does not contain the origin but we wish to work with 0-centered spheres,
we shall translateMq−1

x to

M̃q−1 ≡ {v ∈ Rq | v′eq = 0}, (2.4)

the (q−1)-dimensional linear subspace parallel toMq−1
x and orthogonal to eq.

For this purpose consider the q × q Helmert orthogonal matrix

Γq ≡ (γq1 , γ
q
2 , . . . , γ

q
q )

≡


1 1 1 · · · 1

1 −1 1 · · · 1

1 0 −2 · · · 1
...

...
... · · ·

...
1 0 0 · · · −(q − 1)





1√
q 0 0 · · · 0

0 1√
1·2 0 · · · 0

0 0 1√
2·3 · · · 0

...
...

... · · ·
...

0 0 0 · · · 1√
(q−1)q


≡ (γq1 ,Γ

q
2),

where γq1 ≡ 1√
qe
q is the (q × 1)-dimensional unit vector along the direction of eq. By the

orthogonality of Γq,

(Γq2)′γq1 = 0, (2.5)

(Γq2)′Γq2 = Iq−1, (2.6)

Γq2(Γq2)′ = Iq − γq1(γq1)′ =: Ωq, (2.7)

where Iq denotes the q × q identity matrix. Here Ωq is the projection matrix of rank q − 1

that projects Rq onto M̃q−1, so that ΩqMq−1
x = M̃q−1.

Let y be the projection of x onto M̃q−1:

y = Ωqx = x− x̄eq, (2.8)

where

x̄ ≡ 1
qx
′eq = 1

q

∑q
i=1 xi

is the average of the q components of x. Then ȳ = 0 since y′eq = 0, so

‖y‖2 = ‖x− x̄eq‖2 =
∑q
i=1(xi − x̄)2 =

∑q
i=1(yi − ȳ)2, (2.9)

which is proportional to their sample variance. Note that y1 ≤ · · · ≤ yq, so

y ∈ M̃q−1
≤ := M̃q−1 ∩Rq≤. (2.10)

Because ΩqP = PΩq for all P ∈ Pq,

Π(y) = Π(Ωqx) = Ωq(Π(x)), (2.11)
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so Π(y) is a rigid translation of Π(x) and satisfies

Π(y) ⊂ Sq−1
‖y‖ ∩ M̃

q−1 =: S̃q−2
‖y‖ , (2.12)

the 0-centered (q−2)-sphere of radius ‖y‖ in M̃q−1. If the (discrete) uniform distribution
on Π(y) is denoted by Ũq−2

y and the (continuous) uniform distribution on S̃q−2
‖y‖ denoted

by Ũq−2
‖y‖ , then Question 1 can be restated equivalently as follows:

Question 2. For large q, do there exist nonzero vectors y ∈ M̃q−1
≤ such that Ũq−2

y

closely approximates Ũq−2
‖y‖ ? More precisely, do there exist sequences {yq ∈ M̃q−1

≤ } such

that the discrepancy between Ũq−2
yq and Ũq−2

‖yq‖ approaches zero as q →∞?

3 Measures of spherical discrepancy

If we abuse notation by letting Ũq−2
y and Ũq−2

‖y‖ also denote random vectors having

these distributions, then the possible existence of the vectors y and sequences {yq} in
Question 2 is supported by the fact that the first and second moments of Ũq−2

y and Ũq−2
‖y‖

coincide:

E(Ũq−2
y ) = E(Ũq−2

‖y‖ ) = 0, (3.1)

Cov(Ũq−2
y ) = Cov(Ũq−2

‖y‖ ) = ‖y‖2
q(q−1) (qIq − eq(eq)′). (3.2)

(In fact all odd moments agree since these are 0 by symmetry.) Three measures of the
discrepancy between Ũq−2

y and Ũq−2
‖y‖ will be considered.

For nonzero w ∈ M̃q−1, −1 ≤ t < 1, and ρ > 0 define

C(w; t) :=
{
v ∈ S̃q−2

‖w‖
∣∣ v′w > ‖w‖2t

}
, (3.3)

C̃q−2
ρ :=

{
C(w; t)

∣∣ w ∈ S̃q−2
ρ , −1 ≤ t < 1

}
. (3.4)

Thus C(w; t) is the open spherical cap in S̃q−2
‖w‖ of angular half-width cos−1(t) centered at

w, while C̃q−2
ρ is the set of all such spherical caps in S̃q−2

ρ .

If U is uniformly distributed over the unit (q − 2)-sphere in Rq−1 then for any (q × 1)-
dimensional unit vector u,

(u′U)2 d
= Beta

(
1
2 ,

q−2
2

)
. (3.5)

Thus, if 0 ≤ t < 1 then the normalized (q − 2)-dimensional surface area of the spherical
cap C(w; t) ⊂ S̃q−2

‖w‖ is given by

Ũq−2
‖w‖(C(w; t)) = 1

2 Pr
[
Beta

(
1
2 ,

q−2
2

)
> t2

]
(3.6)

=
Γ( q−1

2 )

2Γ( 1
2 )Γ( q−2

2 )

∫ 1

t2
w−

1
2 (1− w)

q
2−2dw (3.7)

=
Γ( q−1

2 )

Γ( 1
2 )Γ( q−2

2 )

∫ 1

t
(1− v2)

q
2−2dv (3.8)

=: βq−2(t) (3.9)

a strictly decreasing smooth function of t.
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The following two bounds for βq−2(t), 0 ≤ t < 1, will be used. From (3.7),

βq−2(t) <
Γ( q−1

2 )

2Γ( 1
2 )Γ( q−2

2 )
· 1
t

∫ 1−t2

0
u

q
2−2du

=
Γ( q−1

2 )

Γ( 1
2 )Γ( q−2

2 )
· (1−t2)

q
2
−1

t(q−2)

≤
√

q−2
2π ·

(1−t2)
q
2
−1

t(q−2) (3.10)

= (1−t2)
q
2
−1

t
√

2π(q−2)
. (3.11)

The inequality used to obtain (3.10) appears in [20]. Second, from (3.8) and Wendell’s
inequality,

1
2 − β

q−2(t) = 1
2 Pr

[
0 ≤ Beta

(
1
2 ,

q−2
2

)
≤ t2

]
(3.12)

=
Γ( q−1

2 )

Γ( 1
2 )Γ( q−2

2 )

∫ t
0
(1− v2)

q
2−2dv

≤ Γ( q−1
2 )

Γ( 1
2 )Γ( q−2

2 )

∫ t
0
e−

v2(q−4)
2 dv

=
Γ( q−1

2 )
√

2

Γ( q−2
2 )
√
q−4)

· 1√
2π

∫ t√q−4

0
e−

z2

2 dz

≤
√

q−2
q−4 ·

[
Φ
(
t
√
q − 4

)
− 1

2

]
, (3.13)

where Φ denotes the standard normal cumulative distribution function.

Lemma 3.1. Let {tq} be a sequence in [0, 1) and let 0 ≤ λ ≤ ∞. Then

lim
q→∞

βq−2(tq) = 1− Φ(λ) ⇐⇒ lim
q→∞

tq
√
q = λ. (3.14)

Proof. Let X1 and Xq−2 denote independent chi-square variates with 1 and q−2 degrees
of freedom. From (3.6) and (3.9),

βq−2(tq) = 1
2 Pr

[
Beta

(
1
2 ,

q−2
2

)
> (tq)2

]
= 1

2 Pr
[

X1

X1+Xq−2
> (tq)2

]
= 1

2 Pr
[

X1

Xq−2/(q−2) >
(tq)2(q−2)

1−(tq)2

]
.

Thus, because Xq−2

q−2

p→ 1 by the Law of Large Numbers and X1
d
= [N(0, 1)]2,

lim
q→∞

βq−2(tq) = 1− Φ(λ) ⇐⇒ lim
q→∞

tq
√
q−2√

1−(tq)2
= λ. (3.15)

It is straightforward to show that

lim
q→∞

tq
√
q−2√

1−(tq)2
= λ ⇐⇒ lim

q→∞
tq
√
q = λ (3.16)

(consider the cases 0 ≤ λ <∞ and λ =∞ separately), hence (3.14) holds.

For nonzero y ∈ M̃q−1
≤ and any nonempty finite subset N ⊂ S̃q−2

‖y‖ , let Ũq−2
N denote

the (discrete) uniform distribution on N ; thus Ũq−2
y = Ũq−2

Π(y).

Definition 3.2. The normalized spherical cap discrepancy (NSCD) of N in S̃q−2
‖y‖ is

defined as2

Dq−2(N) := sup
{∣∣Ũq−2

N (C)− Ũq−2
‖y‖ (C)

∣∣ ∣∣∣ C ∈ C̃q−2
‖y‖

}
(3.17)

= sup
{∣∣ |N∩C|

|N | − Ũq−2
‖y‖ (C)

∣∣ ∣∣∣ C ∈ C̃q−2
‖y‖

}
, (3.18)

2See [13] Def. 2.11.5, [14] Section 1, [1] Section 1.2. Unlike [1] we divide |N ∩ C| by |N | to be able to
compare NSCD’s of differing dimensions. Thus Dq−2(N) is a distance measure between the probability
distributions Ũq−2

N and Ũq−2
‖y‖ .
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where |N ∩ C| and |N | are the cardinalities of N ∩ C and N . The largest empty cap
discrepancy (LECD) of N in S̃q−2

‖y‖ is defined as3

Lq−2(N) := sup
{
Ũq−2
‖y‖ (C)

∣∣∣ C ∈ C̃q−2
‖y‖ , N ∩ C = ∅

}
= sup

{
βq−2(t)

∣∣∣ ∃w ∈ S̃q−2
‖y‖ , C(w; t) ∈ C̃q−2

‖y‖ , N ∩ C(w; t) = ∅
}
. (3.19)

Obviously
0 ≤ Lq−2(N) ≤ Dq−2(N) ≤ 1. (3.20)

Note that the suprema in (3.17)–(3.19) must be maxima, i.e., must be attained. This
follows by applying the Blashke Selection Theorem to{

co(C)
∣∣ C ∈ C̃q−2

‖y‖
}
,

a collection of closed convex subsets of the closed ball B̃ bounded by S̃q−2
‖y‖ , where co(C)

denotes the closed convex hull in B̃ of the spherical cap C. It follows from this that

Lq−2(N) = βq−2
(
t(N)

)
, (3.21)

where
t(N) = min

{
t
∣∣∣ ∃w ∈ S̃q−2

‖y‖ , C(w; t) ∈ C̃q−2
‖y‖ , N ∩ C(w; t) = ∅

}
. (3.22)

Define the unit vectors zqk ∈ M̃
q−1
≤ , k = 1, . . . , q − 1 as follows:

zqk :=
√

1
q

(
−
√

q−k
k , . . . ,−

√
q−k
k︸ ︷︷ ︸

k

,
√

k
q−k , . . . ,

√
k
q−k︸ ︷︷ ︸

q−k

)′
. (3.23)

For 1 ≤ k < l ≤ q − 1, the inner product between zqk and zql is found to be

(zqk)′zql =
√

k(q−l)
(q−k)l > 0. (3.24)

Lemma 3.3. For nonzero y ∈ M̃q−1
≤ ,

t(Π(y)) = 1
‖y‖ min

1≤k≤q−1
y′zqk, (3.25)

Lq−2
(
Π(y)

)
≤ 1

2 . (3.26)

Proof. For (3.25), it follows from (3.3) that if w ∈ S̃q−2
‖y‖ then

Π(y) ∩ C(w; t) = ∅ ⇐⇒ max
P∈Pq

(Py)′w ≤ ‖y‖2t. (3.27)

Thus from (3.22) and the Rearrangement Inequality,

t(Π(y)) = 1
‖y‖2 min

w∈S̃q−2
‖y‖

max
P∈Pq

(Py)′w (3.28)

= 1
‖y‖2 min

w∈M̃q−1
≤ , ‖w‖=‖y‖

y′w (3.29)

The set M̃q−1
≤ is a pointed convex simplicial cone4 whose q− 1 extreme rays are spanned

by zq1, . . . , z
q
q−1, so M̃q−1

≤ is their nonnegative span. Thus for w ∈ M̃q−1
≤ with ‖w‖ = ‖y‖,

w = ‖y‖ · λ1z
q
1+···+λq−1z

q
q−1

‖λ1z
q
1+···+λq−1z

q
q−1‖

,

3See [1] Section 1.2.
4The geometric properties of the polyhedral cone M̃q−1

≤ that we use here stem from its role as a fundamental
region of the finite reflection group (Coxeter group) of all q × q permutation matrices acting effectively on
M̃q−1. A readable reference is [12]; also see [10].
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for some λ1 ≥ 0, . . . , λq−1 ≥ 0 with λ1 + · · ·+ λq−1 = 1. Therefore

y′w ≥ ‖y‖ min
1≤k≤q−1

y′zqk,

since y ∈ M̃q−1
≤ ⇒ y′zqk ≥ 0 by (3.24) and ‖λ1z

q
1 + · · ·+ λq−1z

q
q−1‖ ≤ 1, hence

1
‖y‖2 min

w∈M̃q−1
≤ , ‖w‖=‖y‖

y′w ≥ 1
‖y‖ min

1≤k≤q−1
y′zqk. (3.30)

However equality must hold in (3.30) because wk := ‖y‖ zqk ∈ M̃
q−1
≤ and wk = ‖y‖. This

confirms (3.25).
For (3.26), suppose that Lq−2

(
Π(y)

)
> 1

2 . Then Π(y) must be contained in the

complement of some closed hemisphere in S̃q−2
‖y‖ , hence there is some v0 ∈ S̃q−2

‖y‖ such

that 0 > w′Py for all P ∈ Pq. Sum over P to obtain 0 > w′(eq(eq)′)y = w′eq((eq)′y) = 0,
hence a contradiction.

It is noted in [13] Lemma 2.11.6 and [14] Section 1 that if {Nn} is a sequence of finite
sets in S̃q−2

‖y‖ (q fixed), then the uniform distribution on Nn converges weakly to Ũq−2
‖y‖ as

n→∞ iff limn→∞Dq−2(Nn) = 0. This motivates the following definition.

Definition 3.4. A sequence of nonzero vectors {yq ∈ M̃q−1
≤ } (q varying) is asymptotically

permutation-uniform (APU) if

lim
q→∞

Dq−2(Π(yq)) = 0; (3.31)

it is asymptotically permutation-full (APF) if

lim
q→∞

Lq−2(Π(yq)) = 0. (3.32)

By (3.20), APU⇒ APF.
We also require a definition of asymptotic emptiness for a sequence of nonzero

vectors {yq ∈ M̃q−1
≤ }. Because Π(yq) is a finite subset of the sphere S̃q−2

‖yq‖, it always

holds that S̃q−2
‖yq‖\Π(yq) is an infinite union of very small empty spherical caps, so a more

stringent definition of emptiness is required.

Definition 3.5. A sequence of nonzero vectors {yq ∈ M̃q−1
≤ } (q varying) is asymptotically

permutation-empty (APE) if ∃ ε > 0 and, for each q, ∃ a finite collection {Cqi | i = 1, . . . , nq}
of (possibly overlapping) empty spherical caps in S̃q−2

‖yq‖\Π(yq) such that Ũq−2
‖yq‖(C

q
i ) ≥ ε

and
limq→∞ Ũq−2

‖yq‖(∪
nq

i=1C
q
i ) = 1. (3.33)

If {yq ∈ M̃q−1
≤ } is APE then Π(yq) is asymptotically small in the sense that Π(yq) ⊆

(∪nq

i=1C
q
i )c with Ũq−2

‖yq‖
(
(∪nq

i=1C
q
i )c
)
→ 0 as q →∞. That is, Π(yq) occupies only an increas-

ingly negligible portion of the sphere S̃q−2
‖yq‖. Clearly APE⇒ not APF⇒ not APU.

Now modify the definitions of LECD and APF as follows:

Definition 3.6. The largest empty cap angular discrepancy (LECAD) of N in S̃q−2
‖y‖ is

defined to be

Aq−2(N) := sup
{

cos−1(t)
∣∣∣ ∃w ∈ S̃q−2

‖y‖ , C(w; t) ∈ C̃q−2
‖y‖ , N ∩ C(w; t) = ∅

}
= cos−1(t(N)), (3.34)

where t(N) is defined in (3.22). A sequence of nonzero vectors {yq ∈ M̃q−1
≤ } (q varying)

is asymptotically permutation-dense (APD) if

lim
q→∞

Aq−2(Π(yq)) = 0. (3.35)
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Note that (3.21) and (3.34) yield the relation

Lq−2(N) = βq−2(cos(Aq−2(N))). (3.36)

If we set tq = t(Π(yq)), it follows from (3.34) and (3.14) with λ =∞ that

{yq} APD ⇐⇒ lim
q→∞

cos−1(tq) = 0 ⇐⇒ tq → 1 =⇒ βq−2(tq)→ 0,

hence APD⇒ APF. However the converse need not hold: it will be shown in Section 5
that the sequence {ŷq} of L-minimal configurations defined in (5.8) is APF but not APD.

Remark 3.7. Consider a sequence of spherical caps C(wq; tq) ⊆ M̃q−1 such that tq → 0

while tq
√
q →∞. Then cos−1(tq)→ π

2 , while βq−2(tq)→ 0 by (3.14) with λ =∞, that is,
the spherical caps approach hemispheres in terms of their angular measure but their
surface areas approach 0. An example can be seen in Section 5 by taking C(wq; tq) to be
the largest empty spherical cap for the set Π(ŷq), then comparing (5.28) with (7.16).

Question 2 now can be refined further as follows:

Question 3. For which y ∈ M̃q−1
≤ , if any, areDq−2(Π(y)), Lq−2(Π(y)), and/or Aq−2(Π(y))

small? Which sequences {yq ∈ M̃q−1
≤ }, if any, are APU? APF? APD? APE?

Some answers to these questions will be derived in Sections 4–6 and summarized in
Section 7; for example, no APD sequence exists (Proposition 7.1). Some results about
the volumes of the corresponding permutohedra with vertices Π(yq) are presented in
section 8.

Example 3.8. Despite the agreement of the first and second moments of Ũq−2
y and Ũq−2

‖y‖
(cf. (3.1), (3.2)), Lq−2(Π(y)) need not be small. For example, take y = fqq where, for

i = 1, . . . , q, fqi ∈ M̃
q−1
≤ is the unit column vector

fqi = 1√
q(q−1)

(−1, . . . ,−1︸ ︷︷ ︸
i−1

, q − 1, −1 . . . ,−1︸ ︷︷ ︸
q−i

)′. (3.37)

Here Π(fqq ) = {fq1 , . . . , fqq }, so |Π(fqq )| = q not q!. From (3.25), (3.21), and (3.14) with
tq = 1

q−1 and λ = 0,

t(Π(fqq )) = 1
q−1 , (3.38)

Lq−2(Π(fqq )) = βq−2
(

1
q−1

)
→ 1

2 (3.39)

as q →∞. Thus the sequence {fqq } is not APF, hence not APU.

Remark 3.9. For later use, we note that for i = 1, . . . , q,

fqi = 1√
q(q−1)

(qeqi − eq) =
√

q
q−1Ωqe

q
i , (3.40)

where eqi ≡ (0, . . . , 0, 1, 0, . . . , 0)′ denotes the ith coordinate vector in Rq and Ωqe
q
i is the

projection of eqi onto M̃q−1. Thus fq1 , . . . , f
q
q form the vertices of a standard simplex in

M̃q−1: an equilateral triangle when q = 3, a regular tetrahedron when q = 4, etc.

For any nonzero yq ∈ M̃q−1
≤ ,

√
q−1
‖yq‖ Ũ

q−2
‖yq‖ is uniformly distributed on the sphere of

radius
√
q − 1 in M̃q−1. It is well known (cf. [8, 18], [9] Proposition 7.5), and also follows

from (3.6)–(3.9) and Lemma 3.1, that the marginal distributions from this uniform
distribution converge to the standard normal distribution N(0, 1) as q → ∞. More
precisely, for any sequence of unit vectors {uq} in M̃q−1,

(uq)′
(√

q−1
‖yq‖ Ũ

q−2
‖yq‖

)
=
√
q−1
‖yq‖ (uq)′Ũq−2

‖yq‖
d→ N(0, 1)
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as q → ∞. If we take uq = fqi =
√

q
q−1Ωqe

q
i (see (3.40)) for any fixed i, where eqi ≡

(0, . . . , 0, 1, 0, . . . , 0)′ is the ith coordinate vector in Rq, then

√
q−1
‖yq‖ (uq)′Ũq−2

‖yq‖ =
√
q

‖yq‖ (e
q
i )
′Ũq−2
‖yq‖ ≡

√
q

‖yq‖ (Ũ
q−2
‖yq‖)i

d→ N(0, 1) (3.41)

as q →∞, where (Ũq−2
‖yq‖)i denotes the ith component of Ũq−2

‖yq‖.

Proposition 3.10. A necessary condition that a sequence {yq ∈ M̃q−1
≤ } of nonzero

vectors be APU is that for each fixed i ≥ 1,

√
q

‖yq‖ (Ũ
q−2
yq )i

d→ N(0, 1) (3.42)

as q →∞, where (Ũq−2
yq )i denotes the ith component of Ũq−2

yq .

Proof. From (3.17) and (3.3)–(3.4),

Dq−2(Π(yq))

= sup
{∣∣Ũq−2

yq (C)− Ũq−2
‖yq‖(C)

∣∣ ∣∣ C ∈ C̃q−2
‖y‖
}

≥ sup
−1≤t<1

∣∣Ũq−2
yq (C(‖yq‖fqi ; t))− Ũq−2

‖yq‖(C(‖yq‖fqi ; t))
∣∣

= sup
−1≤t<1

∣∣Pr
[
(fqi )′Ũq−2

yq > ‖yq‖ t
]
− Pr

[
(fqi )′Ũq−2

‖yq‖ > ‖y
q‖ t
]∣∣

= sup
−1≤t<1

∣∣Pr
[√

q
q−1 (eqi )

′Ũq−2
yq > ‖yq‖ t

]
− Pr

[√
q
q−1 (eqi )

′Ũq−2
‖yq‖ > ‖y

q‖ t
]∣∣

= sup
−1≤t<1

∣∣Pr
[ √q
‖yq‖ (Ũ

q−2
yq )i >

√
q − 1 t

]
− Pr

[ √q
‖yq‖ (Ũ

q−2
‖yq‖)i >

√
q − 1 t

]∣∣.
Because Dq−2(Π(yq))→ 0 if {yq} is APU, this and (3.41) yield (3.42).

4 The regular configurations x̄q, ȳq are not spherically uniform

It is seen from (3.26) and (3.39) that {fqq } fails to be APF (hence fails to be APU and
APD) to the greatest possible extent. Clearly this is due to the fact that the components
of fqq comprise only two distinct values −1 and q−1. This suggests that the APU, APF, and

APD properties are more likely to hold for vectors yq ≡ Ωqx
q ∈ M̃q−1

≤ whose components
are distinct, so that |Π(yq)|, equivalently |Π(xq)|, attains its maximum value q!.

At this point, one might conjecture that the APU, APD, and APF properties are most
likely to hold for vectors whose components are evenly spaced, that is, for the vectors

x̄q = (1, 2, . . . , q)′, (4.1)

ȳq = Ωqx̄
q = (− q−1

2 ,− q−3
2 , . . . , q−3

2 , q−1
2 )′. (4.2)

We call x̄q and ȳq the regular configurations in Rq≤ and M̃q−1
≤ respectively. This con-

jecture is supported by the case q = 2 with ȳ2 = (− 1
2 ,

1
2 )′, where the two permutations

(− 1
2 ,

1
2 )′ and ( 1

2 , −
1
2 )′ trivially are uniformly distributed on S̃0

‖ȳ2‖, and by the case q = 3

with ȳ3 = (1, 2, 3)′, where the 3! = 6 permutations of ȳ3 comprise the vertices of a regular
hexagon, the most uniform among all configurations of 6 points on the circle S̃1

‖ȳ3‖.

When q = 4, however, the 4! = 24 permutations of y(4) ≡ (− 3
2 ,−

1
2 ,

1
2 ,

3
2 ) comprise the

vertices of the regular permutohedron R̃4 (see Section 8), a truncated octahedron whose
14 faces consist of 8 regular hexagons and 6 squares, hence is not a regular solid. Thus
support for the conjecture begins to waver.
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In this section we present two arguments that show this asymptotic spherical uni-
formity conjecture is strongly invalid for the regular configurations. The first argument
(Propositions 4.1 and 4.2) examines the APF and APE properties for {x̄q} and {ȳq}, the
second argument (Proposition 4.4) compares the univariate marginal distributions of
Ũq−2

ȳq and Ũq−2
‖ȳq‖. A third comparison of Ũq−2

ȳq and Ũq−2
‖ȳq‖ will be presented in Section 8.

Proposition 4.1. The sequences of regular configurations {x̄q ∈ Rq≤} and {ȳq ∈ M̃q−1
≤ }

are not APF, hence not APU and not APD.

Proof. It suffices to consider {ȳq}. Beginning with the relations

‖ȳq‖ =
√

1
12q(q

2 − 1), (4.3)

(ȳq)′zqk = (x̄q)′zqk = 1
2

√
qk(q − k), (4.4)

it follows from (3.21) and (3.25) that the LECD of Π(ȳq) is given by

Lq−2
(
Π(ȳq)

)
= βq−2

(
1
‖ȳq‖ min

1≤k≤q−1
(ȳq)′zqk

)
(4.5)

= βq−2
(√

3
q+1

)
, (4.6)

where the minimum is attained for k = 1 and k = q − 1. From Lemma 3.1 with λ =
√

3,

lim
q→∞

βq−2
(√

3
q+1

)
= 1− Φ(

√
3) ≈ .0416 > 0, (4.7)

so {ȳq} is not APF.

In fact, {x̄q} and {ȳq} fail asymptotic uniformity in a stronger sense:

Proposition 4.2. The regular configurations {x̄q} and {ȳq} are APE.

Proof. Again it suffices to consider {ȳq}. Define z̄qk = ‖ȳq‖zqk, where zqk is the unit vector
in (3.23). Because the minimum in (4.5) is attained for k = 1 and q − 1, i.e., for zq1 and

zqq−1, both C
(
z̄q1;
√

3
q+1

)
and C

(
z̄qq−1;

√
3
q+1

)
are (overlapping) largest empty spherical

caps for Π(ȳq) in S̃q−2
‖ȳq‖. (Note that zq1 = −fq1 and zqq−1 = fqq .) Because PΠ(ȳq) = Π(ȳq)

for all P ∈ Pq, C
(
P z̄q1;

√
3
q+1

)
and C

(
P z̄qq−1;

√
3
q+1

)
also are (overlapping) largest empty

spherical caps for Π(ȳq); there are 2q! such caps, all congruent. However

{P z̄q1 | P ∈ Pq} = {−f̄q1 , . . . ,−f̄qq },
{P z̄qq−1 | P ∈ Pq} = {f̄q1 , . . . , f̄qq },

where f̄qi = ‖ȳq‖fqi , so these 2q! empty caps reduce to 2q, namely{
C
(
− f̄qi ;

√
3
q+1

) ∣∣∣ i = 1, . . . q
}
∪
{
C
(
f̄qi ;
√

3
q+1

) ∣∣∣ i = 1, . . . q
}
.

By (4.5)–(4.7), each of these congruent empty caps remains nonnegligible as q →∞, so
{ȳq} is APE if

lim
q→∞

Ũq−2
‖ȳq‖(Υ

q) = 1,

where

Υq =
⋃q
i=1

[
C
(
− f̄qi ;

√
3
q+1

)
∪ C

(
f̄qi ;
√

3
q+1

)]
.

Therefore, because
S̃q−2
‖ȳq‖

⋂(
(Υq)

c
)

= S̃q−2
‖ȳq‖

⋂(
∩qi=1 S

q
i

)
,
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where Sqi is the closed symmetric slab

Sqi =
{
v ∈ M̃q−1

∣∣ |v′f̄qi | ≤ ‖ȳq‖2√ 3
q+1

}
,

to show that {ȳq} is APE it suffices to show that

lim
q→∞

Ũq−2
‖ȳq‖

(
(Υq)

c
)
≡ lim
q→∞

Ũq−2
‖ȳq‖

(
∩qi=1 S

q
i

)
= 0. (4.8)

If Sq1 , . . . , S
q
q were mutually geometrically orthogonal, i.e., if fq1 , . . . , f

q
q were orthonor-

mal, then the Sqi would be subindependent under Ũq−2
‖ȳq‖ (cf. [3]), that is,

Ũq−2
‖ȳq‖(∩

q
i=1S

q
i ) ≤

∏q

i=1
Ũq−2
‖ȳq‖(S

q
i ),

which would readily yield (4.8). However, (fqi )′fqj = − 1
q−1 6= 0 if i 6= j so this approach

fails.5 Instead we can apply the cruder one-sided bound

Ũq−2
‖ȳq‖(∩

q
i=1S

q
i ) ≤ Ũq−2

‖ȳq‖(∩
q
i=2H

q
i ), (4.9)

where Hq
i is the halfspace

Hq
i :=

{
v ∈ M̃q−1

∣∣ v′f̄qi ≤ ‖ȳq‖2√ 3
q+1

}
.

Again Hq
2 , . . . ,H

q
q are not mutually geometrically orthogonal, but now this works in our

favor: because (fqi )′fqj < 0 if i 6= j, the extension of Slepian’s inequality to spherically
symmetric density functions ([7], Lemma 5.1) and a standard approximation argument
yields

Ũq−2
‖ȳq‖(∩

q
i=2H

q
i ) ≤ Ũq−2

‖ȳq‖(∩
q
i=2K

q
i ), (4.10)

where Kq
i is the halfspace

Kq
i :=

{
v ∈ M̃q−1

∣∣ v′γqi ≤ ‖ȳq‖√ 3
q+1

}
and γq2 , . . . , γ

q
q are the last q − 1 columns of the Helmert matrix Γq in Section 2, which

form an orthonormal basis in M̃q−1 so (γqi )′γqj = 0. Now Proposition A.1 in the Appendix

and the orthogonal invariance of Ũq−2
‖ȳq‖ imply that

Ũq−2
‖ȳq‖(∩

q
i=2K

q
i ) ≤

∏q
i=2 Ũ

q−2
‖ȳq‖(K

q
i ) (4.11)

=
[
Ũq−2
‖ȳq‖(K

q
i )
]q−1

(4.12)

=
[
1− βq−2

(√
3
q+1

)]q−1

. (4.13)

Therefore by (4.7),

lim sup
q→∞

[
Ũq−2
‖ȳq‖(∩

q
i=2K

q
i )
] 1

q−1 ≤ Φ(
√

3) ≈ .9584, (4.14)

hence by (4.8)–(4.10),

Ũq−2
‖ȳq‖((Υ

q)c) ≤ Ũq−2
‖ȳq‖(∩

q
i=2K

q
i ) ≤ (.96)q−1 (4.15)

for sufficiently large q. Thus (4.8) holds, in fact Ũq−2
‖ȳq‖((Υ

q)c) → 0 at a geometric rate,

hence {ȳq} is APE as asserted.

5In fact, Theorem 2.1 of [7] suggests that Sq
1 , . . . , S

q
q may be superdependent under Ũq−2

‖ȳq‖.
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Remark 4.3. The above result can be framed in terms of statistical hypothesis testing.
Based on one random observation Y ≡ (Y1, . . . , Yq)

′ ∈ S̃q−2
‖ȳq‖, suppose that it is wished

to test the spherical-uniformity hypothesis H0 that Y
d
= Ũq−2

‖ȳq‖ against the permutation-

uniformity alternative H1 that Y
d
= Ũq−2

ȳq . Consider the test that rejects H0 in favor of
H1 iff Y ∈ (Υq)c, that is, iff

max1≤i≤q |Yi − Ȳ | ≤ q−1
2 ,

where Ȳ = 1
q

∑q
i=1 Yi. The size of this test is Ũq−2

‖ȳq‖((Υ
q)c), which by (4.15) rapidly

approaches 0 as q →∞, while its power = 1 for every q because Π(ȳq) ⊂ (Υq)c.

A second argument for the invalidity of the spherical uniformity conjecture for the
regular configuration {ȳq} (and {x̄q}) stems from Proposition 3.10 and the following
fact:

Proposition 4.4. For each fixed i ≥ 1, as q →∞,√
12
q2−1 (Ũq−2

ȳq )i
d→ Uniform

(
−
√

3,
√

3
)

(4.16)

as q →∞. Thus {ȳq} does not satisfy (3.42), hence is not APU.

Proof. By (4.2), for each i = 1, . . . , q, (Ũq−2
ȳq )i is uniformly distributed over the range

{− q−1
2 ,− q−3

2 , . . . , q−3
2 , q−1

2 }. Therefore
√

12
q2−1 (Ũq−2

ȳq )i is uniformly distributed over the
range √

3
{
− q−1√

q2−1
,− q−3√

q2−1
, . . . , q−3√

q2−1
, q−1√

q2−1

}
, (4.17)

from which (4.16) follows readily.

5 A more favorable configuration for spherical uniformity

It was shown in Proposition 4.1 that the regular configurations x̄q and ȳq are not
APF, hence not APU or APD, although the components of x̄q and ȳq are exactly evenly
spaced. A possibly more favorable configuration for spherical uniformity of permutations
is now constructed, namely, a nonzero vector ŷq in S̃q−2

‖ȳq‖ ∩R
q
≤ that minimizes the LECD

Lq−2(Π(y)) in S̃q−2
‖ȳq‖; equivalently, that minimizes the LECAD Aq−2(Π(y)). We call ŷq the

L-minimal configuration.
For any nonzero vector y in S̃q−2

‖ȳq‖ ∩R
q
≤, (3.21), (3.25), and (3.36) yield

Lq−2(Π(y)) = βq−2(t(Π(y))) = βq−2
(

1
‖y‖ min

1≤k≤q−1
y′zqk

)
, (5.1)

Aq−2(Π(y)) = cos−1(t(Π(y))) = cos−1
(

1
‖y‖ min

1≤k≤q−1
y′zqk

)
. (5.2)

Thus, because βq−2(·) and cos−1(·) are decreasing and y
‖y‖ is a unit vector, we seek a

unit vector z ≡ (z1, . . . , zq)
′ ∈ M̃q−1

≤ that attains the maximum

Λ̂q := max
z∈M̃q−1

≤ , ‖z‖=1
min

1≤k≤q−1
z′zqk. (5.3)

For 1 ≤ k ≤ q define

bqk =
√

3k(q−k)
q(q+1) , (bq0 = 0), (5.4)

âqk = bqk−1 − b
q
k, (5.5)

âq = (âq1, . . . , â
q
q)
′, (5.6)

ẑq ≡ (ẑq1 , . . . , ẑ
q
q )′ = âq

‖âq‖ . (5.7)
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Then âq1 + · · · + âqq = 0 so ẑq1 + · · · + ẑqq = 0, and it is straightforward to show that

âq1 < · · · < âqq, so ẑq1 < · · · < ẑqq , hence ẑq ∈ M̃q−1
≤ . Trivially, ‖ẑq‖ = 1.

Proposition 5.1. The unit vector ẑq uniquely attains the maximum Λ̂q. Thus in the
original scale,

ŷq := ‖ȳq‖ ẑq =
√

q(q2−1)
12

âq

‖âq‖ (5.8)

is the unique L-minimal configuration. Furthermore, ŷq 6= ȳq when q ≥ 4, and the
minimum LECD and LECAD are, respectively,

Lq−2(Π(ŷq)) = βq−2
(

1
‖âq‖

√
3
q+1

)
, (5.9)

Aq−2(Π(ŷq)) = cos−1
(

1
‖âq‖

√
3
q+1

)
. (5.10)

Proof. For any unit vector z ≡ (z1, . . . , zq)
′ ∈ M̃q−1

≤ , z1 + · · · + zq = 0, so after some
algebra we find that

z′zqk =
√

q
k(q−k) (zk+1 + · · ·+ zq), (5.11)

hence
Λ̂q = max

z∈M̃q−1
≤ , ‖z‖=1

min
1≤k≤q−1

√
q

k(q−k) (zk+1 + · · ·+ zq). (5.12)

We now show that the maximum in (5.12) is uniquely attained when z = ẑq.

Because ẑqk+1 + · · ·+ ẑqq =
bqk
‖aq‖ ,√
q

k(q−k) (ẑqk+1 + · · ·+ ẑqq ) = 1
‖âq‖

√
3
q+1 (5.13)

for each k = 1, . . . , q − 1. Thus we must show that

min
1≤k≤q−1

√
q

k(q−k) (zk+1 + · · ·+ zq) <
1
‖âq‖

√
3
q+1 (5.14)

for every z 6= ẑq such that z1 + · · ·+ zq = 0, ‖z‖ = 1, z1 ≤ · · · ≤ zq. Suppose that there is
such a z that satisfies

min
1≤k≤q−1

√
q

k(q−k) (zk+1 + · · ·+ zq) ≥ 1
‖âq‖

√
3
q+1 . (5.15)

Therefore if 1 ≤ k ≤ q − 1 then

zk+1 + · · ·+ zq ≥
bqk
‖âq‖ = ẑqk+1 + · · ·+ ẑqq ,

with equality for k = 0, so z majorizes ẑq ([15]). Because ‖z‖2 is symmetric and strictly
convex in (z1, . . . , zq) and z 6= ẑq, this implies that

1 = ‖z‖2 > ‖ẑq‖2 = 1, (5.16)

a contradiction. Thus the maximum value Λ̂q is uniquely achieved when z = ẑq as
asserted. It is easy to verify that âq1, . . . , â

q
q are not evenly spaced when q ≥ 4, hence

ŷq 6= ȳq. Lastly, (5.9) and (5.10) follow from (5.13).

The vectors ŷq and x̂q ≡ ŷq + q+1
2 eq are called the L-minimal configurations in M̃q−1

≤
and Rq≤ respectively. It is now obvious to ask whether or not the sequences {ŷq} and
{x̂q} are APF, and if so, are APU. These questions will be answered in Propositions 5.3
and 5.5.

Because the LECD of Π(ŷq) given by (5.9) depends on ‖âq‖, bounds for ‖âq‖ are
needed. Since ŷq 6= ȳq, necessarily ‖âq‖ < 1 by the uniqueness of ŷq, but sharper bounds
will be required.
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Lemma 5.2. √
3[log(2q+1)−2]

2(q+1) < ‖âq‖ <
√

3[2 log(2q−1)+1]
2(q+1) . (5.17)

Therefore
‖âq‖ = O

(√
log q
q+1

)
as q →∞. (5.18)

Proof. For k = 1, . . . , q set

cqk =
[√

(k − 1(q − k + 1)−
√
k(q − k)

]2
, (5.19)

dqk =
√
k(k − 1)(q − k)(q − k + 1),

q̄ = q+1
2 ,

then verify that

cqk = 2
[
q2−1

4 − (k − q̄)2 − dqk
]
. (5.20)

From (5.4)–(5.5) and (5.19)–(5.20) we find that

‖âq‖2 = 3
q(q+1)

∑q
k=1 c

q
k (5.21)

= (q − 1)− 6
q(q+1)

q∑
k=1

dqk.

For the upper bound, use the harmonic mean-geometric mean inequality:

‖âq‖2 < (q − 1)− 6
q(q+1)

∑q
k=1

k(k−1)(q−k)(q−k+1)

(k− 1
2 )(q−k+ 1

2 )

= (q − 1)− 6
q(q+1)

∑q
k=1

[(k− 1
2 )2− 1

4 ][(q−k+ 1
2 )2− 1

4 ]

(k− 1
2 )(q−k+ 1

2 )

< (q − 1)− 6
q(q+1)

∑q
k=1

{
(k − 1

2 )(q − k + 1
2 )− k− 1

2

4(q−k+ 1
2 )
− q−k+ 1

2

4(k− 1
2 )

}
= (q − 1)− 6

q(q+1)

{∑q
k=1(k − 1

2 )(q − k + 1
2 )−

∑q
k=1

q−k+ 1
2

2(k− 1
2 )

}
= (q − 1)− 6

q(q+1)

{∑q
k=1(k − 1

2 )(q − k + 1
2 )− q

2

∑q
k=1

1
k− 1

2

+ q
2

}
= 3

q+1

{∑q
k=1

1
k− 1

2

− 3
2

}
< 3[2 log(2q−1)+1]

2(q+1) ; (5.22)

the final inequality follows from (7) of [16].
Similarly, the geometric mean-arithmetic mean inequality yields the non-logarithmic

lower bound 3(3q−2)
2q(q+1) . However, the asserted logarithmic lower bound, which is sharper,

can be obtained as follows. We will show that

cqk ≡
[√

k(q − k)−
√

(k − 1)(q − k + 1)
]2 ≥ (k−q̄)2

(k− 1
2 )(q−k+ 1

2 )
, (5.23)

for k = 1, . . . , q, where q̄ = q+1
2 . Thus from (5.21),

‖âq‖2 ≥ 3
q(q+1)

∑q
k=1

(k−q̄)2

(k− 1
2 )(q−k+ 1

2 )

= 3
q2(q+1)

∑q
k=1

[
(k−q̄)2

k− 1
2

+ (k−q̄)2

q−k+ 1
2

]
= 3

q2(q+1)

∑q
k=1

[
(k− 1

2 )2−2(k− 1
2 )( q

2 )+( q
2 )2

k− 1
2

+
(q−k+ 1

2 )2−2(q−k+ 1
2 )( q

2 )+( q
2 )2

q−k+ 1
2

]
= 3

q+1

[∑q
k=1

1
4

(
1

k− 1
2

+ 1
q−k+ 1

2

)
− 1
]

= 3
q+1

[∑q
k=1

1
2k−1 − 1

]
> 3[log(2q+1)−2]

2(q+1) , (5.24)
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where the inequality used in (5.24) also follows from (7) of [16].
To establish (5.23), rewrite it in the equivalent form(√

(q̄ + u)(q̄ − u− 1)−
√

(q̄ + u− 1)(q̄ − u)
)2 ≥ u2

q̃2−u2 , (5.25)

where u ≡ k − q̄ ∈ {− q−1
2 , . . . , q−1

2 } and q̃ = q̄ − 1
2 = q

2 . Now set v = u
q̃ , so |v| ≤ q−1

q < 1.
Then (5.25) can be written in the equivalent forms(√

(q̄ + q̃v)(q̄ − q̃v − 1)−
√

(q̄ + q̃v − 1)(q̄ − q̃v)
)2 ≥ v2

1−v2 ,(√
(q̄2 − q̃2v2)− (q̄ + q̃v)−

√
(q̄2 − q̃2v2)− (q̄ − q̃v)

)2 ≥ v2

1−v2 ,

2µ(v)− 2
√

(µ(v)− q̃v)(µ(v) + q̃v) ≥ v2

1−v2 ,

2µ(v)− 2
√
µ(v)2 − q̃2v2 ≥ v2

1−v2 , (5.26)

where
µ(v) = q̄2 − q̃2v2 − q̄ = 1

4 [q2(1− v2)− 1].

It will be shown that for |v| ≤ q−1
q ,

2µ(v)− v2

1−v2 ≥ 0, (5.27)

so (5.26) is equivalent to each of the following inequalities:

[2µ(v)− v2

1−v2 ]2 ≥ 4µ(v)2 − q2v2,

q2v2 − 4µ(v) v2

1−v2 + v4

(1−v2)2 ≥ 0,

q2v2 − [q2(1− v2)− 1] v2

1−v2 + v4

(1−v2)2 ≥ 0,

q2v2(1− v2)− [q2(1− v2)− 1]v2 + v4

1−v2 ≥ 0,

v2(1 + v2

1−v2 ) ≥ 0,

which clearly is true. Thus (5.23) will be established once (5.27) is verified.
For this set x = v2, so (5.27) can be expressed equivalently as

h(x) ≡ (1− x)[q2(1− x)− 1]− 2x ≥ 0,

where 0 ≤ x ≤ ( q−1
q )2. The quadratic function h(x) satisfies

h(0) = q2 − 1 > h
[(
q−1
q

)2]
= 2− 2

q > 0 > h(1) = −2,

hence h(x) > 0 for 0 ≤ x ≤ ( q−1
q )2, as required.

Proposition 5.3. The L-minimal configurations {ŷq} and {x̂q} are APF.

Proof. Set tq = 1
‖âq‖

√
3
q+1 , so that (5.17) yields

√
q

2 log(2q−1)+1 < tq
√
q <

√
2q

log(2q+1)−2 .

Then by Lemma 3.1 with λ =∞,

lim
q→∞

Lq−2(Π(ŷq)) = 0, (5.28)

hence {ŷq} (and {x̂q}) is APF.
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It follows from (3.41), (4.3), and (4.16) that for each fixed i ≥ 1, {ȳq} satisfies

Wq := 12
q2−1

[
(Ũq−2
‖ȳq‖)i

]2 d→ χ2
1, (5.29)

W̄q := 12
q2−1

[
(Ũq−2

ȳq )i
]2 d→ 3 Beta( 1

2 , 1), (5.30)

as q →∞. The bounds for ‖âq‖ in (5.17) yield a corresponding result for the L-minimal
configurations {ŷq}:
Proposition 5.4. For each fixed i ≥ 1,

Zq

log(2q−1)+2 <st Ŵq := 12
q2−1

[
(Ũq−2

ŷq )i
]2
<st

2Zq+1
log(2q+1)−2 , (5.31)

where {Zq} is a sequence of positive random variables such that

Zq
d→ F1,2 (5.32)

as q →∞. Here <st denotes stochastic ordering and F1,2 denotes the F distribution with
1 and 2 degrees of freedom. Therefore

Ŵq = Op

(
F1,2

log q

)
p→ 0, (5.33)√

12
q2−1 (Ũq−2

ŷq )i = Op
(

t2√
log q

) p→ 0, (5.34)

where t2 denotes Student’s t-distribution with 2 degrees of freedom.

Proof. From (5.4)–(5.8) and (5.19), Ŵq is uniformly distributed over the set{
12
q2−1

q(q2−1)
12

3
‖âq‖2q(q+1) c

q
k

∣∣∣ k = 1, . . . , q
}

=
{ 3cqk

(q+1)‖âq‖2
∣∣ k = 1, . . . , q

}
, (5.35)

so by (5.24), Ŵq is stochastically smaller than the uniform distribution on{
2cqk

log(2q+1)−2

∣∣∣ k = 1, . . . , q
}

=
{

4[ q
2−1
4 −(k−q̄)2−dqk]

log(2q+1)−2

∣∣∣ k = 1, . . . , q
}
.

Now apply the harmonic mean-geometric mean inequality to dqk to obtain

q2−1
4 − (k − q̄)2 − dqk <

q2−1
4 − (k − q̄)2 − k(k−1)(q−k)(q−k+1)

(k− 1
2 )(q−k+ 1

2 )

= q2−1
4 − (k − q̄)2 − [(k− 1

2 )2− 1
4 ][(q−k+ 1

2 )2− 1
4 ]

(k− 1
2 )(q−k+ 1

2 )

= q2−1
4 − (k − q̄)2 − (k − 1

2 )(q − k + 1
2 )

+
q−k+ 1

2

4(k− 1
2 )

+
k− 1

2

4(q−k+ 1
2 )
− 1

16
1

(k− 1
2 )(q−k+ 1

2 )

= 1
4

[
q2− 1

4

(k− 1
2 )(q−k+ 1

2 )
− 3
]

= 1
4

[
q2− 1

4
q2

4 −(k−q̄)2
− 3
]

< 1

1−4
(

k−q̄
q

)2 − 3
4 ,

where we have twice used the relation

(k − q̄)2 + (k − 1
2 )(q − k + 1

2 ) = q2

4 . (5.36)

Therefore Ŵq is stochastically smaller than

4
log(2q+1)−2

(
1

1−4V 2
q
− 3

4

)
≡ 4Yq+1

log(2q+1)−2 ,
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where

Vq
d
= Uniform

{
k−q̄
q

∣∣ k = 1, . . . , q
}
,

Yq =
4V 2

q

1−4V 2
q
.

Because k−q̄
q = 2k−q−1

2q , clearly

Vq
d→ V

d
= Uniform(− 1

2 ,
1
2 ),

4V 2
q

d→ 4V 2 d
= Beta( 1

2 , 1),

as q →∞, from which it follows that Yq
d→ 1

2F1,2. Now set Zq = 2Yq.

Similarly from (5.22), (5.23), (5.35), and (5.36), Ŵq is stochastically larger than the
uniform distribution on {

2
log(2q+1)−2

[
(k−q̄)2

q2

4 −(k−q̄)2

] ∣∣∣ k = 1, . . . , q
}
,

so Ŵq is stochastically larger than

2
log(2q+1)−2

( 4V 2
q

1−4V 2
q

)
≡ Zq

log(2q+1)−2 ,

as asserted.

Proposition 5.5. The sequences of L-minimal configurations {ŷq} and {x̂q} are not
APU.

Proof. It follows from (5.34) that for any fixed i,

√
q

‖ŷq‖ (Ũ
q−2
ŷq )i =

√
12
q2−1 (Ũq−2

ŷq )i = Op
(

1√
log q

) p→ 0, (5.37)

hence by Proposition 3.10 {ŷq} and {x̂q} cannot be APU.

6 The normal configuration

The sequence {ŷq}, like {ȳq}, fails to satisfy the necessary condition (3.42) for APU,
yet {ŷq} uniquely minimizes the LECD and LECAD, so it seems reasonable to conjecture
that no APU sequence exists. However, it is easy to find a sequence {y̆q ∈ M̃q−1

≤ } that
does satisfy (3.42). Define

ăq ≡ (ăq1, . . . , ă
q
q) =

(
Φ−1( 1

q+1 ),Φ−1( 2
q+1 ), . . . ,Φ−1( q

q+1 )
)′
, (6.1)

the k
q+1 -quantiles of the N(0, 1) distribution, then in the original scale let

y̆q = ‖ȳq‖ ăq

‖ăq‖ . (6.2)

Clearly ăq1 < · · · < ăqq while ăq1 + · · ·+ ăqq = 0 by the symmetry of N(0, 1), hence y̆q ∈ M̃q−1
≤ .

The vector y̆q is called the normal configuration.

For each i = 1, . . . , q, (Ũq−2
ăq )i

d
= Φ−1(Uq), where

Uq
d
= Uniform

({
1
q+1 , . . . ,

q
q+1

}) d→ Uniform(0, 1), (6.3)

hence
(Ũq−2

ăq )i
d→ Φ−1(Uniform(0, 1)) = N(0, 1)
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as q →∞. Furthermore,

‖ăq‖2
q+1 + 1

q+1 [Φ−1( q
q+1 )

]2 ≡ 1
q+1

∑q
k=1

[
Φ−1( k

q+1 )
]2

+ 1
q+1 [Φ−1( q

q+1 )
]2

is an approximating Riemann sum for∫ 1

0
[Φ−1(u)]2du =

∫∞
−∞ x2φ(x)dx = 1,

while
Φ−1( q

q+1 ) =
√

2 log(q + 1)(1 + o(1)) (6.4)

as q →∞ (e.g. [11] p. 1092). Thus

‖ăq‖2
q+1 = 1− 2 log(q+1)

q+1 + o(1), (6.5)

‖ăq‖ ∼
√
q + 1, (6.6)

hence {y̆q} satisfies (3.42):
√
q

‖y̆q‖ (Ũ
q−2
y̆q )i =

√
q

‖ăq‖ (Ũ
q−2
ăq )i

d→ N(0, 1) (6.7)

as q → ∞. However, it is now shown that the LECD of {y̆q}, necessarily greater than
that of {ŷq}, does not approach 0.

Proposition 6.1. {y̆q} is not APF, hence is not APU.

Proof. By (3.21)–(3.25) and (6.1)–(6.2),

Lq−2
(
Π(y̆q)

)
= βq−2(t̆q), (6.8)

t̆q : = 1
‖y̆q‖ min

1≤k≤q−1
(y̆q)′zqk (6.9)

≤ 1
‖y̆q‖ (y̆

q)′zqq−1

= 1
‖ăq‖ (ă

q)′zqq−1 (6.10)

= 1
‖ăq‖

√
q
q−1Φ−1

(
q
q+1

)
(6.11)

< 1
‖ăq‖

√
q
q−1

φ(Φ−1( q
q+1 ))

1−Φ(Φ−1( q
q+1 ))

= q+1√
2π‖ăq‖

√
q
q−1e

− 1
2 [Φ−1( q

q+1 )]2 .

It follows from [11] p. 1092 that

Φ−1
(

q
q+1

)
=
√

2 log
(
(q + 1)

√
4π log(q + 1)

)(
1 + ∆q

)
(6.12)

where ∆q = O
(

log(log(q+1))
(log(q+1))2

)
, hence

e−
1
2 [Φ−1( q

q+1 )]2 = 1
q+1

1√
4π log(q+1)

(
1
q+1

)∆q+∆2
q
(

1√
4π log(q+1)

)∆q+∆2
q

= 1
q+1o(1)(1 + o(1))(1 + o(1))

= 1
q+1o(1).

Therefore by (6.6),

t̆q
√
q < 1√

2π‖ăq‖
q√
q−1

o(1) = o(1), (6.13)

hence limq→∞ t̆q
√
q = 0, so

lim
q→∞

Lq−2
(
Π(y̆q)

)
= 1

2 (6.14)

by Lemma 3.1 with λ = 0. This completes the proof.
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Remark 6.2. It should be noted that the convergences in (5.37) and (6.14) occur at very
slow, sub-logarithmic rates.

Proposition 6.3. {y̆q} is APE.

Proof. The proof is similar to that of Proposition 4.2. Again define z̄qk = ‖ȳq‖zqk, where
zqk is the unit vector in (3.23), and define

s̆q = 1
‖ăq‖ (ă

q)′zqq−1,

cf. (6.10). As in (6.10)–(6.13),

s̆q
√
q < 1√

2π‖ăq‖
q√
q−1

o(1) = o(1), (6.15)

hence from (3.6)–(3.9) and Lemma 3.1 with λ = 0,

lim
q→∞

Ũq−2
‖ȳq‖

(
C
(
z̄qq−1; s̆q

))
= lim
q→∞

βq−2(s̆q) = 1
2 . (6.16)

Furthermore, from (3.27) and the Rearrangement Inequality,

Π(y̆q) ∩ C
(
z̄qq−1; s̆q

)
= ∅ ⇐⇒ max

P∈Pq
(P y̆q)′z̄qq−1 ≤ ‖ȳq‖2s̆q

⇐⇒ (y̆q)′z̄qq−1 ≤ ‖ȳq‖2s̆q

⇐⇒ 1
‖ăq‖ (ă

q)′zqq−1 ≤ s̆q,

hence C
(
z̄qq−1; s̆q

)
is an empty spherical cap for Π(y̆q).

Because PΠ(y̆q) = Π(y̆q) for all P ∈ Pq, each C
(
P z̄qq−1; s̆q

)
is an empty spherical cap

for Π(y̆q) in S̃q−2
‖ȳq‖; there are q! such congruent caps. However

{P z̄qq−1 | P ∈ Pq} = {f̄q1 , . . . , f̄qq },

where f̄qi = ‖ȳq‖fqi , so these q! empty caps reduce to q congruent ones, namely{
C
(
f̄qi ; s̆q

) ∣∣ i = 1, . . . q
}
.

By (6.16) each of these congruent caps remains nonnegligible as q →∞, so to show that
{ȳq} is APE it suffices to show that

lim
q→∞

Ũq−2
‖ȳq‖

(
Ῠq
)

= 1, (6.17)

where

Ῠq =
⋃q
i=1

[
C
(
f̄qi ; s̆q

)]
.

Clearly

S̃q−2
‖ȳq‖

⋂(
(Ῠq)

c
)
⊆ S̃q−2

‖ȳq‖
⋂(
∩qi=2 H̆

q
i

)
, (6.18)

where H̆q
i is the halfspace

H̆q
i :=

{
v ∈ M̃q−1

∣∣ v′f̄qi ≤ ‖ȳq‖2 s̆q}.
As in the proof of Proposition 4.2, (fqi )′fqj = − 1

q−1 < 0 if i 6= j so

Ũq−2
‖ȳq‖

(
∩qi=2 H̆

q
i

)
≤ Ũq−2

‖ȳq‖
(
∩qi=2 K̆

q
i

)
, (6.19)
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where K̆q
i is the halfspace

K̆q
i :=

{
v ∈ M̃q−1

∣∣ v′γqi ≤ ‖ȳq‖ s̆q}.
Again apply Proposition A.1 and the orthogonal invariance of Ũq−2

‖ȳq‖ to obtain

Ũq−2
‖ȳq‖

(
∩qi=2 K̆

q
i

)
≤
∏q
i=2 Ũ

q−2
‖ȳq‖(K̆

q
i ) (6.20)

=
[
Ũq−2
‖ȳq‖(K̆

q
i )
]q−1

=
[
1− βq−2

(
s̆q
)]q−1

. (6.21)

Therefore by (6.16),

lim sup
q→∞

[
Ũq−2
‖ȳq‖

(
∩qi=2 K̆

q
i

)] 1
q−1 ≤ 1

2 , (6.22)

hence by (6.18)–(6.22), for any ε > 0

Ũq−2
‖ȳq‖

(
(Υq)c

)
≤ Ũq−2

‖ȳq‖
(
∩qi=2 K̆

q
i

)
≤ ( 1

2 + ε)q−1 (6.23)

for sufficiently large q. Thus (6.17) holds, in fact Ũq−2
‖ȳq‖((Ῠ

q)c)→ 0 at a geometric rate,

hence {y̆q} is APE as asserted.

7 Comparisons among the configurations

Based on the results in Sections 4–6, comparisons among the three uniform distri-
butions Ũq−2

ȳq , Ũq−2
ŷq , Ũq−2

y̆q on permutations and the uniform distribution Ũq−2
‖ȳq‖ on the

sphere S̃q−2
‖ȳq‖ are now summarized.

The LECDs of Π(ȳq), Π(ŷq), and Π(y̆q) are as follows:

Lq−2(Π(ȳq)) = βq−2
(√

3
q+1

)
; (7.1)

Lq−2(Π(ŷq)) = βq−2
(

1
‖âq‖

√
3
q+1

)
; (7.2)

Lq−2
(
Π(y̆q)

)
= βq−2(t̆q). (7.3)

Here ‖âq‖ is given by (5.6) and approximated in (5.17), while t̆q is given by (6.9) and
bounded above by (6.11) together with (6.5). Some explicit bounds and asymptotic
comparisons among these LECDs are collected here.

First, from (3.11) and (3.13),

1
2 −

√
q−2
q−4

[
Φ
(√

3(q−4)
q+1

)
− 1

2

]
< Lq−2(Π(ȳq)) <

[
q−2
q+1

] q−2
2
√

q+1
6π(q−2) . (7.4)

Asymptotically,
lim
q→∞

Lq−2(Π(ȳq)) = 1− Φ(
√

3) ≈ 0416. (7.5)

Second, from (5.17),

βq−2
(√

2
log(2q+1)−2

)
< Lq−2(Π(ŷq)) < βq−2

(√
2

2 log(2q−1)+1

)
,

which, combined with (3.11) and (3.13), yields the explicit bounds

1
2 −

√
q−2
q−4

[
Φ
(√

2(q−4)
log(2q+1)−2

)
− 1

2

]
< Lq−2(Π(ŷq)) (7.6)

<
[

2 log(2q−1)−1
2 log(2q−1)+1

] q−2
2
√

2 log(2q−1)+1
4π(q−2) . (7.7)
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Asymptotically,
lim
q→∞

Lq−2(Π(ŷq)) = 0. (7.8)

Third, from (3.13) and (6.11),

1
2 −

√
q−2
q−4

[
Φ
(

1
‖ăq‖

√
q(q−4)
q−1 Φ−1

(
q
q+1

))
− 1

2

]
< Lq−2(Π(y̆q)).

Asymptotically,
lim
q→∞

Lq−2
(
Π(y̆q)

)
= 1

2 . (7.9)

The LECADs of Π(ȳq), Π(ŷq), and Π(y̆q) are as follows:

Aq−2(Π(ȳq)) = cos−1
(√

3
q+1

)
; (7.10)

Aq−2(Π(ŷq)) = cos−1
(

1
‖âq‖

√
3
q+1

)
; (7.11)

Aq−2
(
Π(y̆q)

)
= cos−1(t̆q). (7.12)

These yield some explicit expressions and bounds for the LECADs:

Aq−2(Π(ȳq)) = cos−1
(√

3
q+1

)
; (7.13)

cos−1
(√

2
log(2q+1)−2

)
<Aq−2(Π(ŷq)) < cos−1

(√
2

2 log(2q−1)+1

)
; (7.14)

cos−1
(

1
‖ăq‖

√
q
q−1Φ−1

(
q
q+1

) )
<Aq−2(Π(y̆q)). (7.15)

Asymptotic comparisons among the LECADs are extremely simple:

Proposition 7.1. For any sequence of nonzero vectors {yq ∈ M̃q−1
≤ },

lim
q→∞

Aq−2(Π(yq)) = cos−1(0) = π
2 , (7.16)

that is, the largest empty cap for Π(yq) approaches a hemisphere in terms of its angular
measure. Therefore no APD sequence exists.

Proof. From the lower bound in (7.14) we see that (7.16) holds for the L-minimal
configurations {ŷq}. Because ŷq minimizes the largest empty cap, (7.16) holds for all
nonzero sequences {ŷq}.

Lastly, the standardized limits of the univariate marginal distributions are as follows:
for each fixed i ≥ 1, √

12
q2−1 (Ũq−2

ȳq )i
d→ Uniform

(
−
√

3,
√

3
)
; (7.17)√

12
q2−1 (Ũq−2

ŷq )i = Op
(

t2√
log q

) p→ 0; (7.18)√
12
q2−1 (Ũq−2

y̆q )i
d→ N(0, 1); (7.19)√

12
q2−1 (Ũq−2

‖ȳq‖)i
d→ N(0, 1). (7.20)

Our asymptotic results for the LECDs, LECADs, and univariate marginal distributions
of the regular, L-minimal, and normal configurations are summarized in Table 1. Neither
the regular nor normal sequence is APU, nor is the L-minimal sequence APU even though
it is APF. Thus we conjecture, albeit somewhat weakly, that the answer to the following
question is no:
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Table 1: The first three rows refer to the discrete uniform distribution on the permu-
tations in Π(yq). The fourth row refers to the continuous uniform distribution on the
sphere S̃q−2

‖ȳq‖, where the “entries” hold trivially. The second and third columns show the
limiting LECDs and LECADs, respectively. The final column indicates whether or not the
univariate marginal distributions converge to N(0, 1), a necessary condition for APU.

yq lim
q→∞

Lq−2(Π(yq)) lim
q→∞

Aq−2(Π(yq)) APF APU APE N(0,1)

ȳq regular 1− Φ(
√

3) π/2 no no yes no
ŷq L-minimal 0 π/2 yes no no no
y̆q normal 1/2 π/2 no no yes yes
‖ȳq‖ spherical “0” “π/2” “yes” “yes” “no” “yes”

Table 2: The regular, L-minimal, and normal configurations for q = 3, 4, 5, 6. The q

components of each vector yq are symmetric about 0 so only the nonnegative components
are shown.

q ȳq ŷq y̆q

3 (0, 1) (0, 1) (0, 1)
4 (.5, 1.5) (.242, 1.56) (.459, 1.51)
5 (0, 1, 2) (0, .490, 2.18) (0, .909, 2.04)
6 (.5, 1.5, 2.5) (.219, .756, 2.85) (.436, 1.37, 2.59)

Question 4. Does any APU sequence {yq ∈ M̃q−1
≤ } exist?

Some exact values of ȳq, ŷq, and y̆q, are shown in Table 2. For q = 3, ȳ3 = ŷ3 = y̆3,
while for q ≥ 4 the components of ŷq disperse more rapidly than those of ȳq and y̆q as q
increases. This is also seen from the following asymptotic comparisons of the magnitudes
of the ranges of the univariate marginal distributions: for each i = 1, . . . , q,∣∣range[(Ũq−2

ȳq )i]
∣∣ =

∣∣[− q−1
2 , q−1

2 ]
∣∣ = q = O(q)∣∣range[(Ũq−2

ŷq )i]
∣∣ =

∣∣[− ‖ȳq‖
‖âq‖ â

q
q,
‖ȳq‖
‖âq‖ â

q
q

]∣∣ = q−1
‖âq‖ = O

(
q

3
2√

log q

)
∣∣range[(Ũq−2

y̆q )i]
∣∣ =

∣∣[− ‖ȳq‖
‖ăq‖ ă

q
q,
‖ȳq‖
‖ăq‖ ă

q
q

]∣∣ ∼
√

q2−1
3 Φ−1( q

q+1 ) = O
(
q
√

log q
)

∣∣range[(Ũq−2
‖ȳq‖)i]

∣∣ =
∣∣[−‖ȳq‖, ‖ȳq‖]∣∣ =

√
q(q2−1)

3 = O
(
q

3
2

)
.

The four ranges satisfy

regular� normal� L−minimal� spherical, (7.21)

where “�” indicates o(·), whereas the limiting distributions of the univariate marginals
in (7.17)–(7.20) satisfy

L−minimal�p regular ≈p normal ≈p spherical, (7.22)

where “�p” indicates op(·) and “≈p” indicates Op(·). The ordering (7.22) is somewhat
unexpected since the L-minimal configuration is the only one of the three uniform
permutation distributions that is APF.
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8 The regular, L-minimal, and normal permutohedra

The regular permutohedron6 Rq is defined to be the convex hull of Π(x̄q), the set of all
q! permutations of the regular configuration x̄q ≡ (1, 2, . . . , q)′. It is a convex polyhedron
inMq−1

x̄q (cf. (2.3)) of affine dimension q−1. Equivalently we shall consider the congruent
polyhedron R̃q ≡ ΩqR

q, the translation of Rq into M̃q−1, so R̃q is the convex hull of
Π(ȳq) (cf. (4.2)). Thus the uniform distribution Ũq−2

ȳq is the uniform distribution on the

vertices of R̃q.
Proposition 4.2 shows that Π(ȳq) occupies a vanishingly small portion of the sphere

S̃q−2
‖ȳq‖ as q → ∞. As a complement to Proposition 4.2, it will now be shown that R̃q

occupies a vanishingly small portion of the corresponding ball B̃q := B̃q−2
‖ȳq‖ in which R̃q

is inscribed.

Proposition 8.1. As q →∞, Vol(R̃q)

Vol(B̃q)
→ 0 at a geometric rate.

Proof. From Proposition 2.11 of [2] with d = q − 1, the volume of R̃q is qq−
3
2 , while the

volume of B̃q is
π

q−1
2 ‖yq‖q−1

Γ( q+1
2 )

= π
q−1

2

Γ( q+1
2 )

[ q(q2−1)
12

] q−1
2 .

Therefore, using Stirling’s formula, the ratio of the volumes is given by

Vol(R̃q)

Vol(B̃q)
=
(

12
π

) q−1
2 qq−

3
2 Γ( q+1

2 )

[q(q2−1)]
q−1

2

∼
(
π
e

) 1
2
(

6
πe

) q−1
2

≈ 1.0750
(
0.7026

) q−1
2 (8.1)

as q →∞, which converges to zero at a geometric rate.

Remark 8.2. By comparison, the cube C̃q inscribed in B̃q has vertices(
± ‖y

q‖√
q , . . . ,±

‖yq‖√
q

)
=
(
±
√

q2−1
12 , . . . ,±

√
q2−1

12

)
,

so

Vol(C̃q)

Vol(R̃q)
=
(
q2−1

3

) q−1
2 q

3
2−q

∼ q
1
2

3
q−1

2

≈ q 1
2 (0.3333)

q−1
2 (8.2)

as q →∞, which also converges to zero at a geometric rate. Therefore

Vol(C̃q)� Vol(R̃q)� Vol(B̃q) (8.3)

for large q.

Next, define the L-minimal permutohedron M̃q (normal permutohedron Ñq) to be the
convex hull of Π(ŷq) (Π(y̆q)), the set of all q! permutations of the L-minimal configuration
ŷq (normal configuration y̆q). Like the regular permutohedron R̃q defined above, M̃q

and Ñq are convex polyhedrons in M̃q−1 (cf. (2.3)) of affine dimension q − 1. Thus the
uniform distribution Ũq−2

ŷq (Ũq−2
y̆q ) is the uniform distribution on the vertices of M̃q (Ñq).

The following question is suggested:

6A.k.a. permutahedron.
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Question 5. What are the volumes of M̃q and Ñq? As in Proposition 8.1 and Remark 8.2,
compare Vol(R̃q), Vol(M̃q), Vol(Ñq), and Vol(B̃q).

We conjecture, again somewhat weakly, that as q →∞,

Vol(R̃q)� Vol(M̃q)� Vol(B̃q), (8.4)

more precisely, that Vol(R̃q)

Vol(M̃q)
→ 0 at a geometric rate and Vol(M̃q)

Vol(B̃q)
→ 0 at a slower rate.

Similar results are expected if M̃q is replaced by Ñq.

9 Final remarks

We conclude with two further questions.

Question 6. Regarding Question 4 about the existence or non-existence of an APU
sequence, can one find a D-minimal configuration? That is, a nonzero vector y̌q in
S̃q−2
‖ȳq‖ ∩R

q
≤ that minimizes the NSCD Dq−2(Π(y)) in S̃q−2

‖ȳq‖.

Question 7. Suppose that the permutation group is replaced by some other finite
subgroup G of orthogonal transformations on Rq. For nonzero yq ∈ Rq, how close
to spherical uniformity is the G-orbit ΠG(yq) ≡ {gyq | g ∈ G} on the smallest sphere
containing ΠG(yq)?

For Question 7, finite reflection groups (Coxeter groups) acting on Rq for all q ≥ 2

are of particular interest, cf. [10, 12]. These include, and in fact are limited to, the
permutation (= symmetric) group, the alternating group, and the group generated by all
permutations and sign changes of coordinates.

A Subindependence of coordinate halfspaces

The following inequality was used in the proof of Proposition 4.2:

Proposition A.1. Let Un ≡ (U1, . . . , Un)′ be uniformly distributed on the unit (n − 1)-
sphere Sn−1 in Rn. For any positive real numbers t1, . . . , tn,

Pr[∩ni=1{Ui ≤ ti}] ≤
∏n

i=1
Pr[Ui ≤ ti]. (A.1)

Proof. The proof is modelled on that of Proposition 2.10 in [4]. We shall show more
generally that for 1 ≤ r < n,

Pr[∩ni=1{Ui ≤ ti}] ≤ Pr[∩ri=1{Ui ≤ ti}] Pr[∩ni=r+1{Ui ≤ ti}]. (A.2)

Because Un is the unique orthogonally invariant distribution on Sn−1,

Un ≡
(

Ur

U−r

)
d
=

(
Ψ 0

0 In−r

)(
Ur

U−r

)
=

(
ψUr

U−r

)
for every orthogonal r × r matrix Ψ, where

Ur = (U1, . . . , Ur)
′,

U−r = (Ur+1, . . . , Un)′.

Therefore (
Wr

U−r

)
d
=

(
ψWr

U−r

)
,
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where

Wr ≡ (W1, . . . ,Wr)
′ = Ur

‖Ur‖ ∈ S
r−1,

W−r ≡ (Wr+1, . . . ,Wn)′ = U−r

‖U−r‖ ∈ S
n−r+1.

Thus the conditional distribution of Wr|U−r is the same as that of ΨWr|U−r so, by
uniqueness, is the uniform distribution on Sr−1. Therefore Wr is independent of U−r,
hence Wr is independent of (W−r, ‖U−r‖). Similarly, W−r is independent of (Wr, ‖Ur‖).
However, ‖Ur‖ and ‖U−r‖ are statistically equivalent because ‖Ur‖2 + ‖U−r‖2 =

‖Un‖2 = 1, hence W−r is independent of ‖U−r‖, so Wr, W−r, and ‖U−r‖ are mu-
tually independent. Thus Wr, W−r, and ‖Ur‖ are mutually independent, so

Pr[∩ni=1{Ui ≤ ti}]

= E
{

Pr[∩ri=1{Wi ≤ ti‖Ur‖−1} | ‖Ur‖]

· Pr[∩ni=r+1{Wi ≤ ti(1− ‖Ur‖2)−1/2} | ‖Ur‖]
}

≤ E
{

Pr[∩ri=1{Wi ≤ ti‖Ur‖−1} | ‖Ur‖]
}

· E
{

Pr[∩ni=r+1{Wi ≤ ti(1− ‖Ur‖2)−1/2} | ‖Ur‖]
}

= Pr[∩ri=1{Ui ≤ ti}] · Pr[∩ni=r+1{Ui ≤ ti}].

The inequality holds because

Pr[∩ri=1{Wi ≤ ti‖Ur‖−1} | ‖Ur‖]

is decreasing in ‖Ur‖ while

Pr[∩ni=r+1{Ui ≤ ti(1− ‖Ur‖2)−1/2} | ‖Ur‖]

is increasing in ‖Ur‖.

Remark A.2. The inequality (A.1) is a one-sided version for coordinate halfspaces of a
two-sided inequality for symmetric coordinate slabs, where |Ui| appears in place of Ui;
see [4] pp. 329–330 and the references cited therein. As in [4], it is straightforward to
extend Proposition A.1 to distributions on the unit sphere in `p for 1 ≤ p <∞.
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