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Abstract

In this article, we provide a sufficient condition for a continuous-state branching
process with immigration (CBI process) to not hit its boundary, i.e. for non-extinction.
Our result applies to arbitrary dimension d ≥ 1 and is formulated in terms of an
integrability condition for its immigration and branching mechanisms F and R. The
proof is based on a comparison principle for multi-type CBI processes being compared
to one-dimensional CBI processes, and then an application of an existing result for
one-dimensional CBI processes. The same technique is also used to provide a sufficient
condition for the transience of multi-type CBI processes.
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1 Introduction

Continuous-state branching processes with immigration (abbreviated as CBI pro-
cesses) form a class of time-homogeneous Markov processes with state space

Rd+ = {x ∈ Rd | x1, . . . , xd ≥ 0}, d ∈ N,

whose Laplace transform is an exponentially affine function of the initial state variable.
In particular, CBI processes are affine processes in the sense of [7, Definition 2.6]. For
x = (x1, . . . , xd) ∈ Rd+ each component xi denotes the (continuous) number of individuals
of type i ∈ {1, . . . , d}, while d is the number of types. Such processes have been first
studied in [10] for single-type models (d = 1) in the diffusion case without immigration
and in [23] for multi-types (d ≥ 1) without immigration including models with jumps, see
also [34] for a pioneering work in this direction. CBI processes arise as large population
limits of Galton-Watson branching processes. Indeed, the single-type case was studied in
[28, 20] without immigration and in [26, 29, 3] with immigration. Analogous results for
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On the boundary behavior of multi-type CBI processes with immigration

multi-type CBI processes have been then obtained in [24, 5]. An introduction, additional
references and results for single-type CBI processes are given in [27, 33] and [30,
Chapter 3], while a construction of multi-type CBI processes from a system of stochastic
equations was studied in [2]. Let us mention that the CIR process, as well as several
multi-factor extensions of it, form a particular class of examples closely related with
applications in mathematical finance, see, e.g., [1] and [7] and the references therein.

Here and below 〈·, ·〉 denotes the euclidean scalar product on Rd and | · | the induced
norm. Below we describe the parameters of the multi-type CBI process.

Definition 1.1. The tuple (c, β,B, ν, µ) is called admissible if

(i) c = (c1, . . . , cd) ∈ Rd+.

(ii) β = (β1, . . . , βd) ∈ Rd+.

(iii) B = (bkj)k,j∈{1,...,d} is such that bkj ≥ 0 for k, j ∈ {1, . . . , d} with k 6= j.

(iv) ν is a Borel measure on Rd+ satisfying
∫
Rd+

(1 ∧ |z|)ν(dz) <∞ and ν({0}) = 0.

(vi) µ = (µ1, . . . , µd), where, for each j ∈ {1, . . . , d}, µj is a Borel measure on Rd+
satisfying

∫
Rd+

zj ∧ z2
j +

∑
k∈{1,...,d}\{j}

zk

µj(dz) <∞, µj({0}) = 0. (1.1)

Note that this definition is a special case of [7, Definition 2.6] in the sense that we
consider here the state space Rd+, exclude killing of the process, and assume that
the measures µ1, . . . , µd satisfy the additional moment condition for the big jumps∫
|z|>1

|z|µj(dz) < ∞ for j = 1, . . . , d. Let (c, β,B, ν, µ) be admissible parameters in
the sense of Definition 1.1. It was shown in [7, Theorem 2.7] (see also [2, Theorem 2.4])
that there exists a unique Markov transition kernel Pt(x, dy) with representation∫

Rd+

e−〈ξ,y〉Pt(x, dy) = exp

(
−〈x, v(t, ξ)〉 −

∫ t

0

F (v(s, ξ))ds

)
, x, ξ ∈ Rd+, t ≥ 0, (1.2)

where, for any ξ ∈ Rd+, the continuously differentiable function t 7−→ v(t, ξ) ∈ Rd+ is the
unique locally bounded solution to the system of differential equations

∂v(t, ξ)

∂t
= −R(v(t, ξ)), v(0, ξ) = ξ. (1.3)

Here F and R are of Lévy-Khinchine form

F (ξ) = 〈β, ξ〉+

∫
Rd+

(
1− e−〈ξ,z〉

)
ν(dz),

Rj(ξ) = cjξ
2
j − 〈Bej , ξ〉+

∫
Rd+

(
e−〈ξ,z〉 − 1 + ξjzj

)
µj(dz), j ∈ {1, . . . , d},

and e1, . . . , ed denote the canonical basis vectors in Rd. The corresponding Markov
process with transition kernel Pt(x, dy) is called multi-type CBI process. Here, the
function F is the so-called immigration mechanism and describes the immigration of
individuals into the system from outside. Such immigration may be continuous described
by a drift parameter β, but also discontinuous described by a Lévy subordinator with
Lévy measure ν. The function R describes the branching mechanism, i.e., Rj is the
branching mechanism where each individual of type j may produce new individuals of
types k ∈ {1, . . . , d} independently of all other individuals. Here c = (c1, . . . , cd) denotes
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the classical local branching associated with a diffusion process, Bej = (bjk)k∈{1,...,d}
describes the continuous branching rates in term of a drift, and finally the Lévy process
associated with the Lévy measure µj describes the branching of individuals produced by
an individual of type j. The following is a particular case of [7], see also [2, Theorem
2.4].

Remark 1.2. For given admissible parameters (c, β,B, ν, µ) there exists a unique con-
servative Feller transition semigroup (Pt)t≥0 acting on the Banach space of continuous
functions vanishing at infinity with state space Rd+ such that its generator has core
C∞c (Rd+) and is, for f ∈ C2

c (Rd+), given by

(Lf)(x) =

d∑
j=1

cjxj
∂2f(x)

∂x2
j

+ 〈β +Bx, (∇f)(x)〉+

∫
Rd+

(f(x+ z)− f(x))ν(dz) (1.4)

+

d∑
j=1

xj

∫
Rd+

(
f(x+ z)− f(x)− zj

∂f(x)

∂xj

)
µj(dz). (1.5)

The corresponding transition semigroup coincides with the one given by (1.2) and hence
describes a multi-type CBI process with admissible parameters (c, β,B, ν, µ).

The smoothness of transition probabilities for one-dimensional CBI processes was
recently studied in [6], where very precise results have been obtained. In [14] (see also
[11] for related results) we have studied existence of transition densities for multi-type
CBI processes. It was shown that, under appropriate conditions, such a density exists on
the interior of its state space, i.e. on Γ = {x ∈ Rd+ | x1, . . . , xd > 0}. In this work provide
conditions under which the corresponding multi-type CBI process is supported on Γ, i.e.
P[X(t) ∈ Γ, t ≥ 0] = 1. Such property simply states that the population described by X
does not get extinct. As a consequence, it has, under the conditions of [14] and those
presented in this work, a density on the whole state space Rd+.

The boundary behavior for one-dimensional CBI processes was studied in [19], for
two-dimensional diffusion processes in [34], and more recently in [4, 8, 12] where
also recurrence and transience was studied. Let us also mention the work [35] where
recurrence and transience for general Lévy driven OU-processes was characterized.
Note that the class of CBI processes satisfying c = 0 and µ = 0 form a particular class
of Lévy driven OU-processes whose state-space is Rd+. In order to study the multi-
dimensional case, we establish first in Section 2 a general comparison principle for
multi-type CBI processes. Such comparison allows us to relate two CBI processes with
different admissible parameters with respect to the classical order on R+. Based on this
comparison result we show that each component of the multi-type CBI process dominates
a one-dimensional CBI process obtained from the original multi-type CBI process by
ignoring all possibilities that an individual of type k ∈ {1, . . . , d} can create individuals of
different types j 6= k. By assuming conditions sufficient for the smaller one-dimensional
CBI processes to not hit zero, or converge to infinity, we obtain a similar result also for
the original multi-type CBI process. At this point we implicitly use the results obtained
in [12] and [8] for one-dimensional CBI processes.

At this point, we would like to mention that the property P[X(t) ∈ Γ, t ≥ 0] = 1

proved in this work can be combined with the Besov regularity of the law of X(t) (see
[14]) to show that the multi-type CBI process has the strong Feller property. Assuming
in addition mild additional conditions such that this CBI process has a unique invariant
measure (see [22]), this method can be combined with the coupling argument from
[16] to show that its transition probabilities converge in the total variation distance to
the unique invariant measure. Such an approach was first established in [13] for the
anisotropic stable JCIR process, see Example 3.8 for its definition. It is clear from the
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proofs given in [13] that they can also be adapted to general multi-type CBI processes
satisfying the conditions imposed in this work and those given in [14]. Finally, let us
mention that convergence in total variation for extensions of CBI processes have been
studied by different techniques in [32, 18].

2 Comparison principle for multi-type CBI processes

The possibility to describe a multi-type CBI process as a unique Rd+-valued strong
solution to a stochastic differential equation was studied in [2]. The main technical tool
there was a comparison principle (see [2, Lemma 4.1]) for multi-type CBI processes
with respect to the initial condition and the drift parameter β from the immigration
mechanism. Below we provide an extension of this principle where the comparison can
also be made with respect to jump measures µ and ν, respectively, from the branching and
immigration mechanisms. Let (c, β,B, ν, µ) and (c, β̃, B̃, ν̃, µ̃) be admissible parameters
satisfying

(A1) βk ≥ β̃k and bkk = b̃kk for all k = 1, . . . , d, and bkj ≥ b̃kj for all k, j = 1, . . . , d with
k 6= j,

(A2) ν ≥ ν̃, µk ≥ µ̃k, and µk ◦pr−1
k = µ̃k ◦pr−1

k holds for all k = 1, . . . , d, where prk(z) = zk
denotes the projection onto the k-th coordinate.

Condition (A1) imposes a comparison on the drift parameters while condition (A2)
imposes a comparison on the state-dependent and state-independent jump measures.
Since we can only compare terms with finite variation, the drift coefficients B, B̃ and
jump measures µj , µ̃j , j = 1, . . . , d, are supposed to coincide on the diagonal.

Below we construct multi-type CBI processes X and Y with admissible parameters
(c, β,B, ν, µ) and (c, β̃, B̃, ν̃, µ̃), respectively. These processes should be defined on the
same filtered probability space (Ω,F , (Ft)t≥0,P) with the usual conditions and are
obtained as the unique strong Rd+-valued solutions to a system of stochastic differential
equations. Write µk = µ̃k + (µk − µ̃k), k = 1, . . . , d, and note that µk − µ̃k ≥ 0 is a
Lev́y measure satisfying (1.1). Hence we may consider the following objects defined on
(Ω,F , (Ft)t≥0,P):

• A d-dimensional (Ft)t≥0-Brownian motion W = (W (t))t≥0.

• (Ft)t≥0-Poisson random measures Nµ̃1
(ds, dz, dr), . . . , Nµ̃d(ds, dz, dr) on R+ ×Rd+ ×

R+ with compensators N̂µ̃j (ds, dz, dr) = dsµ̃j(dz)dr, j = 1, . . . , d, and (Ft)t≥0-
Poisson random measuresNµ1−µ̃1

(ds, dz, dr), . . . , Nµd−µ̃d(ds, dz, dr) onR+×Rd+×R+

with compensators N̂µj−µ̃j (ds, dz, dr) = ds (µj(dz)− µ̃j(dz)) dr, j = 1, . . . , d.

• (Ft)t≥0-Poisson random measures Nν̃ and Nν−ν̃ on R+ × Rd+ with compensators

N̂ν̃(ds, dz) = dsν̃(dz) and N̂ν−ν̃(ds, dz) = ds(ν(dz)− ν̃(dz)).

The random objects W,Nν̃ , Nν−ν̃ , Nµ̃1
, . . . , Nµ̃d , Nµ1−µ̃1

, . . . , Nµd−µ̃d are supposed to be

independent. Denote by Ñν = Nν − N̂ν , etc., the corresponding compensated Poisson
random measures. For given x, y ∈ Rd+ we consider the following system of stochastic
equations on the state space Rd+:

Xk(t) = xk +

∫ t

0

βk +

d∑
j=1

bkjXj(s)

 ds+
√

2ck

∫ t

0

√
Xk(s)dWk(s) (2.1)

+

∫ t

0

∫
Rd+

zkNν̃(ds, dz) +

∫ t

0

∫
Rd+

zkNν−ν̃(ds, dz)
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+

∫ t

0

∫
Rd+

∫
R+

zk1{r≤Xk(s−)}

(
Ñµ̃k(ds, dz, dr) + Ñµk−µ̃k(ds, dz, dr)

)
+
∑
j 6=k

∫ t

0

∫
Rd+

∫
R+

zk1{r≤Xj(s−)}
(
Nµ̃j (ds, dz, dr) +Nµj−µ̃j (ds, dz, dr)

)
and

Yk(t) = yk +

∫ t

0

β̃k +

d∑
j=1

b̃kjYj(s)

 ds+
√

2ck

∫ t

0

√
Yk(s)dWk(s) (2.2)

+

∫ t

0

∫
Rd+

zkNν̃(ds, dz) +

∫ t

0

∫
Rd+

∫
R+

zk1{r≤Yk(s−)}Ñµ̃k(ds, dz, dr)

+
∑
j 6=k

∫ t

0

∫
Rd+

∫
R+

zk1{r≤Yj(s−)}Nµ̃j (ds, dz, dr)

It is not difficult to verify that X and Y are multi-type CBI processes with the corre-
sponding admissible parameters.

Proposition 2.1. Let (c, β,B, ν, µ) and (c, β̃, B̃, ν̃, µ̃) be admissible parameters satisfying
(A1) and (A2). Then there exist unique Rd+-valued strong solutions to (2.1) and (2.2).
Moreover, (2.1) determines a CBI process with admissible parameters (c, β,B, ν, µ),
and (2.2) determines a CBI process with admissible parameters (c, β̃, B̃, ν̃, µ̃).

Proof. Using the Itô formula and a simple computation shows that any solution to (2.1)
is also a solution to the martingale problem (L,C∞c (Rd+), δx) and any solution to (2.2) is

a solution to the martingale problem (L̃, C∞c (Rd+), δy), see [9, Chapter 4] for the general
theory of martingale problems. Here L denotes the generator of the conservative multi-
type CBI process with admissible parameters (c, β,B, ν, µ) and L̃ denotes the generator
with admissible parameters (c, β̃, B̃, ν̃, µ̃), respectively. Since C∞c (Rd+) is a core for the
generators, it follows that the martingale problems are well-posed, see [9, Chapter
4, Proposition 1.7, Theorem 2.7, Theorem 4.4]. Hence (2.1) and (2.2) determine the
corresponding CBI processes.

Note that existence of uniqueness Rd+-valued strong solutions to (2.1) and (2.2) was
essentially shown in [2, Theorem 4.6], provided that the immigration measures ν, ν̃
satisfy the additional moment condition∫

|z|>1

|z| (ν(dz) + ν̃(dz)) <∞. (2.3)

However, since ν({|z| > 1}), ν̃({|z| > 1}) <∞, a standard interlacing argument similar
to [21, Proof of Propostion 9.1] or [17, Section 2] shows that existence and uniqueness
to (2.1) and (2.2) for general immigration measures ν, ν̃ is equivalent for those satisfying
this additional moment condition.

The following is our main result for this section.

Theorem 2.2. Let (c, β,B, ν, µ) and (c, β̃, B̃, ν̃, µ̃) be admissible parameters satisfying
(A1) and (A2). Let X and Y be the unique strong solutions to (2.1) and (2.2), respectively.
If xk ≥ yk holds for all k = 1, . . . , d, then P[Xk(t) ≥ Yk(t), ∀t ≥ 0, k = 1, . . . , d] = 1

holds.
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Proof. Define ∆k(t) := Yk(t) − Xk(t) and δk(r, s−) = 1{r≤Yk(s−)} − 1{r≤Xk(s−)}. Then
∆k(0) = 0 and we obtain, for each k ∈ {1, . . . , d},

∆k(t) = yk − xk +

∫ t

0

β̃k − βk +

d∑
j=1

(
b̃kjYj(s)− bkjXj(s)

) ds

+
√

2ck

∫ t

0

(√
Yk(s)−

√
Xk(s)

)
dWk(s)−

∫ t

0

∫
Rd+

zkdNν−ν̃

+

∫ t

0

∫
Rd+

∫
R+

zkδk(r, s−)dÑµ̃k −
∫ t

0

∫
Rd+

∫
R+

zk1{r≤Xk(s−)}dÑµk−µ̃k

+
∑
j 6=k

∫ t

0

∫
Rd+

∫
R+

zkδk(r, s−)dNµ̃j −
∑
j 6=k

∫ t

0

∫
Rd+

∫
R+

zk1{r≤Xj(s−)}dNµj−µ̃j .

Let φm : R −→ R+ be twice continuously differentiable functions with the properties:

(i) φm(z)↗ z+ := max{0, z}, as m→∞ for all z ∈ R.

(ii) φ′m(z) ∈ [0, 1] for all m ∈ N and z ≥ 0.

(iii) φ′m(z) = φm(z) = 0 for all m ∈ N and z ≤ 0.

(vi) φ′′m(x− y)|x− y| ≤ 2/m for all m ∈ N and x, y ≥ 0.

The existence of such a sequence was shown in the proof of [31, Theorem 3.1]. Applying
the Itô formula to φm(∆k(t)) gives

φm(∆k(t)) = φm(yk − xk) +

7∑
n=1

∫ t

0

Rnk,m(s)ds+Mk,m(t), (2.4)

where R1
k,m, . . . ,R7

k,m are given by

R1
k,m(s) = φ′m(∆k(s))

β̃k − βk +

d∑
j=1

(
b̃kjYj(s)− bkjXj(s)

) ,

R2
k,m(s) = ckφ

′′
m(∆k(s))

(√
Yk(s)−

√
Xk(s)

)2

,

R3
k,m(s) =

∫
Rd+

[φm(∆k(s)− zk)− φm(∆k(s))] (ν(dz)− ν̃(dz)),

R4
k,m(s) =

∫
Rd+

∫
R+

[
φm(∆k(s) + zkδk(r, s))− φm(∆k(s))− zkδk(r, s)φ′m(∆k(s))

]
drµ̃k(dz),

R5
k,m(s) =

∫
Rd+

∫
R+

[
φm(∆k(s)− zk1{r≤Xk(s−)})− φm(∆k(s))

+ zk1{r≤Xk(s−)}φ
′
m(∆k(s))

]
dr(µk(dz)− µ̃k(dz)),

R6
k,m(s) =

∑
j 6=k

∫
Rd+

∫
R+

[φm(∆k(s) + zkδk(r, s))− φm(∆k(s))] drµ̃j(dz),

R7
k,m(s) =

∑
j 6=k

∫
Rd+

∫
R+

[
φm(∆k(s)− zk1{r≤Xj(s)})− φm(∆k(s))

]
dr(µj(dz)− µ̃j(dz)),

(Mk,m(t))t≥0 is a local martingale and δk(r, s) = 1{r≤Yk(s)}−1{r≤Xk(s)}. For l ∈ N, define
the stopping time τl = inf{t > 0 | max

i∈{1,...,d}
max{Xi(t), Yi(t)} > l}. Using the precise form
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ofMk,m given by Itô’s formula combined with similar estimates to [2, Lemma 4.1], one
can show that (Mk,m(t ∧ τl))t≥0 is a martingale for any l ∈ N. Next we will prove that
there exists a constant C > 0 such that

7∑
n=1

Rnk,m(s) ≤ C
d∑
j=1

∆j(s)+ +
C

m
. (2.5)

Taking then expectations in (2.4), using that (Mk,m(t ∧ τl))t≥0 is a martingale and
estimating as in (2.5) combined with φm(yk − xk) = 0 by (iii), gives

E[φm(∆k(t ∧ τl))] ≤ C
∫ t

0

E

 d∑
j=1

∆j(s ∧ τl)+

 ds+
Ct

m
.

Letting m→∞, using property (i), and finally summing over k = 1, . . . , d gives

E

 d∑
j=1

∆j(t ∧ τl)+

 ≤ C ∫ t

0

E

 d∑
j=1

∆j(s ∧ τl)+

 ds.
Applying Gronwall lemma shows that, for any l ∈ N, one has E

[∑d
j=1 ∆j(t ∧ τl)+

]
= 0.

Letting now l → ∞ and using τl → ∞ a.s. (since X,Y have cádlág paths) yields∑d
j=1 ∆j(t)+ = 0 a.s. which proves the assertion.
Hence it remains to prove (2.5). In order to estimate R1

k,m we use properties (ii), (iii),

(A1), β̃k − βk ≤ 0, b̃kj − bkj ≤ 0 and b̃kj ≥ 0 for k 6= j, and Xj(s) ≥ 0 to obtain

R1
k,m(s) ≤ φ′m(∆k(s))

bkk∆k(s) +
∑
j 6=k

b̃kj∆j(s) +
∑
j 6=k

(̃bkj − bkj)Xj(s)


≤ |bkk|∆k(s)+ +

(
sup
j 6=k

b̃kj

)∑
j 6=k

∆j(s)+.

For R2
k,m we obtain from (iv) the estimate R2

k,m(s) ≤ 2ck
m . Using (ii) we easily find that

φm(∆k(s)− zk)− φm(∆k(s)) ≤ 0, for zk ≥ 0, and hence R3
k,m ≤ 0 since ν(dz) ≥ ν̃(dz). In

order to estimate R4
k,m(s) we first write R4

k,m(s) = R4,1
k,m(s) +R4,2

k,m(s) +R4,3
k,m(s) with

R4,1
k,m(s) =

∫
|z|≤1

∫
R+

[φm(∆k(s) + zkδk(r, s))− φm(∆k(s))− zkδk(r, s)φ′m(∆k(s))] drµ̃k(dz),

R4,2
k,m(s) =

∫
|z|>1

∫
R+

[φm(∆k(s) + zkδk(r, s))− φm(∆k(s))] drµ̃k(dz),

R4,3
k,m(s) = −

∫
|z|>1

∫
R+

zkδk(r, s)φ′m(∆k(s))drµ̃k(dz).

For the first term we use property (iv) so that, for each y > 0, z ≥ 0 and m ∈ N, there
exists ϑ = ϑ(y, z) ∈ [0, 1] such that

φm(y + z)− φm(y)− φ′m(y)z = φ′′m(y + ϑz)
z2

2
≤ 2z2

2m(y + ϑz)
≤ z2

my
.

Next observe that δk(r, s) > 0 if and only if ∆k(s) > 0 and r ∈ (Xk(s), Yk(s)]. Applying
both observations to R4,1

k,m(s) gives

R4,1
k,m(s) ≤

1{∆k(s)>0}

m∆k(s)

∫
|z|≤1

∫
R+

z2
kδk(r, s)2drµ̃k(dz) ≤ 1

m

∫
|z|≤1

z2
kµ̃k(dz),
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On the boundary behavior of multi-type CBI processes with immigration

where we have used
∫
R+

δk(r, s)2dr = ∆k(s) a.s. on {∆k(s) > 0}. For R4,2
k,m we use

property (ii), so that

R4,2
k,m(s) ≤ 1{∆k(s)>0}∆k(s)

∫
|z|>1

∫
R+

zkδk(r, s)µ̃k(dz)dr ≤ ∆k(s)+

∫
|z|>1

zkµ̃k(dz),

where we have also used
∫
R+

δk(r, s)dr = ∆k(s) a.s. on {∆k(s) > 0}. For the last term

we use again (ii) and similar arguments as above to find that R4,3
k,m(s) ≤ 0. For R5

k,m(s)

we use the fact that µk ◦ pr−1
k = µ̃k ◦ pr−1

k to conclude that R5
k,m(s) = 0. For R6

k,m(s) we
use property (ii) to find that

R6
k,m(s) ≤ 1{∆k(s)>0}

∑
j 6=k

∫
Rd+

∫
R+

zkδk(r, s)drµ̃j(dz) ≤
∑
j 6=k

∫
Rd+

zkµ̃j(dz)∆k(s)+,

where we have used
∫
R+

δk(r, s)dr = ∆k(s) a.s. on {∆k(s) > 0}. To estimate the last term

R7
k,m(s) we use property (ii) so that φm(∆k(s)− zk1{r≤Xj(s)})−φm(∆k(s)) ≤ 0 and hence
R7
k,m(s) ≤ 0 since µj(dz) ≥ µ̃j(dz). Combining all estimates proves (2.5) and hence the

assertion.

The next theorem shows that the additional restriction µk ◦ pr−1
k = µ̃k ◦ pr−1

k , k =

1, . . . , d, can be omitted if these jump measures have finite first moment also for the small
jumps.

Theorem 2.3. Let (c, β,B, ν, µ) and (c, β̃, B̃, ν̃, µ̃) be admissible parameters satisfying
(A1), ν(dz) ≥ ν̃(dz), and µk(dz) ≥ µ̃k(dz) for each k = 1, . . . , d. Let X and Y be con-
structed as above. Suppose that∫

|z|≤1

|z|µk(dz) <∞, k = 1, . . . , d, (2.6)

and that xk ≥ yk for all k = 1, . . . , d. Then P[Xk(t) ≥ Yk(t), ∀t ≥ 0] = 1 for each
k = 1, . . . , d.

Proof. Due to condition (2.6) we can absorb the compensation in the stochastic integrals
against Nµ̃k and Nµk−µ̃k which readily gives

∆k(t) = yk − xk +

∫ t

0

β̃k − βk +

d∑
j=1

(g̃kjYj(s)− gkjXj(s))

 ds

+
√

2ck

∫ t

0

(√
Yk(s)−

√
Xk(s)

)
dWk(s)−

∫ t

0

∫
Rd+

zkdNν−ν̃

+

d∑
j=1

∫ t

0

∫
Rd+

∫
R+

zkδk(r, s−)dNµ̃j −
d∑
j=1

∫ t

0

∫
Rd+

∫
R+

zk1{r≤Xj(s−)}dNµj−µ̃j ,

where gkj = bkj , g̃kj = b̃kj for k 6= j, and gkk = bkk −
∫
Rd+

zkµk(dz) = g̃kk. The assertion

can now be literarly shown in the same way as in Theorem 2.2.

3 Application to multi-type CBI processes

Here and below we denote by X a multi-type CBI process with admissible parameters
(c, β,B, ν, µ). We start with the simple case where one component of the multi-type CBI
process has bounded variation.
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Proposition 3.1. Suppose that there exists k ∈ {1, . . . , d} such that

ck = 0 and

∫
|z|≤1

zkµk(dz) <∞. (3.1)

Then Xk has bounded variation and

Xk(t) ≥

{
eθktxk + βk

eθkt−1
θk

, if θk 6= 0

xk + βkt, if θk = 0
, t ≥ 0, (3.2)

where θk = bkk −
∫
Rd+

zkµk(dz) ∈ R.

Proof. Let (c, β̃, B̃, ν̃, µ̃) be admissible parameters given by β̃ = β, b̃kj = 0 for k 6= j

and b̃kk = bkk, ν̃ = 0, and µ̃1 = · · · = µ̃d = 0. In view of condition (3.1) the process Xk

obtained from (2.1) also satisfies

Xk(t) = xk +

∫ t

0

βk +

d∑
j=1

gkjXj(s)

 ds+

∫ t

0

∫
Rd+

zkNν(ds, dz)

+

d∑
j=1

∫ t

0

∫
Rd+

∫
R+

zk1{r≤Xj(s−)}Nµj (ds, dz, dr),

where gkj = bkj for k 6= j and gkk = θk. Hence Xk has finite variation. The process Y

given by (2.2) satisfies Yk(t) = xk +
∫ t

0
(βk + θkY (s)) ds, i.e.,

Yk(t) =

{
xke

θkt + βk
eθkt−1
θk

, if θk 6= 0

xk + βkt, if θk = 0
, t ≥ 0.

Using Theorem 2.3 yields P[Xk(t) ≥ Yk(t)] = 1 for all t ≥ 0 and this fixed choice of k.
This proves the assertion.

From this we easily obtain the following corollary.

Corollary 3.2. Let k ∈ {1, . . . , d} and suppose that (3.1) holds. If either xk > 0 or βk > 0,
then P[Xk(t) > 0, t ≥ 0] = 1.

The next proposition gives a multi-dimensional analogue of this result. For x, y ∈ Rd
we will write x ≤ y to mean that xi ≤ yi for all i = 1, . . . , d.

Proposition 3.3. Suppose that (3.1) holds for all k ∈ {1, . . . , d}. Then X has bounded
variation and it holds that

X(t) ≥ etGx+

∫ t

0

esGβds, (3.3)

where G = (gkj)k,j∈{1,...,d} is given by

gkj =

{
bkj , k 6= j

bkk −
∫
Rd+

zkµk(dz), k = j.
(3.4)

Proof. Let (c, β̃, B̃, ν̃, µ̃) be admissible parameters given by

β̃ = β, B̃ = B, ν̃ = 0, and µ̃1 = · · · = µ̃d = 0. (3.5)
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Observe that under (3.1) the process X obtained from (2.1) also satisfies

Xk(t) = xk +

∫ t

0

βk +

d∑
j=1

gkjXj(s)

 ds+

∫ t

0

∫
Rd+

zkNν(ds, dz)

+

d∑
j=1

∫ t

0

∫
Rd+

∫
R+

zk1{r≤Xj(s−)}Nµj (ds, dz, dr)

for each k = 1, . . . , d. Let Y (t) be the unique solution to (2.2) with parameters given
as in (3.5), i.e., Y (t) = x+

∫ t
0

(β +GY (s)) ds, which is given by Y (t) = etGx+
∫ t

0
esGβds.

Theorem 2.3 yields P[Xk(t) ≥ Yk(t)] = 1 for all t ≥ 0 and k ∈ {1, . . . , d}. This proves the
assertion.

In view of this estimate we restrict our further analysis to the case where (3.1)
does not hold, i.e., the process has unbounded variation. In this case we define, for
k ∈ {1, . . . , d}, the projected immigration and branching mechanisms by

F (k)(ξ) = βkξ +

∫
Rd+

(
1− e−ξzk

)
ν(dz), (3.6)

R(k)(ξ) = −bkkξ + ckξ
2 +

∫
Rd+

(
e−ξzk − 1 + ξzk

)
µk(dz). (3.7)

Each of these immigration and branching mechanisms describes a one-dimensional CBI
process which is obtained from a multi-type CBI process with admissible parameters
(c, β,B, ν, µ) by ignoring all possibilities that a particle of type k may create another
particle of type j 6= k.

Theorem 3.4. Suppose that there exists k ∈ {1, . . . , d} and κ > 0 such that R(k)(ξ) > 0

for ξ ≥ κ. If ck > 0 or
∫
|z|≤1

zkµk(dz) =∞, and it holds that

∫ ∞
κ

exp

(∫ ξ

κ

F (k)(u)

R(k)(u)
du

)
1

R(k)(ξ)
dξ =∞, (3.8)

then P[Xk(t) > 0, t ≥ 0] = 1, provided xk > 0.

Proof. Let (c, β̃, B̃, ν̃, µ̃) be admissible parameters with β̃ = β, B̃ = diag(b11, . . . , bdd),
ν̃ = ν, µ̃k = µk, and µ̃j = 0 for j 6= k. Applying Theorem 2.2 gives

P[Yk(t) > 0, t ≥ 0] = 1 ⇒ P[Xk(t) > 0, t ≥ 0] = 1, (3.9)

where X and Y are the unique solutions to (2.1) and (2.2), respectively. It is easy to
see that Yk is a CBI process with immigration and branching mechanisms given by (3.6)
and (3.7), respectively. In view of (3.8) Yk satisfies the conditions of [12, Corollary 6]
which proves the assertion.

From this we directly deduce the following corollary.

Corollary 3.5. If for each k ∈ {1, . . . , d} the conditions of Theorem 3.4 are satisfied, then
P[X(t) ∈ Γ, t ≥ 0] = 1, provided x ∈ Γ = {x ∈ Rd+ | x1, . . . , xd > 0}.

The following remark provides a sufficient condition for (3.8).

Lemma 3.6. Suppose that for some k ∈ {1, . . . , d} the following conditions are satisfied:

(i) There exists M0 > 0 such that R(k)(ξ) > 0 for ξ ≥M0.

(ii) There exists γk ∈ (0, 1] and M1, C1 > 0 such that F (k)(ξ) ≥ C1ξ
γk for ξ ≥M1.

(iii) There exists αk ∈ (1, 2] and M2, C2 > 0 such that R(k)(ξ) ≤ C2ξ
αk for ξ ≥M2.
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Then (3.8) is satisfied, provided one of the following conditions holds:

(a) αk ∈ (0, 1 + γk).

(b) αk = 1 + γk and γk ≤ C1

C2
.

Note that, if βk > 0, then F (k)(ξ) ≥ βkξ and hence γk = 1. However, Corollary 3.5
also applies in the particular case where β1 = · · · = βd = 0.

Proof of Remark 3.6. Set κ = max{M0,M1,M2}. If αk < 1 + γk, then F (k)(u)
R(k)(u)

≥ C1

C2
uγk−αk ,

for u ∈ [κ, ξ], and hence

exp

(∫ ξ

κ

F (k)(u)

R(k)(u)
du

)
≥ exp

(
C1

C2

∫ ξ

κ

uγk−αkdu

)

= exp

(
−C1

C2

κ1+γk−αk

1 + γk − αk

)
exp

(
C1

C2

ξ1+γk−αk

1 + γk − αk

)
and ∫ ∞

κ

exp

(∫ ξ

κ

F (k)(u)

R(k)(u)
du

)
dξ

R(k)(ξ)

≥
exp

(
−C1

C2

κ1+γk−αk

1+γk−αk

)
C2

∫ ∞
κ

exp

(
C1

C2

ξ1+γk−αk

1 + γk − αk

)
dξ

ξαk
=∞.

This proves (3.8) under (a). If αk = 1 + γk, then we obtain for ξ ≥ κ and u ∈ [κ, ξ],

exp

(∫ ξ

κ

F (k)(u)

R(k)(u)
du

)
≥ exp

(
C1

C2

∫ ξ

κ

uγk−αkdu

)
= κ−

C1
C2 ξ

C1
C2 .

Using αk ≤ 1 + C1

C2
gives

∫ ∞
κ

exp

(∫ ξ

κ

F (k)(u)

R(k)(u)
du

)
dξ

R(k)(ξ)
≥ κ−

C1
C2

C2

∫ ξ

κ

ξ
C1
C2

ξαk
dξ =∞,

and hence proves (3.8) under (b).

Our next statement provides a sufficient condition for one component of a multi-type
CBI process to converge to infinity.

Theorem 3.7. Let k ∈ {1, . . . , d} and suppose that R(k)(ξ) > 0 holds for all ξ > 0. Then
P[limt→∞Xk(t) =∞] = 1, provided one of the following conditions is satisfied:

(a) bkk > 0.

(b) bkk ≤ 0 and ∫ 1

0

exp

(
−
∫ 1

ξ

F (k)(u)

R(k)(u)
du

)
dξ

R(k)(ξ)
<∞. (3.10)

Proof. Let (c, β̃, B̃, ν̃, µ̃) and Yk be the same as in the proof of Theorem 3.4. Applying
Theorem 2.2 gives

P[ lim
t→∞

Yk(t) =∞] = 1 =⇒ P[ lim
t→∞

Xk(t) =∞] = 1.

In view of Proposition 2.1, Yk satisfies the conditions of [8, Theorem 3] which proves the
assertion.
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Let us close this section with the example of an anisotropic stable JCIR process,
i.e., the multi-type CBI process X with admissible parameters (c = 0, β, B, ν, µ), where
µ = (µ1, . . . , µd) are, for α1, . . . , αd ∈ (1, 2), given by

µj(dz) = 1R+
(zj)

dzj

z
1+αj
j

⊗
∏
k 6=j

δ0(dzk). (3.11)

Example 3.8. Let X be the anisotropic stable JCIR process starting from x ∈ Rd+. Fix
k ∈ {1, . . . , d}.

(a) Suppose that there exist C,M > 0 and γk ∈ (0, 1] such that

βkξ +

∫
Rd+

(
1− e−ξzk

)
ν(dz) ≥ Cξγk , ξ ≥M. (3.12)

If xk > 0 and αk ∈ (1, 1 + γk), then P[Xk(t) > 0, t ≥ 0] = 1.

(b) If bkk > 0, then P[limt→∞Xk(t) =∞] = 1.

Proof. Assertion (b) follows immediately from Theorem 3.7 (a). Let us prove assertion
(a). Since α1, . . . , αd ∈ (1, 2), it follows that X has unbounded variation. Hence it suffices
to show that Theorem 3.4 is applicable. First observe that

F (k)(ξ) = βkξ +

∫
Rd+

(
1− e−ξzk

)
ν(dz),

R(k)(ξ) = −bkkξ +

∫ ∞
0

(
e−ξz − 1 + ξz

) dz

z1+αk
= −bkkξ +Kξαk ,

where K =
∫∞

0
(e−w − 1 + w) dw

w1+αk
> 0. Next it is easily seen that

R(k)(ξ) > 0, whenever ξ >

(
max{0, bkk}

K

) 1
αk−1

.

Moreover, one finds R(k)(ξ) ≤ (|bkk|+K) ξαk for ξ ≥ 1, and hence the assertion follows
from Remark 3.6 since αk ∈ (1, 1 + γk).

In Remark 3.6, if βk > 0, then we may take γk = 1 so that (3.12) is satisfied. However,
if βk = 0, then (3.12) may be still satisfied as it is shown in the following example.

Example 3.9. Let γ ∈ (0, 1) and set ν(dz) = 1Rd+(z) dz
|z|d+γ . Then

∫
Rd+

(1 ∧ |z|)ν(dz) < ∞
and ∫

Rd+

(
1− e−ξzk

) dz

|z|d+γ
= ξγ

∫
Rd+

(
1− e−wk

) dw

|w|d+γ
.

So (3.12) holds for γk = γ. Hence the assumptions of Example 3.8 (a) are satisfied, if
αk ∈ (1, 1 + γ).

It is worthwhile to mention that there exists a large class of measures which sat-
isfy (3.12) but are not of the form ν(dz) = 1Rd+(z) dz

|z|d+γ , see, e.g., [25], [14] and [15].
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