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Abstract

Let Tλ be a Galton–Watson tree with Poisson(λ) offspring, and let A be a tree property.
In this paper, we are concerned with the regularity of the function Pλ(A) := P(Tλ |=
A). We show that if a property A can be uniformly approximated by a sequence of
properties {Ak}, depending only on the first k vertices in the breadth first exploration
of the tree, with a bound in probability of Pλ(A4Ak) ≤ Ce−ck over an interval
I = (λ0, λ1), then Pλ(A) is real analytic in λ for λ ∈ I. We also present some
applications of our results, particularly to properties that are not expressible in first
order logic on trees.
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1 Introduction

LetX1, X2, . . . be a sequence of independent Poisson random variables with parameter
λ. Set X̃ = (X1, X2, X3, . . . ) and construct a tree Tλ so that node i has Xi children,
labelling the nodes from top to bottom and left to right, i.e., breadth first ordering (see
Figure 1). We call the sequence X̃ the seed of the Poisson Galton–Watson tree Tλ with
parameter λ. Note that if the tree has a finite number n of vertices then the values Xj

for j > n are irrelevant.
Although the offspring distribution completely determines the law of Tλ, it does

not provide an immediate sense of the tree’s structure. A more transparent structural
description of Tλ is provided by tree property probabilities, i.e., for a given tree property
A, what is the probability that Tλ has this property? For convenience, we will identify
this event Tλ |= A with the property A itself, defining

fA(λ) := Pλ(Tλ |= A) , (1.1)

where Pλ(·) is the probability measure on trees induced by the Poisson(λ) Galton–Watson
process. In this paper we are interested in the regularity of fλ(A) as a function of λ for
certain choices of the tree property A.
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Figure 1: The node labelling convention. The seed used to define this tree is
(3, 0, 2, 1, 0, 0, 0, . . . ).

In essence, this is a question about phase transitions: loss of regularity in Pλ(A) at a
particular value of λ is interpreted as phase transition in structure of Tλ, as ‘seen by’
property A. We illustrate this idea as follows. Consider the two events

A1 = {The tree is infinite} = {|Tλ| =∞} ,
A2 = {The root has exactly one child} = {X1 = 1} .

(1.2)

As is well known (see, e.g., Prop. 5.4 in [3]), the probability fA1
(λ) that Tλ is infinite

satisfies

fA1
(λ) = 1− exp(−λfA1

(λ)), (1.3)

or equivalently,

fA1(λ) = 1 +
W0(−λe−λ)

λ
, (1.4)

where W0(x) is the principle branch of the Lambert W function studied in [2], the unique
real solution to

W0(x)e
W0(x) = x, W0(x) ≥ −1. (1.5)

This function fA1
(λ) = Pλ(A1) is real analytic on I1 = (0, 1) and on I2 = (1,∞), but has

a branch cut singularity at λ = 1 and so is not real analytic on any interval containing
this point: the interpretation is that the size of a Poisson Galton–Watson tree undergoes
a phase transition at λ = 1. On the other hand, the probability that the root node has
exactly one child is

fA2
(λ) = λe−λ, (1.6)

which is a real analytic function over the entire domain I = (0,∞). From the perspective
of A2, there is no phase transition.

Recently, Podder and Spencer [7, 8] studied this question in the context of first
order properties on trees. Informally speaking, a first order property can be expressed
as a sentence in first order logic, which contains an infinite number of variables, the
equality “=” relation, the binary parent relation π(x, y) which is true if y is the parent
of x, the root symbol R, universal and existential quantifiers and the usual Boolean
connectives.

In [8], Podder and Spencer used the Ehrenfeucht game for rooted trees and a
contraction mapping theorem to prove the following:

Theorem 1.1. Let A be a first order property. Then fA(λ) is a C∞(0,∞) function.
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Our main result, Theorem 1.5, is an extension of this to a larger class of properties.
We also improve the smoothness. Before stating our result, we introduce some notation
and definitions.

The k-truncated seed X̃(k) = (X1, . . . , Xk) is given by the first k elements of the
seed X̃.

Definition 1.2. An event A is called k-tautologically determined if there exists a set
B ⊆ Nk such that

A =
{
X̃(k) ∈ B

}
. (1.7)

Definition 1.3. An event A is called rapidly determined over an open interval I ⊆ (0,∞),
if for every λ ∈ I, there exist positive constants c and C, k0 ∈ N, and a sequence of k-
tautologically determined events Ak such that for all k ≥ k0,

Pλ(A4Ak) ≤ Ce−ck. (1.8)

Theorem 1.4 ([8, Theorem 6.6]). Every first order property is rapidly determined over
(0,∞).

We can now state our main result:

Theorem 1.5. Suppose that a tree property A is rapidly determined over an open
interval I ⊆ (0,∞). Then fA(λ) is a real analytic function on I.

The conclusion of the theorem means that for every λ ∈ I, there exists δ > 0 so that
the function fA(λ) can be extended to a complex analytic function fA(z) on the disc
Dδ(λ) = {z : |z − λ| ≤ δ}. Theorem 1.5 improves on Theorem 1.1 in two ways. Firstly, we
broaden the scope of applicability to the larger class of rapidly determined properties,
and secondly, we improve the regularity from C∞ to real analytic. The collection of first
order properties is countable, since every first order property is specified by a finite
sequence from a countable alphabet. On the other hand, Proposition 3.5 in Section 3
describes uncountably many rapidly determined properties.

Corollary 1.6. Let A be a first order property. Then fA(λ) is a real analytic function of
λ ∈ (0,∞).

Proposition 1.7. Let

A = {there exists a node on an even level with exactly nA children}
B = {there exists a node on a prime level with exactly nB children}.

Then A and A ∪B are both rapidly determined on (0,∞).

Remark 1.8. We note that neither A nor A ∪B are first order properties. This follows
from a simple modification of [9, Theorems 2.1.3 and 2.3.3].

Unlike Podder and Spencer, our methods are not model theoretic in nature. Instead,
we take a more direct, complex analytic approach. It is similar in spirit to the route taken
in [5, 6], where the regularity of Lyapunov exponents for products of discrete random
matrices were studied.

2 Analyticity for rapidly determined properties

In this section we prove Theorem 1.5. We begin with a preliminary result.

Lemma 2.1. Let k ∈ N and let A be a k-tautologically determined event. Then fA(λ)

may be analytically continued to an entire function fA(z).
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Proof. By the assumption on A there existsB ⊆ Nk such that A = {X̃(k)
λ ∈ B}. Therefore

we have

Pλ(A) = P
(
X̃

(k)
λ ∈ B

)
=

∑
(m1,...,mk)∈B

k∏
i=1

e−λ
λmi

mi!

= e−kλ
∑

(m1,...,mk)∈B

λm1+···+mk

m1! . . .mk!
= e−kλ

∞∑
n=0

an
λn

n!
,

(2.1)

where

0 ≤ an =
∑

(m1,...,mk)∈B
m1+···+mk=n

(
n

m1, . . . ,mk

)
≤

∑
(m1,...,mk)∈Nk
m1+···+mk=n

(
n

m1, . . . ,mk

)
= kn. (2.2)

Since

lim
n→∞

∣∣∣an
n!

∣∣∣ 1n ≤ lim
n→∞

∣∣∣∣knn!
∣∣∣∣ 1n = 0, (2.3)

it follows that Pλ(A) may be analytically continued to an entire function Pz(A).

Proof of Theorem 1.5. Let λ ∈ I. Since A is rapidly determined over the interval I,
there exists constants c and C, k0 ∈ N and a sequence of k-tautologically determined
events (Ak) such that for all k ≥ k0

Pλ(A4Ak) ≤ Ce−ck. (2.4)

From this it then follows that

Pλ(A) = lim
k→∞

Pλ(Ak) = lim
n→∞

n∑
k=1

Pλ(Ak \Ak−1) . (2.5)

From Lemma 2.1 we get that fAk(λ) = Pλ(Ak) can be extended to a complex analytic
function over C that we denote as fAk(z). In order to establish that fA(λ) can also be
extended to an analytic function in some neighbourhood of λ ∈ I, it suffices to show
that for every λ ∈ I there exist positive constants c1 and c2 and δ > 0 such that for all
z ∈ Dδ(λ) = {z ∈ C : |z − λ| ≤ δ}, we have

|fAk\Ak−1
(z)| ≤ c1e−c2k. (2.6)

Indeed, this will then imply that fAn(z) converges uniformly to a function denoted fA(z),
which will also be analytic on Dδ(λ).

Since the event Ak \ Ak−1 is k-tautologically determined, we have a set B ⊆ Nk be
such that

Ak \Ak−1 = {X̃(k) ∈ B}, (2.7)

and can therefore write the analytic continuation of fAk\Ak−1
(λ) as

fAk\Ak−1
(z) =

∞∑
`=0

∑
(m1,...,mk)∈B∑

i≤kmi=`

k∏
i=1

e−z
zmi

mi!
. (2.8)

We then bound the modulus of fAk\Ak−1
(z) as follows. First, we use that for all ε > 0,

r ≥ 0, and z ∈ Dδ(λ) with δ ≤ min
{
λε
2 , log

1+ε
1+ε/2

}
, we have∣∣∣∣zre−zr!

∣∣∣∣ ≤ ∣∣∣∣1 + δ

λ

∣∣∣∣r eδ λre−λr!
≤ (1 + ε)

r λ
re−λ

r!
, (2.9)
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and apply this for all k terms of the product appearing in (2.8). This gives the bound

|fAk\Ak−1
(z)| ≤

∞∑
`=0

(1 + ε)`
∑

(m1,...,mk)∈B∑
i≤kmi=`

k∏
i=1

e−λ
λmi

mi!
. (2.10)

We now split this sum, and bound each term as

|fAk\Ak−1
(z)| ≤

∑
`≤[3kλ]

(1 + ε)`
∑

(m1,...,mk)∈B∑
i≤kmi=`

k∏
i=1

e−λ
λmi

mi!

+
∑

`>[3kλ]

(1 + ε)`
∑

(m1,...,mk)∈B∑
i≤kmi=`

k∏
i=1

e−λ
λmi

mi!

≤ (1 + ε)3kλ


∞∑
`=0

∑
(m1,...,mk)∈B∑

i≤kmi=`

k∏
i=1

e−λ
λmi

mi!



+
∑

`>[3kλ]

(1 + ε)`

 ∑
(m1,...,mk)∈Nk∑

i≤kmi=`

k∏
i=1

e−λ
λmi

mi!


= (1 + ε)3kλ · Pλ(Ak \Ak−1) +

∑
`>[3kλ]

(1 + ε)` · Pλ

(
k∑
i=1

Xi = `

)
.

(2.11)

Since
∑k
i=1Xi has the Poisson distribution with parameter kλ, it follows that there exists

a positive constant c1 so that for ` > [3kλ],

Pλ

(
k∑
i=1

Xi = `

)
≤ e−c1`. (2.12)

From (2.4) we get that there exist positive constants c2 and c3 so that for all k,

Pλ(Ak \Ak−1) ≤ c2e−c3k. (2.13)

Taking ε sufficiently small and using the two bounds above in (2.11) we obtain for positive
constants c4 and c5,

|fAk\Ak−1
(z)| ≤ c4e−c5k, (2.14)

and this concludes the proof of (2.6) and hence the theorem.

3 Examples of rapidly determined properties

In this section we provide some examples of rapidly determined properties to demon-
strate the applicability of Theorem 1.5.

We start by showing that when the tree is subcritical, every property is rapidly
determined. For a tree T , we write |T | for the total number of vertices in T .

Proposition 3.1. Let 0 ≤ λ0 < λ1 ≤ 1. Then every property A is rapidly determined on
the interval I = (λ0, λ1).
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Proof. Let Ak = A ∩ {|Tλ| < k}. Since Ak is a k-tautologically determined event, it
suffices to show that for every λ < 1 there exist positive constants c and C so that for all
k

Pλ(A4Ak) ≤ Ce−ck. (3.1)

We now have

Pλ(A4Ak) = Pλ(A \Ak) ≤ Pλ(|Tλ| ≥ k) ≤ Pλ

(
k∑
i=1

Xi ≥ k

)
. (3.2)

Using that
∑k
i=1Xi has the Poisson distribution with parameter kλ and λ < 1 proves (3.1)

(See, e.g., Appendix A in [1]), and this concludes the proof.

Remark 3.2. One interpretation of the proposition above is that Poisson Galton–Watson
trees do not exhibit a phase transition in any property over the interval I = (0, 1).

Lemma 3.3. Let Ek be the set of nodes amongst the first k which lie on an even level.
Then for every λ ∈ (0,∞) there exists a positive constant c so that

Pλ

(
|Ek| ≤

k

2λ+ 1
, |Tλ| ≥ k

)
≤ e−ck. (3.3)

In the proof of Lemma 3.3, we will need the following version of the Azuma–Hoeffding
inequality for supermartingales with bounded exponential moments:

Lemma 3.4 ([4, Lemma 4.3]). Let (Mk)k∈N0
be a supermartingale with respect to the

filtration Fk with M0 = 0. Suppose that the increments Yk = Mk − Mk−1 satisfy
E
[
eYk |Fk−1

]
≤ C. Then for all k > 0 and real α ∈ [0, 2C], we have

P(Mk ≥ αk) ≤ e−
α2k
4C . (3.4)

Proof of Lemma 3.3. Let Tλ be a Poisson(λ) Galton–Watson tree with associated seed
X̃ = (X1, X2, . . . ), and let Ek (resp. Ok) be the set of nodes amongst the first k which
lie on an even (resp. odd) level, with the convention that if k > |Tλ| then Ek = E|Tλ| and
Ok = O|Tλ|. Denote the set of children of Ek by C(Ek).

On the event {|Tλ| ≥ k}, the first k nodes exist and we have

|Ek|+ |Ok| = k. (3.5)

Noting that Ok ⊆ C(Ek), we see that

|C(Ek)| ≥ k − |Ek|, (3.6)

and hence on the event {|Ek| ≤ k
2λ+1} ∩ {|Tλ| ≥ k}, we have

|C(Ek)| ≥
2λk

2λ+ 1
. (3.7)

Now consider the sequence of random variables (Mk)k∈N0
with

Mk = |C(Ek)| − λ|Ek|. (3.8)

By (3.7), on the event {|Ek| ≤ k
2λ+1} ∩ {|Tλ| ≥ k}, we have

Mk ≥
λk

2λ+ 1
(3.9)
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almost surely, and hence

Pλ

(
|Ek| ≤

k

2λ+ 1
, |Tλ| ≥ k

)
= Pλ

(
Mk ≥

λk

2λ+ 1
, |Ek| ≤

k

2λ+ 1
, |Tλ| ≥ k

)
≤ Pλ

(
Mk ≥

λk

2λ+ 1

)
.

(3.10)

We now use the fact that (Mk)k∈N0
is a martingale with respect to the filtration generated

by the truncated seed X̃(k) = (X1, . . . , Xk), and satisfies the conditions of Lemma 3.4. To
see this, note that Mk can alternatively be written as

Mk =

k∑
i=0

1i∈Ei(Xi − λ), (3.11)

and hence has increments Yi =Mi −Mi−1 = 1i∈Ei(Xi − λ). These may be bounded as

E
[
eYi
∣∣X̃(i−1)

]
≤ E

[
eXi
]
= eλ(e−1). (3.12)

Clearly, λ
2λ+1 ≤ 2eλ(e−1) for all λ > 0, and hence by Lemma 3.4,

Pλ

(
|Ek| ≤

k

2λ+ 1
, |Tλ| ≥ k

)
≤ Pλ

(
Mk ≥

λk

2λ+ 1

)
≤ e−ck, (3.13)

with c = λ2

4(2λ+1)2eλ(e−1) .

Next we prove a more general statement than the one given in Proposition 1.7. As
noted in the introduction, this statement implies that there are uncountably many rapidly
determined properties.

In the following, if F ⊆ N is a set of levels, we say that a node lies on an F -level if
the level of the node is contained in F .

Proposition 3.5. The event

A = {there exists a node on an even level with exactly nA children}

is rapidly determined on the interval I = (λ0, λ1) for any 0 ≤ λ0 < λ1 ≤ ∞. Moreover, if
F ⊆ N is any set of levels, and B is the event

B = {there exists a node on an F -level with exactly nB children} ,

then A ∪B is a rapidly determined event.

Proof. Let Tλ be a Poisson(λ) Galton–Watson tree with seed X̃ = (X1, X2, . . . ), and let Ek
and Fk be the sets of nodes among the first k which lie on an even/F -level, respectively.
We now define the event Ak (resp. Bk) that in Ek (resp. Fk) there exists a node with
exactly nA (resp. nB) children, i.e,

Ak =
⋃
i∈Ek

{Xi = nA} , Bk =
⋃
i∈Fk

{Xi = nB} , (3.14)

with the convention that if |Tλ| < k then Ek = E|Tλ| and Fk = F|Tλ|. As Ak ⊆ A and
Bk ⊆ B, we have (A ∪B)4(Ak ∪Bk) = (A ∪B) ∩ (Ack ∩Bck), and on this event we must
have |Tλ| ≥ k. Hence,

Pλ((A ∪B)4(Ak ∪Bk)) = Pλ((A ∪B) ∩ (Ack ∩Bck), |Tλ| ≥ k)
≤ Pλ(Ack, |Tλ| ≥ k)

(3.15)
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Splitting this over {|Ek| ≤ k
2λ+1} ∪ {|Ek| >

k
2λ+1},

Pλ(A
c
k, |Tλ| ≥ k) = Pλ

(
Ack, |Tλ| ≥ k, |Ek| ≤

k

2λ+ 1

)
+ Pλ

(
Ack, |Tλ| ≥ k, |Ek| >

k

2λ+ 1

)
,

(3.16)
we may bound the first term using Lemma 3.4 as

Pλ

(
Ack, |Tλ| ≥ k, |Ek| ≤

k

2λ+ 1

)
≤ Pλ

(
|Tλ| ≥ k, |Ek| ≤

k

2λ+ 1

)
≤ e−ck. (3.17)

For the second term, we again use a martingale argument. Consider the martingale
(Mk)k∈N0

with respect to the filtration generated by the truncated seed X̃(k) with

Mk =

k∑
i=0

1i∈Ei(p− 1Xi=nA), (3.18)

where p = Pλ(Xi = nA). On the event Ack =
⋂
i∈Ek{Xi 6= 1}, we have Mk = p|Ek| and

hence, on Ack ∩ {|Ek| > k
2λ+1} we have Mk ≥ pk

2λ+1 . Noting that |Mk −Mk−1| ≤ 1, we may
therefore bound the second term in equation (3.16) with the usual Azuma–Hoeffding
inequality

Pλ

(
Ack, |Tλ| ≥ k, |Ek| >

k

2λ+ 1

)
≤ Pλ

(
Mk ≥

kp

2λ+ 1

)
≤ e−c

′k (3.19)

with c′ = p2

2(2λ+1)2 , and this concludes the proof.
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