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Abstract

We study the behaviour of the point process of critical points of isotropic stationary
Gaussian fields. We compute the main term in the asymptotic expansion of the
two-point correlation function near the diagonal. Our main result implies that for a
‘generic’ field the critical points neither repel nor attract each other. Our analysis
also allows to study how the short-range behaviour of critical points depends on their
index.
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1 Introduction

1.1 Two-point correlation function for critical points of planar random fields

The number of critical points of a function and their positions are its important
qualitative descriptor, and their study is an actively pursued field of research within a
wide range of disciplines, such as classical analysis (see e.g. [8]), probability (e.g. [9, 10]),
mathematical and theoretical physics ([13]), spectral geometry (e.g. [16, 14]), and
cosmology and the study of Cosmic Microwave Background (CMB) radiation (e.g. [11]).
In case F : R2 → R (or, more generally, F : Rd → R, d ≥ 2) is a smooth Gaussian random
field, then its set of critical points CF is a point process on R2 (resp. Rd). If we assume
in addition that F is stationary, then it is possible to employ the Kac-Rice method in
order to obtain that, under some mild non-degeneracy assumptions on F and its mixed
derivatives up to 2nd order, the expected number of critical points lying in a ball or
radius R, B(R) ⊆ R2 is given precisely by

E[#(CF ∩B(R))] = cF ·Vol(B(R)),

where cF > 0 is a constant that could be expressed in terms of some derivatives of the
covariance function of F evaluated at the diagonal.

It is then compelling to study the law of CF in more depth, e.g., the variance of

#CF (B(R)) := #(CF ∩B(R)),
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No repulsion between critical points

and the relative positions of critical points, e.g. their attraction and repulsion. Let

K2(x− y) = K2(x, y)

be the 2-point correlation function of the point process CF (or other point processes)
defined as

K2(x− y) = lim
ε1,ε2→0

1

Vol(B(ε1)) ·Vol(B(ε2))
E[#CF (Bx(ε1)) ·#CF (By(ε2))],

where Bx(ε) is the radius-ε ball centred at x. Note that K2 clearly depends on F but we
omit this to simplify the notation. The corresponding field will be always clear from the
context.

Given K2 we immediately get the formula for the second factorial moment of the
number of critical points via

E[#CF (B(R)) · (#CF (B(R))− 1)] =

∫
B(R)×B(R)

K2(x, y)dxdy. (1.1)

For CF (and other point processes that are zeros of random Gaussian fields, with CF
being the zero set of ∇F ), one can usually derive the 2-point correlation function via the
Kac-Rice formula

K2(x, y) = φ(∇F (x),∇F (y))(0, 0) · E
[
|detHF (x) · detHF (y)|

∣∣∇F (x) = ∇F (y) = 0
]
, (1.2)

where φ(∇F (x),∇F (y))(·) is the density of the Gaussian vector (∇F (x),∇F (y)) ∈ R2 ×R2,
and HF (·) is the Hessian of F (we exclude the diagonal {x = y} which does not contribute
to the integral, but the near-diagonal behaviour when x ≈ y will play a crucial role). The
function (1.2) is, in turn, a semi-explicit function of the covariance function of F and its
couple of mixed derivatives.

If, in addition, F is assumed to be isotropic, thenK2(x, y) is a function of the Euclidean
distance r = ‖x − y‖. In many cases, when the covariance function of F is decaying
sufficiently rapidly, the long range asymptotics of K2(r), r →∞ yields the asymptotic
variance of the number of critical points in large balls B(R), R→∞, see e.g. [9, 10], and
other quantities, such as the nodal length of F [6, 17]. On the contrary, the short range
asymptotics of K2(r), r → 0 yields the asymptotic law of the second factorial moment of
the number of critical points of F belonging to small balls B(r), r → 0, again via (1.1).
Informally, the probability that there is one critical point in a ball B(r) of small radius
r > 0 is approximately cr2, whereas the probability that there are two critical points in
B(r) is approximately

∫∫
B(r)×B(r)

K2(x, y)dxdy. If K2(r)→∞ as r → 0, then the probability

to have two critical points in B(r) is much higher than the square of the probability to
have one critical point in B(r). In this case we say that the critical points attract each
other. Otherwise, if K2(r)→ 0 as r → 0, then the probability to have two critical points
in B(r) is much lower than the square of the probability to have one such point. In this
case we say that the critical points repel each other.

The first relevant result [4] was obtained in 2017 when we analysed the asymptotic
behaviour of K2 for a particular Gaussian field: the random monochromatic isotropic
plane waves, also referred to as “Berry’s Random Wave Model” (RWM). This field is
of a particular interest since it is believed to represent the (deterministic) Laplace
eigenfunctions on “generic” chaotic surfaces, in the high energy limit [7]. The RWM is
the stationary isotropic random field F : R2 → R, uniquely defined by the covariance
function

CF (x) := E[F (y) · F (x+ y)] = J0(‖x‖),
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No repulsion between critical points

Figure 1: Critical points for the random plane wave (left), Bargmann-Fock field (center)
and an anisotropic field. Minima and maxima are red and blue plusses and crosses,
critical points are black dots.

with J0(·) the Bessel J function of the first order.
The work [4] was motivated by Figure 1 (left) which apparently shows that the critical

point repel each other. It was found [4, p. 10] that for RWM the two-point correlation
function KRWM

2 (r) has the following asymptotic around the diagonal to

KRWM
2 (r) =

1

253
√

3π2
+Or→0(r2), (1.3)

so that, in particular, the critical points of F exhibit no repulsion nor attraction. It
was then inferred that the seemingly visible repulsion on some numerically generated
pictures could be attributed to rigidity of critical points, a notion cardinally different from
repulsion. The work [4] also allowed for the separation of the critical points into maxima,
minima and saddles, and studied the effect of such a separation on the corresponding
2-point correlation function, resulting in some cases in qualitatively different behaviour
to (1.3).

It is then natural to inquire about the analogous question for other Gaussian random
fields, i.e. for the asymptotic law of the 2-point-correlation function around the diagonal
for other Gaussian random fields. In particular, whether it is true, that for a generic
stationary field, the critical points nether attract nor repel each other. That critical
points do not attract was resolved by Muirhead [15], who, among other things, proved
that there is no attraction for ‘generic’ stationary planar Gaussian random fields, without
assuming that the underlying random field is isotropic.

Our first principal Theorem 1.2 below yields that for a Gaussian isotropic random
field F satisfying some generic assumptions, one has

K2(r) = aF +Or→0(r) (1.4)

with aF > 0 explicitly evaluated in terms of some derivatives of the covariance function
of F . In particular, it implies that the critical points of an isotropic stationary Gaussian
field do not repel each other, only just (see Corollary 1.4 below). The value of aF
in (1.4) is of no particular significance other than its mere positivity. What might be
of some interest is the relation between the density of the critical points cF and aF . It
can show, by comparison with a Poisson process of the same intensity cF , that critical
points are more clustered or dispersed on a small scale compared to the corresponding
Poisson process. Finally, we do believe that the isotropic assumption is not essential
for the validity of (1.4). There is a couple of reasons to believe in that. The first reason
is that the ‘no attraction’ result by Muirhead [15] is indeed valid for generic fields.
Our other reasoning lyes within the main structure of our arguments. The isotropic
assumption is used to reduce the number of variables and to make the two-point function
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No repulsion between critical points

more amenable to explicit computation. In the isotropic case there are no mysterious
cancellations, suggesting the same for the asymptotic behaviour in the generic case.

1.2 Statement of the main results

Our main result concerns the short range asymptotics for the 2-point correlation
function corresponding to smooth stationary isotropic Gaussian fields F : R2 → R. Let

CF (r) = CF (‖x− y‖) := E[F (x) · F (y)]

be the covariance function of F . Assuming that F is sufficiently smooth and unit variance,
and taking into account that CF is even and for every k ≥ 0,

C
(2k)
F (0) = (−1)kE[(∂k1F (0))2],

we may Taylor expand CF (r) around the origin as

CF (r) = 1− g2r2 + g4r
4 − g6r6 +O(r8), (1.5)

where for all k ≥ 1, we have

g2k = (−1)k
C

(2k)
F (0)

(2k)!
≥ 0. (1.6)

By rescaling F if necessary, we may further assume w.l.o.g. that g2 = 1 (if g2 vanishes
it would force F to be a.s. linear, which would contradict F being isotropic, unless F is
constant), so that (1.5) reads

CF (r) = 1− r2 + g4r
4 − g6r6 + o(r6). (1.7)

The following proposition, which is itself an immediate consequence of the Kac-Rice
formula [1, Sections 6.1 and 6.2], can thereupon not be considered as “new”.

Proposition 1.1. For every R > 0,

E[#(CF ∩B(R))] =
8√
3
g4R

2.

To simplify the formulas in the main theorem we introduce the following notation:

φ(g4, g6) := 100g44 − 396g24g6 + 405g26 > 0,

ϕ(g4, g6) := −20g44 + 88g24g6 − 99g26 ,
(1.8)

and finally

A(g4, g6) :=

√
ϕ(g4, g6)− (2g24 − 5g6)

√
φ(g4, g6),

B(g4, g6) :=

√
−ϕ(g4, g6)− (2g24 − 5g6)

√
φ(g4, g6),

(1.9)

with both A(g4, g6) and B(g4, g6) real .

Theorem 1.2. Let F : R2 → R be a nonconstant stationary isotropic Gaussian random
field, and assume that F is a.s. C4+ε(R2) for some ε > 0. Then the 2-point correlation
function corresponding to the critical points admits the following expansion around the
origin:

K2(r) =

√
3

π2

A(g4, g6)2 +B(g4, g6)2√
φ(g4, g6)

+Or→0(r2), (1.10)

where g2k are given by (1.6), and φ(·, ·), A(·, ·) and B(·, ·) are given by (1.8)–(1.9).
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Remark 1.3. One can replace the C4+ε assumption of Theorem 1.2 by the more natural
C3+ε, which would result in the error term of O(r2) in (1.10) be replaced by o(1).

We would like to analyse the leading term in (1.10), in particular, whether it may
vanish for some values of g4, g6 that do correspond to some random field, equiva-
lently, whether A(g4, g6)2 + B(g4, g6)2 might vanish. We will show below (see (3.8))
that A(g4, g6)2 +B(g4, g6)2 = 0 for some real strictly positive g4, g6, if and only if

g24 =
5

2
g6.

To analyse this equation we write the derivatives in terms of the spectral measure ρ of F
(that is, ρ is the Fourier transform of the covariance kernel C(·) on R2):

C
(2k)
F (0) = (−1)k(2π)2k

∫
R2

x2k1 dρ(x). (1.11)

By the Cauchy-Schwarz inequality and formulas (1.6) and (1.11) we obtain the following
inequality between g4 and g6:

g24 =
(2π)8

(4!)2

(∫
x41dρ

)2

≤ (2π)8

(4!)2

∫
x61dρ

∫
x21dρ =

5

2
g2g6 =

5

2
g6. (1.12)

The equality holds if and only if ρ is the δ-measure at the origin, equivalently, F is a
(random) constant. This means that the leading term is non-zero for non-degenerate F .

Corollary 1.4. Under the assumptions of Theorem 1.2 the critical points of F do not
repel or attract each other.

Our next result is analogous to Theorem 1.2, while separating the critical points into
different types: minima, maxima and saddle points.

Theorem 1.5 (Separating minima, maxima, saddles). The 2-point correlation functions
corresponding to saddles, local minima, local maxima, and local extrema admit the
following expansion around the origin:

Kmin,min
2 (r) = O(r3 log(1/r)), Kmax,max

2 (r) = O(r3 log(1/r)),

Ksaddle,saddle
2 (r) = O(r3 log(1/r)), Ke,e

2 (r) = O(r3 log(1/r)).

The situation with Kmax,min
2 (r) is a bit more delicate. For a generic field, it is O(r3), but

if the coefficient in front of r in the expansion of the Hessian vanishes (namely b1,1 = 0

in (4.2)), then it is O(r7). Importantly, it does happen for RWM.

In this note we generalize the results of [4] to a generic class of stationary isotropic
fields. Our proofs follow along the general strategy set within [4], but involve heavier and
more technically challenging computations for performing the asymptotic analysis for the
relevant Kac-Rice integrals. Most of these technically demanding computations, omitted
in this manuscript, can be found in the expanded companion paper [5]. When this work
was complete we have learned of the preprint by Azaïs and Delmas [2, Theorem 5.2],
who obtained a similar result in any dimension by using a different method. Namely, they
asymptotically evaluate the same two-point function around the diagonal, by bringing in
techniques from Random Matrix Theory, as suggested by Fyodorov [12]. Namely, it was
observed that the Hessian has the law of the sum of a diagonal matrix and a Gaussian
Orthogonal Ensemble (GOE), and an explicit expression for the joint density of GOE
eigenvalues is exploited. We believe that in two-dimensional case our method is more
transparent and the computation is a less technical compared to [2]. In principle, our
method could be extended to any fixed dimension, but its computational complexity
grows exponentially rapidly, and becomes impractical very soon.
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2 Expected number of critical points

Counting the critical points in a ball B(R) ⊆ R2 is equivalent to counting the zeros of
the map x→ ∇F (x). By the Kac-Rice formula the density of critical points is

K1(x) = φ∇F (x)(0) · E[|detHF (x)|
∣∣∇F (x) = 0],

where φ∇F (x) is the Gaussian probability density of two-dimensional vector ∇F (x) ∈ R2

evaluated at 0. By the Kac-Rice formula, if ∇F (x) is nonsingular for all x ∈ B(R), then

E[#(CF ∩B(R))] =

∫
B(R)

K1(x)dx = Vol(B(R))K1. (2.1)

where in the last step we use the fact that F is assumed isotropic. To write an analytic ex-
pressions for K1 we evaluate the covariance matrix Σ of the 5-dimensional centred jointly
Gaussian vector (∇F (x),∇2F (x)) where ∇2F (x) is the vectorized Hessian evaluated at
x (see [5, Appendix A]):

Σ =

(
A B

Bt C

)
,

where

A =

(
2 0

0 2

)
, B = 0, C =

24g4 0 8g4
0 8g4 0

8g4 0 24g4

 .

Now using the value of the matrix A, and thanks to the statistical independence of the
first and the second order mixed derivatives of F at every fixed point x ∈ R2, we have

K1 =
1

2π
√

4
E[|detHF (x)|]. (2.2)

Using the value of the covariance matrix C of ∇2F (x), and following the argument in
the proof of [10, Proposition 1.1], we note that

E[|detHF (x)|] = 8g4E[
∣∣Y1Y3 − Y 2

2

∣∣] = 8g4
22√

3
, (2.3)

where (Y1, Y2, Y3) is a centred jointly Gaussian random vector with covariance matrix

C =

3 0 1

0 1 0

1 0 3

 .

The statement follows combining (2.1), (2.2) and (2.3):

E[#(CF ∩B(R))] = Vol(B(R))
1

2π
√

4
8g4

22√
3

=
8√
3
g4R

2. (2.4)

3 Second factorial moment

3.1 On the Kac-Rice formula for computing the second factorial moment of
the number of critical points

As explained in the introduction, for x 6= y

K2(x, y) = φ(∇F (x),∇F (y))(0, 0) · E[|detHF (x)| · |detHF (y)|
∣∣∇F (x) = ∇F (y) = 0],

i.e., a Gaussian integral involving the covariance function CF and its derivatives. This
naturally reduces to studying the distribution of the centred Gaussian vector

(∇F (x),∇F (y),∇2F (x),∇2F (y)) (3.1)
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with covariance matrix Σ(x, y), x, y ∈ B(r). It is known [3, Theorem 6.9] that, if for
all x 6= y the Gaussian distribution of (∇F (x),∇F (y)) is non-degenerate, the second
factorial moment of the number of critical points in B(r) can be expressed as

E[#(CF ∩B(r)) (#(CF ∩B(r))− 1)] =

∫∫
B(r)×B(r)

K2(x, y) dx dy. (3.2)

We note that K2 is everywhere nonnegative.

3.2 Proof of Theorem 1.2

Proof. In order to study the asymptotic behaviour of the second factorial moment of the
number of critical points in B(r), as the radius r of the disk goes to zero, we need to
study the centred Gaussian random vector (3.1). Its covariance matrix Σ = Σ(x, y) is of
the form

Σ =

(
A B

Bt C

)
,

where A = A(x, y) is the covariance matrix of the gradients (∇F (x),∇F (y)), C = C(x, y)

is the covariance matrix of the second order derivatives (∇2F (x),∇2F (y)) and B =

B(x, y) is the covariance matrix of the first and second order derivatives.

The function F is isotropic, hence, the law of the critical point process is also invariant
w.r.t. translations and rotations. This means that its 2-point function K2(x, y) depends on
||x − y|| only (but not the covariance matrix Σ); by the standard abuse of notation we
write

K2(x, y) = K2(||x− y||). (3.3)

We will asymptotically evaluate K2(x, y) for x = (0, 0) and y = (0, r) in the relevant
regime, which, thanks to the by-product (3.3) of the isotropic property of F , will also
yield the same for K2(r).

In [5, Appendix B] the entries of Σ(x, y) are evaluated for the said x and y, and in
[5, Appendix C] the covariance matrix ∆ = ∆(x, y) of (∇2F (x),∇2F (y)) conditioned on
∇F (x) = ∇F (y) = 0 is evaluated, i.e.,

∆ = C−BtA−1B.

From now on we will only work with Σ(r) and ∆(r) are defined (not canonically) as
Σ(x, y) and ∆(x, y) with x = (0, 0) and y = (0, r).

Since K2 is written in terms of the density and expectation of (a function of) a
six-dimensional Gaussian vector, it can be written as a Gaussian integral:

K2(r) =
1

(2π)2
√

det(A(r))

×
∫
R6

|ζ1ζ3 − ζ22 | · |ζ4ζ6 − ζ25 |
1

(2π)3
1√

det(∆(r))
exp

{
−1

2
ζt∆−1(r)ζ

}
dζ,

(3.4)

where ζ = (ζ1, ζ2, ζ3, ζ4, ζ5, ζ6) is a vector in R6. Indeed, the density of (∇F (0, 0),∇F (0, r))

at zero is given by (2π)−2(det(A(r)))−1/2, and the integral gives the expectation of
|detHF (x)| · |detHF (y)| with respect to the Gaussian measure of (∇2F (x),∇2F 2(y)) con-
ditioned on ∇F (x) = ∇F (y) = 0, that is, having covariance ∆(r).

Our aim is to study the asymptotic behaviour of the 2-point correlation function K2 in
the vicinity of r = 0. When facing an integral of this type, it is useful to transform the
coordinates so that rewrite the integrand in terms of the standard Gaussian vector.
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From the linear algebra point of view, this is equivalent to the diagonalization of the
covariance matrix. For every r > 0, ∆(r) is symmetric, hence it can be written as

∆(r) = P−1(r)Λ(r)P(r) = Pt(r)Λ(r)P(r), (3.5)

where Λ(r) is a diagonal matrix of eigenvalues λi(r), and P(r) is the orthogonal matrix
made of the normalized eigenvectors of ∆(r). Note that since ∆(r) is positive definite,
the eigenvalues λi are positive. Using this, we can introduce a new variable

ξ = Λ−1/2(r)P(r)ζ, ζ = Q(r)Λ1/2(r)ξ (3.6)

where Q = Q(r) = P−1(r) = Pt(t).
Both Λ and P can be computed explicitly in terms of the covariance kernel CF .

These expressions are not very illuminating. These computations can be found in
computed in [5, Lemma C.1] and [5, Lemma C.2]. With this transformation of vari-
ables, the Gaussian density in the integral (3.4) becomes the standard Gaussian density
(2π)−3 exp(−|ξ|2/2). The terms ζ1ζ3 − ζ22 and ζ4ζ6 − ζ25 in (3.4) are quadratic forms in ξi,
with coefficients given in terms of

√
λi(r) and entries of Q(r), whose precise expressions,

of low significance here, can be found in [5].
To understand the behaviour around r = 0 of K2(r), we Taylor expand around the

origin the entries in Λ(r) and Q(r). Since they are explicitly given in terms of CF and its
derivatives, the first few terms of the Taylor expansion of Λ(r) and Q(r) can be written
in terms of g4 and g6, and the same procedure could be performed for det(A(r)). In
what follows the constants involved in the ‘O’-notation bounding various error terms
encountered are absolute, but may vary from line to line. The main reason is that we
are dealing with continuous functions that are homogeneous in ||ξ||. Their radial (in ξ)
part is a continuous function on the sphere. Compactness of the sphere allows to write
estimates that are asymptotic in r and uniform in the radial part of ξ. We explicitly
mention the dependence on ||ξ||. Technical details can be found in [5, Appendices A
and B]. The results of the technically demanding explicit computations, performed in
[5, Appendix B], are as follows. The matrix A has a simple block structure, and so it is
relatively easy to compute its determinant. An explicit computation in [5, Appendix B]
gives √

det(A(r)) = 16
√

3g4r
2 − 32

√
3(g24 + g6)r4 +O(r6).

For the terms ζ1ζ3 − ζ22 and ζ4ζ6 − ζ25 we have

ζ1ζ3 − ζ22 = −
24
√

2
√
g
4√

3 φ(g4, g6)1/4
[ξ3A(g4, g6) + ξ4B(g4, g6)] ξ6 r + (1 + ||ξ||2) O(r2)

and

ζ4ζ6 − ζ25 =
24
√

2
√
g
4√

3 φ(g4, g6)1/4
[ξ3A(g4, g6) + ξ4B(g4, g6)] ξ6 r + (1 + ||ξ||2) O(r2),

and for the product, we obtain(
ζ1ζ3−ζ22

)
·
(
ζ4ζ6−ζ25

)
= − 384 g4√

φ(g4, g6)
[ξ3A(g4, g6) + ξ4B(g4, g6)]

2
ξ26 r

2 + (1 + ||ξ||4) O(r4),

where φ(g4, g6), ϕ(g4, g6), A(g4, g6), and B(g4, g6) are defined in (1.8) and (1.9). Since the
covariance matrices are real symmetric, we only manipulate with real numbers, so, in
particular, both A(g4, g6) and B(g4, g6) are real. Combining these expansions, we get

K2(r) =
1

(2π)5
√

det(A(r))

[
384 g4√
φ(g4, g6)

∫
R6

[ξ3A(g4, g6) + ξ4B(g4, g6)]
2
ξ26

× exp

{
−1

2

6∑
i=1

ξ2i

}
dξ r2 +O(r4)

]
.

(3.7)
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No repulsion between critical points

The multiple integral in (3.7) can be written as a product of one-dimensional integral.
Using a standard fact that∫
R

ξ2i exp

{
−1

2
ξ2i

}
dξi =

√
2π,

∫
R

exp

{
−1

2
ξ2i

}
dξi =

√
2π,

∫
R

ξi exp

{
−1

2
ξ2i

}
dξi = 0,

we can rewrite (3.7) as∫
R6

[ξ3A(g4, g6) + ξ4B(g4, g6)]
2
ξ26 exp

{
−1

2

6∑
i=1

ξ2i

}
dξ

=

∫
R6

[
ξ23A(g4, g6)2 + ξ24B(g4, g6)2 + 2ξ3ξ4A(g4, g6)B(g4, g6)

]
ξ26 exp

{
−1

2

6∑
i=1

ξ2i

}
dξ

=

∫
R6

[
ξ23A(g4, g6)2 + ξ24B(g4, g6)2

]
ξ26 exp

{
−1

2

6∑
i=1

ξ2i

}
dξ

= [A(g4, g6)2 +B(g4, g6)2](2π)3.

We finally obtain that, as r → 0,

K2(r) =

√
3

π2

A(g4, g6)2 +B(g4, g6)2√
φ(g4, g6)

+O(r2),

and, in view of (3.2), as r → 0,

E[#(CF ∩B(r)) (#(CF ∩B(r))− 1)] =

√
3

π2

A(g4, g6)2 +B(g4, g6)2√
φ(g4, g6)

π2r4 +O(r6).

We note that

A(g4, g6)2 +B(g4, g6)2 = −(4 g24 − 10 g6)
√
φ(g4, g6), (3.8)

so A(g4, g6)2 +B(g4, g6)2 = 0, if and only if

g24 =
5

2
g6.

4 Proof of Theorem 1.5: minima, maxima and saddles

To prove Theorem 1.5 we need to evaluate the two-point correlation function K2

modified for the respective types of critical points. The modified function K2 has the
same expression (3.4) with the integration over a proper subset of R6, that is the ζ are
restricted to a domain corresponding to the prescribed type of critical points.

Let us introduce two Hessians at points x and y (already conditioned to be critical
points). In terms of ζi these Hessians are given by

H1 =

(
ζ1 ζ2
ζ2 ζ3

)
, H2 =

(
ζ4 ζ5
ζ5 ζ6

)
.

The particular type of a critical point depends on the eigenvalues of its Hessian, we may
reformulate this dependency in terms of the following quantities:

bi = −TrHi and ci = det(Hi). (4.1)

A critical point with Hessian Hi is a minimum if ci > 0 and bi < 0, a maximum if ci > 0

and bi > 0, and a saddle if ci < 0 (we ignore the probability 0 event when one of the
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eigenvalues vanishes). As before, we rewrite ζi in terms of ξi. Expanding in powers of r
we get

b1 = −(ζ1 + ζ3) = b1,0 + b1,1r + b1,2r
2 +O(r3),

b2 = −(ζ4 + ζ6) = b2,0 + b2,1r + b2,2r
2 +O(r3),

c1 = ζ1ζ3 − ζ22 = c1,0 + c1,1r + c1,2r
2 +O(r3),

c2 = ζ4ζ6 − ζ25 = c2,0 + c2,1r + c2,2r
2 +O(r3).

(4.2)

We observe that all the coefficients bi,j are linear functions of the coordinates of ξ, and
all the coefficients ci,j are quadratic forms of the entries of ξ, and also notice that

b1,0 = b2,0, b1,1 = −b2,1, b1,2 = b2,2, c1,0 = c2,0 = 0, c1,1 = −c2,1, c1,2 = c2,2,

where

b1,0 = − 8√
3

√
g4ξ6,

b1,1 = 3
√

2
1

φ1/4(g4, g6)
[ξ3A(g4, g6) + ξ4B(g4, g6)]

+
√

2
1√

φ(g4, g6)

2g24 − 3g6
|2g24 − 3g6|

×
[
−ξ4

√
−10g24 + 27g6 +

√
φ(g4, g6)

√
φ(g4, g6) + (8g24 − 18g6)

√
φ(g4, g6)

+ ξ3

√
−10g24 + 27g6 −

√
φ(g4, g6)

√
φ(g4, g6)− (8g24 − 18g6)

√
φ(g4, g6)

]
,

b1,2 =
2√
3

g6√
g4
ξ6 +

1
√
g4
ξ5

√
280g4g8 − 153g26 ,

c1,1 = −8
√

6

√
g4

φ1/4(g4, g6)
ξ6 [ξ4B(g4, g6) + ξ3A(g4, g6)]

c1,2 = 4(2g24 − 9g6)ξ21 + 6
1√

φ(g4, g6)

2g24 − 3g6
|2g24 − 3g6|

[ξ3A(g4, g6) + ξ4B(g4, g6)]

×
[
−ξ4

√
−10g24 + 27g6 +

√
φ(g4, g6)

√√
φ(g4, g6) + 8g24 − 18g6

+ ξ3

√
−10g24 + 27g6 −

√
φ(g4, g6))

√√
φ(g4, g6)− (8g24 − 18g6)

]
+ 8ξ6

[
g6ξ6 + ξ5

√
280

3
g4g8 − 51g26

]
.

Note that φ(g4, g6) > 0 (unless g4 = g6 = 0) and that B(g4, g6) ≥ 0 (given g24 <
5
2g6) and

equal to zero if and only if g4 = g6 = 0. We introduce si = ξi/|ξ|, s ∈ S5, |ξ| ∈ (0,∞),
abusing notation we denote with the same letters the rescaled coefficients that are now
function of si instead of ξi. Using the above notation and upon integrating out the radial
part, the two point function K2(R) becomes

K2(r) =
12

π5
√

det(A(r))

∫
S5

|c1(s)c2(s)|ds, (4.3)

where cj are as in (4.1), and ds is the spherical volume element on the unit sphere S5.
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4.1 Minimum-minimum

The two-point correlation function Kmin,min
2 (r) corresponding to the local minima is

given by (4.3) with integration domain

Smin,min = {s ∈ S5 : c1(s) > 0, c2(s) > 0, b1(s) < 0, b2(s) < 0}
⊆ {s ∈ S5 : c1(s) > 0, c2(s) > 0}.

Since c1,1 = −c2,1, for some constant C sufficiently big we have

Smin,min ⊆ {s ∈ S5 : |c1,1(s)| < Cr},

and ∫
Smin,min

|c1(s)c2(s)|ds ≤
∫
{s∈S5: |c1,1(s)|<Cr}

|c1(s)c2(s)|ds

= O(r4)

∫
{s∈S5: |c1,1(s)|<Cr}

ds = O(r5 log(1/r)),

where the last equality is a mere estimate for the volume of the set where the product of
two coordinates is bounded by a quantity of order r. This yields

Kmin,min
2 (r) = O(r3 log(1/r)).

4.2 Maximum-maximum

Similarly we note that the two-point correlation function Kmax,max
2 (r) corresponds

to (4.3) with integration domain

Smax,max = {s ∈ S5 : c1(s) > 0, c2(s) > 0, b1(s) > 0, b2(s) > 0}
⊆ {s ∈ S5 : c1(s) > 0, c2(s) > 0}

and it immediately shows that, as before, we have

Kmax,max
2 (r) = O(r3 log(1/r)).

4.3 Saddle-saddle and extremum-extremum

For two extrema or two saddle points both ci are forced to be of the same sign, the
same argument as for the minimum-minimum case yields

Ksaddle,saddle
2 (r) = O(r3 log(1/r)), Ke,e

2 (r) = O(r3 log(1/r)).

4.4 Minimum-maximum

We consider now the integration domain

Smin,max = {s ∈ S5 : c1(s) > 0, c2(s) > 0, b1(s) and b2(s) of different sign},

as above, c1,1 = −c2,1, forces |c1,1| < Cr for some constant C sufficiently big. Assuming
b1,1 6= 0 and observing that b1,0 = b2,0, b1 and b2 of different sign implies that |s6| < Cr

for some big constant C. We have∫
Smin,max

|c1(s)c2(s)|ds ≤
∫
{s∈S5: |s6|<Cr and |c1,1(s)|<Cr}

|c1(s)c2(s)|ds

≤ O(r4)

∫
{s∈S5: |s6|<Cr and |c1,1(s)|<Cr}

ds = O(r5),
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that yields
Kmin,max

2 (r) = O(r3).

In the case b1,1 = 0 (which is the case for RWM), the condition that b1 and b2 are of
different sign implies that |s6| < Cr2 for some big constant C. Under the assumption
|s6| < Cr2 both bi are of the form

bi = − 8√
3

√
g4s6 +

1
√
g
4

s5

√
280g4g8 − 153g26 +O(r3),

and again, bi of different signs, forces the term corresponding to O(r3) to dominate, that
is

L(s5, s6) =

∣∣∣∣− 8√
3

√
g4s6 +

1
√
g4
s5

√
280g4g8 − 153g26 r

2

∣∣∣∣ < Cr3.

Combining all of this we obtain the estimate∫
Smin,max

|c1(s)c2(s)|ds ≤
∫
{s∈S5: |s6|<Cr2 and L(s5,s6)<Cr3}

|c1(s)c2(s)|ds

≤ O(r4)

∫
{s∈S5: |s6|<Cr2 and L(s5,s6)<Cr3}

ds = O(r9),

and

Kmax,min
2 (r) = O(r7).
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