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Abstract

We establish exponential inequalities for a class of V-statistics under strong mixing
conditions. Our theory is developed via a novel kernel expansion based on random
Fourier features and the use of a probabilistic method. This type of expansion is new
and useful for handling many notorious classes of kernels.
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1 Introduction

Consider the following V-statistic of order m generated by the symmetric kernel f ,

Vn(f) :=

n∑
i1,...,im=1

f(Xi1 , . . . , Xim), (1.1)

where {Xi}ni=1 is a stationary sequence with marginal measure P on the d-dimensional
real space Rd. The purpose of this paper is to establish exponential-type tail bounds for
(1.1) when {Xi}ni=1 are weakly dependent.

In (1.1), if the summation is taken over m-tuples (i1, . . . , im) of distinct indices, the
resulting is a U-statistic. In many applications, the techniques of analyzing U- and
V-statistics are the same. Non-asymptotic tail bounds and limiting theorems of V- and
U-statistics in the i.i.d. case have also been extensively studied [17, 2, 15, 1].

The analysis of V- and U-statistics when the observed data are no longer independent
has attracted increasing attention in statistics and probability, with most of the efforts
put on deriving limit theorems and bootstrap consistency. See, for instance, [25], [10],
[11], [8], [12], [18], [7], [9], [4], [19], [20], [26], [3], among many others. However,
there are few results on non-asymptotic concentration bounds for V- and U-statistics.
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Exponential inequalities for dependent V-statistics

Exceptions include [5] and [16], who proved Hoeffding-type inequalities for U- and
V-statistics under φ-mixing conditions. There, the results either rely on assumptions
difficult to verify, or are limited to nondegenerate ones.

In this paper, we show that for a strongly mixing stationary sequence, exponential
inequalities hold for a large class of V- and U-statistics. The main theorem is presented
in Section 2. We then illustrate the usefulness of our theory with examples and some
further extensions in Section 3. Detailed proof of the main theorem is given in Section 4,
with the rest of proofs given in Section 5.

Notation used in the rest of the paper is as follows. L1(Rd) denotes the class

of integrable functions in Rd, and for each p ≥ 1, ‖f‖Lp
:=
{∫

Rd |f(x)|pdx
}1/p

. For

a real vector u ∈ Rd, ‖u‖ denotes its Euclidean norm. For two real numbers a, b,
a ∨ b := max{a, b}.

2 Main results

For two σ-algebras A and B, the strong mixing coefficient is defined as

α(A,B) := sup
A∈A,B∈B

|P(A ∩B)− P(A)P(B)|.

A stationary sequence {Xi}i∈Z is called strong mixing (hereafter also called α-mixing) if

α(i) := α(M0,Gi)→ 0 as i→∞,

whereM0 := σ(Xj , j ≤ 0) and Gi := σ(Xj , j ≥ i) for i ≥ 1 are the σ-algebras generated
by {Xj , j ≤ 0} and {Xj , j ≥ i} respectively.

We now introduce concepts in V-statistics. Let {X̃i}ni=1 be an i.i.d. sequence with X̃1

identically distributed as X1. The mean value of a symmetric kernel f is defined as

θ := θ(f) := Ef
(
X̃1, . . . , X̃m

)
.

The kernel f is called centered if θ(f) = 0, and degenerate of level r − 1 (2 ≤ r ≤ m) if

Ef
(
x1, . . . , xr−1, X̃r, . . . , X̃m

)
= θ

for any (x>1 , . . . , x
>
r−1)> ∈ supp(P r−1), the support of the product measure P r−1. The

kernel f is called fully degenerate if it is degenerate of level m− 1.
When f is degenerate of level r − 1, its Hoeffding decomposition takes the form

f(x1, . . . , xm)− θ =
∑

1≤i1<...<ir≤m

fr(xi1 , . . . , xir ) + . . .+ fm(x1, . . . , xm),

where {fp}mp=r are recursively defined as

f1(x) := g1(x),

fp(x1, . . . , xp) := gp(x1, . . . , xp)−
p∑
k=1

f1(xk)− . . .−
∑

1≤k1<...<kp−1≤p

fp−1
(
xk1 , . . . , xkp−1

)
,

(2.1)
for p = 2, · · · ,m, with {gp}mp=1 defined as gm := f − θ, and

gp(x1, . . . , xp) := Ef
(
x1, . . . , xp, X̃p+1, . . . , X̃m

)
− θ
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Exponential inequalities for dependent V-statistics

for 1 ≤ p ≤ m−1. For each 1 ≤ p ≤ m and 1 ≤ k ≤ n, we denote the V-statistic generated
by fp and data {Xi}ki=1 by

Vk(fp) :=

k∑
i1,...,ip=1

fp(Xi1 , . . . , Xip).

For a real function g ∈ L1(Rd), its Fourier transform is defined as

ĝ(u) :=

∫
Rd

g(x)e−2πiu
>xdx,

where dx := dx1 . . . dxd.

Theorem 2.1. Suppose {Xi}ni=1 in (1.1) is part of a stationary sequence {Xi}i∈Z that is
geometrically α-mixing with coefficient

α(i) ≤ γ1 exp(−γ2i) for all i ≥ 1, (2.2)

where γ1, γ2 are two positive absolute constants. Suppose f ∈ L1(Rmd) is continuous,
and its Fourier transform f̂ satisfies∫

Rmd

∣∣∣f̂(u)
∣∣∣‖u‖qdu <∞ (2.3)

for some q ≥ 1. Then, there exists a positive constant C = C(m, γ1, γ2) such that for each
1 ≤ p ≤ m, and any x > 0,

P

{
n−p max

1≤k≤n
|Vk(fp)| ≥ x

}
≤ 6 exp

(
− Cnx2/p

A
1/p
p,n + x1/pM

1/p
p,n

)
(2.4)

with

Ap,n = 22m
∥∥∥f̂∥∥∥2

L1

{
64γ

1/3
1

1− exp(−γ2/3)
+

(log n)4

n

}p
and Mp,n = 2m

∥∥∥f̂∥∥∥
L1

(log n)2p. (2.5)

We remark that a maximal-type tail estimate for Vn(f) in (1.1) can be obtained in
a straightforward manner by assembling the tail estimate in (2.4) for each r ≤ p ≤ m,
where r is the degenerate level of f . Indeed, for any 1 ≤ k ≤ n and 1 ≤ p ≤ m, we have
by the symmetry of f∑

1≤i1,...,im≤k

∑
1≤j1<...<jp≤m

fp(Xij1
, . . . , Xijp

) =

(
m

p

) ∑
1≤i1,...,im≤k

fp(Xi1 , . . . , Xip)

=

(
m

p

)
km−p

∑
1≤i1,...,ip≤k

fp(Xi1 , . . . , Xip).

This entails that

n−m max
1≤k≤n

∣∣∣∣∣∣
∑

1≤i1,...,im≤k

(
f(Xi1 , . . . , Xim)− θ

)∣∣∣∣∣∣
= n−m max

1≤k≤n

∣∣∣∣∣∣
∑

1≤i1,...,im≤k

m∑
p=r

∑
1≤j1<...<jp≤m

fp(Xij1
, . . . , Xijp

)

∣∣∣∣∣∣
≤ n−m max

1≤k≤n

∑
r≤p≤m

(
m

p

)
km−p

∣∣∣∣∣∣
∑

1≤i1,...,ip≤k

fp(Xi1 , . . . , Xip)

∣∣∣∣∣∣
≤

∑
r≤p≤m

(
m

p

)
n−p max

1≤k≤n
|Vk(fp)|.
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Therefore, by adjusting the constant C in (2.4), we obtain that

P

n−m max
1≤k≤n

∣∣∣∣∣∣
∑

1≤i1,...,im≤k

(
f(Xi1 , . . . , Xim)− θ

)∣∣∣∣∣∣ ≥ x
 ≤ 6

m∑
p=r

exp

(
− Cnx2/p

A
1/p
p,n + x1/pM

1/p
p,n

)
.

We now provide a proof sketch of Theorem 2.1 with a focus on the technical novelties.
One key step in our proof is to find a uniform approximation f̃ = f̃(; t,M) of the original

kernel f under any prescribed accuracy t such that (i)
∣∣∣f̃ − f ∣∣∣ ≤ t uniformly over a large

enough compact set [−M,M ]md, and (ii) f̃ admits the following tensor expansion

f̃(x1, . . . , xm) =

K∑
j1,...,jm=1

fj1,...,jmej1(x1) . . . ejm(xm). (2.6)

Here, K is a positive integer that depends on both the approximation error t and the
range of approximation M , {fj1,...,jm}Kj1,...,jm=1 is a real sequence, and {ej(·)}Kj=1 is a set

of uniformly bounded real bases. Once such an f̃ is found, a truncation argument will
yield the proximity between {fp}mp=1 and {f̃p(; t,M)}mp=1, the latter being the degenerate

components of f̃(; t,M) in its Hoeffding decomposition. Then, using each f̃p(; t,M) as a
proxy, standard moment estimates with the aid of exponential inequalities for partial sum
processes (cf. Corollary 24 in [21]) will render a tail bound for each max1≤k≤n |Vk(fp)|.

The problem then boils down to finding such an f̃ with the tensor structure (2.6). One
main difficulty in this step is to construct expansion bases {ej(·)}Kj=1 that are uniformly
bounded. Many classical approaches in multivariate function approximation are unable
to provide a satisfactory answer to this problem. For example, uniform polynomial
approximation by the Stone-Weierstrass theorem will have very poor performance,
since high orders of the polynomials lead to a large upper bound of the bases. The
use of Lipschitz-continuous scale and wavelet functions, as exploited in [19], is also
inappropriate for the same reason.

Our solution is based on a probabilistic method, and especially, by realizing that the
tensor decomposition (2.6) is intrinsically connected to the idea of randomized feature
mapping [22] in the kernel learning literature. More specifically, when f ∈ L1(Rmd) is
continuous and f̂ ∈ L1(Rmd), the Fourier inversion formula implies that

f(x1, . . . , xm) =

∫
Rmd

f̂(u1, . . . , um)e2πi(u
>
1 x1+...+u

>
mxm)du1 . . . dum,

where the right-hand side can be seen as the expectation of a Fourier basis with random
frequency, which follows the sign measure of f̂ . Due to the boundedness of the Fourier
bases, Hoeffding’s inequality guarantees an exponentially fast rate for a sample mean
statistic of Fourier bases

sK(x1, . . . , xm) :=
1

K

K∑
j=1

exp
{

2πi(u>j,1x1 + . . .+ u>j,mxm)
}

to approximate f at each fixed point x ∈ Rmd. The elements exp{2πi(u>j,1x1 + . . . +

u>j,mxm)} in sK(x1, . . . , xm) naturally decompose to bounded basis functions of inputs
xj . An entropy-type argument is then used so that we could prove the existence of a
satisfactory set of bases such that the approximation holds uniformly over any compact
set [−M,M ]md. The detailed proof will be given in Section 4.
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3 Examples and extensions

Motivated by their wide applications in statistics and machine learning, we will put
special focus on shift-invariant symmetric kernels in the case m = 2 with f(x, y) =

f0(x − y) for some f0 : Rd → R. We start with a corollary of Theorem 2.1 for such
kernels.

Corollary 3.1. Let {Xi}ni=1 be as in Theorem 2.1. Let m = 2 and the kernel f be shift-
invariant with f(x, y) = f0(x − y) for some f0 : Rd → R. Suppose that f0 ∈ L1(Rd) is
continuous, and its Fourier transform f̂0 satisfies∫

Rd

∣∣∣f̂0(u)
∣∣∣‖u‖qdu <∞ (3.1)

for some q ≥ 1. Then, for p = 1, 2, the same tail bound in (2.4) holds with

Ap,n = 16
∥∥∥f̂0∥∥∥2

L1

{
64γ

1/3
1

1− exp(−γ2/3)
+

(log n)4

n

}p
and Mp,n = 4

∥∥∥f̂0∥∥∥
L1

(log n)2p.

In view of Bochner’s theorem (cf. Section 1.4.3, [23]), Corollary 3.1 can be further
simplified when the kernel is positive definite. Recall that a real function g0 : Rd → R is
said to be positive definite (PD) if for any positive integer n and real vectors {xi}ni=1 ∈ Rd,
the matrix A = (ai,j)

n
i,j=1 with ai,j = g0(xi − xj) is positive semi-definite (PSD).

Corollary 3.2. Let {Xi}ni=1 be as in Theorem 2.1. Let m = 2 and the kernel f be
shift-invariant with f(x, y) = f0(x − y) for some f0 : Rd → R. Suppose f0 satisfies the
conditions in Corollary 3.1 and is also PD. Then, for p = 1, 2, the same tail bound in (2.4)
holds with

Ap,n = 4f0(0)2

{
64γ

1/3
1

1− exp(−γ2/3)
+

(log n)4

n

}p
and Mp,n = 2f0(0)(log n)2p.

Moreover, the same bound holds with the above Ap and Mp if f0 only satisfies (3.1) for
some 0 < q < 1, but is both PD and Lipschitz continuous.

We now list several commonly-used kernels covered by Theorem 2.1 and the previous
two corollaries.

1. The d-dimensional Gaussian kernel f(x, y) = f0(x− y) = exp
(
−‖x− y‖2/2

)
is shift-

invariant with f0 being both Schwartz and PD, and f0 satisfies (3.1) for arbitrary
q ≥ 1. Thus, f satisfies the conditions of Corollary 3.2.

2. For the d-dimensional Cauchy kernel f(x, y) = f0(x−y) with f0(x) =
∏d
`=1 2/

(
1 + x2`

)
,

f0 is PD and its Fourier transform f̂0(u) = exp (−‖u‖1) satisfies (3.1) for arbitrary
q ≥ 1. Therefore, it satisfies the conditions of Corollary 3.2.

3. The d-dimensional Laplacian kernel f(x, y) = f0(x − y) = exp(−‖x − y‖1) is shift-
invariant and PD. The Fourier transform of f0 is f̂0(u) =

∏d
`=1

{
2/(1 + u2`)

}
, which

has fractional moments and thus satisfies (3.1) for any 0 < q < 1. Since f0 is both
PD and Lipschitz, it satisfies the conditions in Corollary 3.2.

4. The 1-dimensional “hat” kernel: f(x, y) = f0(x − y) with f0(x) equal to x + 1 for
−1 ≤ x ≤ 0, 1 − x for 0 ≤ x ≤ 1 and 0 otherwise. f0 is PD and 1-Lipschitz.
Its Fourier transform is f̂0(u) = {1− cos (2πu)}/(2π2u2) and thus has fractional
moment. Therefore, f0 satisfies (3.1) for any 0 < q < 1, and hence is also covered
by Corollary 3.2.

We then discuss extensions to Theorem 2.1. The smoothness assumption (2.3) in
Theorem 2.1 could be further relaxed by employing the standard smoothing technique
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through mollifiers. More precisely, we resort to an intermediate kernel fh between f

and f̃ . It is constructed by convolving f with the Gaussian mollifier with scale parameter
h. The parameter h controls the trade-off between approximation error and smoothness:
small h leads to finer approximation of f by fh, but makes fh less smooth and thus renders
a larger constant in the tail bound. Theorem 2.1 is then applied on this intermediate
kernel fh to obtain the tail bound.

As a particular example, the following corollary deals with Lipschitz kernels consid-
ered in [19]. Introduce the following constant from integration with polar coordinates
(with convention (−1)!! = 0!! = 1):

Γ(n) :=

{
((n− 2)!!)

−1
(2π)

n
2 n is even

((n− 2)!!)
−1

2(2π)
n−1
2 n is odd.

(3.2)

Corollary 3.3. Let {Xi}ni=1 be as in Theorem 2.1. Suppose the kernel f ∈ L1(Rmd) is
bounded, uniformly continuous, and its Fourier transform satisfies∣∣∣f̂(u)

∣∣∣ ≤ L

1 + ‖u‖md+ε
(3.3)

for some ε > 0 and positive constant L. Then, for 1 ≤ p ≤ m, the bound in (2.4) holds
with

Ap,n = (1 + ε−1)222mc21L
2

{
64γ

1/3
1

1− exp(−γ2/3)
+

(log n)4

n

}p
,

Mp,n = (1 + ε−1)2mc1L(log n)2p,

where c1 = Γ(md).

The tail condition in (3.3) is in general milder than (2.3) in Theorem 2.1, and naturally
arises in Fourier analysis (cf. Chapter 8.4 in [14]). The following is the version of
Corollary 3.3 for shift-invariant kernels.

Corollary 3.4. Suppose {Xi}ni=1 are as in Theorem 2.1. Let m = 2 and the kernel f be
shift-invariant with f(x, y) = f0(x− y) for some f0 : Rd → R. Suppose that f0 satisfies
condition (3.3) (with m = 1) for some ε > 0 and positive constant L. Then, for p = 1, 2,
the bound in (2.4) holds with

Ap,n = 16(1 + ε−1)2c21L
2

{
64γ

1/3
1

1− exp(−γ2/3)
+

(log n)4

n

}p
and Mp,n = 4(1 + ε−1)c1L(log n)2p,

where c1 = Γ(d).

Corollaries 3.3 and 3.4 cover the cosine kernel, defined as f(x, y) := f0(x − y) :=∏d
`=1 cos(x` − y`)1(|x` − y`| ≤ π/2). Consider the simple 1-dimensional case. Here, even

though the trigonometric identity cos(x− y) = cos(x) cos(y) + sin(x) sin(y) gives a direct
expansion of cos(x−y), there is no trivial expansion of the indicator 1(|x− y| ≤ π/2). How-
ever, letting f0(x) = cos(x)1(|x| ≤ π/2), it is immediate that f0 is 1-Lipschitz and thus uni-

formly continuous. Moreover, its Fourier transform is
∣∣∣f̂0(u)

∣∣∣ =
∣∣2 cos(π2u)/(1− 4π2u2)

∣∣,
and hence f0 satisfies (3.3) with ε = 1 and L = 2.

4 Proof of Theorem 2.1

We will use the following extra notation. For any real-valued function f on Rd, ∇xf is
the gradient of f . For a set A, |A| indicates its cardinality. For a subsetM in Rd, we will
use diam(M) to denote its diameter, i.e., diam(M) := supx,y∈M ‖x− y‖. For a function
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f , we write f(; θ) to emphasize its dependence on some parameter θ. For a measurable
set A, we will use 1{A} to denote the indicator variable on the set A. For any positive
integer N , we will use [N ] to denote the set {1, . . . , N}.

As described in the proof sketch after Theorem 2.1, we split the main part of the
proof into the following lemmas. The first lemma finds a symmetric kernel f̃ with tensor
decomposition (2.6) that approximates f uniformly over some prescribed set [−M,M ]md

and accuracy t.

Lemma 4.1. Suppose the kernel f ∈ L1(Rmd) is continuous and satisfies condition
(2.3) for some q ≥ 1. Then, for any M > 0 and t > 0, there exists a symmetric

function f̃ = f̃(; t,M) such that
∣∣∣f(x1, . . . , xd)− f̃(x1, . . . , xd)

∣∣∣ ≤ t uniformly over all

(x>1 , . . . , x
>
d )> ∈ [−M,M ]md, and f̃ satisfies (2.6) for some positive integer K = K(t,M),

{fj1,...,jm}Kj1,...,jm=1, and {ej(·)}Kj=1 such that

K∑
j1,...,jm=1

|fj1,...,jm | ≤ F and sup
1≤j≤K

sup
x∈Rd

|ej(x)| ≤ B (4.1)

for some constants F,B that do not depend on M and t. In particular, one can take

F = 2m
∥∥∥f̂∥∥∥

L1

and B = 1.

Proof. This proof adapts from that of Claim 1 in [22]. Throughout the proof, x1, . . . , xm
and u1, . . . , um are real vectors in Rd, dx = dx1 . . . dxd, and x, u will be real vectors in
Rmd. Let f̂ : Rmd → C be the Fourier transform of f , that is,

f̂(u1, . . . , um) =

∫
Rmd

f(x1, . . . , xm)e−2πi(u
>
1 x1+...+u

>
mxm)dx1 . . . dxm.

Clearly, Condition (2.3) with some q ≥ 1 implies that f̂ ∈ L1

(
Rmd

)
. Since f is continuous,

by the Fourier inversion formula (see, for example, Chapter 6 of [24]), we have

f(x1, . . . , xm) =

∫
Rd

f̂(u1, . . . , um)e2πi(u
>
1 x1+...+u

>
mxm)du1 . . . dum.

Note that without the continuity of f , the above equation only holds almost surely with
respect to the Lebesgue measure. Let f̂ = ĝ+ iĥ for real-valued functions ĝ, ĥ, then since
f is real-valued, we have f = I − II, where

I :=

∫
Rmd

ĝ(u1, . . . , um) cos
{

2π
(
u>1 x1 + . . .+ u>mxm

)}
du1 . . . dum,

II :=

∫
Rmd

ĥ(u1, . . . , um) sin
{

2π
(
u>1 x1 + . . .+ u>mxm

)}
du1 . . . dum.

We now approximate I and II separately. I can be further written as I = I+ − I−, where

I+ :=

∫
[ĝ>0]

ĝ(u1, . . . , um) cos
{

2π
(
u>1 x1 + . . .+ u>mxm

)}
du1 . . . dum,

I− :=

∫
[ĝ<0]

−ĝ(u1, . . . , um) cos
{

2π
(
u>1 x1 + . . .+ u>mxm

)}
du1 . . . dum.

Let A+
g :=

∫
[ĝ>0]

ĝ(u)du and A−g :=
∫
[ĝ<0]

(−ĝ(u))du, and note that A+
g and A−g are both

nonnegative and satisfy A+
g +A−g = ‖ĝ‖L1

<∞ and A+
g −A−g = f(0), where we use the

fact that ĝ ∈ L1

(
Rmd

)
since f̂ ∈ L1

(
Rmd

)
. Then, we have

I = A+
g · Eu

[
cos
{

2π
(
u>1 x1 + . . . u>mxm

)}]
−A−g · Ev

[
cos
{

2π
(
v>1 x1 + . . . v>mxm

)}]
=: A+

g · k+g (x1, . . . , xm)−A−g · k−g (x1, . . . , xm),
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where (u>1 , . . . , u
>
m)> follows the distribution ĝ1{ĝ > 0}/A+

g , and (v>1 , . . . , v
>
m)> follows

the distribution −ĝ1{ĝ < 0}/A−g . Assume without loss of generality that A+
g > 0 and

A−g > 0. We now focus on I+. For any compact subsetM⊂ Rmd, there exist T Euclidean

balls with radius r that cover M, where T ≤ {cdiam(M)/r}md with c = 3
√
md/π.

Denote {d1, . . . , dT } as the centers of these balls in Rmd. Now choose an i.i.d. sample
{(u>i1, . . . , u>im)>}D1

i=1 from the distribution ĝ1{ĝ > 0}/A+
g with the sample size D1 to be

specified later. Then, for each center d = (d>1 , . . . , d
>
m)> and any t > 0, it holds by

Hoeffding’s inequality that

P

{∣∣∣∣∣ 1

D1

D1∑
i=1

cos
{

2π
(
u>i1d1 + . . .+ u>imdm

)}
− k+g (d1, . . . , dm)

∣∣∣∣∣ ≥ t

8

}
≤ exp

(
−D1t

2

128

)
.

Let sD1
(x1, . . . , xm) :=

∑D1

i=1 cos
{

2π
(
u>i1x1 + . . .+ u>imxm

)}
/D1 so that k+g (x1, . . . , xm) =

Eu{sD1
(x1, . . . , xm)}. Then, for any q ≥ 1, it holds that

E

[
sup
x
‖∇x

{
sD1

(x)− k+g (x)
}
‖q
]

= E

[
sup
x
‖∇xsD1

(x)− E∇xsD1
(x)‖q

]
≤ E

[
sup
x
{‖∇xsD1

(x)‖+ E(‖∇xsD1
(x)‖)}q

]
≤ 2q−1E

[
sup
x
‖∇xsD1(x)‖q + sup

x
{E(‖∇xsD1(x)‖)}q

]
≤ 2qE

(
sup
x
‖∇xsD1

(x)‖q
)
,

(4.2)

where in the first line we use the finiteness of
∫
Rmd

∣∣∣f̂(u)
∣∣∣‖u‖du (guaranteed by Condition

(2.3)) and dominated convergence theorem to exchange the derivative with expectation.
Moreover,

E

(
sup
x
‖∇xsD1(x)‖q

)
= E

[
sup
x

∥∥∥∥∥ 1

D1

D1∑
i=1

2πui cos
{

2π
(
u>i x

)}∥∥∥∥∥
q]

≤ (2π)qE

{(
1

D1

D1∑
i=1

‖ui‖

)q}
≤ (2π)qE

{
1

D1

D1∑
i=1

‖ui‖q
}

= (2π)qE(‖u1‖q),

where we have used the finiteness of E(‖u1‖q) since
∫
Rmd

∣∣∣f̂(u)
∣∣∣‖u‖qdu < ∞ and the

convexity of the function xq when q ≥ 1. Therefore, it holds that

E

{
sup
x
‖∇x

(
sD1

(x)− k+g (x)
)
‖q
}
≤ (4π)qE(‖u1‖q),

and thus by Markov’s inequality,

P

(
sup
x
‖∇x

{
sD1(x)− k+g (x)

}
‖ ≥ t

8r

)
≤
(

32πr

t

)q
E(‖u1‖q).

By the triangle inequality, the event
{

supx∈M
∣∣sD1

(x)− k+g (x)
∣∣ ≤ t/4} has greater proba-

bility than the following event{∣∣sD1(d)− k+g (d)
∣∣ ≤ t/8,∀d ∈ {d1, . . . , dT }}⋂{

sup
x
‖∇x

{
sD1(x)− k+g (x)

}
‖ ≤ t/(8r)

}
.

Therefore, we have

P

{
sup
x∈M

∣∣sD1
(x)− k+g (x)

∣∣ ≥ t

4

}
≤
(
cdiam(M)

r

)md
exp

(
−D1t

2

128

)
+

(
32πr

t

)q
E(‖u1‖q).
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Exponential inequalities for dependent V-statistics

Letting the right-hand side of the above inequality be of the form κ1r
−md + κ2r

q, and
r = (κ1/κ2)1/(q+md), we have

P
(

sup
x∈M

∣∣sD1
(x)− k+g (x)

∣∣ ≥ t

4

)
≤ 2
(32π(E‖u1‖q)1/qcdiam(M)

t

) qmd
q+md

exp
(
− D1t

2

128

q

q +md

)
.

Now, using the fact

E‖u1‖q =

∫
Rmd

‖u‖q ĝ(u)1{ĝ(u) > 0}
A+
g

du ≤ 1

A+
g

∫
Rmd

‖u‖q|ĝ(u)|du ≤ 1

A+
g

∫
Rmd

‖u‖q
∣∣∣f̂(u)

∣∣∣du,
we conclude that there exists {ui}D1

i=1 ∈ Rmd such that uniformly overM, it holds that

A+
g ·
∣∣sD1

(x)− k+g (x)
∣∣ =

∣∣∣∣∣A+
g

D1

D1∑
i=1

cos
{

2π
(
u>i x

)}
−A+

g · k+g (x)

∣∣∣∣∣ ≤ A+
g

t

4

when D1 is chosen such that

D1 ≥ C1
md

t2
log

πcdiam(M)µq

(
f̂
)

(A+
g )1/qt


for some sufficiently large constant C1 = C1(t, f,M). Equivalently, it holds that∣∣A+

g · sD1
(x)−A+

g · k+g (x)
∣∣ ≤ t/4

when D1 is chosen such that

D1 ≥ C1

md(A+
g )2

t2
log

πcdiam(M)(A+
g )1−1/qµq

(
f̂
)

t

.
Similarly, it can be shown that there exists {vi}D2

i=1 ∈ Rmd such that∣∣A−g · sD2(x)−A−g · k−g (x)
∣∣ ≤ t/4

uniformly over x ∈M, where

sD2
(x) =

1

D2

D2∑
i=1

cos
{

2π
(
v>i x

)}
,

and D2 is chosen such that

D2 ≥ C2

md(A−g )2

t2
log

8πcdiam(M)(A−g )1−1/qµq

(
f̂
)

t


for some sufficiently large constant C2 = C2(t, f,M). Repeating this procedure for the
approximation of II, then with A+

h , A
−
h , k

+
h , k

−
h similarly defined as A+

g , A
−
g , k

+
h , k

−
h , we

can find sD3
and sD4

which are sample means of sine functions such that∣∣A+
h · sD3(x)−A+

h · k
+
h (x)

∣∣ ≤ t/4 and
∣∣A−h · sD4(x)−A−h · k

−
h (x)

∣∣ ≤ t/4
uniformly over all x ∈ M, when the sample sizes D3 and D4 are respectively chosen
such that

D3 ≥ C3
md(A+

h )2

t2
log

πcdiam(M)(A+
h )1−1/qµq

(
f̂
)

t

,
D4 ≥ C4

md(A−h )2

t2
log

πcdiam(M)(A−h )1−1/qµq

(
f̂
)

t


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for some sufficiently large constants C3, C4 that depend on t, f,M. Putting together the
pieces, we obtain that

|sD(x)− f(x)| :=
∣∣{A+

g · sD1(x)−A−g · sD2(x)−A+
h · sD3(x) +A−h · sD4(x)

}
− f(x)

∣∣
is smaller than t when D1-D4 are chosen as above. Since

A+
g +A−g +A+

h +A−h =

∫
Rmd

∣∣∣ĝ∣∣∣+
∣∣∣ĥ∣∣∣ ≤ √2

∫
Rmd

√∣∣∣ĝ∣∣∣2 +
∣∣∣ĥ∣∣∣2 =

√
2
∥∥∥f̂∥∥∥

L1

and for each u, cos
{

2π
(
u>x

)}
can be written as at most 2m−1 linear combinations of

the term zu1

(
2πu>1 x1

)
. . . zum

(
2πu>mxm

)
, where {zui

(·)}mi=1 is either the cosine or sine
function.

Therefore, takingM = [−M,M ]md, it holds that |sD − f | ≤ t uniformly over [−M,M ]md,

and sD satisfies (4.1) with constants F = 2m
∥∥∥f̂∥∥∥

L1

and B = 1. Lastly, define the sym-

metrized version of sD to be

s̃D(x1, . . . , xm) :=
1

m!

∑
π

sD(π(x1), . . . , π(xm)),

where the summation is taken over all m! permutations of (x1, . . . , xm). Then, due to the
symmetry of f , |s̃D − f | ≤ t uniformly over [−M,M ]md and s̃D satisfies (4.1) with the
same F,B as sD.

The second lemma builds upon the previous one and guarantees the existence of an
approximating kernel f̃ such that fp and f̃p, the pth term in the Hoeffding decomposition

of f and f̃ , are sufficiently close for each 1 ≤ p ≤ m.

Lemma 4.2. Suppose the kernel f ∈ L1(Rmd) is continuous and satisfies condition (2.3)
for some q ≥ 1. Then, for any M > 0 and t > 0, there exists a symmetric function
f̃ = f̃(; t,M) such that f̃ satisfies all the properties in Lemma 4.1, and moreover, for
each 1 ≤ p ≤ m, ∣∣∣fp(x1, . . . , xp)− f̃p(x1, . . . , xp)∣∣∣ ≤ Ct
uniformly over all (x>1 , . . . , x

>
p ) ∈ [−M,M ]pd for some positive constant C = C(m).

Proof. To highlight dependence, for any t0 > 0 and M0 > 0, we will denote the ap-

proximating kernel in Lemma 4.1 by f̃ = f̃(; t0,M0), so that
∣∣∣f − f̃ ∣∣∣ ≤ t0 uniformly over

[−M0,M0]md and f̃ satisfies (4.1) with F = 2m
∥∥∥f̂∥∥∥

L1

and B = 1. This implies that

sup
(x>1 ,...,x

>
m)>∈Rd

∣∣∣f̃(x1, . . . , xd; t0,M0)
∣∣∣ ≤ 2m

∥∥∥f̂∥∥∥
L1

, (4.3)

and, in particular, f̃ ∈ L1(Rmd) under the product measure Pm. We will prove Lemma
4.2 by choosing a f̃(; t0,M0) with some t0 and M0 to be specified later that only depend
on the prescribed t and M . Again, to show clearly the dependence on t0 and M0, we write
θ̃(t0,M0), f̃p(; t0,M0), and g̃p(; t0,M0) in the Hoeffding decomposition of f̃(; t0,M0). By

definition, in order to show
∣∣∣fp − f̃p(; t0,M0)

∣∣∣ ≤ Ct over [−M,M ]pd for some C = C(m),

it suffices to show that
∣∣∣θ − θ̃(t0,M0)

∣∣∣ ≤ 2t0 and |gp − g̃p(; t0,M0)| ≤ 2t0 over [−M0,M0]pd
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as long as we choose t0 ≤ t and M0 ≥M . For
∣∣∣θ − θ̃(t0,M0)

∣∣∣, recalling that {X̃i}mi=1 are

i.i.d. with law P , one has∣∣∣θ − θ̃(t0,M0)
∣∣∣ =

∣∣∣E{f(X̃1, . . . , X̃m)− f̃(X̃1, . . . , X̃m; t0,M0)
}∣∣∣

≤ E
{∣∣∣f − f̃(; t0,M0)

∣∣∣1{(X̃>1 , . . . , X̃
>
m)> ∈ [−M0,M0]md

}}
+

E
{∣∣∣f − f̃(; t0,M0)

∣∣∣1{(X̃>1 , . . . , X̃
>
m)> /∈ [−M0,M0]md

}}
≤ t0 + E

{∣∣∣f − f̃(; t0,M0)
∣∣∣1{(X̃>1 , . . . , X̃

>
m)> /∈ [−M0,M0]md

}}
.

Now, by (4.3), the variable
∣∣∣f − f̃ ∣∣∣1{(X̃>1 , . . . , X̃

>
m)> /∈ [−M0,M0]md

}
has an integrable

majorant |f |+ 2m
∥∥∥f̂∥∥∥

L1

under the product measure Pm, and clearly converges to zero

in probability as M0 → ∞. Thus, by choosing t0 = t and the dominated convergence

theorem, there exists some M1 = M1(t) such that for each M0 ≥M1(t),
∣∣∣θ − θ̃(t,M0)

∣∣∣ ≤
2t. With a similar argument, there exists some M2 = M2(t) such that for any M0 ≥M2(t)

and 1 ≤ p ≤ m, it holds that

|gp(x1, . . . , xp)− g̃p(x1, . . . , xp; t,M0)| ≤ 2t, for all (x>1 , . . . , x
>
p )> ∈ [−M0,M0]pd.

Therefore, by choosing M0 := M ∨ M1(t) ∨ M2(t), one has f̃(; t,M0) satisfies all the
desired properties. This completes the proof.

The third lemma derives a maximal-type tail bound for each max1≤k≤n |Vk(fp)| when
f admits the tensor decomposition (2.6).

Lemma 4.3. Suppose {Xi}ni=1 are as in Theorem 2.1. Suppose the symmetric kernel
f : Rmd → R can be written as

f(x1, . . . , xm) =

K∑
j1,...,jm=1

fj1,...,jmej1(x1) . . . ejm(xm),

where K is some positive integer, {fj1,...,jm}Kj1,...,jm=1 is a real sequence, and {ej(·)}Kj=1

is a set of real basis functions satisfying

K∑
j1,...,jm=1

|fj1,...,jm | ≤ F and sup
1≤j≤K

sup
x∈Rd

|ej(x)| ≤ B

for some positive constants F and B. Let µa := sup1≤j≤K (E|ej(X1)|a)
1/a

for each a ≥ 1.
Then, there exists a positive constant C = C(m, γ1, γ2) such that for any 1 ≤ p ≤ m, and
any x ≥ 0,

P
(
n−p max

1≤k≤n
|Vk(fp)| ≥ x

)
≤ 6 exp

(
− Cnx2/p

A
1/p
p,n + x1/pM

1/p
p,n

)
,

where

Ap,n = µ
2(m−p)
1 F 2

(
σ2 +B2(log n)4/n

)p
, Mp,n = µm−p

1 FBp(log n)2p,

and σ2 = 64γ
1/3
1 µ2

3/(1− exp(−γ2/3)).
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Proof. Throughout the proof, let Ci’s be positive constants that only depend on m, γ1, γ2,
and we will use the shorthand fja:b

for fja,...,jb for positive integers a < b. We drop the
dependence of Ap,n and Mp,n on n for notational simplicity.

Fix a 1 ≤ p ≤ m and we now derive the tail bound for max1≤k≤n |Vk(fp)|. For the set
of bases {ej(·)}Kj=1 in the expansion of f , define ẽj := ej −E{ej(X1)} for j ∈ [K]. Since f
is symmetric, for any (x>1 , . . . , x

>
m)> ∈ Rmd, f(x1, . . . , xm) = f(π(x1), . . . , π(xm)) for any

permutation π of {x1, . . . , xm}. By the definition of {fp}mp=1 in (2.1), one can readily check
that

fp(x1, . . . , xp) =

K∑
j1,...,jm=1

fj1,...,jmE(ej1) . . .E
(
ejm−p

)
ẽjm−p+1

(x1) . . . ẽjm(xp),

for r ≤ p ≤ m. Thus, we have

Vk(fp) =

K∑
j1,...,jm=1

fj1:mE(ej1) . . .E
(
ejm−p

){ k∑
i=1

ẽjm−p+1
(Xi)

}
. . .

{
k∑
i=1

ẽjm(Xi)

}
.

Define, for each j ∈ [K] and k ∈ [n],

Sk,j :=

k∑
i=1

ẽj(Xi) and Zj := max
1≤k≤n

|Sk,j |.

Note that for each j ∈ [K], {ẽj(Xi)}ni=1 is also geometrically α-mixing. We now control
each even order moment of max1≤k≤n |Vk(fp)|. Let

Tp := n−p max
1≤k≤n

|Vk(fp)|.

Define

νj = C3(nσ2
j +B2), ν = C3(nσ2 +B2), c = C4B(log n)2

and σ2 = supj∈[K] σ
2
j , with

σ2
j := Var{ẽj(X1)}+ 2

∑
i>1

|Cov{ẽj(X1), ẽj(Xi)}|.

Integrating the tail estimate in Corollary 24 of [21] and using Theorem 2.3 in [6] yield
that, for any positive integer N , by choosing C4 in c to be sufficiently large,

E(Z2pN
j ) = (4pN)

∫ ∞
0

x2pN−1P(Zj ≥ x)dx

= 4pN ·

(∫ CB logn

0

x2pN−1P(Zj ≥ x)dx+

∫ ∞
CB logn

x2pN−1P(Zj ≥ x)dx

)
≤ C(B log n)2pN + (pN)!(8ν)pN + (2pN)!(4c)2pN

≤ (pN)!(8ν)pN + (2pN)!(5c)2pN .
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Then, employing a similar argument as in [5] (cf. Equation (12) therein), it holds that

ET 2N
p = E max

1≤k1,...,k2N≤n

K∑
j1,...,j2mN=1

fj1:m . . . fj(2N−1)m+1:2mN
· E(ej1) . . .E

(
ejm−p

)
. . .

E
(
ej(2N−1)m+1

)
. . .E

(
ej2Nm−p

)
E
(
Sk1,jm−p+1 . . . Sk1,jm . . . Sk2N ,j2Nm−p+1

. . . Sk2N ,j2Nm

)
≤ n−2Npµ2N(m−p)

1

K∑
j1,...,j2mN=1

|fj1:m | . . .
∣∣fj(2N−1)m+1:2mN

∣∣E(∣∣Zjm+1−p

∣∣ . . . |Zj2mN
|
)

≤ n−2Npµ2N(m−p)
1

K∑
j1,...,j2mN=1

|fj1:m | . . .
∣∣fj(2N−1)m+1:2mN

∣∣(EZ2pN
jm+1−p

) 1
2pN . . .

(
EZ2pN

j2mN

) 1
2pN

≤ n−2Npµ2N(m−p)
1 F 2N

{
(pN)!(8ν)pN + (2pN)!(4c)2pN

}
,

where in the second inequality we use the generalized Hölder inequality. By Stirling’s
approximation formula

√
2πnn+1/2e−n ≤ n! ≤ enn+1/2e−n, it holds that

{(pN)!}1/p ≤ e1/p(pN)N+1/2pe−N ≤ CN5 NN+1/2e−N ≤ CN6 N !.

Similarly, we have {(2pN)!}1/p ≤ C2N
6 (2N)!. Thus we have

E(Tp)
2N
p ≤

(
ET 2N

p

) 1
p

≤ n−2Nµ
2N(m−p)

p

1 F
2N
p
{
CN7 N !νN + C2N

8 (2N)!c2N
}
.

Now we control the Laplace transform of T 1/p
p ,

E
(
eλT

1/p
p

)
=

∞∑
N=0

λN

N !
ETN/pp ≤ 3

∞∑
N=0

λ2N

(2N)!
ET 2N/p

p

≤3

{ ∞∑
N=0

λ2N

(2N)!
CN7 n

−2NN !µ
2N(m−p)

p

1 F
2N
p νN +

∞∑
N=0

λ2Nn−2NC2N
8 µ

2N(m−p)
p

1 F
2N
p c2N

}
,

(4.4)

where in the first inequality we use only the even moments with an absolute constant 3.
For the first summand in (4.4), we have
∞∑
N=0

λ2N
N !

(2N)!
CN7 n

−2Nµ
2N(m−p)/p
1 F 2N/pνN ≤

∞∑
N=0

(λ/n)2N

N !
2−NCN9 µ

2N(m−p)/p
1 F 2N/pνN

= exp
{
C10(λ/n)2µ

2(m−p)/p
1 F 2/pν

}
,

where in the first line we use the relation N !/(2N)! ≤ 2−N/N !. For the second summand,
we have

∞∑
N=0

λ2Nn−2NC2N
8 µ

2N(m−p)/p
1 F 2N/pc2N = 1 +

(λ/n)2C2
8µ

2(m−p)/p
1 F 2/pc2

1− (λ/n)2C2
8µ

2(m−p)/p
1 F 2/pc2

≤ 1 +
(λ/n)2C2

8µ
2(m−p)/p
1 F 2/pc2

1− (λ/n)C8µ
(m−p)/p
1 F 1/pc

for λ ≤ n/
{
C8µ

(m−p)/p
1 F 1/pc

}
. Now using the relation ex + 1 + y ≤ 2ex+y which holds for

all positive x, y, we have

E
(
eλT

1/p
p

)
≤ 6 exp

 (λ/n)2C11µ
2(m−p)

p

1 F
2
p (ν + c2)

2

{
1− (λ/n)C8cµ

(m−p)
p

1 F
1
p

}
 = 6exp

 (λ/n)2C11nA
1/p
p

2
(

1− (λ/n)C8M
1/p
p

)
.
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Now, taking λ = nx1/p/(C11nA
1/p
p + C8M

1/p
p x1/p) in the exponential Markov inequality,

we have

P(Tp ≥ x) ≤ exp(−λx1/p)E
(
eλT

1/p
p

)
≤ 6 exp

(
− C12nx

2/p

A
1/p
p + x1/pM

1/p
p

)
.

Moreover, taking δ = 1 in Theorem 3 of [13], we obtain

Var{ẽj(X1)}+ 2
∑
i>1

|Cov{ẽj(X1), ẽj(Xi)}| ≤ 2
∑
i≥1

|Cov{ẽj(X1), ẽj(Xi)}|

≤ 2

{ ∞∑
n=0

8α1/3(n)

}
‖ẽj(X1)‖3‖ẽj(X1)‖3 ≤ 64

{ ∞∑
n=0

α1/3(n)

}
‖ej(X1)‖3‖ej(X1)‖3

≤ 64γ
1/3
1 µ2

3

{ ∞∑
n=0

exp (−γ2n/3)

}
=

64γ
1/3
1

1− exp {−γ2/3}
µ2
3.

Putting together the pieces completes the proof.

We now use Lemmas 4.1–4.3 to complete the proof of Theorem 2.1.

Proof of Theorem 2.1. Fix a 1 ≤ p ≤ m. Fix some t > 0 and M > 0, and define the event

E := {Xi ∈ [−M,M ]d for all 1 ≤ i ≤ n}.

Then, for the prescribed t and M , Lemma 4.2 implies that there exists a symmetric kernel

f̃ = f̃(; t,M) such that
∣∣∣f − f̃(; t,M)

∣∣∣ ≤ t uniformly over all (x>1 , . . . , x
>
m)> ∈ [−M,M ]md,

and for each 1 ≤ p ≤ m,
∣∣∣fp − f̃p(; t,M)

∣∣∣ ≤ Ct uniformly over [−M,M ]pd for some C =

C(m). By definition, this implies that n−p
∣∣∣max1≤k≤n |Vk(fp)| −max1≤k≤n

∣∣∣Vk(f̃p)
∣∣∣∣∣∣ ≤ Ct

on the event E , and thus for any x > 0,

P(n−p max
1≤k≤n

|Vk(fp)| ≥ x+ Ct)

= P

({
n−p max

1≤k≤n
|Vk(fp)| ≥ x+ Ct

}⋂
E
)

+ P

({
n−p max

1≤k≤n
|Vk(fp)| ≥ x+ Ct

}⋂
Ec
)

≤ P
(
n−p max

1≤k≤n

∣∣∣Vk(f̃p(; t,M))
∣∣∣ ≥ x)+ nP(X1 /∈ [−M,M ]d).

Again by Lemma 4.2, f̃(; t,M) satisfies the conditions of Lemma 4.3 with constants

F = 2m
∥∥∥f̂∥∥∥

L1

and B = 1. Therefore, applying the trivial bound that µ3 ≤ B = 1 in

Lemma 4.3, we obtain that

P
(
n−p max

1≤k≤n
|Vk(fp)| ≥ x+ Ct

)
≤ 6 exp

(
− Cnx2/p

A
1/p
p + x1/pM

1/p
p

)
+ nP(X1 /∈ [−M,M ]d),

where Ap and Mp are defined in (2.5). Now, note that the first summand on the right
hand side does not depend on M or t. Accordingly, by first choosing a large enough M
that depends only on x, n, F , since the measure P considered in this paper is always
tight, we obtain that the second term is smaller than an arbitrary small proportion of the
first term. Lastly, choosing t = x and adjusting the constant finishes the proof.
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5 Proofs of other results

We will only prove Corollaries 3.1–3.3. The proof of Corollary 3.4 is similar to that of
Corollary 3.1.

Proof of Corollary 3.1. By inspection of the proof of Theorem 2.1, it suffices to prove
that when f0 satisfies (3.1) for some q ≥ 1, the conclusion of Lemma 4.1 still holds with

F = 4
∥∥∥f̂0∥∥∥

L1

and B = 1. Now, following the proof of Lemma 4.1 with prescribed range

2M and approximation error t, there exists an f̃0 with expansion in the cosine bases

{cos
(
2πu>x

)
} such that

∣∣∣f0 − f̃0∣∣∣ ≤ t uniformly over [−2M, 2M ]d and f̃0 satisfies the

(4.1) with constants F = 2
∥∥∥f̂0∥∥∥

L1

and B = 1. Let f̃(x, y) := f̃0(x− y). Then,
∣∣∣f − f̃ ∣∣∣ ≤ t

uniformly over [−M,M ]2d, and by the trigonometric identity

cos
{

2πu>(x− y)
}

= cos
(
2πu>x

)
cos
(
2πu>y

)
+ sin

(
2πu>x

)
sin
(
2πu>y

)
,

f̃ satisfies (4.1) with constants F = 4
∥∥∥f̂0∥∥∥

L1

and B = 1. This completes the proof.

Proof of Corollary 3.2. Again, we only need to reprove Lemma 4.1. When f0 is PD, we
have by definition that f0(0) ≥ 0 and for each x, y ∈ Rd, f0(x − y) = f0(y − x) implies
that f0(x) = f0(−x) for any x ∈ Rd. This implies that the Fourier transform f̂0 of f0 is
real-valued, and ĥ = 0 in the proof of Lemma 4.1. Moreover, since f0 ∈ L1(Rd) as it
satisfies (3.1) for some q ≥ 1, f equals the inverse Fourier transform of f̂ . Thus, by
Bochner’s theorem (cf. Section 1.4.3, [23]), f̂0 is nonnegative and we have f0 = I = I+
with m = 1 in the proof of Lemma 4.1. By definition, we have

f0(x) =

∫
Rd

f̂0(u)e2πix
>udu =

∫
Rd

∣∣∣f̂0(u)
∣∣∣e2πix>udu.

Letting x = 0 in the above equation, we obtain
∥∥∥f̂0∥∥∥

L1

= f0(0).

Now consider the case where f̂0 only has fractional moment. Let f̃0 := f0/f0(0)

and denote the Lipschitz constants of f̃0 and f0 as Lf̃0 and Lf0 , respectively. Then,
Lf̃0 = Lf0/f0(0). Now we proceed with the proof of Lemma 4.1 until (4.2), and replace it
with

E

{
sup
x

∥∥∥∇xsD(x)− f̃0(x)
∥∥∥q} ≤ E{sup

x

(
‖∇xsD(x)‖q +

∥∥∥∇xf̃0(x)
∥∥∥q)}

≤ E
{

sup
x
‖∇xsD(x)‖q

}
+ sup

x

∥∥∥∇xf̃0(x)
∥∥∥q

≤ E
{

sup
x
‖∇xsD(x)‖q

}
+ Lq

f̃0
,

where sD(x) =
∑D
i=1 cos

(
2πu>i x

)
/D (here we use the notation sD instead of sD1

since
in the PD case we only need to approximate the term I+ as argued in the first part of
the corollary). Note that the original (4.2) in the proof of Lemma 4.1 no longer holds as
mere fractional moment does not guarantee the exchange of derivative and expectation
in its first step. For the first term in the above inequality, we have

E

{
sup
x
‖∇xsD(x)‖q

}
= E

[
sup
x

∥∥∥∥∥ 1

D

D∑
i=1

2πui cos
{

2π
(
u>i x

)}∥∥∥∥∥
q]

≤ (2π)qE

(∥∥∥∥∥ 1

D

D∑
i=1

ui

∥∥∥∥∥
q)
≤ (2π)qE

{(
1

D

D∑
i=1

‖ui‖

)q}

≤ (2π)qE

{
D−q

D∑
i=1

‖ui‖q
}

= (2π)qD1−qE(‖u1‖q).
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Therefore, it holds that

E

{
sup
x

∥∥∥∇xsD(x)− f̃0(x)
∥∥∥q} ≤ (2π)qD1−qE(‖u‖q) + Lq

f̃0
.

Markov inequality now gives

P

{
sup
x

∥∥∥∇x(sD(x)− f̃0(x)
)∥∥∥ ≥ t

2r

}
≤
(

2r

t

)q{
(2π)qD1−qE(‖u‖q) + Lq

f̃0

}
.

Proceeding with the proof of Lemma 4.1, we obtain

P
(

sup
x∈M

∣∣∣sD(x)− f̃0
∣∣∣ ≥ t) ≤ (2r

t

)q{
(2π)qD1−qE‖u‖q + Lq

f̃0

}
+
(cdiam(M)

r

)md
exp

(
− Dt2

8

)
.

Writing the right-hand side of the above inequality in the form κ1r
−md + κ2r

q and letting
r = (κ1/κ2)1/(q+md), we obtain

P
(

sup
x∈M

∣∣∣sD(x)− f̃0
∣∣∣ ≥ t)

≤ 2

(
2cdiam(M)

ε

) qmd
q+md{

(2π)qD1−qE(‖u1‖q) + Lq
f̃0

} md
q+md

exp

(
−Dε

2

8

q

q +md

)
.

For any t > 0, we can choose large enough D = D(t) such that the right-hand side of the
above inequality is arbitrarily small. The proof is complete.

Proof of Corollary 3.3. Let K(·) : Rmd → R be the standard md-variate Gaussian density
defined as K(x) := exp(−‖x‖2/2)(2π)−md/2, and Kh(x) = K(x/h)h−md for some positive
constant h. Define fh(x) := (f ∗Kh)(x). Then, it holds that

|fh(x)− f(x)| =
∣∣∣∣∫
Rmd

(2π)−md/2 exp

(
−‖y‖

2

2

)
{f(x− yh)− f(x)}dy

∣∣∣∣
≤
∫
Rmd

(2π)−md/2 exp

(
−‖y‖

2

2

)
|f(x− yh)− f(x)|dy.

Denote the upper bound of f as Mf . Then, for any t > 0, there exists some positive
constant A = A(Mf ,m, d, t) such that∫

([−A,A]md)c
(2π)−md/2 exp

(
−‖y‖

2

2

)
|f(x− yh)− f(x)|dy

≤ 2Mf

∫
([−A,A]md)c

(2π)−md/2 exp

(
−‖y‖

2

2

)
dy ≤ t/4.

Inside [−A,A]md, using the uniform continuity of f , there exists some h = h(Mf ,m, d, t),
such that ∫

[−A,A]md

(2π)−md/2 exp

(
−‖y‖

2

2

)
|f(x− yh)− f(x)|dy ≤ t/4.

Putting together the pieces, it holds that for any t > 0, there exists some h = h(Mf ,m, d, t)

such that ‖fh − f‖∞ ≤ t/2. Since both f and Kh belong to L1(Rmd), their Fourier
transforms exist. It can be readily checked that K̂h(u) = exp

(
−2π2h2‖u‖2

)
, and thus

f̂h(u) = f̂(u) · K̂h(u) = f̂(u) exp
(
−2π2h2‖u‖2

)
.
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Using the relation ‖f ∗ g‖Lq
≤ ‖f‖Lq

‖g‖L1
for any q ≥ 1 and f ∈ Lq(Rmd), g ∈ L1(Rmd)

and the fact that Kh ∈ L1(Rmd), it holds that fh ∈ L1(Rmd). Moreover, it can readily
checked that

µqq

(
f̂h

)
=

∫
Rmd

∣∣∣f̂h(u)
∣∣∣‖u‖qdu =

∫
Rmd

∣∣∣f̂(u)
∣∣∣‖u‖q exp

(
−2π2h2‖u‖2

)
du <∞

for any q ≥ 1. Therefore, by Lemma 4.1, for any given M > 0 and t > 0, we can find

an approximating kernel f̃h = f̃h(t) such that
∣∣∣f̃h − fh∣∣∣ ≤ t/2 uniformly over [−M,M ]md,

and f̃h further satisfies (4.1) with constants F = 2m
∥∥∥f̂h∥∥∥

L1

and B = 1. Choosing

h = h(Mf ,m, d, t/2), by the triangle inequality, we have∣∣∣f − f̃h∣∣∣ ≤ t/2 + t/2 = t

uniformly over [−M,M ]md. Lastly, we upper bound the term
∥∥∥f̂h∥∥∥

L1

. To this end, we

have∥∥∥f̂h∥∥∥
L1

=

∫
Rmd

∣∣∣f̂(u)
∣∣∣ exp(−2π2h2‖u‖2)du ≤ L

∫
Rmd

1

1 + ‖u‖md+ε
exp(−2π2h2‖u‖2)du.

Using polar coordinates, it holds that∥∥∥f̂h∥∥∥
L1

≤ Γ(md)L

∫ ∞
0

rmd−1

1 + rmd+ε
exp(−2π2h2r2)dr

≤ Γ(md)L

(
1 +

∫ ∞
1

1

r1+ε
dr

)
= (1 + ε−1)Γ(md)L.

This completes the proof.
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