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Abstract

We consider random trigonometric polynomials of the form

fn(t) :=
1√
n

n∑
k=1

ak cos(kt) + bk sin(kt),

where (ak)k≥1 and (bk)k≥1 are two independent stationary Gaussian processes with the
same correlation function ρ : k 7→ cos(kα), with α ≥ 0. We show that the asymptotics
of the expected number of real zeros differ from the universal one 2√

3
, holding in the

case of independent or weakly dependent coefficients. More precisely, for all ε > 0,
for all ` ∈ (

√
2, 2], there exists α ≥ 0 and n ≥ 1 large enough such that∣∣∣∣E [N (fn, [0, 2π])]

n
− `
∣∣∣∣ ≤ ε,

where N (fn, [0, 2π]) denotes the number of real zeros of the function fn in the interval
[0, 2π]. Therefore, this result provides the first example where the expected number
of real zeros does not converge as n goes to infinity by exhibiting a whole range of
possible subsequential limits ranging from

√
2 to 2.
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1 Introduction and statement of the results

1.1 Real zeros of random trigonometric polynomials

There is tremendous amount of literature about complex or real zeros of random
polynomials and their asymptotics as the degree of the latter goes to infinity. Recently,
the universality of these asymptotics has been established in a certain number of models,
see e.g. [Kac43, IM68, Far86, Mat10, Muk18, NNV15, DNV18] in the case of algebraic
polynomials and [AP15, ADL, Fla17, IKM16, ADP19] in the case of trigonometric polyno-
mials. The notion of universality stands here for the fact that these asymptotics do not
depend on the choice of the law of the random entries, and to a certain extent, nor their
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

correlation.

Our model belongs to the large class random trigonometric polynomials of the form

fn(t) :=
1√
n

n∑
k=1

ak cos(kt) + bk sin(kt), t ∈ R,

where (ak)k≥1 and (bk)k≥1 are two independent stationary Gaussian processes with
correlation function ρ : IN → IR, namely E[akal] = E[bkbl] =: ρ(|k − l|) and E[akbl] = 0

for all k, l ≥ 1. Thanks to Bochner’s theorem, we then know that ρ is given by the
Fourier transform of a finite measure µ, called the spectral measure, and supported on
the torus IR/2πZ. The case where ρ(k) = 0 for all k ≥ 1 corresponds to independent
Gaussian coefficients as first studied by Dunnage in [Dun66]. Later, in [Sam78] and
[RS84], the authors considered the two “extreme” cases where E[aiaj ] = ρ0 ∈]0, 1[ and

E[aiaj ] = ρ
|i−j|
0 respectively.

More recently, the authors of [ADP19] considered the case where the spectral mea-
sure admits a density satisfying mild hypotheses. In all these cases, it was shown that
N (fn, [0, 2π]), the number of real zeros of the random function fn in the interval [0, 2π],
obeys the same limit

lim
n→+∞

E[N (fn, [0, 2π])]

n
=

2√
3
.

This naturally raises the question of the existence of choices of “exotic” random en-
tries such that the asymptotics of the expected number of real zeros do not coincide
with the universal one. In fact, considering standard Gaussian coefficients, one way
to obtain asymptotics that do not match 2/

√
3 is to consider palindromic entries as in

[FL12, Pir19b] or very special pairwise block entries such as in Theorem 2.3 and 2.4 of
[Pir19a].

We consider here the natural and purely singular case where the spectral measure
is given by µ := 1

2 (δα + δ−α) ⇐⇒ ρ(k) = cos(kα), for some real α ≥ 0. If α ∈ πQ, the
correlation function is periodic and the corresponding random coefficients of fn are
strongly correlated at arbitrary large distance. If α /∈ πQ, the sequence (ρ(k))k≥0 is
dense in [−1, 1] and the correlations between the random coefficients of fn become really
intricate. We shall see that the asymptotics of the number of real zeros of fn then heavily
depends on the arithmetic nature of α and more precisely on the distance of nα to πZ.

1.2 Statement of our results

Naturally, since fn is a random trigonometric polynomial of degree n, its number of
zeros in bounded by 2n. In the case where nα ∈ πZ, we show that the expected number
of real zeros is maximal in the following sense.

Proposition 1.1. If α = 0, then for all n ≥ 1 we have almost surely

N (fn, [0, 2π]) = 2n.

If α ∈ πQ then

lim
n→+∞

∣∣∣∣E [N (fn, [0, 2π])]

n
− 2

∣∣∣∣1nα∈πZ = 0. (1.1)

The case nα /∈ πZ is more intriguing: properly renormalized, the expected number
of real zeros of fn does not converge as n goes to infinity and admits in fact a whole
continuum of subsequential limits.
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

Let us introduce the function `α : (0, π)→ R+ defined by

`α(x) :=
1

4π2

∫
[0,2π]2

√
1 + |gαnα(s, u)|2dsdu,

where

gαx (s, u) :=
sin (x) sin

(
s−α
2

)
sin
(
s+α
2

)
sin2

(
u−x
2

)
sin2

(
s+α
2

)
+ sin2

(
u+x
2

)
sin2

(
s−α
2

) .
In Section 3.1.1 below, we examine the properties of `α and its pointwise limit as α goes
to zero.

The main result of the paper is then the following one.

Theorem 1.1. For all 0 < β < 1 and for all n large enough such that nα /∈ πZ, we have∣∣∣∣E [N (fn, [0, 2π])]

n
− `a(nαmodπ)

∣∣∣∣ = O

(
1

nβ(1− | cos(nα)|)2

)
+ o(1).

The above theorem shows that if n is sufficiently large but nα stays away enough
from πZ, then the expected number of real zeros on fn divided by n is close to the value
of the function `α at the point nαmodπ. In particular, if α ∈ πQ, then the sequence
(nαmodπ)n≥1 takes values in a finite set S.

From the above Theorem 1.1, we can then deduce the following corollary.

Corollary 1.1. If α ∈ πQ, then for all x ∈ S\{0}

lim
n→+∞

∣∣∣∣E [N (fn, [0, 2π])]

n
− `α(x)

∣∣∣∣1nα=xmodπ = 0.

In particular n−1E [N (fn, [0, 2π])] does not converge as n goes to infinity.

Now if α /∈ πQ, the sequence (nαmodπ)n≥1 is dense in [0, π] and from Theorem 1.1,
one then deduces that n−1E [N (fn, [0, 2π])] admits a whole continuum of possible limits.

Corollary 1.2. Let us fix x ∈ (0, π) and consider a increasing subsequence (ϕ(n))n≥1
such that ϕ(n)α converges to x as n goes to infinity. Then

lim
n→+∞

∣∣∣∣∣E
[
N (fϕ(n), [0, 2π])

]
ϕ(n)

− `α(x)

∣∣∣∣∣ = 0.

Corollary 1.3. For all ε > 0, for all ` ∈ (
√
2, 2], there exists α = α(`) ≥ 0 small enough

and infinitely many integers n such that∣∣∣∣E [N (fn, [0, 2π])]

n
− `
∣∣∣∣ ≤ ε

where the Gaussian entries (ak)k≥1 and (bk)k≥1 of fn admit δα+δ−α
2 as spectral measure.

Remark 1.1. For sake of clarity, we only deal here with a purely atomic spectral measure
µ with two atoms ±α, but the method employed will work for any finite combination of
atoms (±αi)1≤i≤N . The choice of a purely singular spectral measure could sound very
particular but it actually dictates the fluctuating behavior of the expected number of
zeros. Indeed, let us assume that the spectral measure µ can be written as the convex
combination of a density measure and such a purely atomic measure, i.e.

µ = (1− η)µd + η
1

N

N∑
k=1

1

2
(δαk + δ−αk) , η ∈ [0, 1) , αk ≥ 0,
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

with µd admitting a density ψ w.r.t. the Lebesgue measure on [0, 2π] and satisfying the
same assumptions as in [ADP19]. Then, combining the proof of the latter reference and
the one of the present paper, one can show that

lim
n→+∞

E [N (fn, [0, 2π])]

n
=

2√
3
.

In other words, as soon as the spectral measure is not purely singular and have a density
component, one recovers the universal asymptotics of the independent and weakly
dependent case.

The rest of the paper is devoted to the proofs of the results stated above. In Section
2, we give the proof of Proposition 1.1. Section 3 is devoted to the proof of the main
Theorem 1.1 and its corollaries in the case where nα /∈ πZ. In this case, the study of the
number of zeros is split into two parts: in Section 3.1 we determine the number of zeros
away from the atoms ±α of the spectral measure µ. Finally, the numbers of zeros in the
neighborhood of the atoms is shown to be negligible in the last Section 3.2.

2 Asymptotics in the case nα ∈ πZ
In this Section, we give the proof of Proposition 1.1 describing the asymptotics of the

number of real zeros of fn under the condition nα ∈ πZ. Let us first consider the very
particular case where α = 0, i.e. the correlation function ρ is constant equal to one.

Proposition 2.1. Suppose that α = 0, i.e. ρ(k) = 1 for all k ∈ N, then almost surely, for
all n ≥ 1 we have

N (fn, [0, 2π]) = 2n.

Proof. Under the condition α = 0, the function fn has the simple form

fn(t) =
1√
n

(
A

n∑
k=1

cos(kt) +B

n∑
k=1

sin(kt)

)

=
1√
n

(
A cos

(
n+ 1

2
t

)
+B sin

(
n+ 1

2
t

))
sin(nt/2)

sin(t/2)
a.s.

where A,B are two independent standard Gaussian variables. Hence we count n − 1

deterministic zeros corresponding to sin(nt/2) = 0 and n + 1 random zeros given by
t(ω) = 2π

n+1U(ω) + 2kπ
n+1 , k ∈ {0, . . . , n}, where U = π/2 − 1

π arctan(−A/B) is uniform on
[0, 1].

Let us now suppose that α = 2πp
q for positive and coprime integers p and q, i.e. the

correlation sequence (ρ(k))k is q−periodic. In this case, if n = qr for some positive
integer r, we have nα ∈ Z and fn admits the following factorization

fn(t) =
1√
n

q∑
k=1

(
ak

r−1∑
`=0

cos((`q + k)t) + bk

r−1∑
`=0

sin((`q + k)t)

)
=

1√
n
f̃n(t)×

sin
(
nt
2

)
sin
(
qt
2

) ,
where we have set

f̃n(t) :=

q∑
k=1

ak cos

(
kt+

(n− q)t
2

)
+ bk sin

(
kt+

(n− q)t
2

)
.

The above factorization of fn invites to distinguish deterministic and random zeros. We
have n− q deterministic zeros given by

sin

(
nt

2

)
= 0 and sin

(
qt

2

)
6= 0 ⇐⇒ t ∈

{
2kπ

n
, k ∈ {0, . . . , n− 1}, r - k

}
.
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

Therefore the second statement in Proposition 1.1 follows from the following result
which implies that, in the above framework, the expected number of real zeros of f̃n is
asymptotic to n.

Proposition 2.2. As n tends to infinity, we have

lim inf
n→+∞
q|n

1

n
E
[
N (f̃n, [0, 2π])

]
≥ 1.

Proof. A direct computation shows that if q | n

E
[
f̃n(t)

2
]
=

1

2

 sin2
(
q(α+t)

2

)
sin2

(
(α+t)

2

) +
sin2

(
q(α−t)

2

)
sin2

(
(α−t)

2

)
 .

Since qα ∈ πZ, we have thus for t ∈ [0, 2π]

E[f̃n(t)
2] = 0 =⇒ qt/2 ∈ πZ =⇒ t ∈ Sq :=

{
2πk

q
, 0 ≤ k ≤ q − 1

}
.

For ε > 0, set Sεq := {t ∈ [0, 2π],dist(t, Sq) > ε}. On Sεq , we have E[f̃n(t)2] > 0 and
applying Kac–Rice formula (see e.g. Theorem 3.2 p. 71 of [AW09]), we get

E[N (f̃n, S
ε
q )] =

1

π

∫
Sεq

√√√√E[f̃ ′n(t)
2]

E[f̃n(t)2]
−

(
E[f̃n(t)f̃ ′n(t)]

E[f̃n(t)2]

)2

dt. (2.1)

A straightforward computation shows that as n goes to infinity, uniformly in t ∈ Sεq

E[f̃ ′n(t)
2] =

(
n− q
2

)2

E[f̃ ′n(t)
2] + o(n2).

Since E[f̃n(t)2] does not depend on n, neither does E[f̃n(t)f̃ ′n(t)] so that as n goes to
infinity, we have uniformly in t ∈ Sεq√√√√E[f̃ ′n(t)

2]

E[f̃n(t)2]
−

(
E[f̃n(t)f̃ ′n(t)]

E[f̃n(t)2]

)2

=
n

2
(1 + o(1)) .

Injecting this estimate in Equation (2.1), we deduce that as n goes to infinity

E[N (f̃n, S
ε
q )]

n
=
|Sεq |
2π

(1 + o(1)) = 1 +O(ε) + o(1).

Letting ε→ 0, lim infn→+∞
E[N (f̃n,[0,2π])

n ≥ lim infn→+∞
E[N (f̃n,S

ε
q )]

n = 1.

3 Asymptotics in the case nα /∈ πZ
We now consider the more intriguing case where nα /∈ πZ. Following [ADP19],

the variance and covariance of (fn(t), f ′n(t)) can then be written as convolutions of the
spectral measure µ with explicit trigonometric kernels, namely

E[fn(t)
2] = Kn ∗ µ(t), E[fn(t)f

′
n(t)] =

1

2
K ′n ∗ µ(t), E[f ′n(t)

2] =
1

αn
Ln ∗ µ(t), (3.1)
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

where Kn(x) :=
1

n

(
sin(nx/2)

sin(x/2)

)2

is the Fejer kernel, so that

K ′n(x) :=
2

n

(
sin(nx/2)

sin(x/2)

)(
n cos(nx/2)

2 sin(x/2)
− sin(nx/2) cos(x/2)

2 sin(x/2)2

)
,

the normalization constant αn is given by αn := 6/(n+ 1)(2n+ 1) and

Ln(x) :=
αn
n

∣∣∣∣∣
n∑
k=0

keikx

∣∣∣∣∣
2

=
αn
n

(n+ 1)2

4 sin(x/2)2

∣∣∣∣∣1−
(
1− ei(n+1)x

)
e−inx

(n+ 1) (1− eix)

∣∣∣∣∣
2

.

Lemma 3.1. For 0 < ε ≤ 1, define Fε := {x ∈ [0, 2π], | sin(x/2)| ≥ ε}. Then for all n ≥ 1

such that nε > 1, we have the uniform estimates

sup
x∈Fε

∣∣∣∣K ′n(x)− sin(nx/2) cos(nx/2)

sin(x/2)2

∣∣∣∣ = O

(
1

nε3

)
, sup
x∈Fε

∣∣∣∣Ln(x)− αnn

4 sin(x/2)2

∣∣∣∣ = O

(
1

n2ε3

)
.

Proof. The estimate for K ′n is immediate. Since on Fε,

u :=
αn
n

(n+ 1)2

4 sin(x/2)2
≤ αn

n

(n+ 1)2

4ε2
, z :=

(
1− ei(n+1)x

)
e−inx

(n+ 1) (1− eix)
≤ 1

(n+ 1)| sin(x/2)|
≤ 1

nε
,

as soon as nε > 1, standard computations lead to

|Ln(x)− u| ≤
αn
n

(n+ 1)2

4ε2
×
[
3

nε

]
= O

(
1

n2ε3

)
.

Moreover, we have∣∣∣∣αnn (n+ 1)2

4 sin(x/2)2
− αnn

4 sin(x/2)2

∣∣∣∣ = αn
4 sin(x/2)2

∣∣∣∣ (n+ 1)2

n
− n

∣∣∣∣ = O

(
1

n2ε2

)
= O

(
1

n2ε3

)
,

hence the result.

In the case we consider here, the spectral measure µ is 1
2 (δα + δ−α) so that we have

simply

E[fn(t)
2] =

1

2
(Kn(t− α) +Kn(t+ α)) ,E[fn(t)f

′
n(t)] =

1

4
(K ′n(t− α) +K ′n(t+ α)) ,

and E[f ′n(t)
2] =

1

2
(L′n(t− α) + L′n(t+ α)) .

The Fejér kernel being non negative, for n ≥ 1, we have

E[fn(t)
2] = 0⇒

{
nt ∈ πZ
nα ∈ πZ.

Under the assumption nα /∈ πZ, the distribution of the Gaussian variable fn(t) is thus
non-degenerated for all t ∈ [0, 2π] and as above, we can use Kac–Rice formula (see e.g.
[AW09]) to compute the expectation of N (fn, [0, 2π]), namely

E [N (fn, [0, 2π])] =
1

π

∫ 2π

0

√
In(t)dt,

where

In(t) :=
1

αn

Ln(t− α) + Ln(t+ α)

Kn(t− α) +Kn(t+ α)
− 1

4

(
K ′n(t− α) +K ′n(t+ α)

Kn(t− α) +Kn(t+ α)

)2

.

We split the computation of the integral into two parts, depending on the proximity
between the integration variable t and the atoms ±α of the spectral measure µ.
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

Remark 3.1. Alternatively, one can represent the processes (ak)k and (bk)k as

ak = ξ1 cos(kα) + ξ2 sin(kα) , bk = ξ3 cos(kα) + ξ4 sin(kα),

where ξ1, ξ2, ξ3, ξ4 are independent standard Gaussian variables. In particular, the
covariance function rn(t− s) := E[fn(t)fn(s)] can be explicitly computed. The quantities
involved in Kac–Rice formula thus correspond to rn(0), ∂t∂srn(t−s)|t=s and ∂srn(t−s)|t=s
and standard computations give the same expressions as given above.

3.1 Away from the atoms

Let us fix ε > 0 and consider the set Jε := {t ∈ [0, 2π], | sin( t−α2 )| > ε, | sin( t+aα2 )| > ε}.
Thanks to Lemma 3.1, we have then uniformly in t ∈ Jε

Ln(t− α) + Ln(t+ α)

Kn(t− α) +Kn(t+ α)
=

αnn
2

4

(
1

sin2( t−α2 )
+ 1

sin2( t+α2 )

)
+O

(
1
nε3

)
sin2(n t−α2 )
sin2( t−α2 )

+
sin2(n t+α2 )
sin2( t+α2 )

.

In the same manner, we have

K ′n(t− α) +K ′n(t+ α)

Kn(t− α) +Kn(t+ α)
=

sin(n t−α2 ) cos(n t−α2 )
sin2( t−α2 )

+
sin(n t+α2 ) cos(n t+α2 )

sin2( t+α2 )
+O

(
1
nε3

)
sin2(n t−α2 )
n sin2( t−α2 )

+
sin2(n t+α2 )
n sin2( t+α2 )

.

Now remark that uniformly on Jε we have

1
sin2(n t−α2 )
sin2( t−α2 )

+
sin2(n t+α2 )
sin2( t+α2 )

≤ 1

ε2(sin2(n t−α2 )+sin2(n t+α2 ))
= 1

ε2(1−cos(nt) cos(nα))

≤ 1
ε2(1−| cos(nα)|) .

Therefore, uniformly on Jε we get

In(t) =
n2

4

(
Qn(t) +O

(
1

nε5(1− | cos(nα)|)

))
,

where after standard calculations

Qn(t) = 1 +

(
sin (nα) sin

(
t−α
2

)
sin
(
t+α
2

)(
sin2

(
n t−α2

)
sin2

(
t+α
2

)
+ sin2

(
n t+α2

)
sin2

(
t−α
2

)))2

.

In particular, we get

2

n

∫
Jε

√
In(t)dt =

∫
Jε

√
Qn(t)dt+O

(
1

nε5(1− | cos(nα)|)

)
. (3.2)

In order to make explicit the asymptotics of the right hand side of the last equation, let
us now introduce an auxilary function and detail some of its properties.

3.1.1 An auxilary function and its properties

For x ∈ R\πZ, let us introduce the function gαx defined on [0, 2π]2\{±(α, x)} by

gαx (s, u) :=
sin (x) sin

(
s−α
2

)
sin
(
s+α
2

)
sin2

(
u−x
2

)
sin2

(
s+α
2

)
+ sin2

(
u+x
2

)
sin2

(
s−α
2

) . (3.3)
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

Remark that u 7→ gαx (s, u) is then 2π−periodic and that we have the identification

Qn(t) = 1 + |gαnα(t, nt)|2. (3.4)

The function (u, s) 7→ gαx (s, u) has singularities at (s, u) = ±(α, x) but these sigularities
are integrable in the following sense.

Lemma 3.2. Let 0 < α < π and 0 < x < π. For all 0 ≤ η < 1, we have∫
[0,2π]2

|gαx (s, u)|1+ηdsdu < +∞.

Proof. Let us fix some small δ > 0. Outside the two balls B(±(α, x), δ) the function
(s, u) 7→ gαx (s, u) is uniformly bounded hence in Lp for all p ≥ 1, so we only need to focus
on the integrability on B(±(α, x), δ). By symmetry, we can restrict ourselves to the ball
centered at (α, x). If we set C := min(| sin(x)|, | sin(α)|) > 0, for δ small enough we have

|gαx (s, u)| ≤
4

C

|s− α|
|s− α|2 + |u− x|2

,

so that using polar coordinates (s−α, u−x) = (r cos(θ), r sin(θ)) with 0 ≤ r ≤ δ, 0 ≤ θ ≤ 2π,
we get ∫

B((α,x),δ)

|gαx (s, u)|1+ηdsdu ≤
8π

C

∫ δ

0

dr

rη
= O

(
δ1−η

)
.

Lemma 3.3. On any compact set K ⊂ (0, π), the function `α : K → R+

x 7→ `α(x) :=
1

4π2

∫
[0,2π]2

√
1 + |gαx (s, u)|2dsdu

is continuous.

Proof. Note that the regularity of x 7→ `α(x) is the same as the one of
x 7→

∫
[0,2π]2

|gαx (s, u)|dsdu. Fix ε > 0, from the proof of Lemma 3.2 applied with η = 0,

there exists δ > 0 small enough such that, for all x ∈ K, if Ex := B((α, x), δ)∪B(−(α, x), δ)
then ∫

Ex

|gαx (s, u)|dsdu ≤ ε/4.

Now, if (s, u) ∈ Ecx ∩Ecx′ the function x 7→ |gαx (s, u)| is uniformly bounded and analytic so
that choosing δ > 0 small enough, for |x− x′| < δ we have∣∣∣∣∣

∫
Ecx∩Ecx′

(|gαx (s, u)| − |gαx′(s, u)|) dsdu

∣∣∣∣∣ ≤ ε/2.
The conclusion follows from this last estimate and triangular inequality.

The next lemma giving some properties of gαx which will be particularly useful in the
sequel.

Lemma 3.4.

sup
s∈Jε

u∈[0,2π]

|gαx (s, u)| = O

(
1

ε2
× 1

1− | cos(x)|

)
,

sup
s,s′∈Jε
u∈[0,2π]

|gαx (s, u)− gαx (s′, u)| = O

(
|s− s′|

ε4|1− | cos(x)|)2

)
. (3.5)
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

Proof. If s ∈ Jε, we have uniformly in u ∈ [0, 2π]

|gαx (s, u)| ≤
1

ε2
[
sin2

(
u+x
2

)
+ sin2

(
u−x
2

)] = 1

ε2 (1− cos(u) cos(x))
≤ 1

ε2
× 1

1− | cos(x)|
.

Moreover, for s, s′ ∈ Jε, setting D(s) :=
(
sin2

(
u−x
2

)
sin2

(
s+α
2

)
+ sin2

(
u+x
2

)
sin2

(
s−α
2

))
|gαx (s, u)− gαx (s′, u)| ≤

| sin( s−α2 ) sin( s+α2 )−sin
(
s′−α

2

)
sin
(
s′+α

2

)
|

D(s) + |D(s)−D(s′)|
|D(s)D(s′)|

= O
(

|s−s′|
ε2(1−| cos(x)|)

)
+O

(
|s−s′|

ε4(1−| cos(x)|)2

)
.

For x ∈ (0, π), set

`0(x) :=
1

2π

∫ 2π

0

√
1 + g0x(u)

2du, where g0x(u) :=
sin(x)

1− cos(u) cos(x)
.

We show now that the function `0 appears naturally as the pointwise limit of `α given in
Section 1.2 when α ∈ (0, π) goes to zero.

Lemma 3.5. For all x ∈ (0, π), we have lim
α→0

`α(x) = `0(x).

Proof. Let ε > 0 and let α ∈
(
0, ε2
)

be small enough. We can write

`α(x) =
1

4π2

[∫
|s|>ε

∫ π

−π

√
1 + gαx (s, u)

2dsdu+

∫
|s|≤ε

∫ π

−π

√
1 + gαx (s, u)

2dsdu

]
. (3.6)

For |s| > ε, there exists a constant C > 0 such that
∣∣sin ( s±α2 )∣∣ ≥ Cε. By dominated

convergence (using Lemma 3.4 for the upper bound), we first obtain

lim
α→0

∫
|s|>ε

∫ π

−π

√
1 + gαx (s, u)dsdu = 2(π − ε)

∫ π

−π

√
1 +

sin2(x)

(1− cos(u) cos(x))2
ds.

Let us now show that the second term in Equation (3.6) converges to zero as α goes to
zero. By symmetry, we can restrict ourselves to the case s ∈ [0, ε]. This way, s±α is close
to zero. Thus, there exists C > 0 such that

|gαx (s, u)| ≤ C
| sin(x)||(s− α)(s+ α)|

sin2
(
u−x
2

)
(s+ α)2 + sin2

(
u+x
2

)
(s− α)2

.

Set δ > 0 small enough such that for all u ∈ [x− δ, x+ δ], we have
∣∣sin (u−x2 )∣∣ ≥ Cδ|u− x|

and
∣∣sin (u+x2 )∣∣ ≥ Cδ sin(x). Using the fact that s + α ≥ α, we get that for some the

constant C which may change from line to line∫ ε

0

∫ x+δ

x−δ
|gax(s, u)|duds ≤ C

∫ ε

0

∫ x+δ

x−δ

|s2 − α2|
(s− α)2 + α2(u− x)2

duds

≤ C

∫ ε

0

|s+ α|
α

arctan

(
δα

|s− α|

)
ds

≤
∫ ε

0

|s− α|
α

arctan

(
δα

|s− α|

)
ds+ 2

∫ ε

0

arctan

(
δα

|s− α|

)
ds︸ ︷︷ ︸

≤Cε

≤ ε× α

ε

∫ ε
α

− ε
α

|v| arctan
(
δ

|v|

)
dv + Cε ≤ Cε.
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

thanks to the change of variable v = s−α
α and the fact that x 7→ x arctan

(
1
x

)
is bounded

on IR.
The same method naturally works in the neighborhood of −x. Otherwise, if we denote

by Eδ the set ([x− δ, x+ δ] ∪ [−x− δ,−x+ δ])c, there exists a constant Cx,δ such that for
all u in Eδ, we have

∣∣sin (u±x2 )∣∣ ≥ Cx,δ. Thus, for some constant which may again change
from line to line, we get∫ ε

0

∫
Eδ

|gαx (s, u)|dsdu ≤ C

∫ ε

0

|s2 − α2|
(s− α)2 + (s+ α)2

ds

≤ C

∫ ε

0

|s2 + α2|
s2 + α2

ds︸ ︷︷ ︸
=ε

+2α2

∫ ε

0

ds

s2 + α2
≤ C(ε+ α) ≤ Cε,

hence the result.

Let us conclude this section with some properties of the limit function `0(x).

Lemma 3.6. The function x 7→ `0(x) is analytic on (0, π) and admits x = π
2 as a symmetry

axis. Moreover, [
√
2, 2) ⊆ `0[(0, π)].

Proof. Analyticity follows form standard dominated convergence. Using the change
of variable v = u + π and 2π-periodicity of the integrand, we get that for all z ∈[
0, π2

)
, `0

(
z + π

2

)
= `0

(
π
2 − z

)
. Therefore x = π

2 is a symmetry axis.
The inequality `(x) ≤ 2 results from the fact that

1

2π

∫ 2π

0

sin(x)

1− cos(u) cos(x)
du = 1.

In fact, the upper value 2 is obtained as the limit on the boundaries.
Set δ > 0 and let x be small enough. We can indeed write

`0(x) =
1

2π

∫
[−π,π]\[−δ,δ]

√
1 + g0x(u)

2du+
1

2π

∫ δ

−δ

√
1 + g0x(u)

2du.

By dominated convergence (using the upper bound for g0x as in Lemma 3.4),

lim
x→0

1

2π

∫
[−π,π]\[−δ,δ]

√
1 +

sin2(x)

(1− cos(x) cos(u))2
du = 1. (3.7)

On the other hand, we can assume that
∫ δ
−δ

√
1 + g2x(u)du ≥

∫√x
−
√
x

√
1 + g2x(u)du for x

small enough.
Then, we get

1

2π

∫ √x
−
√
x

√
1 + g2x(u)du =

1

π

∫ √x
0

√
1 + g2x(u)du ≥

sin(x)

π

∫ √x
0

sin(x)

1− cos(u) cos(x)
du

≥ 2

π
sin(x)

∫ √x
0

du

u2 + x2
=

2

π
× sin(x)

x
× arctan

(√
x

x

)
since 1− cos(u) cos(x) ≤ u2+x2

2 . Hence we get

lim
x→0

1

2π

∫
[−δ,δ]

√
1 + g2x(u)du ≥ 1, (3.8)

Finally, combining the estimates (3.7) and (3.8), we obtain limx→0 `
0(x) = 2. The ana-

logue limit as x tends to π is deduced by symmetry. Since `0 (π/2) =
√
2 and `0 is

continuous, the intermediate value theorem yields that [
√
2, 2) ⊂ `0[(0, π)].
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

3.1.2 From Riemann sum to integral

We can now establish the asymptotics of Equation (3.2) as n goes to infinity. As a first
step, the integral of interest admits the following lower and upper bounds.

Lemma 3.7. If nε >> 1, then as n goes to infinity, we have∫
Jε

√
Qn(t)dt ≥

1

2π

∫
[0,2π]2

√
1 + |gαnα(s, u)|21s∈J2εdsdu+O

(
1

nε2(1− | cos(nα)|)

)
,

and∫
Jε

√
Qn(t)dt ≤

1

2π

∫
[0,2π]2

√
1 + |gαnα(s, u)|21s∈Jε/2dsdu+O

(
1

nε2(1− | cos(nα)|)

)
.

Proof. We give the proof of the upper bound, the lower bound can be treated in the exact

same way. To simplify the expressions, let us set Ekn :=
[
2πk
n , 2π(k+1)

n

]
for 0 ≤ k ≤ n− 1.

We can then decompose the integral on Jε as∫
Jε

√
Qn(t)dt =

n−1∑
k=0

∫
Jε∩Ekn

√
Qn(t)dt =

1

n

n−1∑
k=0

∫ 2π

0

√
Qn

(
2πk

n
+
u

n

)
1 2πk+u

n ∈Jεdu.

Now remark that if nε >> 1, then for n large enough, if 2πk+u
n ∈ Jε we have in fact

Ekn ⊂ Jε/2. Therefore∫
Jε

√
Qn(t)dt ≤

1

n

n−1∑
k=0

∫ 2π

0

√
Qn

(
2πk

n
+
u

n

)
1Ekn⊂Jε/2du

≤ 1

n

n−1∑
k=0

∫ 2π

0

√
1 + gαnα

(
2πk

n
+
u

n
, u

)
1Ekn⊂Jε/2du

thank to (3.4) and the 2π−periodicity of u 7→ gαnα(s, u).
Using the estimate (3.5) of Lemma 3.4, one then deduces that∫
Jε

√
Qn(t)dt ≤

1

n

n−1∑
k=0

∫ 2π

0

√
1 + gαnα

(
2πk

n
, u

)
1Ekn⊂Jε/2du+O

(
1

nε4|1− | cos(nα)|)2

)
.

(3.9)
Using again Equation (3.5) of Lemma 3.4, for all 0 ≤ k ≤ n− 1 such that Ekn ⊂ Jε/2, we
have uniformly in u∣∣∣∣∣

√
1 + gαnα

(
2πk

n
, u

)
− n

2π

∫
Ekn

√
1 + gαnα (s, u)ds

∣∣∣∣∣ = O

(
1

nε4|1− | cos(nα)|)2

)
.

Integrating in u, we thus get that for all k such that Ekn ⊂ Jε/2,∫ 2π

0

√
1 + gαnα

(
2πk

n
, u

)
du ≤ n

2π

∫ 2π

0

∫
Ekn

√
1 + gαnα (s, u)dsdu+O

(
1

nε4|1− | cos(nα)|)2

)
,

and in particular∫ 2π

0

√
1 + gαnα

(
2πk

n
, u

)
du× 1Ekn⊂Jε/2 ≤ n

2π

∫ 2π

0

∫
Ekn

√
1 + gαnα (s, u)1s∈Jε/2dsdu

+ O

(
1

nε4|1− | cos(nα)|)2

)
.
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Zeros of trigonometric polynomials with strongly dependent Gaussian coefficients

Injecting this last estimate in Equation (3.9) and making the sum over 0 ≤ k ≤ n− 1, we
get∫

Jε

√
Qn(t)dt ≤

1

2π

∫
[0,2π]2

√
1 + gαnα (s, u)1s∈Jε/2dsdu+O

(
1

nε4|1− | cos(nα)|)2

)
.

Lemma 3.8. Uniformly in n, and for all 0 < η < 1, we have∣∣∣∣∣
∫
[0,2π]2

√
1 + |gαnα(s, u)|21s∈Jεdsdu−

∫
[0,2π]2

√
1 + |gαnα(s, u)|2dsdu

∣∣∣∣∣ = O
(
ε

η
1+η

)
.

Proof. It results from applying Hölder inequality with p = 1 + η and q = 1 + 1/η and
using Lemma 3.2.

Combining the estimate (3.2) and Lemmas 3.7 and 3.8, we conclude that for all ε > 0

and n large enough such that nε >> 1 then∣∣∣∣∣4πn
∫
Jε

√
In(t)dt−

∫
[0,2π]2

√
1 + gαnα(s, u)

2dsdu

∣∣∣∣∣ = O
(
ε

η
1+η

)
+O

(
1

nε5|1− | cos(nα)|)2

)
.

3.2 Near the atoms and conclusion

We are left to estimate the number of real zeros of fn in the neighborhood of the
atoms ±α of the spectral measure µ. If ε = εn is of the form εn = n−β with 0 < β < 1/2,
Proposition 3.3.1 of [Pir19a] indeed show that

E
[
N
(
fn, J

c
εn

)]
n

= O (εn) . (3.10)

Therefore, we can conclude that, as soon as εn is chosen of the form n−β for 0 < β < 1/5,
we have∣∣∣∣E [N (fn, [0, 2π])]

n
− `α(nαmodπ)

∣∣∣∣ = O
(
ε

η
1+η
n

)
+O

(
1

nε5n|1− | cos(nα)|)2

)
, (3.11)

which finishes the proof of Theorem 1.1. Then Corollary 1.1 follows because uniformly in
x ∈ S\{0}, if nαmodπ = x, then 1− | cos(nα)| = 1− | cos(x)| is bounded away from zero.
In the last case where α /∈ πQ, Corollary 1.2 follows from Theorem 1.1 and the regularity
of `α established in Lemma 3.3.

From Lemmas 3.6, 3.5 and the estimate (3.11) as α→ 0 and nα mod π → 0, remark
that we get the same limit (1.1) as in Proposition 1.1. In the same manner, Corollary 1.3
follows from Corollary 1.2, Lemmas 3.5 and 3.6 for ` ∈ (

√
2, 2) and from Proposition 1.1

for ` = 2.
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