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Abstract

The branching Brownian sausage in Rd was defined in [4] similarly to the classical
Wiener sausage, as the random subset of Rd scooped out by moving balls of fixed
radius with centers following the trajectories of the particles of a branching Brownian
motion (BBM). We consider a d-dimensional dyadic BBM, and study the large-time
asymptotic behavior of the volume of the associated branching Brownian sausage
(BBM-sausage) with radius exponentially shrinking in time. Using a previous result on
the density of the support of BBM, and some well-known results on the classical Wiener
sausage and Brownian hitting probabilities, we obtain almost sure limit theorems as
time tends to infinity on the volume of the shrinking BBM-sausage in all dimensions.
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1 Introduction

1.1 Formulation of the problem and background

Let X = (X(t))t≥0 be a standard d-dimensional Brownian motion (BM) starting at the
origin. The Wiener sausage of radius r associated to X is the set-valued process defined
by

Xr
t =

⋃
0≤s≤t

B(X(s), r),

where B(x, r) is the closed ball of radius r > 0 centered at x ∈ Rd. For each t ≥ 0, Xr
t is

then a random subset of Rd, which looks like a ‘sausage’ scooped out over the period
[0, t] by a moving ball of fixed radius centered at the Brownian trajectory. Note that the
Wiener sausage is a non-Markovian functional of X.

Now let Z = (Z(t))t≥0 be a d-dimensional strictly dyadic branching Brownian motion
(BBM). The process can be described as follows. It starts with a single particle at the
origin, which performs a BM in Rd for a random lifetime, at the end of which it dies and
simultaneously gives birth to two offspring. Similarly, starting from the position where
their parent dies, each offspring particle repeats the same procedure as their parent
independently of each other and of the parent, and the process evolves through time
in this way. All particle lifetimes are exponentially distributed with constant parameter
β > 0, which is called the branching rate. For each t ≥ 0, Z(t) can be viewed as a finite
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Volume of BBM sausage

discrete measure on Rd, which is supported at the particle positions at that time. We
use P and E, respectively, as the probability and corresponding expectation for Z. The
range (accumulated support) of Z is the process defined by

R(t) =
⋃

0≤s≤t

supp(Z(s)), (1.1)

and the branching Brownian sausage (BBM-sausage) with radius r associated to Z is the
process defined by

Ẑrt :=
⋃

x∈R(t)

B(x, r).

The Wiener sausage and various set functions of it, especially its volume, have
been frequently studied going back to [13]. In [3], Donsker and Varadhan obtained an
asymptotic result on the Laplace transform of the volume of the Wiener sausage, which
is a large-deviation (LD) result giving information on the probability that the volume is
aytpically small. In [1] and [14], the work in [3] was extended to the case of the so-called
shrinking Wiener sausage. We refer the reader to [5, Sect. 1] and the references therein
for a brief survey of limit theorems on the volume of the Wiener sausage.

The branching Brownian sausage was introduced by Engländer in [4] in analogy with
the classical Wiener sausage, and an asymptotic result on the Laplace transform of its
volume was obtained similar to the one in [3], by using an equivalence to a trapping
problem of BBM among Poissonian traps. In more detail, consider a Poisson point
process Π on Rd with intensity measure ν, and for r > 0 define the random trap field as

K :=
⋃

xi ∈ suppΠ

B(xi, r).

Define the first trapping time of the BBM as T := inf {t ≥ 0 : R(t) ∩K 6= ∅}, and the
event of survival of BBM from traps up to time t as St := {T > t}. Then, denoting the
annealed law of the traps and the BBM as P, the first trapping problem of BBM among a
Poissonian field of traps in Rd is related to the BBM-sausage by Fubini’s theorem:

P(St) = E
[
e−ν(Ẑ

r
t )
]
.

For a Borel set A ⊆ Rd, we say volume of A to refer to its Lebesgue measure, which we
denote by vol(A). In [4], it was shown that when the trap intensity is uniform, that is,
when ν = v vol with v > 0, then

E e−v vol(Ẑ
r
t ) = e−βt+o(t), t→∞. (1.2)

To the best of our knowledge, apart from [4], no further work was done on the BBM-
sausage. We note that (1.2) gives information on the probability that the volume of a
BBM-sausage with a constant radius is atypically small, whereas in the current work we
study the typical behavior of a BBM-sausage with an exponentially shrinking radius.

1.2 Motivation

The current work can be regarded as a sequel to the recent works [10] and [11]
under the common theme of spatial distribution of mass in BBM. In [10], the mass of
BBM falling in linearly moving balls of fixed radius was studied, and an LD result on
the large-time probability that this mass is atypically small on an exponential scale was
obtained. The asymptotics of the probability of absence of BBM in linearly moving balls
of fixed radius, emerged as a special case [10, Corollary 2]. It is well-known that the
total mass of BBM typically grows exponentially in time. Also, it is known that typically
for large t and any ε > 0, at time t there will be particles outside B(0,

√
2β(1− ε)t) but

no particles outside B(0,
√

2β(1 + ε)t).
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Volume of BBM sausage

Definition 1.1 (Subcritical ball). We call B = (B(0, ρt))t≥0 a subcritical ball if there
exists 0 < ε < 1 and time t0 such that B(0, ρt) ⊆ B

(
0,
√

2β(1− ε)t
)

for all t ≥ t0.

Remark 1.2. We use the term subcritical ball both in the sense of an expanding ball
B = (B(0, ρt))t≥0 as in Definition 1.1, and also simply as a snapshot taken of an expanding
ball at a fixed large time t as B(0, ρt).

In [11], the following was asked: how homogeneously are the exponentially many
particles at time t spread out over a subcritical ball? This homogeneity question was
formulated in terms of the degree of density of support of BBM at time t. Firstly, [10,
Corollary 2] was extended to the case of the mass falling in linearly moving balls of
exponentially shrinking radius r(t) = r0e

−kt, and then via a covering by sufficiently
many of such balls, an LD result concerning the r(t)-density of the support of BBM
in subcritical balls was obtained. The concept of r(t)-density of the support of BBM
naturally led to the following definition.

Definition 1.3 (Enlargement of BBM). Let Z = (Z(t))t≥0 be a BBM. For t ≥ 0, we define
the r-enlargement of Z(t) as

Zrt :=
⋃

x∈ supp(Z(t))

B(x, r).

In [11], furthermore, the following results were obtained on the large-time behavior
of r(t)-enlargement of BBM in Rd. Theorem A below says that, with probability one, an
r(t)-enlargement of BBM with r(t) decaying exponentially in t covers the subcritical ball
B(0, θ

√
2βt) eventually provided that θ is smaller than a certain critical value. Theorem

B is on the large-time behavior of the volume of r(t)-enlargement of BBM.

Theorem A (Almost sure density of BBM; [11]). Let 0 < θ < 1, 0 ≤ k < (1− θ2)/d, r0 > 0

and r : R+ → R+ be defined by r(t) = r0e
−βkt. For t > 0 define ρt := θ

√
2βt. Then, in any

d ≥ 1,

P (Ω0) = 1, where Ω0 := {ω : ∃ t0 = t0(ω) such that ∀ t ≥ t0, B(0, ρt) ⊆ Zrtt (ω)} .

In what follows, we use ωd to denote the volume of the d-dimensional unit ball.

Theorem B (Almost sure volume of enlargement of BBM; [11]). Let 0 ≤ k ≤ 1/d, r0 > 0

and r : R+ → R+ be defined by r(t) = r0e
−βkt. Then, with probability one,

lim
t→∞

vol (Zrtt )

td
= [2β(1− kd)]d/2ωd.

Motivated by the results above, we ask the following question in the present work. For
large t, by how much on the scale of td, if at all, is the volume of the BBM-sausage with
radius r(t) (i.e., the r(t)-shrinking BBM-sausage) larger than that of the r(t)-enlargement
of BBM? The aim here is to answer this question in a precise way as t→∞.

Notation: We introduce further notation for the rest of the manuscript. For x ∈ Rd,
we use |x| to denote its Euclidean norm. We use c, c0, c1, . . . as generic positive constants,
whose values may change from line to line. If we wish to emphasize the dependence of c
on a parameter p, then we write cp or c(p). We use R+ to denote the set of nonnegative
real numbers, and write o(f(t)) to refer to g(t), where g : R+ → R+ is a generic
function satisfying g(t)/f(t)→ 0 as t→∞, unless otherwise stated. Also, for a function
g : R+ → R+, we use gt = g(t) for notational convenience. We denote by X = (X(t))t≥0

a generic standard BM in d-dimensions, and use Px and Ex, respectively, as the law of
X started at position x ∈ Rd, and the corresponding expectation.

Outline: The rest of the paper is organized as follows. In Section 2, we present our
main results. In Section 3, we develop the preparation for the proofs of our main results,
and then give the heuristic argument behind them. The proofs of the main results are
given in Section 4.
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2 Results

Theorem 2.1 and Theorem 2.2 are on the almost sure growth of exponentially shrink-
ing BBM-sausages in d = 2 and d ≥ 3, respectively.

Let k ≥ 0, r0 > 0, and r : R+ → R+ be defined by r(t) = r0e
−βkt.

Theorem 2.1. In d = 2, with probability one,

lim
t→∞

vol
(
Ẑrtt

)
t2

= 2πβ.

Theorem 2.2. In d ≥ 3, with probability one,

lim
t→∞

vol
(
Ẑrtt

)
td

=

{
[2β(1− k(d− 2))]d/2ωd if k < 1/(d− 2),

0 if k ≥ 1/(d− 2).
(2.1)

Remark 2.3. Theorem 2.1 says that in d = 2, the large-time behavior of the volume of
Ẑrtt is as different as it can be from that of Zrtt , which is given by Theorem B as: with
probability one,

lim
t→∞

vol (Zrtt )

t2
=

{
2πβ(1− 2k) if k < 1/2,

0 if k ≥ 1/2.

This can be explained as follows. In d = 2, the motion component of BBM plays a
dominating role in the large-time behavior of the shrinking BBM sausage due to the
almost sure neighborhood recurrence of BM. Note that the result does not depend on k.
For large t, a BBM-sausage with any exponentially shrinking radius (independent of how
large the exponential rate of decay is for the radius) covers all subcritical balls, that is,
for any 0 < ε < 1, the sausage Ẑrtt eventually covers B(0,

√
2β(1− ε)t) almost surely.

In d ≥ 3, from Theorem B, we have

lim
t→∞

vol (Zrtt )

td
=

{
[2β(1− kd)]d/2ωd if k ≤ 1/d,

0 if k > 1/d.

Hence, Theorem 2.2 says that in d ≥ 3 for large t, provided that the decay of the
sausage radius is slow enough, the accumulated support of BBM over [0, t) has a non-
trivial contribution to the volume of the rt-shrinking sausage over [0, t] although the
contribution is not significant enough to cover all subcritical balls; whereas, if the decay
of rt is sharper than a certain threshold (i.e., if k > 1/(d− 2)), the accumulated support
over [0, t) and the support at time t both have negligible contribution on the scale of td.

Remark 2.4. In d = 1, it is clear that with probability one,

lim
t→∞

vol
(
Ẑrtt

)
t

= lim
t→∞

[
2 rt + sup

0≤s≤t
R(t)− inf

0≤s≤t
R(t)

]
t

= 2
√

2β,

which follows from the well-known result of Bramson [2] that the speed of strictly dyadic
BBM converges to

√
2β as t→∞ with probability one. On the other hand, Theorem B

says that with probability one,

lim
t→∞

vol (Zrtt )

t
= 2
√

2β(1− k).

Therefore, the large-time behavior of the volume of Ẑrtt is as different as it can be from
that of Zrtt .
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3 Preparations

3.1 Preliminary results

In this section, we develop preparatory results for the proofs of Theorem 2.1 and
Theorem 2.2. The first result is about the large-time asymptotic probability of atypically
large Brownian displacements. For a proof, see for example [9, Lemma 5]. As before, let
X = (X(t))t≥0 be a generic standard BM in d-dimensions, and Px the law of X started
at position x ∈ Rd, with corresponding expectation Ex.

Proposition A (Linear Brownian displacements). For γ > 0,

P0

(
sup

0≤s≤t
|X(s)| > γt

)
= exp[−γ2t/2 + o(t)].

The behavior as t→∞ of the expected volume of the Wiener sausage is well-known
([13], [8]):

E0[vol(Xr
t )] =


√

8t
π (1 + o(1)), d = 1,

2πt
log t (1 + o(1)), d = 2,

κrt(1 + o(1)), d ≥ 3,

(3.1)

where r > 0 is constant, and κr = rd−22πd/2/Γ(d/2 − 1) is the Newtonian capacity of
B(0, r) with Γ denoting the gamma function. The expected volume of the shrinking
Wiener sausage can be obtained from (3.1) and the scaling invariance of BM.

Lemma 3.1 (Expected volume of exponentially shrinking Wiener sausage). Let k > 0,
r0 > 0, and r : R+ → R+ be defined by r(t) = r0e

−βkt. Then,

E0[vol(Xrt
t )] =


√

8t
π (1 + o(1)), d = 1,

π
βk (1 + o(1)), d = 2,

κr0te
−(d−2)βkt(1 + o(1)), d ≥ 3.

(3.2)

Proof. Write ⋃
0≤s≤t

B(X(s), r0e
−βkt) = e−βkt

⋃
0≤s≤t

B(X(s)eβkt, r0). (3.3)

By scaling invariance, we have

E0

vol
 ⋃

0≤s≤t

B(X(s)eβkt, r0)

 = E0

vol
 ⋃

0≤s≤te2βkt
B(X(s), r0)

 . (3.4)

Then, it follows from (3.3) and (3.4) that

E0

vol
 ⋃

0≤s≤t

B(X(s), r0e
−βkt)

 = e−β(kd)tE0

vol
 ⋃

0≤s≤te2βkt
B(X(s), r0)

 . (3.5)

Since te2βkt →∞ as t→∞, it follows from (3.1) that

E0

vol
 ⋃

0≤s≤te2βkt
B(X(s), r0)

 =


√

8t e2βkt

π (1 + o(1)), d = 1,
2πt e2βkt

log(t e2βkt)
(1 + o(1)), d = 2,

κr0te
2βkt(1 + o(1)), d ≥ 3.

(3.6)

Use (3.5) and (3.6) to complete the proof.

ECP 25 (2020), paper 37.
Page 5/12

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP316
http://www.imstat.org/ecp/


Volume of BBM sausage

Lemma 3.2 (Hitting probability of exponentially shrinking ball from outside). Let k > 0,
r0 > 0, and r : R+ → R+ be defined by r(t) = r0e

−βkt. Fix ρ ∈ Rd such that |ρ| =: R > r0.
Then,

Pρ

(
min

0≤s≤1
|X(s)| < rt

)
=

cR
βkt

(1 + o(1)) in d = 2, (3.7)

where cR =
∫∞
R2/2

e−x

2x dx, and

Pρ

(
min

0≤s≤1
|X(s)| < rt

)
= ce−βk(d−2)t(1 + o(1)) in d ≥ 3, (3.8)

where c = c(d, r0, R) > 0.

Proof. For d = 2, from [12, Eq. (1.6)] we have

lim
r→0

log

(
1

r

)
Pρ

(
min

0≤s≤t
|X(s)| < r

)
=

∫ ∞
R2/(2t)

e−x

2x
dx.

Set t = 1, and then replace r by rt in the formula above. Then, (3.7) follows since rt → 0

as t→∞.
For d ≥ 3, we follow an argument similar to the one in [12], which was developed for

the case d = 2. Recall that R = |ρ| is fixed, and define G and its Laplace transform Ĝ for
λ > 0, respectively, as

G(r, t;R) = Pρ

(
min

0≤s≤t
|X(s)| < r

)
= Pρ (τr ≤ t) , Ĝ(r, λ;R) =

∫ ∞
0

e−λtG(r, t;R) dt,

where τr denotes the first hitting time of the Brownian motion to B(0, r). It follows easily
from Fubini’s theorem that Ĝ(r, λ;R) = 1

λEρ[e
−λτr ]. Then, from [6, Eq. (2.5)],

Ĝ(r, λ;R) =
1

λ

( r
R

)v Kv(
√

2λR)

Kv(
√

2λr)
, (3.9)

where v = (d− 2)/2, and Kv is the modified Bessel function of the second kind of order v.
Furthermore, for d ≥ 3 (i.e., v > 0), according to [6, Eq. (3.13)] and references therein,

Kv(z) =
Γ(v)

2

(
2

z

)v
(1 + o(1)), z → 0. (3.10)

Then, it follows from (3.9) and (3.10) that

lim
r→0

Ĝ(r, λ;R)

r2v
=

21−v/2

Γ(v)Rv
λv/2−1Kv(

√
2λR) =: F̂ (λ). (3.11)

An integral formula for Kv(z) (see for example [6, p. 5240]) is

Kv(z) =
1

2

(z
2

)v ∫ ∞
0

e−t−
z2

4t t−v−1 dt. (3.12)

For t ≥ 0, define F (t) = 1
2vΓ(v)

∫ t
0
e−

R2

2x

x1+v dx. Then, using (3.12), it can be verified that

L[F (t)](λ) = F̂ (λ), (3.13)

where L denotes the Laplace transform. For r > 0, let fr be the probability density
function for τr, and define the measure µr(dt) = fr(t)

r2v dt on [0,∞). Then, since Ĝ(r, λ;R) =
1
λEρ[e

−λτr ], (3.11) is equivalent to

lim
r→0
L[µr](λ) = lim

r→0

∫ ∞
0

e−λtµr(dt) = λ F̂ (λ). (3.14)
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Due to (3.13), L[F ′(t)](λ) = λF̂ (λ)− F (0), and we have F (0) = 0. It follows from (3.14)
that

lim
r→0

∫ ∞
0

e−λtµr(dt) =

∫ ∞
0

e−λtµ(dt), (3.15)

where µ(dt) = F ′(t)dt on [0,∞). Then, by the continuity theorem for Laplace transforms,
(3.15) implies that lim

r→0
µr([0, t]) = µ([0, t]) for t > 0, which is equivalent to

lim
r→0

G(r, t;R)

r2v
=

1

2vΓ(v)

∫ t

0

e−
R2

2x

x1+v
dx. (3.16)

Setting t = 1, and replacing r by rt in (3.16) completes the proof of (3.8) since rt → 0 as
t→∞.

3.2 Heuristics

It is clear that since the largest particle distance from the origin is
√

2βt + o(t) in
a BBM, typically the volume of the BBM-sausage even with constant radius at time
t is not larger than (

√
2β)d ωd on the scale of td. On the other hand, we know from

Lemma 3.1 that in d = 2, the expected volume of the rt-shrinking Wiener sausage is
asymptotically constant. Therefore, since there are typically eβt+o(t) particles at time
t, of which at least eεt for some ε > 0 can be treated as independent particles over the
second half of the interval [0, t], and since the volume of a subcritical ball grows only
polynomially in t, we expect that in d = 2 for large t the rt-shrinking BBM-sausage covers
Bθ := B(0, θ

√
2βt) for each 0 < θ < 1 provided that the particles of BBM spread out

sufficiently homogeneously over Bθ (see Theorem A).

The situation is different in d ≥ 3. The number of particles present at time t with
ancestral lines that have exited Bθ at some point over [0, t] typically grows like exp[βt(1−
θ2) + o(t)]. By the strong Markov property, such an ancestral line follows a typical
Brownian path after it first exits Bθ, and then stays out of Bθ over periods of total length
at most t. Therefore, since the expected volume of an rt-shrinking Wiener sausage
decays like exp[−βk(d − 2)t + o(t)] by Lemma 3.1, even if we suppose, for an upper
bound on the volume of the BBM-sausage, that the aforementioned ancestral lines follow
independent BMs starting from their first exit times out of Bθ up to t, and that over
these time periods their respective rt-shrinking Wiener sausages are all disjoint from
one another, typically their union could only have a non-trivial volume (on the scale of
td) outside Bθ provided that 1− θ2 ≥ k(d− 2), which is equivalent to θ ≤

√
1− k(d− 2).

This explains the upper bound in (2.1). For the lower bound, consider a ball of unit size,
say B, contained in Bθ := B(0, θ

√
2βt) at time t, where θ <

√
1− k(d− 2). Typically,

the mass in B at time t − 1 is at least exp[βt(1 − θ2) + o(t)]. Also, due to (3.2), the
expected volume scooped out over [t− 1, t] by the rt-shrinking Wiener sausage is roughly
E0[vol(Xrt

t )]/t = exp[−βtk(d − 2) + o(t)]. Then, provided that the particles are spread
out sufficiently homogeneously over B, since θ <

√
1− k(d− 2) and the volume of B is

constant, we expect even the rt-shrinking Wiener sausages initiated by the particles
present in B at time t− 1 to cover B over [t− 1, t]. Polynomially many balls of unit size
suffice to cover Bθ, and one can see with further analysis that a suitable union bound
over these balls does not disturb the argument.

4 Proof of main results

We first give elementary bounds on vol(Ẑrtt ) that are valid in any dimension. Since
Zrtt ⊆ Ẑrtt by definition, it is clear that vol (Zrtt ) ≤ vol(Ẑrtt ), and therefore, Theorem B
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implies that with probability one,

lim inf
t→∞

vol(Ẑrtt )

td
≥ [2β(1− kd)]d/2ωd. (4.1)

In the rest of the manuscript, letNt denote the set of particles of Z that are alive at time t,
and set Nt = |Nt|. For u ∈ Nt, let (Yu(s))0≤s≤t denote the ancestral line up to t of particle
u. By the ancestral line up to t of a particle present at time t, we mean the continuous
trajectory traversed up to t by the particle, concatenated with the trajectories of all its
ancestors including the one traversed by the initial particle. Note that (Yu(s))0≤s≤t is
identically distributed as a Brownian trajectory (X(s))0≤s≤t for each u ∈ Nt. Recall the
definition of R(t) from (1.1). For t > 0, let Mt := inf{r ≥ 0 : R(t) ⊆ B(0, r)}. Then, using
the union bound, for γ > 0,

P (Mt > γt) = P

(
∃u ∈ Nt : sup

0≤s≤t
|Yu(s)| > γt

)
≤ E[Nt] P0

(
sup

0≤s≤t
|X(s)| > γt

)
. (4.2)

It is a standard result that E[Nt] = exp(βt) (see for example [7, Sect. 8.11]). Moreover,
we know from Proposition A that P0

(
sup0≤s≤t |X(s)| > γt

)
= exp[−γ2t/2 + o(t)]. Then,

for fixed ε > 0, defining the events

Ak :=
{
vol(Ẑrkk )/kd > [2β(1 + ε)]d/2ωd

}
,

it follows from setting γ =
√

2β(1 + ε) in (4.2) that there exists a positive constant c(ε)
such that P (Ak) ≤ e−βc(ε)k for all large k. Applying Borel-Cantelli lemma on the events
(Ak : k ≥ 1), and then choosing ε = 1/n, and finally letting n vary over N yields: with
probability one,

lim sup
t→∞

vol(Ẑrtt )

td
≤ (2β)d/2ωd. (4.3)

The proofs below ‘close the gap’ between [2β(1− kd)]d/2ωd in (4.1) and (2β)d/2ωd in (4.3)
for d = 2 and d ≥ 3, separately. When k = 0, observe that the lower bound in (4.1)
coincides with the upper bound in (4.3), so there is nothing more to prove. Hence, in
what follows, we suppose that k > 0.

Definition 4.1 (Overwhelming probability). Let (At)t>0 be a family of events indexed by
time t. We say that At occurs with overwhelming probability if there is a constant k > 0

and time t0 such that
P (Act) ≤ e−kt for all t ≥ t0,

where Ac denotes the complement of event A.

4.1 Proof of Theorem 2.1

Note that ω2 = π. The upper bound comes from (4.3). We will show that for every
ε > 0 there exists a positive constant c1 such that for all large t,

P (vol(Ẑrtt )/t2 ≤ 2πβ(1− ε)) ≤ e−c1t. (4.4)

Then, the lower bound for Theorem 2.1 will follow from (4.4) via a standard Borel-Cantelli
argument.

Let ε > 0, and for t > 0 let ρt :=
√

2β(1− ε)t and Bt := B(0, ρt). To prove (4.4), we
choose a well-spaced net of points in Bt, and argue that for large t with overwhelming
probability, each ball of radius one centered at a net point has sufficiently many particles
at time t− 1 so that even simple BMs initiated (rather than sub-BBMs) from the positions
of these particles at time t − 1 are enough to ensure that there is no ball of radius rt
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with center lying in Bt that remains not hit over the period [t − 1, t]. In other words,
the following occurs with overwhelming probability: over [0, t− 1], the system produces
sufficiently many particles which are sufficiently well-spaced over Bt at time t − 1,
and then (neglecting the branching over [t− 1, t]), Wiener sausages initiated from the
positions of the particles at this time are enough to cover Bt.

In this subsection, d = 2. However, in some of the notation and arguments that follow,
we prefer to keep d general as they will be used in the next subsection as well, where
d ≥ 3.

For t > 0 define

mt :=

⌈
ρt

1/(2
√
d)

⌉d
, nt :=

⌈
ρt

rt/(2
√
d)

⌉d
. (4.5)

Then, nt = dc2 t/rted for some c2 = c2(ε, β, d). For t > 0, define the events

At :=
{
vol
(
Ẑrtt

)
/t2 ≤ 2πβ(1− ε)

}
.

First, we prepare the setting at time t − 1. Let C(0, ρt) be the cube centered at
the origin with side length 2ρt so that B(0, ρt) is inscribed in C(0, ρt). Consider the
simple cubic packing of C(0, ρt) with balls of radius 1/(2

√
d). Then, at most mt balls are

needed to completely pack C(0, ρt), say with centers (xj : 1 ≤ j ≤ mt). For each j, let
Bj = B(xj , 1/(2

√
d)). (We suppress the t-dependence in xj and Bj for ease of notation.)

Consider a simple cubic packing of Rd by balls (Bj : j ∈ Z+) of radius r > 0, and let
x ∈ Rd be any point. Then, it is easy to see that minj maxz∈Bj |x− z| < (

√
d/2)4r, where√

d/2 is the distance between the center and any vertex of the d-dimensional unit cube,
i.e., C(0, 1/2). Then, since the packing ball radius is 1/(2

√
d) in our case, it follows that

∀x ∈ Bt, min
1≤j≤mt

max
z∈Bj

|x− z| < 1. (4.6)

For a Borel set B ⊆ Rd and t ≥ 0, we write Zt(B) to denote the number of particles, i.e.,
the mass, of Z that fall inside B at time t. For j ∈ {1, 2, . . . ,mt}, define the events

Ej :=
{
Zt−1(Bj) < eβ(ε/2)t

}
. (4.7)

Typically, the mass of BBM that fall inside a linearly moving ball of fixed radius a > 0,
say Bt := B(θ

√
2βte, a) for some unit vector e and 0 < θ < 1, is exp[β(1 − θ2)t + o(t)].

Quoting [10, Thm. 1], in any dimension d ≥ 1, for 0 ≤ a < 1− θ2,

lim
t→∞

1

t
logP

(
Zt(Bt) < eβat

)
= −β × I (4.8)

for some positive rate function I = I(θ, a). Then, since xj ∈ B(0,
√

2β(1− ε)t) for each j,
βε/2 is an atypically small exponent (typical exponent is at least β[1− (

√
1− ε)2] = βε)

for the mass of BBM in each Bj at time t − 1. It follows from (4.8) that there exists a
positive constant c(ε) such that for all large t,

P (∪1≤j≤mtEj) ≤ mte
−c(ε)t = e−c(ε)t+o(t), (4.9)

where we have used the union bound and that mt is only a polynomial factor in t. It
follows from (4.6), (4.7) and (4.9) that at time t− 1, with overwhelming probability, there
are at least eβ(ε/2)t particles in the 1-neighborhood of each point in Bt. That is, there
exists c = c(ε) > 0 such that for all large t,

P (Gt) ≤ e−ct, Gt :=

{
inf
x∈Bt

Zt−1 (B(x, 1)) < eβ(ε/2)t

}
. (4.10)
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Now consider the simple cubic packing of C(0, ρt) with balls of radius rt/(2
√
d). Then,

at most nt balls are needed to completely pack C(0, ρt), say with centers (yj : 1 ≤ j ≤ nt).
For each j, let B̂j = B(yj , rt/(2

√
d)). By an argument similar to the one leading to (4.6),

it follows that
∀x ∈ Bt, min

1≤j≤nt
max
z∈B̂j

|x− z| < rt. (4.11)

For j ∈ {1, 2, . . . , nt}, define the events Fj := {Zs(B̂j) = 0 ∀s ∈ [t− 1, t]}. For 0 ≤ t1 ≤ t2,
let

R(t1, t2) :=

t2⋃
s=t1

supp(Z(s)), Ẑr[t1,t2] :=
⋃

x∈R(t1,t2)

B(x, r),

that is, R(t1, t2) is the accumulated support of Z over [t1, t2], and Ẑr[t1,t2] is the corre-
sponding sausage with radius r. For t > 0, define the events

Ht :=
{
∃ x ∈ Bt such that x /∈ Ẑrt[t−1,t]

}
.

It then follows from (4.11) that Ht⊆
⋃

1≤j≤nt Fj , and therefore P (Ht |Gct)≤P (∪1≤j≤ntFj |
Gct). Now, the union bound gives

P (Ht | Gct) ≤ nt max
1≤j≤nt

P (Fj | Gct). (4.12)

In view of (4.10), (4.12), and the estimate

P (At) ≤ P (Ht) ≤ P (Ht | Gct) + P (Gt),

and since nt is only an exponential factor in t, to complete the proof of (4.4), it suffices
to show that max1≤j≤nt P (Fj | Gct) is super-exponentially small in t for large t.

Observe that conditional on the event Gct , the event Fj for any j can be realized only
if the sub-BBMs initiated by each of the at least exp[β(ε/2)t] many particles present in
B(yj , 1) at time t− 1 does not hit B(yj , rt/(2

√
d)) in the remaining time interval [t− 1, t].

Apply the Markov property at time t − 1, and neglect possible branching of particles
over [t − 1, t] for an upper bound on P (Fj | Gct). Then, by (3.7) in Lemma 3.2, and the
independence of particles present at time t− 1, there exists c > 0 such that for all large
t,

P (Fj | Gct) ≤
(

1−Pe

(
min

0≤s≤1
|X(s)| < rt

2
√
d

))eβ(ε/2)t
≤
(

1− c

βkt

)eβ(ε/2)t
, (4.13)

where e is a unit vector. It is clear that the right-hand side of (4.13) is super-exponentially
small in t for large t. This completes the proof of Theorem 2.1.

4.2 Proof of Theorem 2.2

We will show that for every ε > 0 there exist positive constants c1 and c2 such that
for all large t,

P
(
vol
(
Ẑrtt

)
/td ≤ [2β(1− k(d− 2)− ε)]d/2ωd

)
≤ e−c1t (4.14)

and
P
(
vol
(
Ẑrtt

)
/td ≥ [2β(1− k(d− 2) + ε)]d/2ωd

)
≤ e−c2t. (4.15)

Then, Theorem 2.2 will follow from (4.14) and (4.15) via a standard Borel-Cantelli
argument.
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The method of proof of (4.14) is identical to that of (4.4). We only need to make
the following changes. For t > 0, let ρt :=

√
2β(1− k(d− 2)− ε)t and Bt := B(0, ρt).

Recall mt from (4.5), and that Bj = B(xj , 1/(2
√
d)), and define the events (At : t ≥ 0)

and (Ej : j = 1, 2, . . . ,mt) as

At :=
{
vol(Ẑrtt )/td ≤ [2β(1− k(d− 2)− ε)]d/2ωd

}
, Ej :=

{
Zt−1(Bj) < eβ(k(d−2)+ε/2)t

}
.

Then, since β[k(d− 2) + ε/2] is an atypically small exponent (typical exponent is at least
β[k(d − 2) + ε]) for the mass in each Bj at time t − 1, by (4.8), there exists a positive
constant c(ε) such that for all large t,

P (∪1≤j≤mtEj) ≤ mte
−c(ε)t = e−c(ε)t+o(t).

The rest of the proof is identical to that of (4.4) except the last part, where we need to
show that P (Fk | Gct) is super-exponentially small in t for large t. By (3.8) in Lemma 3.2,
and the independence of particles present at time t− 1, there exists c > 0 such that for
all large t,

P (Fk | Gct) ≤
(

1−Pe

(
min

0≤s≤1
|X(s)| < rt

2
√
d

))eβ(k(d−2)+ε/2)t

≤
(

1− ce−βk(d−2)t
)eβ(k(d−2)+ε/2)t

. (4.16)

Using that 1 + x ≤ ex, the right-hand side of (4.16) can be bounded from above by
exp[−c eβ(ε/2)t], which is super-exponentially small in t for large t. This completes the
proof of (4.14).

To prove (4.15), for 0 ≤ θ < 1, let Bθ := B(0, θ
√

2βt), and as before, for u ∈ Nt, let
(Yu(s))0≤s≤t denote the ancestral line up to t of particle u. Next, for u ∈ Nt, let

τu = inf{s ≥ 0 : |Yu(s)| > θ
√

2βt− rt},

the first time the sausage associated with the ancestral line of particle u exits Bθ, and let

τ = inf{s ≥ 0 : |X(s)| > θ
√

2βt− rt},

where X = (X(s))s≥0 is a standard BM. Let Ẑrt,θt be the part of the sausage Ẑrtt outside
Bθ, that is, Ẑrt,θt := Ẑrtt ∩Bcθ, where Bcθ denotes the complement of Bθ in Rd. Then,

E
[
vol
(
Ẑrt,θt

)]
≤ E

[∑
u∈Nt

1{τu<t} · vol(∪τu≤s≤tB(Yu(s), rt))

]
= E[Nt]E0

[
1{τ<t} · vol(∪τ≤s≤tB(X(s), rt))

]
(4.17)

by the many-to-one lemma, where 1A denotes the indicator function of A. By conditioning
on Fτ , the σ−algebra associated with the stopping time τ , and then using the strong
Markov property of BM,

E0

[
1{τ<t} · vol(∪τ≤s≤tB(X(s), rt))

]
= E0

[
1{τ<t}E0 [vol(∪τ≤s≤tB(X(s), rt)) | Fτ ]

]
≤ E0

[
1{τ<t}E0 [vol(∪τ≤s≤t+τB(X(s), rt)) | Fτ ]

]
= E0

[
1{τ<t}E0 [vol(Xrt

t )]
]

= P0 (τ < t)E0 [vol(Xrt
t )] . (4.18)

Hence, by (4.17), Proposition A, and the fact that E[Nt] = eβt,

E
[
vol
(
Ẑrt,θt

)]
≤ eβte−θ

2βt+o(t)E0 [vol(Xrt
t )] . (4.19)
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Then, by (4.19) and Lemma 3.1, we have

E[vol(Ẑrt,θt )] ≤ eβt(1−θ
2−k(d−2))+o(t). (4.20)

Let θ1 =
√

1− k(d− 2) + ε/2. It follows from the Markov inequality and (4.20) that

P (vol(Ẑrt,θ1t ) ≥ 1) ≤ e−βεt/2+o(t). (4.21)

Observe that vol(Ẑrtt ) ≤ vol(Ẑrt,θ1t ) + (θ1

√
2βt)dωd < [2β(1− k(d− 2) + ε)]d/2ωdt

d for all
large t conditional on the event {vol(Ẑrt,θ1t ) < 1}. This, along with (4.21), implies (4.15),
and hence completes the proof of Theorem 2.2.
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