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Abstract

We construct solutions of a renormalized continuum fractional parabolic Anderson
model, formally given by ∂tu = −(−∆)

1
2 u + ξu, where ξ is a periodic spatial white

noise. To be precise, we construct limits as ε→ 0 of solutions of ∂tuε = −(−∆)
1
2 uε +

(ξε − Cε)uε, where ξε is a mollification of ξ at scale ε and Cε is a logarithmically
diverging renormalization constant. We use a simple renormalization scheme based
on that of Hairer and Labbé, “A simple construction of the continuum parabolic
Anderson model on R2.”
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1 Introduction

Let Λ = −(−∆)
1
2 be the half-Laplacian on R. It is given by the formula

Λf(x) =
1

π
p. v.

∫
R

f(y)− f(x)

(y − x)2
dy.

Here and throughout the paper, p. v.
∫
R

will denote the principal value integral: if g is a
function with a singularity at x, then

p. v.

∫
R

g(y) dy = lim
ε↓0

∫
R\[x−ε,x+ε]

g(y) dy.

Also, let ξ be a periodic Gaussian spatial white noise on R of period L ∈ (0,∞). The
covariance kernel of ξ is thus given by Eξ(x)ξ(y) =

∑
k∈Z

δ(x− y + kL). We are interested

in the fractional parabolic Anderson model (PAM) formally given by

∂tu = Λu+ ξu; u(0, ·) = u. (1.1)

We would expect solutions of (1.1) to model scaling limits of a PAM on the lattice with
long-range jumps. This lattice model, with a non-Gaussian noise, was previously studied
in [15]. We refer, for example, to [13] for more background on the PAM.

Straightforward heuristics indicate that (1.1) cannot be interpreted directly. Indeed,
the white noise ξ has (Hölder) regularity “− 1

2−” (i.e. any regularity strictly below − 1
2 ),
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Continuum PAM with a half-Laplacian

and thus the solution to the linearized problem (around u ≡ 1) of (1.1) has regularity
1
2−, since we gain one derivative by inverting the half-Laplacian. So we can expect the
regularity of u to be at most 1

2−. Thus the product of ξ and u is undefined since the sum
of their regularities is (just barely) negative. This is why the power of 1

2 on the Laplacian
is interesting—it is the largest power such that the product in (1.1) is ill-defined.

Since abstract theory does not allow us to interpret the problem as stated, we turn
our attention to a regularized problem and try to pass to a limit as the regularization is
removed. We will see that a renormalization is necessary to obtain a finite limit. Fix a
mollifier ρ ∈ C∞c (i.e. smooth with compact support) so that

∫
R
ρ ≡ 1. For ε > 0, define

ρε(x) = ε−1ρ(ε−1x) and ξε = ρε ∗ ξ, where ∗ denotes spatial convolution. Fix a constant
Cε ∈ R, depending on ε, and an initial condition u. Then we consider the problem

∂tuε = Λuε + (ξε − Cε)uε; uε(0, ·) = u. (1.2)

This equation can be solved using standard techniques because ξε ∈ C∞ for all ε > 0.
Our goal will be to pass to the limit as ε → 0. To state our main theorem, we first
define the Banach space in which this convergence takes place. If Y is a Banach space,
we define for κ ∈ R and T > 0 the Banach space X κT (Y) to be the space of functions
f ∈ Cloc((0, T ];Y) with finite norm

‖f‖XκT (Y) := sup
t∈(0,T ]

t1−κ‖f(t, ·)‖Y . (1.3)

Theorem 1.1. There is a choice of deterministic constants Cε, ε ∈ (0, 1] (explicitly
defined in (5.1) below), so that the following holds. For any κ ∈ (0, 1/4), if u ∈ C− 1

2 +2κ,
then for each ε ∈ [0, 1] there is a random uε ∈ Cloc((0,∞); C 1

2−κ) so that whenever ε > 0,
uε is a mild solution to (1.2), and moreover for every T > 0, uε → u0 in probability in
X κT (C 1

2−κ). Finally, we have a constant C <∞ so that, for all ε ∈ (0, 1],

|Cε − (1/π) log(1/ε)| ≤ C. (1.4)

The model (1.1) has similar local scaling properties to the continuum PAM

∂tu = ∆u+ ξu (1.5)

in two spatial dimensions. That model also has a just-barely-ill-defined product, and
it also requires a logarithmic renormalization. Solutions to (1.5) on a compact domain
were constructed independently in [10, 9] using the theories of regularity structures
and paracontrolled distributions, respectively. An elementary approach that also works
on the whole space was carried out by Hairer and Labbé in [11], and some properties
of solutions were derived in [8, 7]. The more difficult case of (1.5) in three spatial
dimensions was tackled in [12]. On the other hand, singular stochastic PDEs involving
fractional Laplacian terms have previously been considered in [2, 3].

Our approach to proving Theorem 1.1 closely follows the strategy of [11], avoiding
the use of regularity structures or paracontrolled distributions. Similar strategies were
used for the random Schrödinger equation in [5, 4]. As in [11], we perform a change
of variables in (1.2) by writing uε = eSεvε, where Sε is an approximate solution to the
linearized time-independent problem, and write a PDE for vε. (See Section 3.) The
coefficients of the PDE for vε converge, in appropriate spaces, as ε ↓ 0. One of these
converging “coefficients” is in fact a nonlocal operator. Proving the convergence requires
new estimates, which we carry out in Section 5 using some purely analytic bounds that
we prove in Section 4. Then the continuity of the PDE for vε shows that vε → v, where
v solves the limiting PDE. This is the main content of Section 6 and is essentially the
same as the argument of [11], as the estimates having been obtained by this point are
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Continuum PAM with a half-Laplacian

analogous. It is also easy to see that Sε converges to a limit S as ε ↓ 0. Inverting the
change of variables then shows that uε converges to e−Sv.

In this paper, we restrict ourselves to the case of periodic noise. The periodicity is
used so that the noise is bounded (as a distribution in C− 1

2−κ for any κ > 0) uniformly in
space. It is not clear whether or how solutions to (1.1) can be constructed with aperiodic
white noise. In particular, the weighted-space approach of [11] does not immediately
generalize to our setting, because the Cauchy kernel decays only algebraically in space,
in contrast to the Gaussian decay of the heat kernel.

2 Preliminaries and notation

We will often work with constants, which we call C, and allow them to change from
line to line in a computation. This does not apply to the renormalization constant Cε,
which will be fixed in (5.1) below.

2.1 Hölder spaces

We will work in α-Hölder spaces, given as usual by the norm

‖u‖Cα = ‖u‖L∞ + sup
|x−y|≤1

|u(x)− u(y)|
|x− y|α

for all α ∈ (0, 1). We will also use Hölder spaces with negative Hölder exponent. Put

ηλx(y) = λ−1η(λ−1(y − x)) (2.1)

for any function η. Then, for all α ∈ (−1, 0), the α-Hölder norm of a distribution u is

‖u‖Cα = sup{λ−α|u(ηλx)| : x ∈ R, η ∈ C1([−1, 1]), ‖η‖C0 = 1, λ ∈ (0, 1]}.

Let Cα be the Banach space of distributions such that this norm is finite. We recall that
Cα is equivalent to the Besov space Bα∞,∞ (see [1]), and refer to [11, Section 2], [10,
Section 3], or [6] for background on the use of negative Hölder spaces for stochastic
PDEs. We will use the following wavelet characterization of negative Hölder spaces.

Proposition 2.1 ([11, Proposition 2.4] or [6, Definition 2.8 and Proposition 2.14]).
There are compactly-supported functions ψ, φ ∈ C1

c so that for any α ∈ (−1, 0) we have a
constant C <∞ so that (using the notation (2.1))

‖f‖Cα ≤ C sup
x∈Z

(∣∣∣∣∫ fφ1
x

∣∣∣∣+ sup
n∈N

2αn
∣∣∣∣∫

R

fψ2−n

2−nx

∣∣∣∣) .
The following statement about multiplication of elements of Hölder spaces is standard.

Lemma 2.2 ([1, Theorem 2.52]). If α < β and α+β > 0, then multiplication of functions
extends to a continuous bilinear map Cα × Cβ → Cα.

2.2 The fractional Laplacian

In this section we establish some necessary background results on the fractional
Laplacian, especially on inverting the fractional Laplacian Λ and the fractional heat
operator ∂t − Λ. We recall (see e.g. [14]) the equivalent definition

Λf(x) =
1

π

∫
R

f(y)− f(x)− (y − x)f ′(x)1{|y − x| ≤ 1}
(y − x)2

dy. (2.2)

The regularization (y − x)f ′(x)1{|y − x| ≤ 1} obviates the need for the principal value.
We let δ denote a Dirac delta distribution at 0. We will work with an approximate

Green’s function of the fractional Laplacian, defined in the following lemma.
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Lemma 2.3. There is a smooth even function G : R \ {0} → R so that suppG ⊂ [−1, 1],

G(x) = (1/π) log |x| for all x ∈ [−1/2, 1/2], (2.3)

and if F = ΛG− δ, then F is smooth and there is a constant C so that, for all x ∈ R,

|F (x)|, |F ′(x)| ≤ C(1 + |x|)−2. (2.4)

Proof. Let G̃(x) = 1
π log |x| for all x ∈ R \ {0}. It is standard that ΛG̃ = δ in the

sense of distributions. Take G to be any smooth even function R \ {0} → R such that
suppG ⊂ [−1, 1] and G|[− 1

2 ,
1
2 ] = G̃|[− 1

2 ,
1
2 ]. Define F = ΛG − δ = Λ(G − G̃). Since G − G̃

is smooth, F is smooth as well. The estimate (2.4) is then an easy consequence of the
decay of the kernel in (2.2).

We also will need a Schauder-type estimate for G.

Lemma 2.4. If α ∈ (−1, 0), there is a C < ∞ so that if f ∈ Cα then G ∗ f ∈ Cα+1 and
‖G ∗ f‖Cα+1 ≤ C‖f‖Cα .

Proof. If η is a smooth, positive function, supported on [− 1
2 ,

1
2 ], identically 1 in a neigh-

borhood of 0, then

L(x) :=

∫ 1

0

(1/y)η(x/y) dy =

∫ 1/x

0

(1/y)η (1/y) dy = πG(x) + k(x)

for some smooth, compactly-supported function k. Then it is sufficient to prove that

‖L ∗ f‖Cα+1 ≤ C‖f‖Cα . To do this, we note first that (L ∗ f)(x) =
∫ 1

0

(
1
yη
(
·
y

)
∗ f
)

(x) dy.

Fix x < x′ and note that

(L ∗ f)(x)− (L ∗ f)(x′) =

∫ 1

0

∫
1

y
qx,x′,y

(
z

y

)
f(z) dz dy,

where qx,x′,y(z) = η(x/y − z) − η(x′/y − z) and we use the common abuse of notation
in which the integrals in z are in fact pairings with the distribution f . If y ≥ 2|x − x′|,
then ‖qx,x′,y‖C0 ≤ ‖η‖C1 |x−x

′|
y and supp qx,x′,y is contained in an interval of width 2, so∣∣∣∫ 1

y qx,x′,y(z/y)f(z) dz
∣∣∣ ≤ ‖η‖C1‖f‖Cα |x− x′|yα−1. On the other hand, if 0 < y ≤ 2|x− x′|,

then qx,x′,y can be written as the sum of two C1 functions with support contained in

[− 1
2 ,

1
2 ], each with C0 norm ‖η‖C0 , so

∣∣∣∫ 1
y qx,x′,y

(
z
y

)
f(z) dz

∣∣∣ ≤ 2‖η‖C0‖f‖Cαyα. Therefore,

we have, for a constant C depending on η but not on f , that

|(L ∗ f)(x)− (L ∗ f)(x′)| ≤ C

(∫ 2|x−x′|

0

yα dy + |x− x′|
∫ 1

2|x−x′|
yα−1 dy

)
‖f‖Cα

≤ C|x− x′|α+1‖f‖Cα .

The necessary bound on |(L ∗ f)(x)| is easier, so we omit it.

The inverse of the fractional heat operator ∂t−Λ is the Cauchy kernel Pt(x) = t
π(t2+x2) .

We will need the following Schauder-type estimate for this kernel.

Lemma 2.5. For any T <∞ and α < β, there is a C <∞ so that for any function f ∈ Cα
and any t ∈ (0, T ], we have Pt ∗ f ∈ C∞ and ‖Pt ∗ f‖Cβ ≤ Ct−(β−α)‖f‖Cα .
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Continuum PAM with a half-Laplacian

Proof. This follows from a scaling argument analogous to that used in [11, Lemma 2.8].
For completeness, we present the argument for the case −1 < α < 0 < β < 1, which
is what we use. As in [10, Lemma 5.5],1 fix a smooth function ω : [0,∞) → [0,∞) so

that suppω ⊂ [ 1
2 , 2] and

∑
n∈Z

ω(2n·) ≡ 1. Then define, for t ≥ 0 and x ∈ R, P (n)
t (x) :=

ω(2n(t+ |x|))Pt(x), so we have
∑
n∈Z

P
(n)
t = Pt and (since Pt(x) = 2nP2nt(2

nx)) P (n)
t (x) =

2nP
(0)
2nt(2

nx). Define P−t =
∑
n<0

P
(n)
t and P+

t =
∑
n≥0

P
(n)
t . We note that there is a constant

C <∞ so that for all t ∈ (0, T ], we have the estimate |P−t (x)|, |∂xP−t (x)| ≤ C(1 + |x|)−2

for all x ∈ R. This implies that ‖P−t ∗ f‖Cβ ≤ C‖f‖Cα . On the other hand, we have

‖P (0)
t ‖C2 ≤ C for all t ∈ (0, T ]. Therefore, we have that ‖2nP (0)

t (2n·) ∗ f‖C0 ≤ C2−nα‖f‖Cα
and ‖∂x[2nP

(0)
t (2n·)] ∗ f‖C0 ≤ C2n(1−α)‖f‖Cα , so

‖2nP (0)
t (2n·) ∗ f‖Cβ ≤ C‖2nP

(0)
t (2n·) ∗ f‖1−βC0 ‖2

nP
(0)
t (2n·) ∗ f‖βC1 ≤ C2n(β−α)‖f‖Cα .

We now complete the proof by concluding that

‖P+
t ∗ f‖Cβ ≤C

d− log2 te+1∑
n=0

‖2nP (0)
2nt(2

n·) ∗ f‖Cβ ≤C‖f‖Cα
d− log2 te+1∑

n=0

2n(β−α) ≤ C‖f‖Cα
tβ−α

.

3 The change of variables

In this section we explain the key change of variables that we perform on (1.2). This
change of variables is an analogue for the fractional Laplacian of the change of variables
performed in [11, p. 3]. The advantage of the change of variables is that the coefficients
of the new equation converge as ε ↓ 0, and so an equation is obtained for the limit.

Lemma 3.1. For ε ≥ 0, let Sε = −G ∗ ξε, where G is defined as in Lemma 2.3. For ε > 0,
if we put uε = eSεvε, then vε satisfies

∂tvε = Λvε + vε[−F ∗ ξε + Zε] + Ξεvε, vε(0, ·) = e−Sεu, (3.1)

where

Zε(x) = Z̃ε(x)− Cε, Z̃ε(x) =
1

π
p. v.

∫
eSε(y)−Sε(x) − (1 + Sε(y)− Sε(x))

(y − x)2
dy, (3.2)

Ξεw(x) =
1

π
p. v.

∫
(eSε(y)−Sε(x) − 1)(w(y)− w(x))

(y − x)2
dy. (3.3)

Proof. The initial condition is clear, so it remains to verify the PDE. We note that

∂tvε = e−Sε∂tuε = e−Sε [Λuε + (ξε − Cε)uε] = e−SεΛ(eSεvε) + (ξε − Cε)vε.

It is straightforward to verify that

e−SεΛ(eSεvε) = Λvε + vεΛSε + Ξεvε + Z̃εvε.

Also, ΛSε = −F ∗ ξε − ξε by the definition of F . Thus we have

∂tvε = Λvε + vεΛSε + Ξεvε + Z̃εvε + (ξε − Cε)vε = Λvε + [−F ∗ ξε + Zε]vε + Ξεvε.

The definitions of Sε and Ξε make sense for ε = 0 as well. We let S = S0 and Ξ = Ξ0.

1We cannot quite apply [10, Lemma 5.5] as stated, since the Cauchy kernel cannot be extended by zero at
negative times to a smooth function on R2 \ {0}. However, this property is not necessary for our application.
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4 Analytic estimates

In this section we derive some purely analytic estimates that will help us control
the quantities on the right side of (3.1). Following [11, Section 3] or [10, Section 10.3],
define the norm, for any m ∈ N, ζ ∈ R, and smooth function K on R \ {0},

‖K‖ζ;m = sup
k∈Z

0≤k≤m

sup
x∈R\{0}

|x|k−ζ |K(k)(x)|, (4.1)

where K(k) denotes the kth derivative of K. We note in particular that, with G defined
as in Lemma 2.3, we have

‖G‖−κ;m <∞ (4.2)

for all κ > 0 and all m ∈ N. We define the notation

�K(α; y, z) = K(α)−K(α− y)−K(α− z) +K(α− y − z). (4.3)

Quantities of this form arise in the expressions for moments of (3.2)–(3.3).

Lemma 4.1. For each θ ∈ (0, 1), there is a constant C < ∞ so that for any smooth
function K on R \ {0} and α, y, z ∈ R, we have

|�K(α; y, z)| ≤ C‖K‖1−θ;1(|y| ∧ |z|)1−θ (4.4)

If we further assume that |y|, |z| < |α|/4, then

|�K(α; y, z)| ≤ C|y||z|‖K‖1−θ;2|α|−1−θ. (4.5)

Proof. By the fundamental theorem of calculus and (4.1), we have for x < w that

|K(w)−K(x)| ≤
∫ w

x

‖K‖1−θ;1|t|−θ dt ≤ ‖K‖1−θ;1
∫ w−x

2

−w−x2

|t|−θ dt ≤ C‖K‖1−θ;1|w − x|1−θ.

Thus by the triangle inequality we have

|�K(α; y, z)| ≤ |K(α)−K(α− y)|+ |K(α− z)−K(α− y − z)| ≤ C‖K‖1−θ;1|y|1−θ,

and similarly with y and z exchanged. This proves (4.4). Now assume that |y|, |z| < |α|/4.
If F (w, x) = K(α− w − x), then

|�K(α; y, z)| =
∣∣∣∣∫ y

0

∫ z

0

K ′′(α− w − x) dw dx

∣∣∣∣
≤ ‖K‖1−θ;2

∣∣∣∣∫ y

0

∫ z

0

(α− w − x)−1−θ dw dx

∣∣∣∣ ≤ C|y||z|‖K‖1−θ;2|α|−1−θ.

This proves (4.5).

Lemma 4.2. For each θ ∈ (0, 1) and all M <∞, there is a constant C <∞ so that for
any smooth functions H1, H2 : R \ {0} → R and all α ∈ R we have∫

R2

�H1(α; y, z) ·�H2(α; y, z)

y2z2
dy dz ≤ C‖H1‖1−θ;2‖H2‖1−θ;2|α|−2θ. (4.6)

Proof. The left side of (4.6) can be written as I1 + I2, where I1 is the integral over the
domain {|y|, |z| < |α|/4} and I2 is the integral over the domain {|y| ∨ |z| ≥ α/4}. By (4.5),

I1 ≤ C‖H1‖1−θ;2‖H2‖1−θ;2|α|−2θ, (4.7)

while by (4.4),

I2
‖H1‖1−θ;1‖H2‖1−θ;1

≤ C
∫
|α|/4≤|y|∨|z|

(|y| ∧ |z|)2(1−θ)

y2z2
dy dz ≤ C|α|−2θ. (4.8)

Combining (4.7) and (4.8) yields (4.6).
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5 Stability of the coefficients of the equation for vε

In this section we prove that the coefficients of the equation (3.1) are stable as we
eliminate the spatial mollification of the noise. We will consider the coefficients of (3.1)
in turn. The stability of F ∗ ξε will come directly from the decay (2.4) of F and F ′. We
will consider the term Zε, which requires renormalization, in Section 5.1. We bound the
size of the renormalization constant Cε in Section 5.2. Then we show the stability of the
nonlocal operator Ξε in Section 5.3. We will use the following two basic lemmas.

Lemma 5.1. For any κ > 0 and ε ≥ 0, we have that ξε ∈ C−
1
2−κ almost surely. Also,

ξε → ξ as ε→ 0 in probability in C− 1
2−κ.

Proof. This is a simple estimate using Proposition 2.1 as in [11, Lemma 1.1].

Lemma 5.2. For any κ > 0, we have for each ε ≥ 0 that Sε ∈ C
1
2−κ almost surely. (Recall

that Sε was defined in Lemma 3.1.) Also, Sε → S as ε→ 0 in probability in C 1
2−κ.

Proof. This follows from Lemma 5.1 by Lemma 2.4, similarly to [11, Corollary 1.2].

5.1 Stability of Zε

For ε ≥ 0, define Sε(y, x) = Sε(y)− Sε(x). (Norms of the form ‖Sε‖• will continue to
refer to the one-variable function Sε.) For ε > 0, we fix

Cε =
1

2π

∫
ESε(y, 0)2

y2
dy. (5.1)

We will prove in Proposition 5.9 below that the integrals on the right side of (5.1) are
well-defined. For η ∈ C1

c and ε ≥ 0, put

Zε(η) =
1

π

∫∫
η(x)

(y − x)2

[
eSε(y,x) −

(
1 + Sε(y, x) +

1

2
ESε(y, x)2

)]
dy dx, (5.2)

so Zε is a distribution. We will show that Zε ∈ C−κ for any κ > 0 and ε ≥ 0 in
Proposition 5.3 below. For ε > 0, (5.2) agrees with (3.2) with the choice (5.1) of Cε.

We split Zε into two parts. For ε ≥ 0 and η ∈ C1
c , define

Uε(η) =
1

2π

∫∫
η(x)

(y − x)2
[Sε(y, x)2 −ESε(y, x)2] dy dx, (5.3)

and for ε ≥ 0 and x ∈ R define

Vε(x) =
1

π

∫
eSε(y,x) − [1 + Sε(y, x) + 1

2Sε(y, x)2]

(y − x)2
dy. (5.4)

Now evidently Zε = Uε + Vε. The main goal of this section is to prove the following.

Proposition 5.3. Let κ > 0. For every ε ≥ 0, we have Zε ∈ C−κ almost surely. Moreover,
Zε → Z0 in probability in C−κ.

To prove Proposition 5.3, we will show that Uε and Vε are both stable in C−κ as ε→ 0.
This is the advantage of the change of variables carried out in Section 3, since the
coefficients of the original equation (1.2) do not converge as ε→ 0.
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Continuum PAM with a half-Laplacian

5.1.1 Stability of Vε

First we consider Vε, which is actually stable in L∞ as ε→ 0.

Lemma 5.4. For each ε ≥ 0, we have Vε ∈ L∞ with probability 1. Also, Vε → V0 in
probability in L∞.

Proof. Let f(x) = ex − (1 + x+ x2/2). By Taylor’s theorem, we have a C <∞ so that

|f(x)| ≤ C(|x|3 ∧ 1)e|x|; |f ′(x)| ≤ C(|x|2 ∧ 1)e|x|. (5.5)

Thus, for all ε ≥ 0 and all x, y ∈ R,

|eSε(y,x) − (1 + Sε(y, x) +
1

2
Sε(y, x)2)| ≤ C exp{2‖Sε‖C 1

2
−κ}(|y − x|

3
2−3κ ∧ 1).

But this means that

|Vε(x)| ≤ C exp{2‖Sε‖C 1
2
−κ}

∫
|y − x| 32−3κ ∧ 1

(y − x)2
dy,

and the last integral is finite and independent of x if κ < 1
2 . This implies that Vε ∈ L∞.

Also, by the mean value theorem and (5.5), we have for all x, y ∈ R that∣∣∣eSε(y,x) − (1 + Sε(y, x) + 1
2Sε(y, x)2)− [eS(y,x) − (1 + S(y, x) + 1

2S(y, x)2)]
∣∣∣

≤ C|Sε(y, x)− S(y, x)|((|Sε(y, x)| ∨ |S(y, x)|)2 ∧ 1) exp{|Sε(y, x)| ∨ |S(y, x)|}

≤ C‖Sε − S‖C 1
2
−κ(|y − x| 32−3κ ∧ 1) exp{2(‖Sε‖C 1

2
−κ ∨ ‖S‖C 1

2
−κ)}.

Therefore, for all x ∈ R, we have

|Vε(x)− V (x)| ≤ C‖Sε − S‖C 1
2
−κ exp{2(‖Sε‖C 1

2
−κ ∨ ‖S‖C 1

2
−κ)}

∫
|y − x| 32−3κ ∧ 1

(y − x)2
dy.

The integral is bounded independently of x, and by Lemma 5.2 we have

‖Sε − S‖C 1
2
−κ exp{2(‖Sε‖C 1

2
−κ ∨ ‖S‖C 1

2
−κ)} → 0

in probability as ε→ 0. This proves that Vε → V in probability in L∞ as ε→ 0.

5.1.2 Stability of Uε

Now we show the stability of Uε. Since Uε(η) is defined as an integral over squares of
Gaussian random variables—elements of the second Wiener chaos—we can use moment
estimates to control its regularity and establish its stability.

Lemma 5.5. For each κ > 0, we have a constant C so that for all ε ∈ [0, 1] and
η ∈ C1([−1, 1]) with ‖η‖C0 ≤ 1 we have, defining ηλx as in (2.1), that EUε(ηλx)2 ≤ Cλ−κ.

Proof. Taking the second moment of (5.3), we have

EUε(η)2 =
1

π2

∫∫∫∫
η(x)η(w)

(x− y)2(w − z)2
Cov

(
Sε(y, x)2, Sε(z, w)2

)
dy dz dxdw. (5.6)

We can compute

ESε(x, y)Sε(w, z) =
∑
k∈Z

∫
(Gε(x− r + kL)−Gε(y − r + kL)) (Gε(w − r)−Gε(z − r)) dr

= �Hε(x− w;x− y, z − w), (5.7)
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Continuum PAM with a half-Laplacian

where Hε(q) =
∑
k∈Z

G∗2ε (q + kL) and � is defined as in (4.3). By the Isserlis theorem,

Cov
(
Sε(y, x)2, Sε(z, w)2

)
= 2(ESε(y, x)Sε(z, w))2 = 2 (�Hε(x− w;x− y, z − w))

2
.

Using (4.2) and [10, (10.12)] and recalling that G has compact support, we see that
‖Hε−Hε(0)‖1−κ2 ;m ≤ C, where C <∞ is a constant independent of ε. But the � operator
does not see constants, so applying Lemma 4.2, we have

EUε(η)2 ≤ 2

π2

∫∫∫∫
η(x)η(w)

(
�Hε(x− w;x− y, z − w)

(x− y)(w − z)

)2

dy dz dxdw

≤ C
∫∫

η(x)η(w)|x− w|−κ dxdw.

Then the conclusion follows by rescaling.

Corollary 5.6. For any κ > 0 and ε ≥ 0, we have Uε ∈ C−κ almost surely.

Proof. We note that Uε is an element of the second Wiener chaos by definition. By
Lemma 5.5 and the equivalence of moments of elements of finite Wiener chaoses (as
stated for example in [10, Lemma 10.5]) and Lemma 5.5, for each κ > 0 and p ∈ [1,∞)

there is a constant C = C(p, κ) <∞, depending only on p and κ, so that

E sup
x∈Z
n∈N

2−κnp|Uε(ψ2−n

2−nx)|p ≤
∑
n∈N

2nL∑
x=0

2−κnpE|Uε(ψ2−n

2−nx)|p ≤ CL
∑
n∈N

2n[1+κ−κp/2].

Choose p > 2(1/κ+1), so the last sum is finite. It is simpler to show that E sup
x∈Z
|Uε(φ1

x)|p <

∞. By Proposition 2.1, this means that E‖Uε‖pC−κ <∞, so ‖Uε‖C−κ <∞ almost surely.

Lemma 5.7. For any κ ∈ (0, 1) and R > 0, we have a constant C < ∞ so that, for any
η ∈ C1([−R,R]) with ‖η‖C0 ≤ 1 and any x0 ∈ R, we have

E[Uε(η
λ
x0

)− U(ηλx0
)]2 ≤ Cεκ/6λ−κ. (5.8)

Proof. For any η ∈ C1
c , we have

Uε(η)− U(η) =
1

2π

∫∫
η(x)

Sε(y, x)2 − S(y, x)2 −E
(
Sε(y, x)2 − S(y, x)2

)
(y − x)2

dy dx,

so

E (Uε(η)− U(η))
2

=
1

4π2

∫∫∫∫
Cov

(
Sε(y, x)2 − S(y, x)2, Sε(z, w)2 − S(z, w)2

)
(x− y)2(w − z)2

η(x)η(w) dy dz dxdw.

(5.9)

By the Isserlis theorem we have that

Cov
(
Sε(y, x)2 − S(y, x)2, Sε(z, w)2 − S(z, w)2

)
= E [(Sε + S)(y, x)(Sε − S)(z, w)]E [(Sε − S)(y, x)(Sε + S)(z, w)]

+ E [(Sε + S)(y, x)(Sε + S)(z, w)]E [(Sε − S)(y, x)(Sε − S)(z, w)]

=
(

(� [P[(Gε +G) ∗ (Gε −G)]])
2

+ �
[
P[(Gε +G)∗2

]
�
[
P[(Gε −G)∗2]

])
(x− w;x− y, z − w),
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Continuum PAM with a half-Laplacian

where Pf(x) =
∑
k∈Z

f(x+ kL). Combining this with (5.9) yields

E[U(η)− Uε(η)]2 ≤ C
∫∫∫∫ [

(� [P[(Gε +G) ∗ (Gε −G)] (x− w;−y, z))2

+
(
�
[
P[(Gε +G)∗2]

]
·�
[
P[(Gε −G)∗2]

])
(x− w;−y, z)

]
y−2z−2η(x)η(w) dy dz dxdw. (5.10)

By [10, Lemma 10.17] and (4.2), for any m ∈ Z≥0 we have a constant C, independent of
ε, so that ‖Gε‖−2κ;m ≤ C and ‖Gε −G‖−2κ;m ≤ Cεκ. By [10, (10.12)], we thus obtain

‖P[(Gε −G) ∗ (Gε +G)]− P[(Gε −G) ∗ (Gε +G)](0)‖1−3κ;m ≤ Cεκ;

‖P[(Gε −G)∗2]− (Gε −G)∗2(0)‖1−3κ;m ≤ Cε2κ;

‖P[(Gε +G)∗2]− (Gε +G)∗2(0)‖1−3κ;m ≤ C.

The operator � does not see constants, so by these inequalities, (5.10), and Lemma 4.2,

E[U(η)− Uε(η)]2 ≤ Cεκ
∫
η(x)η(w)|x− w|−6κ dx dw. (5.11)

Then (5.8) follows by substituting κ 7→ κ/6 and rescaling. The assumption κ < 1 is so
that the integral on the right side of (5.11) can be bounded in terms of ‖η‖C0 and R.

Corollary 5.8. For any κ > 0, Uε → U in probability in C−κ.

Proof. Assume without loss of generality that κ < 1. As in Corollary 5.6, Uε − U is an
element of the second Wiener chaos by definition. By Lemma 5.7 and the equivalence of
moments of the elements of finite Wiener chaoses, for each κ > 0 and p ∈ [1,∞) there is
a constant C = C(p, κ), depending only on p and κ, so that

E sup
x∈Z
n∈N

|(Uε − U)(ψ2−n

2nx )|p

2κnp
≤
∑
n∈N

2nL∑
x=0

E|(Uε − U)(ψ2−n

2−nx)|p

2κnp
≤ CLε

κp
6

∑
n∈N

2n[1+κ−κp2 ].

Take p > 2(1/κ + 1), so the last sum is finite. A simpler computation shows that
E sup
x∈Z
|(Uε − U)(φ1

x)|p ≤ Cεκp/6. By Proposition 2.1, E‖Uε − U‖pC−κ ≤ Cεκp/6 for some

constant C not depending on ε, which means that Uε → U in probability.

The results of the last two subsections are now enough to prove Proposition 5.3.

Proof of Proposition 5.3. Since Zε = Uε + Vε for all ε ≥ 0, the fact that Zε ∈ C−κ almost
surely is an immediate consequence of Lemma 5.4 and Corollary 5.6, and the convergence
is an immediate consequence of Lemmas 5.4 and 5.7.

5.2 The renormalization constant

We now estimate the size of the renormalization constant Cε, proving the bound (1.4).

Proposition 5.9. There is an absolute constant C so that, for all ε ∈ (0, 1], |Cε −
(1/π) log(1/ε)| ≤ C.

Proof. By (5.7), we have (with Hε as defined there)

ESε(y, 0)2 = �Hε(0;−y, y) = 2(Hε(0)−Hε(y)). (5.12)

We note that Hε is even so H ′ε(0) = 0. Thus, combining (2.2), (5.1), and (5.12) we obtain

Cε = −ΛHε(0) = C − Λ(G∗2 ∗ ρ∗2ε )(0) = C − 1

π
log | · | ∗ ρ∗2ε (0)− F ∗G ∗ ρ∗2ε (0). (5.13)
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Here, C is independent of ε, coming from the terms k 6= 0 in the sum defining Hε. The
third term in (5.13) is also bounded independently of ε, while the second is

− 1

π
log | · |∗ρ∗2ε (0) = − 1

π

∫
log |x|ρ∗2(x/ε) dx = − 1

π

∫
log |εx|ρ∗2(−x) dx =

1

π
log

1

ε
+C.

5.3 Stability of Ξε

In this section, we show that Ξε (defined in (3.3)) is stable as ε→ 0.

Lemma 5.10. If κ > 0 and ε ≥ 0, the map Ξε is almost surely a bounded linear map
C 1

2 +κ → L∞.

Proof. We have

sup
x,y∈R

|eSε(y,x) − 1|
|y − x| 12−κ2

≤ 1 + exp{2‖Sε‖C 1
2
−κ

2
}, (5.14)

so by the triangle inequality,

|Ξεv(x)| ≤ C(1 + exp{2‖Sε‖C 1
2
−κ

2
})‖v‖

C
1
2
+κ

∫
|x− y| 12−κ2 (|x− y| 12 +κ ∧ 1)

(y − x)2
dy,

and the integral is bounded independently of x.

Proposition 5.11. For any κ > 0, we have Ξε → Ξ in probability with respect to the
norm topology of the space B(C 1

2 +κ, L∞) of bounded linear operators from C 1
2 +κ to L∞.

Proof. We have for all x, y ∈ R that

|eSε(y,x) − eS(y,x)| ≤ 2 exp{2‖Sε‖L∞ + 2‖S‖L∞}‖Sε − S‖C 1
2
−κ

2
|y − x| 12−κ2 ,

so by Lemma 5.2, we have sup
x,y∈R

|eSε(y,x)−eS(y,x)|
|y−x|

1
2
−κ

2
→ 0 in probability as ε → 0. Now we

write, for any v ∈ C 1
2 +κ,

|(Ξ− Ξε)v(x)| ≤ 1

π

∣∣∣∣∫ (eSε(y,x) − eS(y,x)) (v(y)− v(x))

(y − x)2
dy

∣∣∣∣
≤ C‖v‖

C
1
2
+κ

(
sup
x,y∈R

∣∣eSε(y,x) − eS(y,x)
∣∣

|y − x| 12−κ2

)∫
(|y − x| 12 +κ ∧ 1)|y − x| 12−κ2

(y − x)2
dy.

The right side is finite and independent of v, and as ε→ 0 converges to 0 in probability.

6 The fixed-point argument

Fix κ ∈ (0, 1/4) and T > 0, and define X κT (Y) for any Banach space Y as in the
introduction. We will construct a solution to (3.1) in the space X κT (C 1

2 +κ) using a fixed-
point argument. For g ∈ C−κ, Ψ ∈ B(C 1

2 +κ, C−κ), and v ∈ C− 1
2 +2κ, define the affine

operatorMg,Ψ,v on X κT (C 1
2 +κ) (see Corollary 6.2 below) by

Mg,Ψ,vv(t, x) = Lg,Ψv(t, x)+Pt∗v(x), with Lg,Ψv(t, x) =

∫ t

0

Pt−s∗(v(s, ·) · g + Ψv(s, ·)) ds.

Recall that the fractional heat kernel Pt was introduced before Lemma 2.5. Solutions vε
of (3.1) are exactly fixed points of the mapMZε−F∗ξε,Ξε,vε . We aim to show that there is
a unique such fixed point. We start by bounding the operator norm of Lg,Ψ.

Lemma 6.1. We have a C < ∞ so that if g ∈ C−κ and Ψ ∈ B(C 1
2 +κ, C−κ), then Lg,Ψ ∈

B(X κT (C 1
2 +κ)) and ‖Lg,Ψ‖B(XκT (C

1
2
+κ))
≤ C(‖g‖C−κ + ‖Ψ‖

B(C
1
2
+κ,C−κ)

)T
1
2−2κ.
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Proof. By Lemmas 2.5 and 2.2, we have a constant C <∞ so that, for v ∈ X κT (C 1
2 +κ),

‖Lg,Ψv(t, ·)‖
C

1
2
+κ ≤ C

∫ t

0

(t− s)− 1
2−2κ (‖v(s, ·) · g‖C−κ + ‖Ψv(s, ·)‖C−κ) ds; (6.1)

‖v(s, ·) · g‖C−κ ≤ Cs−1+κ‖g‖C−κ‖v‖XκT (C
1
2
+κ)

; (6.2)

‖Ψv(s, ·)‖C−κ ≤ s−1+κ‖Ψ‖
B(C

1
2
+κ,C−κ)

‖v‖
XκT (C

1
2
+κ)

. (6.3)

Plugging (6.2) and (6.3) into (6.1) and integrating (using that κ < 1/4), we obtain

‖Lg,Ψv(t, ·)‖
C

1
2
+κ ≤ C‖v‖XκT (C

1
2
+κ)

(‖g‖C−κ + ‖Ψ‖
B(C

1
2
+κ,C−κ)

)t−
1
2−κ.

Then the conclusion follows from the definition (1.3) of the X κT (C 1
2 +κ) norm.

If T is chosen sufficiently small, Lemma 6.1 implies thatMg,Ψ,v is a contraction map:

Corollary 6.2. There is a C < ∞ so that for any g ∈ C−κ, Ψ ∈ B(C 1
2 +κ, C−κ), and

v ∈ C− 1
2 +2κ, the mapMg,Ψ,v : X κT (C 1

2 +κ)→ X κT (C 1
2 +κ) is continuous, and if

T < [C(‖g‖C−κ + ‖Ψ‖
B(C

1
2
+κ,C−κ)

)]−1/(1/2−2κ) =: T0(‖g‖C−κ , ‖Ψ‖B(C
1
2
+κ,C−κ)

), (6.4)

thenMg,Ψ,v is a contraction map.

Proof. If v ∈ X κT (C 1
2 +κ), then we have Lg,Ψv ∈ X κT (C 1

2 +κ) by Lemma 6.1. By Lemma 2.5,
we have a constant C so that ‖Pt∗v‖C 1

2
+κ ≤ Ct−1+κ‖v‖

C−
1
2
+2κ . This implies that t 7→ Pt∗v

is an element of X κT (C 1
2 +κ) as well. Therefore, Mg,Ψ,vv ∈ X κT (C 1

2 +κ). Since Mg,Ψ,vv −
Mg,Ψ,v ṽ = Lg,Ψv − Lg,Ψṽ, the continuity and contraction come from Lemma 6.1.

We now use the contraction mapping principle to construct fixed points ofMg,Ψ,v.

Lemma 6.3. For any T <∞,Mg,Ψ,v has a unique fixed point VT (g,Ψ, v) in X κT (C 1
2 +κ).

Proof. This holds for T < T0(g,Ψ) by Corollary 6.2. As T0(g,Ψ) does not depend on v,
the construction can be extended to all T as in the proof of [11, Proposition 4.1].

Now, as in [11, Proposition 4.2], we show that the solution map VT is continuous
using a mild solution argument.

Proposition 6.4. For T < ∞, the map VT : C−κ × B(C 1
2 +κ, C−κ) × C− 1

2 +2κ → X κT (C 1
2 +κ)

is continuous.

Proof. Let M > 0 be arbitrary. We will show that VT is continuous on AM = {(g,Ψ, v) :

‖g‖C−κ , ‖Ψ‖B(C
1
2
+κ,C−κ)

≤M}. First suppose that T < T0(M,M). For (g,Ψ, v), (g̃, Ψ̃, ṽ) ∈

AM , put v = VT (g,Ψ, v) and ṽ = VT (g̃, Ψ̃, ṽ), so

(v − ṽ)(t, ·) = Lg,Ψ(v − ṽ)(t, ·) +

∫ t

0

Pt−s ∗ [ṽ(s, ·)(g − g̃) + (Ψ− Ψ̃)ṽ(s, ·)] ds+ Pt ∗ (v − ṽ).

Thus for all t ∈ (0, T ] we have

‖(v − ṽ)(t, ·)‖
C

1
2
+κ ≤ ‖Lg,Ψ(v − ṽ)(t, ·)‖

C
1
2
+κ + Ct−1+κ‖v − ṽ‖

C−
1
2
+2κ

+ C(‖g − g̃‖C−κ + ‖Ψ− Ψ̃‖
B(C

1
2
+κ,C−κ)

)

∫ t

0

(t− s)− 1
2−2κ‖ṽ(s, ·)‖

C
1
2
+κ ds.
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Therefore,

‖v − ṽ‖
XκT (C

1
2
+κ)
≤ ‖Lg,Ψ‖B(XκT (C

1
2
+κ))
‖v − ṽ‖

XκT (C
1
2
+κ)

+ C‖v − ṽ‖
C−

1
2
+2κ

+ C(‖g − g̃‖C−κ + ‖Ψ− Ψ̃‖
B(C

1
2
+κ,C−κ)

)‖ṽ‖
XκT (C

1
2
+κ)

∫ t

0

s−1+κ

(t− s) 1
2 +2κ

ds

≤ ‖Lg,Ψ‖B(XκT (C
1
2
+κ))
‖v − ṽ‖

XκT (C
1
2
+κ)

+ C‖v − ṽ‖
C−

1
2
+2κ

+ CM(‖g − g̃‖C−κ + ‖Ψ− Ψ̃‖
B(C

1
2
+κ,C−κ)

)T
1
2−κ.

Since T < T0(M,M), we have ‖Lg,Ψ‖B(XκT (C
1
2
+κ))

< 1, so

‖v − ṽ‖
XκT (C

1
2
+κ)
≤ C ·

‖v − ṽ‖
C−

1
2
+2κ +M(‖g − g̃‖C−κ + ‖Ψ− Ψ̃‖

B(C
1
2
+κ,C−κ)

)T
1
2−κ

1− ‖Lg,Ψ‖B(XκT (C
1
2
+κ))

.

This shows that VT is continuous on AM when T < T0(M,M).
Now suppose (as an inductive hypothesis) that VT is continuous on AM and let T ′ ∈

(T, T + T0(M,M)). For (g,Ψ, v), (g̃, Ψ̃, ṽ) ∈ AM , put v = VT (g,Ψ, v) and ṽ = VT (g̃, Ψ̃, ṽ).
For t ∈ [T, T ′], let w(t, x) = v(t − T, x) and let w̃(t, x) = ṽ(t − T, x). We have w =

VT ′−T (g,Ψ, v(T, ·)) and w̃ = VT ′−T (g,Ψ, ṽ(T, ·)). Since VT ′−T is continuous, so is VT ′ .
By induction, this implies that VT is continuous on AM for any T . Since this is true for

anyM , we see that, for any T , VT is in fact continuous on C−κ×B(C 1
2 +κ, C−κ)×C− 1

2 +2κ.

The continuity of the solution map then allows us to apply the stability results proved
in Section 5 to show that the solutions converge.

Corollary 6.5. If u ∈ C− 1
2 +2κ, then for all ε ∈ [0, 1), for any T > 0 there is a unique

solution vε ∈ X κT (C 1
2 +κ) to (3.1), and vε converges to v0 in probability in X κT (C 1

2 +κ).

Proof. As noted above, vε = VT (Zε − F ∗ ξε,Ξε, e−Sεu) uniquely solves (3.1). Using (2.4),
the periodicity of ξ and ξε, and Lemma 5.1, we see that F∗ξε → F∗ξ as ε→ 0 in probability
in L∞. Proposition 5.3 says that Zε → Z0 in probability in C−κ, and Proposition 5.11
says that Ξε → Ξ0 in probability in B(C 1

2 +κ, C−κ). Also, Lemmas 5.2 and 2.2, along with
the assumption u ∈ C− 1

2 +2κ, imply that e−Sεu → e−S0u in probability in C− 1
2 +2κ. Thus

Proposition 6.4 implies that vε → v0 in probability in X κT (C 1
2 +κ).

To prove Theorem 1.1, it simply remains to undo the change of variables.

Proof of Theorem 1.1. For ε > 0, we have uε = eSεvε by Lemma 3.1. Lemma 5.2,
Corollary 6.5, and Lemma 2.2 imply that as ε ↓ 0, uε converges in probability to eS0v0 in
X κT (C 1

2−κ). The estimate (1.4) for Cε was proved as Proposition 5.9.
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