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Abstract

The conformal Skorokhod embedding problem (CSEP) is a planar variant of the
classical problem where the solution is now a simply connected domain D ⊂ C whose
exit time embeds a given probability distribution µ by projecting the stopped Brownian
motion onto the real axis. In this paper we explore two new research directions for the
CSEP by proving general bounds on the principal Dirichlet eigenvalue of a solution
domain in terms of the corresponding µ and by proposing related extremal problems.
Moreover, we give a new and nontrivial example of an extremal domain U that attains
the lowest possible principal Dirichlet eigenvalue over all domains solving the CSEP
for the uniform distribution on [−1, 1]. Remarkably, the boundary of U is related to
the Grim Reaper translating solution to the curve shortening flow in the plane. The
novel tool used in the proof of the sharp lower bound is a precise relationship between
the widths of the orthogonal projections of a simply connected planar domain and
the support of its harmonic measure that we develop in the paper. The upper bound
relies on spectral bounds for the torsion function which have recently appeared in the
literature.
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1 Introduction

Let W = (Wt : t ≥ 0) be a complex Brownian motion starting at 0, and for any open
set D ⊂ C containing 0, let τD denote the first exit time of W from D. Moreover, let µ be
a probability distribution with zero mean and finite nonzero variance. The conformal
Skorokhod embedding problem (CSEP) was introduced by Gross in [12] where the author
shows that there exists a simply connected domain D ⊂ C containing 0 such that

ReWτD ∼ µ

E0[τD] <∞.
(1.1)
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Conformal Skorokhod embeddings and related extremal problems

This result was recently generalized in [9]. There the authors showed that if µ is
a probability distribution with zero mean and finite nonzero p-th moment for some
1 < p <∞, then there exists a simply connected domain D ⊂ C containing 0 such that
ReWτD ∼ µ and E0[τ

p/2
D ] < ∞. They also give conditions on the domain which ensure

that a solution domain is unique.
The original Skorokhod embedding problem (SEP) asks the following: Given a stan-

dard Brownian motion (Bt : t ≥ 0) and a probability distribution µ with zero mean
and finite variance, find a stopping time T such that BT ∼ µ and E0 [T ] < ∞. It was
first posed and solved by Skorokhod in 1961 (see [24] for an English translation of the
original paper) and since then a veritable zoo of varied and interesting solutions have
appeared, see [18] for a thorough survey. The similarity between these problems is clear,
and as Gross points out, his solution resembles Root’s barrier hitting solution [23] with
additional randomness, that of the other Brownian motion in the second coordinate.

Gross’s paper is more than just an existence result and his method gives a relatively
explicit construction of a domain D which solves (1.1). In fact, his example of a bounded
domain which solves the CSEP for the uniform distribution on [−1, 1] is what inspired
the present paper as it complements an unbounded domain U known to the authors
which achieves the same objective. We discovered U through a naive ansatz that uses
the conformal invariance of Brownian motion and the Cauchy-Riemann equations to
prescribe a conformal deformation of the upper half-plane H (whose harmonic measure
is Cauchy distributed) such that the orthogonal projection of the harmonic measure of
the deformed domain has uniform distribution on [−1, 1]. Remarkably, the boundary of U
is related to the so-called Grim Reaper curve which is a translating solution to the curve
shortening flow in the plane, see Remark 2.7.

Besides bringing to light the new example of U, the main goals of this paper are to
obtain sharp bounds on the principal Dirichlet eigenvalue of a solution domain in terms
of the corresponding µ and to propose related extremal problems. For a domain
D ⊂ C which solves the CSEP for µ, define the rate of the solution by

λ(D) = − lim
t→∞

1

t
logP0(τD > t).

The limit exists by Fekete’s subadditivity lemma and is clearly nonnegative. Since D is
an open set containing 0, the process W will exit some small enough ball with positive
radius centered at 0 before it exits D so it follows that λ(D) is finite. Additionally, 2λ(D)

is equal to the bottom of the spectrum of the semigroup generated by the Laplacian on
D with Dirichlet boundary conditions and is usually referred to as the principal Dirichlet
eigenvalue of D, see Section 3.1 of [26]. An example which will prove useful later on
is that of an infinite strip of width w containing 0 where a straightforward projection
argument shows that the rate is half the principal eigenvalue of an interval of length w,
namely π2

2w2 . Two questions regarding the rate naturally present themselves:

A. Find upper and lower bounds on the rate (or principal Dirichlet eigenvalue) in
terms of µ.

B. For a specific µ, find extremal domains that attain the highest and lowest possible
rate (or principal Dirichlet eigenvalue).

The main results of the paper are the following: We answer Question A. by giving
an upper bound in terms of the variance of µ in Theorem 2.1 and by giving a sharp lower
bound in terms of the width of the support of µ in Theorem 2.4. The proof of Theorem
2.1 relies on recent spectral bounds for the torsion function which are described at the
beginning of Section 2. In order to prove Theorem 2.4, we need a precise relationship
between the width of the orthogonal projection of a simply connected planar domain
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Conformal Skorokhod embeddings and related extremal problems

and the width of the support of the orthogonal projection of its harmonic measure. This
result, which is stated in Theorem 3.1 and proven in Section 3, may be of independent
interest. As far as the authors know, it hasn’t appeared in the literature. Finally, we
give a partial answer to Question B. in the case of the uniform distribution on [−1, 1],
henceforth denoted by U[−1, 1], by verifying in Theorem 2.6 that U is a nontrivial minimal
rate solution domain. This example shows that the lower bound in Theorem 2.4 is indeed
sharp.

About one month after these results first appeared on arXiv, Boudabra and Markowsky
posted a preprint [8] that gives an interesting new method to construct minimal rate
solution domains to the CSEP. We point out that the minimality of their solution domains
is a consequence of our general lower bound given in Theorem 2.4 which itself relies
crucially on the most technical result of our paper, that of Theorem 3.1. Additionally,
their result shows the importance of Theorem 2.4 by demonstrating that our lower bound
is sharp in general and not just for U[−1, 1] which was already known from Theorem 2.6.

Another example of a minimal rate solution domain which is in some sense trivial
can be found in [9] where it was shown that the infinite strip {z ∈ C : | Im z| < 1} and
the domain bounded below by the parabola y = 1

2x
2 − 1

2 both solve the CSEP for the
hyperbolic secant density 1

2 sech π
2x on R with the infinite strip being Gross’s solution,

see Figure 2. Since the parabola domain has infinite inradius, it follows that its principal
eigenvalue is 0 and hence it trivially has minimal rate. Finding a maximal rate solution
to the CSEP remains an open problem and one wonders if Gross’s construction might be
the answer.

Question B. is in the same spirit as the classical SEP where different solutions often
have their own extremal property. For instance, given a probability distribution µ with
zero mean and finite variance, Root’s embedding minimizes the variance of T over
all stopping times T such that BT ∼ µ and E0 [T ] < ∞, while Rost’s reversed barrier
embedding maximizes the variance of T over the same class of stopping times. We refer
to [5] where extremal solutions to the classical SEP are studied in detail.

Extremal problems for Brownian motion apart from the SEP have also been a popular
topic of study. A common theme is optimizing the principal Dirichlet eigenvalue or the
maximum expected exit time of a domain taken over all starting points when various
constraints are given, see [1, 2, 16, 3, 15, 4] and references therein for some examples.

The CSEP also has a connection to Walden and Ward’s harmonic measure distributions
[28] that is worth mentioning. Indeed, if the domain D solves the CSEP for µ, then the
orthogonal projection of the harmonic measure of D with pole at 0 onto the real axis has
distribution µ. If instead we are given a distribution function F : (0,∞) → [0, 1], then
one might ask whether there exists a domain D ⊂ C containing 0 such that the circular
projection of the harmonic measure of D with pole at 0 onto the positive real axis has
distribution function F? This is a topic of current interest and the reader is directed
to the recent survey [25] for more on this question. Perhaps an adaptation of Gross’s
construction will prove fruitful in this area.

2 Main results

Our first main result is an upper bound on λ(D) for d-dimensional Brownian motion in
terms of the second moments of the components at time τD. When applied to a domain
D ⊂ C which solves the CSEP, this general result provides a partial answer to Question A.
The proof involves a spectral upper bound for the torsion function of Brownian motion.
Recall that the torsion function of a domain D is nothing but the expected exit time of
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Brownian motion from D as a function of the starting point and is given by

uD(x) = Ex [τD] , x ∈ D

=

{
− 1

2∆uD = 1

uD ∈ H1
0 (D).

The best constant in the spectral upper bound for the torsion function depends on the
dimension d and is defined by

Cd = sup
{
λ (D) ‖uD‖∞ : D ⊂ Rd is a domain with λ (D) > 0

}
. (2.1)

It was shown in [7] that ‖uD‖∞ <∞ if and only if λ(D) > 0, so it follows from (2.1) that
the spectral upper bound for the torsion function

‖uD‖∞ ≤ Cd λ(D)−1 (2.2)

holds for all domains D.
While computing Cd exactly for d > 1 is still an open problem, bounds on Cd for Brow-

nian motion and related processes have been studied extensively via several techniques
under various assumptions on D, see for instance [1, 7, 11, 6, 20]. The current best
explicit upper bound in the Brownian case was derived by H. Vogt in [27] and states that

Cd ≤
d

8
+

1

4

√
5

(
1 +

1

4
log 2

)
d+ 1. (2.3)

See [4] for a non-explicit improvement of (2.3) along with new results on the p-torsion
analogue of (2.2) which involves the p-th moment of the exit time.

With the spectral upper bound for the torsion function (2.2) at our disposal, we can
now state our first main result.

Theorem 2.1. Suppose D is an open subset of Rd which contains 0 and let W = (Wt :

t ≥ 0) be a d-dimensional Brownian motion starting at 0 with Wt = (W
(1)
t , . . . ,W

(d)
t ).

Then for each 1 ≤ i ≤ d we have

λ(D) ≤ CdE0

[(
W (i)
τD

)2]−1
.

In particular, if D solves the CSEP (1.1) for a probability distribution µ with zero mean
and finite variance, then

λ(D) ≤ C2

Varµ
≤ 2.0379

Varµ
. (2.4)

Remark 2.2. Under the added condition that D is convex and if we assume that the
equilateral triangle conjecture of [14] is true, then the inequality (2.4) can be improved
to

λ(D) ≤ 4π2

27 Varµ
≈ 1.4622

Varµ
.

Corollary 2.3. If D solves the CSEP for U[−1, 1], then

λ(D) ≤ 3C2 ≤ 6.1136.

Our next result is a lower bound on λ(D) in terms of the width of the support of µ
which is sharp as demonstrated by Theorem 2.6 below. When paired with Theorem 2.1,
this provides a full answer to Question A.
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Figure 1: U is the region above the U-shaped graph. Gross’s solution to the CSEP for
U[−1, 1] is the eye-shaped region bounded by the closed curve.

Theorem 2.4. Suppose D ⊂ C solves the CSEP (1.1) for a probability distribution µ. If
[α, β] is the smallest interval containing the support of µ, then

λ(D) ≥ π2

2(β − α)2
. (2.5)

Corollary 2.5. If D solves the CSEP for U[−1, 1], then

λ(D) ≥ π2

8
≈ 1.2337.

The proof of Theorem 2.4 relies on Theorem 3.1 below which gives a precise relation-
ship between the width of the orthogonal projection of a simply connected planar domain
and the width of the support of the orthogonal projection of its harmonic measure. As far
as the authors know, this hasn’t appeared in the literature before. We point the reader
to section 3 where this result is developed in detail.

Our final result partially answers Question B. by exhibiting a domain U which is a
minimal rate solution to the CSEP for U[−1, 1]. Moreover, this shows that our general
lower bound given in Theorem 2.4 is sharp. See Figure 1 for a comparison of U and
Gross’s solution domain to the CSEP for U[−1, 1].

Theorem 2.6. Let
U = {z ∈ C : |Re z| < 1, Im z > h(Re z)} (2.6)

where

h(x) = − 2

π
log
(

2 cos
π

2
x
)
, |x| < 1.
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Then under P0 we have
ReWτU ∼ U[−1, 1].

Moreover, U is a minimal rate solution to the CSEP for U[−1, 1]. That is, if D ⊂ C is
another solution to the CSEP (1.1) for U[−1, 1], then λ(U) ≤ λ(D).

Remark 2.7. The boundary of U is a translation and scaling of y = − log cosx hence it
belongs to the family of Grim Reaper curves which are the only self-similar translating
solutions to the curve shortening flow in the plane, see [13].

Remark 2.8. The simply connected domain U is a rotation and scaling of a domain
studied in [17, Example 4] where the author points out that its boundary curve has been
referred to as the “catenary of equal resistance”. In that paper the expected exit time is
computed but no mention is made of the distribution of the real or imaginary parts of
the stopped Brownian motion.

Remark 2.9. The family of scaled domains aU with a > 0 gives minimal rate solutions
to the CSEP for U[−a, a].

3 Orthogonal projection of harmonic measure

The goal of this section is to prove a relationship between the width of the projection
of D onto the real axis and the width of the support of ReWτD . More specifically, suppose
D ( C is a simply connected domain containing 0 and let ReD denote its projection onto
the real axis, that is, ReD = {Re z : z ∈ D}. Since D is both open and connected and
the projection map is both open and continuous, we know that ReD = (a, b) for some
a ∈ [−∞, 0) and b ∈ (0,∞].

The boundary ∂D is nonpolar under the assumptions on D so τD is almost surely
finite. Define

α = sup
{
x ∈ R : P0

(
ReWτD ∈ [x,∞)

)
= 1
}

and
β = inf

{
x ∈ R : P0

(
ReWτD ∈ (−∞, x]

)
= 1
}
.

It is clear that α ≤ β by definition. Moreover, since WτD ∈ ∂D almost surely, it follows
that [α, β] ⊂ [a, b]. The following theorem gives conditions under which the reverse
inclusion also holds. While this may seem intuitively obvious at first glance, pathological
examples of simply connected domains abound [21] so it is worthwhile writing a careful
proof. Besides, Remark 3.2 and Figure 3 show that [α, β] ⊃ [a, b] doesn’t hold in complete
generality even for nice domains.

Theorem 3.1. SupposeD ( C is a simply connected domain containing 0 and let a, α, b, β
be defined as above. Then a > −∞ implies α = a and b <∞ implies β = b. Moreover, if
E0[τD] <∞, then α = a and β = b regardless of whether a and b are finite.

Remark 3.2. Considering simply connected domains such as the interior of Uc (trans-
lated so that it contains 0) show that an additional condition is needed for α = a and
β = b to hold when a and b are infinite, see Figure 3. The sufficient condition E0[τD] <∞
is one that happens to fit well with the CSEP.

The proof of Theorem 3.1, which we postpone until the end of the section, relies on
the next lemma which states that there is positive probability of W exiting D through
any neighborhood of any boundary point. In what follows, we denote by Br(x) and Br(x)

the open and closed disk, respectively, of radius r > 0 centered at x.

Lemma 3.3. Suppose D ⊂ C is a simply connected domain and let x ∈ D and ξ ∈ ∂D.
Then for all ε > 0 we have

Px
(
WτD ∈ Bε(ξ) ∩ ∂D

)
> 0.
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Figure 2: The infinite strip and the region
above the parabola both embed the hyper-
bolic secant density.
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Figure 3: Considering the interior of Uc+ i

shows that α = a and β = b may not hold
when a and b are infinite.

Proof of Lemma 3.3. Fix ε > 0 and pick y ∈ Bε(ξ) ∩D. Since D is a domain, x and y can
be connected by a polygonal path in D. This path is a compact subset of D so it has a
positive distance from ∂D. Hence the Harnack inequality implies

Px
(
WτD ∈ Bε(ξ) ∩ ∂D

)
> 0 iff Py

(
WτD ∈ Bε(ξ) ∩ ∂D

)
> 0 (3.1)

so we can focus on proving that the latter inequality holds. Since W has continuous
paths, it will hit ∂D before it hits the interior of Dc, hence the latter probability appearing
in (3.1) is equal to

Py
(
WτD ∈ Bε(ξ) ∩Dc

)
. (3.2)

Next, we can bound (3.2) from below by

Py
(
WτBε(ξ)∩D

∈ Bε(ξ) ∩Dc
)

(3.3)

since (3.3) excludes paths that leave Bε(ξ) and return to hit Bε(ξ) ∩ Dc. By letting
K = Bε(ξ) ∩Dc, we can write (3.3) as

Py
(
WτBε(ξ)\K

∈ K
)
.

Define the conformal transformation f(w) = − |y−ξ|y−ξ (w − ξ) which maps ξ to 0 and y
to −|y − ξ| ∈ (−ε, 0). For a set E ⊂ C, let E∗ denote the circular projection of E. That is,
E∗ = {|w| : w ∈ E}. Now we can use conformal invariance of Brownian motion and the
version of Beurling’s projection theorem from [19, Theorem 1] to get

Py
(
WτBε(ξ)\K

∈ K
)

= Pf(y)
(
WτBε(0)\f(K)

∈ f(K)
)

≥ Pf(y)
(
WτBε(0)\f(K)∗ ∈ f(K)∗

)
.

In order to produce a meaningful estimate, f(K)∗ must contain a proper interval. We
claim f(K)∗ = [0, ε]. To see that this is true, consider the connected component of K that
contains ξ, call it E. Clearly E contains some point z such that |z − ξ| = ε, for otherwise
E would be a bounded connected component of Dc which contradicts D being simply
connected. This implies both 0 and ε are elements of f(E)∗. Since E is connected and
both f and circular projection are continuous, we know that f(E)∗ is connected. Hence

[0, ε] ⊃ f(K)∗ ⊃ f(E)∗ ⊃ [0, ε]
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and the claim follows.
Finally, we can use w 7→

√
w/ε to conformally map Bε(0)\[0, ε] onto the upper half-disk

D ∩H, thereby sending f(y) to
√
f(y)/ε and the boundary set [0, ε] to [−1, 1]. Using the

above inequalities along with the explicit formula for the harmonic measure of D ∩H
[22, Table 4.1] while noting that

√
f(y)/ε is purely imaginary, we can write

Py
(
WτD ∈ Bε(ξ) ∩ ∂D

)
≥ 1− 2

π
arg

(
1 +

√
f(y)/ε

1−
√
f(y)/ε

)

= 1− 2

π
arctan

(
2
√
|f(y)|/ε

1− |f(y)|/ε

)
> 0

where the last inequality follows from |f(y)| = |y − ξ| < ε. In conjunction with (3.1), this
proves the lemma.

With Lemma 3.3 in hand, we can now give a proof of Theorem 3.1.

Proof of Theorem 3.1. Suppose b <∞ and let ε > 0. Then there exists x ∈ D such that
|Rex − b| < ε. Hence Bε(x) ∩ Dc is nonempty, for otherwise we could increase b. It
follows that Bε(x) must contain some ξ ∈ ∂D and that |Re ξ − b| < 2ε.

By Lemma 3.3, we know that P0

(
WτD ∈ Bε(ξ) ∩ ∂D

)
> 0, from which it follows

that P0 (ReWτD > b− 3ε) > 0. Hence P0 (ReWτD ∈ (−∞, b− 3ε]) < 1. This implies that
b− 3ε < β ≤ b so we can conclude that β = b. The proof that α = a follows similarly.

Now suppose that E0[τD] < ∞. If b < ∞, we have already shown that β = b, so
assume b =∞. We will show that β <∞ leads to a contradiction.

A result of Burkholder [10, Equation 3.13] shows that

E0[τD] <∞ implies Ex[τD] <∞ for all x ∈ D. (3.4)

By hypothesis, there exists x ∈ D such that Rex > β. Note that Re ξ ≤ β for all ξ ∈ ∂D,
for otherwise we could use Lemma 3.3 to increase β. Since WτD ∈ ∂D almost surely, this
implies

Ex [τD] ≥ Ex
[

inf{t ≥ 0 : ReWt ≤ β}
]

=∞.

In light of (3.4), this leads to the desired contradiction. The proof that α = a follows
similarly.

4 Proofs of main results

4.1 Proof of Theorem 2.1

Proof of Theorem 2.1. If λ(D) = 0 there is nothing to prove, so assume that λ(D) > 0.
In this case we can use (2.1) to write

λ(D) ≤ Cd ‖uD‖−1∞
≤ CdE0 [τD]

−1
. (4.1)

Since the components of W are all independent, each W (i) is a Brownian motion in
the natural filtration of W , with respect to which τD is a stopping time. In particular,
optional stopping applied to the martingale (W

(i)
t )2 − t implies that

E0

[(
W

(i)
τD∧n

)2]
= E0 [τD ∧ n]
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for each 1 ≤ i ≤ d and n ∈ N. Letting n→∞ in the above equality while using Fatou’s
lemma on the left-hand side and monotone convergence on the right-hand side leads to

E0

[(
W (i)
τD

)2]
≤ E0 [τD] (4.2)

for each 1 ≤ i ≤ d. Combining (4.1) and (4.2) proves the theorem. The numerical
estimates follow from [4, Table 1].

4.2 Proof of Theorem 2.4

Proof of Theorem 2.4. If β − α = ∞, then (2.5) gives the trivial lower bound of 0 so
there is nothing to prove in this case. Hence we can assume that α > −∞ and β <∞.
Since D is a solution domain to the CSEP (1.1), we know that E0 [τD] <∞. By Theorem
3.1, this implies that {Re z : z ∈ D} = (α, β). Hence D is contained in the infinite strip

Sα,β = {z ∈ C : α < Re z < β}. Since λ(Sα,β) = π2

2(β−α)2 , the result follows by domain
monotonicity of Dirichlet Laplacian eigenvalues [26, Lemma 3.1.1].

4.3 Proof of Theorem 2.6

The first step in proving Theorem 2.6 is to calculate the rate of U. This will be
essential in establishing that it is indeed a minimal rate solution to the CSEP for U[−1, 1].
We do this in the following lemma.

Lemma 4.1.

λ(U) =
π2

8

Proof. Since U is contained in the infinite strip {z ∈ C : |Re z| < 1}, it follows from

domain monotonicity of Dirichlet Laplacian eigenvalues that λ(U) ≥ π2

8 . To get an upper
bound, notice from (2.6) that the rectangles

Rn :=

{
z ∈ C : |Re z| < 1− 1

n
, h

(
1− 1

n

)
< Im z < h

(
1− 1

n

)
+ n

}
, n ≥ 2

are all contained in U and have width 2(1− 1
n ) and height n. Separation of variables can

be used to calculate λ(Rn) explicitly, which, along with domain monotonicity, allows us
to write

λ(Rn) =
π2

2

(
1

4
(
1− 1

n

)2 +
1

n2

)
≥ λ(U), n ≥ 2.

Letting n→∞ in the above inequality completes the proof.

Now that we know λ(U), it remains to show that U is actually a solution to the
CSEP for U[−1, 1]. The finite width of U implies E0[τU] < ∞ and we can show that
ReWτU ∼ U[−1, 1] by way of an explicit conformal map from U onto the upper half-plane
H while exploiting conformal invariance of Brownian motion.

Proof of Theorem 2.6. Consider the holomorphic function

f(z) = 2i e−
π
2 iz − i.

Since z 7→ ez is injective on the infinite strip {z ∈ C : | Im z| < π
2 } and since U is contained

in the infinite strip {z ∈ C : |Re z| < 1}, it follows that f is injective on U.
From (2.6), we know that ∂U = {x+ i h(x) : x ∈ (−1, 1)}. It will be convenient to

foliate U by vertical translates of ∂U. More specifically, for each y ≥ 0, define hy =
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{x+ i(h(x) + y) : x ∈ (−1, 1)}. Then ∂U = h0 and U =
⋃
y>0 hy. Since f is injective on U,

we can foliate f(U) by the images of hy under f . Towards this end, we compute

f(hy) =
{

2i exp
(
−π

2
ix− log

(
2 cos

π

2
x
)

+
π

2
y
)
− i : x ∈ (−1, 1)

}
=

{
2ie

π
2 y

cos π2x− i sin π
2x

2 cos π2x
− i : x ∈ (−1, 1)

}
=
{
e
π
2 y tan

π

2
x+ i

(
e
π
2 y − 1

)
− i : x ∈ (−1, 1)

}
(4.3)

=
{
z ∈ C : Im z = e

π
2 y − 1

}
.

This shows that f(U) =
⋃
y>0 f(hy) = H, hence f maps U conformally onto H.

Now for 0 ≤ x < 1, the conformal invariance of Brownian motion and the fact that ∂U
is given by the graph of the function h imply that

P0 (0 ≤ ReWτU ≤ x) = Pf(0)
(
Re f

(
i h(0)

)
≤ ReWτH ≤ Re f

(
x+ i h(x)

))
= Pi

(
0 ≤ ReWτH ≤ tan

π

2
x
)

=
1

2
x.

In the middle equation we used (4.3) with y = 0 and in the last equation we used the fact
that the law of ReWτH under Pi is just the harmonic measure of the upper half-plane
with pole at i which is well known to have the standard Cauchy distribution [22, Table
4.1]. Together with symmetry considerations, this shows that ReWτU ∼ U[−1, 1] under
P0. In light of Corollary 2.5 and Lemma 4.1, it follows that U is a minimal rate solution
to the CSEP for U[−1, 1].
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