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Abstract

We produce a series of Central Limit Theorems (CLTs) associated to compact metric
measure spaces (K, d, η). The main obstacle is the impossibility of averaging K-valued
random variables. This is overcome by using isometric images of K inside a Banach
space or a Hilbert space, after which we can apply results for CLTs on these spaces.
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1 Introduction

We produce a series of Central Limit Theorems (CLTs) associated to compact metric
measure spaces (K, d, η), with η a reasonable probability measure. The main obstacle is
the impossibility of averaging K-valued random variables. This is overcome by using
isometric images ıd(K) of K inside a Banach space or a Hilbert space, after which we can
apply results for CLTs on these spaces. For the first CLT, we can ignore η by isometrically
embedding K into C(K), the space of continuous functions on K with the sup norm, and
then applying known CLTs for sample means on Banach spaces (Theorem 3.4). However,
the sample mean makes no sense back on K, so using η we develop a CLT for the sample
Fréchet mean (Corollary 4.5). This involves working on the closed convex hull of the
embedded image of K. To work in the easier Hilbert space setting of L2(K, η), we have
to modify the metric d to a related metric dη. We obtain a CLT for both the sample mean
and the sample Fréchet mean (Theorem 5.2) with respect to the modified metric dη, and
we relate the Fréchet sample and population means on the closed convex hull to the
Fréchet means on the image of K.

While these CLTs are for random variables taking values in ıd(K), there is a bijection
between the more natural set of K-valued random variables and the set of ıd(K)-valued
random variables. Thus in the end we produce CLTs for K-valued random variables.

This work is motivated by our previous paper [5], where we investigated the unique-
ness of the Fréchet mean on compact subsets K of the space of unlabeled networks with
a fixed number of vertices. In some concrete examples, the Fréchet mean is not unique
on K as a subset of Euclidean space, but is unique on the closed convex hull of K. This
led us to consider when we can find a unique Fréchet mean for general compact metric
spaces, and to search for corresponding CLTs.
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Central limit theorems on compact metric spaces

2 Background material

Throughout the paper, (K, d) will be a compact metric space. Recall that a G-valued
random variable X is a function X : Ω→ G, where (Ω,F , P ) is a fixed probability triple.
The induced measure/distribution on G is given by X∗(P ), with

X∗(P )(A) = P (X−1(A)), A ⊂ G.

We recall the setup and statement of a Central Limit Theorem on Banach spaces due
to Zinn.

Definition 2.1. (i) Let G be a Banach space. A probability measure γ on G is a Gaussian
Radon measure if for every nontrivial linear functional L : G→ R, on G, the pushforward
measure L∗(γ) is a non-degenerate Gaussian measure on R, i.e., a standard Gaussian
measure with non-zero variance.

(ii) Let X1, . . . , Xn, . . . be any set of G-valued i.i.d. random variables with common
distribution µ. µ satisfies the G-Central Limit Theorem (G-CLT) on G if there exists a
Guassian Radon probability measure γ on G such that the distributions, µn, of X1+...+Xn√

n

converge, i.e., for every bounded-continuous real-valued function f on G,∫
G

fdµn →
∫
G

fdγ.

(iii) The metric d onK implies Gaussian continuity (or d is CGI) if whenever {X(s)}s∈K
is a separable Gaussian process such that

E
[
|X(t)−X(s)|2

]
6 d2(t, s),

then X has continuous sample paths a.s.

Let Hd(K, ε) = log(Nd(K, ε)), where Nd(K, ε) is the smallest number of d-balls of
diameter at most 2ε which cover K.

Proposition 2.2 ([3, Thm. 3.1]). If∫ ∞
0

H
1/2
d (K,u)du <∞, (2.1)

then d is GCI.

Let C(K) be the Banach space of continuous functions on the compact metric space
(K, d) equipped with the sup-norm ‖·‖∞. C(K) becomes a complete metric space with
the induced distance function d∞ by d∞(f, g) = ‖f − g‖∞,∀f, g ∈ C(K).

Definition 2.3. For the compact metric space (K, d), set

Lip(d) =

{
x ∈ C(K) : sup

t 6=s

|x(t)− x(s)|
d(t, s)

<∞

}
.

Lip(d) is nonempty (by letting x be a constant function). We check that Lip(d) is
closed. If {xk} ∈ Lip(d) has limk→∞ xk = y ∈ C(K), then for any ε > 0 and t 6= s,

|y(t)− y(s)|
d(t, s)

≤ |y(t)− xj(t)|
d(t, s)

+
|xj(t)− xj(s)|

d(t, s)
+
|xj(s)− y(s)|

d(t, s)

≤ 2ε+
|xj(t)− xj(s)|

d(t, s)
,

for j = j(ε)� 0 independent of t, s. This implies that y ∈ Lip(d).
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Central limit theorems on compact metric spaces

Definition 2.4. A Radon probability measure µ on the Banach space (G, ‖·‖) has zero
mean and finite variance, respectively, if∫

G

x µ(dx) = 0,

∫
G

‖x‖2 µ(dx) <∞, (2.2)

respectively.

Of course, if a sequence of G-valued random variables Xi has finite expectation, then
the new random variable Xi − E[Xi] has zero mean.

We can now state Zinn’s CLT.

Theorem 2.5 ([7]). Let (K, d) be a compact metric space with d CGI. If µ is a Radon
probability measure on Lip(d) with zero mean and finite variance, then µ satisfies the
Central Limit Theorem on (C(K), ‖ · ‖∞) in the sense of Definition 2.1(ii).

For our main results, we need to define the Fréchet mean with respect to a probability
measure Q on (K, d). This generalizes the notion of centroids from vector spaces to
metric spaces.

Definition 2.6. (i) The Fréchet function f : K → R is

f(p) =

∫
M

d2(p, z)Q(z)dz, p ∈M.

If f(p) has a unique minimizer µ = argminp∈Kf(p), we call µ the Fréchet mean of Q.
(ii) Given an i.i.d. sequence X1, . . . , Xn ∼ Q on M , the empirical Fréchet mean is

defined to be

µn = argminp∈M
1

n

n∑
i=1

d2(p,Xi),

provided the argmin is unique.

Unlike centroids in Euclidean space, the uniqueness of Fréchet mean cannot be
guaranteed, even in spaces which locally look like Euclidean space.

Example 2.7. We parametrize an open cone (minus a line) Z : x2 + y2 = z2 of height
one by

F (u, v) =

(
1√
2
u cos v,

1√
2
u sin v,

1√
2
u

)
, (u, v) ∈ (0, 1)× (0, 2π).

There is a Riemannian isometry from the sector S = {(r, θ) ∈ (0,
√

2) × (0,
√

2π)} to Z
induced by α : (r, θ) 7→ (u = r/

√
2, v =

√
2θ), i.e.,

(r, θ) 7→
(r

2
cos(
√

2θ),
r

2
sin(
√

2θ),
r

2

)
.

Indeed, the first fundamental form of the sector at (r, θ), respectively the first fundamen-
tal form of the cone at (u, v), are (

1 0

0 r2

)
,

(
2 0

0 u2

2

)
,

respectively. It is easy to check that the differential dα preserves these inner products.
Thus every point p ∈ S has a neighborhood U such that the usual Euclidean distance
between q1, q2 ∈ U equals the geodesic distance between α(q1), α(q2).

It is easy to check that for e.g. the uniform distribution on S, the Fréchet mean/cen-
troid (x̄, ȳ) is inside S. In contrast, by the rotational symmetry of the geodesic distance
function on Z, the minima of the Fréchet function on Z form a circle containing α(x̄, ȳ).

For results on CLTs when the Fréchet mean is not unique, see [2].
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Central limit theorems on compact metric spaces

3 A CLT for compact metric spaces

In this section, we isometrically embed the compact metric (K, d) into the Banach
space (C(K), d∞) to obtain a CLT on the image of K.

We define
ıd : K → C(K), x 7→ fx := d(x, ·).

The following proposition is well known.

Proposition 3.1. ıd : (K, d)→ (ıd(K), d∞) is an isometry.

Proof. See e.g., [5, Supplement C, §2].

It follows that ıd is an injection, and ıd(K) is a compact subset of C(K).
We are interested in CLTs associated to K. However, it makes no sense to average

K-valued random variables. As a result of Proposition 3.1, we can identify K-valued
random variables with ıd(K)-valued random variables, which can be averaged. To obtain
a CLT on ıd(K) from Theorem 2.5, we need to verify its hypotheses.

Lemma 3.2. ıd(K) ⊂ Lip(d).

Proof. For fx ∈ ıd(K), the triangle inequality for s, t ∈ K gives

|fx(t)− fx(s)| = |d(x, t)− d(x, s)| 6 d(s, t).

It follows that

sup
s 6=t

|fx(s)− fx(t)|
d(s, t)

6 1.

In the following proof, we strongly use the fact that C(K) is a “linearization” of K.

Lemma 3.3. The metric d on K is GCI.

Proof. We must verify (2.1) in Proposition 2.2. Equivalently, we will show∫ ∞
0

H
1
2

d∞
(ıd(K), u)du <∞. (3.1)

As a compact set, ıd(K) can be covered by N balls of radius 1 for some N . Fix any
point x0 ∈ ıd(K), and consider the d∞-ball B∞(x0, 1) of radius 1 centered at x0. The

closure B∞(x0, 1) equals ıd(Bd(ı
−1
d (x0), 1)) of the corresponding ball in K. It follows that

B∞(x0, 1) is compact, so we can cover B(x0, 1) by M balls of radius 1
2 for some M .

Since d∞ is translation invariant, M is independent of the choice of x0. Moreover,
d∞ is homogeneous in the sense that d∞(cf, cg) = |c|d∞(f, g) for c ∈ R. Thus for r > 0,
any d∞-ball of radius r contained in ıd(K) can be covered by M balls of radius r

2 . Hence

Nd∞(ıd(K), 2−k) 6 N ·Mk+1.

To estimate (2.1), we integrate over [0, 1] and [1,∞) separately. Since ıd(K) is compact,
it is covered by a single d∞-ball B∞(x0, R) for some R� 0 and a fixed x0 ∈ ıd(K). Choose
k0 ∈ N such that 2k0 6 R < 2k0+1. We have∫ ∞

1

H
1
2

d∞
(ıd(K), u)du =

∫ ∞
1

√
log(Nd∞(ıd(K), u))du

6
∞∑
k=1

√
log(Nd∞(ıd(K), 2k))(2k − 2k−1)

6
k0+1∑
k=1

√
log(Nd∞(ıd(K), 2k))2k−1 <∞.
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For the region [0, 1], we have∫ 1

0

H
1
2

d∞
(ıd(K), u)du

=

∫ 1

0

√
log(Nd∞(ıd(K), u))du 6

∞∑
k=0

√
log(Nd∞(ıd(K), 2−k−1))(2−k − 2−k−1)

6
∞∑
k=0

√
log(N ·Mk+2) 2−k−1 =

∞∑
k=0

√
(k + 2) logM + logN 2−k−1 <∞.

Adding these estimates gives (3.1).

This gives our first Central Limit Theorem on K, or really on the isometric space
ıd(K).

Theorem 3.4 (General CLT). Let (K, d) be a compact metric space, let µ be a Radon
probability measure on K with finite variance and such that ıd,∗µ has zero mean on
ıd(K). Then ıd,∗µ satisfies the G-CLT for G = (C(K), ‖ · ‖∞).

Proof. By Lemmas 3.2, 3.3, the hypotheses of Theorem 2.1 are satisfied for ıd,∗µ.

4 A Fréchet CLT associated to a compact metric space

In the previous section, we found a G-CLT on a Banach space associated with the
usual sample mean

√
n · 1

n

∑n
i=1Xi on G = C(K). In this section, we prove a G-CLT on the

compact metric space K, endowed with a Radon probability measure η, for the sample
Fréchet mean

argminY ∈ıd(K)

1

n

n∑
i=1

‖Xi − Y ‖22,η, (4.1)

X1, . . . , Xn are i.i.d. ıd(K)-valued random variables, and the L2 norm is taken with
respect to ıd,∗η.

We emphasize that these CLTs can be applied to the more natural K-valued random
variables, since f 7→ ıd ◦ f gives a bijection from K-valued random variables to ıd(K)-
valued random variables. Thus we can think of these CLTs as applied to K-valued random
variables which are pushed forward to ıd(K)-valued random variables in order to take
averages.

Note that we compute the sample Fréchet mean with respect to the L2-norm, since
we will need a Hilbert space structure below. The minimizer of (4.1) may not be unique,
since ıd(K) may not be convex in C(K). Instead, we consider the closed convex hull of
ıd(K), on which the uniqueness of the Fréchet mean is guaranteed.

Definition 4.1. Let ıd(K)c be the convex hull of ıd(K), i.e., the intersection of all convex
subsets of C(K) containing ıd(K), and let

Sd = Sd(K) = ıd(K)c

be the closure of ıd(K)c.

By [1, Thm. 5.35], Sd is a compact subset of C(K). It is easy to check that Sd(K) ⊂
Lip(d). As the minimizer of a convex function on a closed convex space, the Fréchet
mean is unique. However, the Fréchet mean in Sd(K) may not lie in the image ıd(K)

of K, as the next example shows. In this case, we cannot identify the Fréchet mean in
Sd(K) with a point in K.
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Example 4.2. To continue with Example 2.1, choose a probability measure Q on the
cone Z. The sample Fréchet mean for K-valued random variables Yi lies in the interior of
Z in R3. It is unclear if the sample Fréchet mean for the ıd(Z)-valued random variables
Xi = ıd ◦ Yi lies in ıd(Z), but it certainly lies in Sd(Z). (This example doesn’t really show
the strength of embedding Z into C(Z), since Z lies in a linear space.

Similar remarks apply to the Fréchet minimum. While the Fréchet minimum for the
cone (Z, η) is not unique, the Fréchet minimum on (Sd(Z), ıd,∗η), the closed convex hull
of the isometric set (ıd(Z), ıd,∗η), is unique. (Note that the sector S in Example 2.1 is only
locally isometric to Z.) While we have gained uniqueness, there is no reason why the
Fréchet minimum need be inside ıd(Z), as in Example 2.1. It is shown in [5, Supplement
C] that in general the distance from the Fréchet mean in Sd(K) to ıd(K) is at most twice
the diameter of K.

At this point we have the embeddings K ↪→ ıd(K) ⊂ Sd(K) ⊂ C(K) ⊂ L2(K), where
L2(K) is taken with respect to a probability measure on K. While K ↪→ L2(K) is no
longer an isometry, there is a known CLT on Sd(K) equipped with the L2 norm.

Theorem 4.3 (L2 CLT). Let µ be a Radon probability measure supported in K such that
ıd,∗µ satisfies (2.2). Then ıd,∗µ satisfies the G-CLT for G = (L2(K), ‖ · ‖2,η). The same
result holds if the random variables {Xi} in the G-CLT are ıd(K)-valued and/or µ has
support in Sd(K).

Proof. By [6, Thm. 9.10], the Hilbert space L2(K) is of type 2 and cotype 2. The existence
of a CLT on spaces of type/cotype 2 follows from [4, Thm. 3.5].

We also obtain a CLT for the sample Fréchet mean. Here the Hilbert space structure
works to our advantage, as the sample Fréchet mean and the usual sample mean coincide.

Proposition 4.4. For Sd(K)-valued random variables {Xi}, we have

Sn :=
1

n

n∑
i=1

Xi = argminY ∈Sd
1

n

n∑
i=1

‖Xi − Y ‖22,η.

Proof. It is well-known that in a finite dimensional Euclidean space, the sample mean
coincides with the sample Fréchet mean. For fixed x ∈ K, the real-valued random
variables {Xi(x)} satisfy

1

n

n∑
i=1

|Xi(x)− Sn(x)|2 6
1

n

n∑
i=1

|Xi(x)− Y (x)|2, ∀Y ∈ C(K).

Therefore, for all Y ,

1

n

n∑
i=1

∫
K

|Xi(x)− Sn(x)|2dQ(x) 6
1

n

n∑
i=1

∫
K

|Xi(x)− Y (x)|2dQ(x),

so

1

n

n∑
i=1

‖Xi − Sn‖22,η 6
1

n

n∑
i=1

‖Xi − Y ‖22,η ⇒ Sn = argminY ∈Sd
1

n

n∑
i=1

‖Xi − Y ‖22,η.

Combining the Proposition with Theorem 4.3 gives us a CLT for the sample Fréchet
mean. We set ‖ · ‖2,η be the L2 norm with respect to a measure µ, and set C0(X) to be
the set of bounded continuous functions on a topological space X.

Corollary 4.5 (Sample Fréchet mean CLT). (i) Let {Xi} be i.i.d. Sd-valued random vari-
ables with distribution µ a Radon probability measure supported in ıd(K) satisfying (2.2).
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Then there exists a Gaussian Radon probability measure γ̃2 such that the distributions
µn of

argminY ∈Sd
1√
n

n∑
i=1

‖Xi − Y ‖22,η

converge weakly to γ̃2 in the sense of Defintion 2.1.
(ii) γ2 in Theorem 4.3 equals γ̃2 in distribution. In particular, for f ∈ C0(Sd(K)),∫

Sd(K)

fdγ2 =

∫
Sd(K)

fdγ̃2.

(iii) Let γ1 be the limiting measure obtained in Theorem 3.4. Then γ1 = γ2.

Proof. (i) follows from Proposition 4.4. For (ii), the Proposition implies that the distribu-
tions of the sample mean and the sample Fréchet mean are the same a.s. (iii) follows
from the uniqueness of γ in Definition 2.1(ii) and comparing Theorems 3.4 and 4.3.

5 L2 techniques and G-CLTs

In this section, we embed the compact metric space K, now equipped with a Radon
measure η and a modified metric, into L2(K, η) to produce an L2 version of a G-CLT. In
this Hilbert space setting, we are able to relate the Fréchet means of the closed convex
hulls to the Fréchet means on the embedded image of K.

We define a seminorm on ıd(K) = {fx = d(x, ·) : x ∈ K} by

‖fx‖22,η =

∫
ıd(K)

|fx(y)|2dıd,∗η(y) =

∫
K

d2(x, y)dη(y).

Taking the completion modulo the space of norm zero functions gives the Hilbert space
(L2(ıd(K)), ‖·‖2,η). More precisely, we will prove L2(ıd(K))-CLTs for both the sample
mean and the sample Fréchet mean.

The norm ‖ · ‖2,η induces a metric d2,η on ıd(K). Since ıd : (K, d) → (ıd(K), d2,η) is
easily continuous, we can pull back d2,η to a metric dη := ı∗dd2,η on K:

dη(x, y) = d2,η(fx, fy) =

(∫
K

(d(x, z)− d(y, z))2dη(z)

)1/2

.

Thus ıdη : (K, dη) → (ıdη (K), d2,η), defined by ıdη (x) = dη(x, ·), is an isometry. We
interpret (K, dη) as a modification of (K, d) which keeps track of the L2 information of η.

We want to relate the various metrics. Let d∞ be the metric on C(K) induced by the
sup norm ‖ · ‖∞, and let [ıd(K)] be the image of ıd(K) in L2(K). Consider the maps

(K, d)
ıd→ (ıd(K), d∞)

F→ ([ıd(K)], d2,η)
G→ (K, dη)

given by F (fx) = [fx], where we take the L2 equivalence class, and G([fx]) = ı−1
dη

(fx) =

ı−1
dη
ıd(x). (We show that G is well-defined below.) ıd is an isometry.

In general, F and G are not injective, since equivalence classes in L2(K) have many
representatives, without a restriction on η.

Lemma 5.1. Assume that every d-ball Bε(x) centered at x ∈ K has η(Bε(x)) > 0. Then
F is injective, and G is well-defined and injective.

Since F andG are trivially surjective, they are bijective under the Lemma’s hypothesis.
Note that for Lebesgue measure and the standard metric on RN , the hypothesis is
satisfied, while delta functions give rise to Radon measures that do not satisfy the
hypothesis.
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Proof. For F , it suffices to show that F ◦ ıd : x 7→ [fx] is injective. For x 6= y, and
ε < d(x, y)/3, we have

d(y, z) ≥ d(x, y)− d(x, z) > 3ε− ε > d(x, z) + ε,

for all z ∈ Bε(x). Therefore

d2,η([fx], [fy])2 =

∫
K

|fx(z)− fy(z)|2dηz ≥
∫
Bε(x)

|d(x, z)− d(y, z)|2dηz

> ε2η(Bε(x)) > 0.

Thus [fx] 6= [fy].
To show that G is well-defined, if fx, fy ∈ [fx] ∈ L2(K), then

d2,η([fx], [fy]) = 0⇒
∫
K

|d(x, z)− d(y, z)|2dη(z) = 0.

As above, this implies that x = y, so [fx] has a unique representative of the form fx.
Since ıd, ıη are injective, it follows that G is injective.

We can now state and prove an L2 CLT on Sdη (K) for both the sample mean and the
sample Fréchet mean. As before, let Sdη = Sdη (K) be the closed convex hall of ıdη (K) in
the sup norm.

Theorem 5.2 (L2 CLTs for sample means). Let {Xi} be i.i.d. Sdη -valued random variables
with distribution µ a Radon probability measure supported in Sdη (K) satisfying (2.2).
Assume that the hypothesis of Lemma 5.1 holds.

(i) There exists a Gaussian Radon probability measure γ on Sdη such that the dis-
tributions µn, of X1+...+Xn√

n
converge to a probability measure γ in the sense of Defini-

tion 2.1(ii).
(ii) The distributions µ̃n of argminY ∈Sdη

1√
n

∑n
i=1‖Xi − Y ‖22,η converge in the same

sense to the same measure γ.
(iii) Under the hypothesis in Lemma 5.1, the distributions µ̃n of argmin

Y ∈Sdη

1√
n

∑n
i=1‖Xi−

Y ‖2∞ converge in the same sense to a Gaussian Radon probability measure γ̃.

Proof. (i) Replacing the metric d by dη in Theorem 3.4 gives the CLT for the sample
mean.

(ii) Applying Corollary 4.5(i) and (iii) to dη gives the convergence of µ̃n to the same
measure γ.

(iii) The main idea is to use the isometric bijection ıdη ◦ ı−1
d : (ıd(K), ‖ · ‖∞) →

(ıdη (K), ‖ · ‖|2,η). This extends linearly to an isometric bijection

ıdη ◦ ı−1
d : (Sd(K), ‖ · ‖∞)→ (Sdη (K), ‖ · ‖|2,η).

Set

Zn := argminY ∈Sdη
1

n

n∑
i=1

‖Xi − Y ‖2∞.

By Proposition 4.4,

Zn = argminY ∈Sd2,η
1

n

n∑
i=1

‖ıd ◦ ı−1
dη
Xi − ıd ◦ ı−1

dη
Y ‖22,η

= ıdη ◦ ı−1
d

(
argminY ∈Sd

1

n

n∑
i=1

‖ıd ◦ ı−1
dη
Xi − Y ‖22,η

)

= ıdη ◦ ı−1
d

(
1

n

n∑
i=1

ıd ◦ ı−1
dη
Xi

)
.
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{(ıd◦ı−1
dη

)(Xi)} are Sd-valued i.i.d. random variables with common distribution (ıd◦ı−1
dη

)∗µ.
By Theorem 4.3, we obtain a Sd-CLT with respect to a Gaussian Radon measure γ′ on Sd.
The isometry ıdη ◦ ı−1

d then gives the Sdη -CLT with respect to (ıdη ◦ ı−1
d )∗γ

′.

Because we are in a Hilbert space setting, we can prove that the Fréchet sample and
population means on Sdη and on ıdη (K) have simple relationships.

Let Sdη be the closed convex hull of ıdη (K) := K0 in L2(K, η), and let f2
y = dη(y, ·) ∈

C(K). Let

F̄ (x̄) =

∫
Sdη

d2
L2(x̄, ȳ)dıdη,∗η(ȳ) =

∫
K0

d2
L2(x̄, ȳ)dıdη,∗η(ȳ) =

∫
K

d2
L2(x̄, f2

y )dη(y),

F (x) =

∫
K

d2
η(x, y)dη(y) =

∫
K0

d2
L2(f2

x , f
2
y ))dıdη,∗η(f2

y ),

be the L2 Fréchet functions of Sdη and K, respectively, and let

µ̄ = argminx̄∈Sdη F̄ (x̄), µ = argminx∈K

∫
K

d2
η(x, y)dη(y)

be the population means on Sdη and K, respectively. Set µ0 = ıdη (µ).
We note that as the minimum of a convex function on a convex set, µ̄ is unique. Also,

gradients of differentiable functions exist in Hilbert spaces.

Proposition 5.3 (Relationships between the means). Assume that (i) µ is unique, (ii)
K0 is the zero set of a Fréchet differentiable function H : L2(K, η)→ R with ∇Hµ0 6= 0.
Then µ0 is the closest point in K0 to µ̄. The same relationship holds for the sample
Fréchet means of K0-valued i.i.d. random variables.

Proof. Note that K0 = ∂K0 in L2(K, η), since a compact subset of an infinite dimensional
space has no interior. Also, µ̄ ∈ K0 implies µ̄ = µ0, so we may assume µ̄ 6∈ K0.

The method of Lagrangian multipliers is valid in L2(K, η), so there exists λ ∈ R with
∇F̄µ0 = λ∇Hµ0 . The differential DF̄ at µ0 is given by

DF̄µ0(v) = (d/dt)|t=0

∫
Sdη

d2
L2(µ0 + tv, f2

y )dη(y)

= (d/dt)|t=0

∫
K

〈µ0 + tv − f2
y , µ0 + tv − f2

y 〉dη(y)

= 2

〈
v, µ0 −

∫
K

f2
ydη(y)

〉
,

where the last term equals the Hilbert space integral∫
K0

ȳdıdη,∗η(ȳ) =

∫
Sdη

ȳdıdη,∗η(ȳ).

Thus ∇F̄µ0
= 2(µ0 −

∫
Sdη

ȳdıdη,∗η(ȳ)). Since ∇F̄p = 0 only at p = µ̄, we see that µ̄ =∫
Sdη

ȳdıdη,∗η(ȳ). (This is the usual statement that the Fréchet mean is the center of mass

of a convex set in Rn.) Thus ∇F̄µ0 = 2(µ0 − µ̄).
Since µ0 − µ̄ is a multiple of ∇Hµ0 , which is perpendicular to the level set ıdη (K), we

have µ0− µ̄ ⊥ ∂K0. We have not used that µ0 is a minimum, so the same perpendicularity
holds at any critical point of F̄ on ∂K0. We can translate in Sdη so that µ̄ = 0, in which
case ∇F̄p = 2p is twice the Euler vector field. The level sets F̄−1(r) are thus spheres
centered at the origin in Sdη . Since µ0 is on the lowest level set of any point in K0, µ0 is
closer to the origin than any other critical point of F̄ on ∂K0.
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If we consider the distance function D : K0 → R, D(x̄) = d2(µ0, x), then a Lagrangian
multiplier argument as above shows that at a critical point p of D, we have µ0 − p ⊥ ∂K0.
Thus µ0 is a critical point of D, and by the last paragraph µ0 must be the closest point in
K0 to µ0.

The same argument holds for the sample means.

If a closest point p(z) ∈ K0 to each z ∈ Sdη can be chosen so that p is continuous, as
in the unlikely case that K0 is convex, then we get a G-CLT on K0 and hence on K for
p∗µ̃n, p∗γ. This would connect Theorem 5.2 and Proposition 5.3.
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