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Abstract

The purpose of this note is to propose a new approach for the probabilistic inter-
pretation of Hamilton-Jacobi-Bellman equations associated with stochastic recursive
optimal control problems, utilizing the representation theorem for generators of back-
ward stochastic differential equations. The key idea of our approach for proving
this interpretation lies in the identity between solutions and generators given by the
representation theorem. Compared with existing methods, our approach seems to be
a feasible unified method for different frameworks and be more applicable to general
settings. This can also be regarded as a new application of such representation
theorem.
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1 Introduction

After the pioneering work on nonlinear backward stochastic differential equations
(BSDEs for abbreviated) by Pardoux and Peng [14], the theory of nonlinear BSDEs has
been applied to many fields (see El Karoui, Peng and Quenez [7] for details). The stochas-
tic recursive optimal control problem has been identified as an important application
of BSDEs in optimal control fields. Peng [19] first interpreted the viscosity solution of
a generalized Hamilton-Jacobi-Bellman equation as the value function of a stochastic
recursive optimal control problem which is described by a forward-backward stochastic
differential equation (FBSDE for short). Peng [20] introduced a notion of backward
semigroups to demonstrate a generalized dynamic programming principle (DPP for
short) for a stochastic recursive optimal control problem. He also provided a method
of approximation of BSDEs’ solutions to prove the probabilistic interpretation for HJB
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Probabilistic interpretation of HJB equations

equations in the viscosity sense. In this method several BSDEs with different generators
and some estimates for solutions are applied to obtain the required variational inequality
(see (3.7) or Definition 3.2).

Since then, many researchers began to investigate stochastic recursive optimal
control problem induced by FBSDE systems. Buckdahn and Li [4] studied two-player
zero-sum stochastic differential games via FBSDEs; Buckdahn and Hu [3] considered
a coupled system of HJB equations associated with a stochastic control problem on a
Wiener-Poisson space; Li and Wei [12] researched a stochastic recursive optimal control
problem whose value function is described by a fully coupled FBSDE system; Li and
Tang [11] studied a stochastic recursive optimal control with the state process being
reflected in a bounded convex domain; Buckdahn and Nie [5] considered a stochastic
exit time optimal control problem. All the previous works manifested the probabilistic
interpretation for corresponding HJB equations with Cauchy problems, Dirichlet or
Neumann boundary conditions, under Lipschitz frameworks, by Peng’s approximation
method with some necessary technical modifications. Under a non-Lipschitz setting,
Pu and Zhang [21] proved the probabilistic interpretation for HJB equations by the
approximation of a viscosity solution sequence.

Above all, to the best of our knowledge, the existing methods to process the proba-
bilistic interpretation of HJB equations are all based on the approximation of (BSDEs’ or
PDEs’) solutions. In this note, we would like to propose a new and unified approach to
treat this probabilistic interpretation utilizing the representation theorem for generators
of BSDEs (see Theorem 2.1). This representation theorem was established by Briand,
Coquet, Hu, Mémin and Peng [2] and further extended by Jiang [9, 10]. Essentially, the
very crucial step of proving the viscosity solution is to claim a variational inequality
(see (3.7) or Definition 3.2), the left hand side (without the sup) of which is actually
a generator of a BSDE. The novelty of our approach is that the signs of the required
generator and the BSDE’s solution inherit directly from each other via the identity
given by the representation theorem. Moreover, by our approach we can observe that
the probabilistic interpretation can be boiled down to the representation problem for
generators of a BSDE, provided the DPP holds. So compared with existing methods, the
representation theorem approach is more applicable to general frameworks. And this
can also be seen as a new application of such representation theorem.

The rest of this paper is organized as follows: Section 2 gives all necessary nota-
tions and some elementary results about BSDEs; Section 3 illustrates the probabilistic
interpretation for solutions of HJB equations in the viscosity sense adopting the rep-
resentation theorem for generators of BSDEs, and provides the uniqueness result of
viscosity solutions; Section 4 shows some further discussion about the representation
theorem approach.

2 Preliminaries

Let T > 0 be a given finite time horizon, (Ω,F ,P) a probability space carrying
a standard d-dimensional Brownian motion (Bt)t≥0 and (Ft)t≥0 the natural σ-algebra
filtration generated by (Bt)t≥0 with F0 containing all P-null sets of F . Postulate that
FT = F and (Ft)t≥0 satisfies the usual conditions. Throughout this note we use | · |
and 〈·, ·〉 to denote the Euclidean norm and scalar product, respectively. The Euclidean
norm of a matrix z ∈ Rn×d will be denoted by |z| :=

√
Tr(zz∗), where and hereafter z∗

represents the transpose of z. We denote by S2(0, T ;R) (or S2 for brevity) the set of real
valued, (Ft)-adapted and continuous processes (yt)t∈[0,T ] such that E[supt∈[0,T ] |yt|2] <∞.
Let H2(0, T ;Rn) (or H2 for brevity) denote the set of Rn-valued and (Ft)-progressively

measurable processes (zt)t∈[0,T ] satisfying that E[
∫ T

0
|zs|2 ds] <∞.
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Probabilistic interpretation of HJB equations

Next we introduce some elementary results about BSDEs of the following type,

Yt = ξ +

∫ T

t

g(ω, s, Ys, Zs) ds−
∫ T

t

〈Zs,dBs〉, t ∈ [0, T ].

If we assume that the terminal data ξ is FT -measurable and E|ξ|2 <∞, the generator
g : Ω× [0, T ]×R×Rd 7→ R is (Ft)-progressively measurable and satisfies

(A1) {g(ω, t, 0, 0)}t∈[0,T ] ∈ H2;
(A2) There exists a constant K ≥ 0 such that dP×dt – a.e., for each y, y′ ∈ R and z,

z′ ∈ Rd,
|g(ω, t, y, z)− g(ω, t, y′, z′)| ≤ K(|y − y′|+ |z − z′|),

then by the result of Pardoux and Peng [14] the previous BSDE admits a unique solution
(Yt, Zt)t∈[0,T ] in S2 ×H2.

We now proceed to introduce the representation theorem for generators of BSDEs.
Assume that the generator g satisfies (A1)–(A2) and fix a triplet (t, y, z) ∈ [0, T )×R×Rd.
Then, for each ε with 0 < ε ≤ T − t, the following BSDE admits a unique solution
(Y εs , Z

ε
s )s∈[t,t+ε] in S2 ×H2,

Y εs = y + 〈z,Bt+ε −Bt〉+

∫ t+ε

s

g(ω, r, Y εr , Z
ε
r ) dr −

∫ t+ε

s

〈Zεr ,dBr〉, s ∈ [t, t+ ε]. (2.1)

Theorem 2.1 (Theorem 3.3 in [9] and Lemma 2.1 in [10]). Assume that g satisfies (A1)–
(A2) and 1 ≤ p < 2. Then for each (t, y, z) ∈ [0, T )×R×Rd,

Lp − lim
ε→0+

1

ε
E

[
(Y εt − y)−

∫ t+ε

t

g(ω, r, y, z) dr

∣∣∣∣Ft] = 0; (2.2)

and for each (y, z) ∈ R×Rd, the following equality

g(ω, t, y, z) = Lp − lim
ε→0+

1

ε

(
Y εt − y

)
(2.3)

holds for almost every t ∈ [0, T ), where Y εt is the solution of BSDE (2.1). Moreover, if
g(ω, ·, y, z) is continuous, the latter equality holds for all t ∈ [0, T ).

3 Probabilistic interpretation of HJB equations

In this section we will show the probabilistic interpretation for a generalized HJB
equations, in the viscosity sense, which are associated with stochastic recursive optimal
control problems. Before that, we should give a DPP for a stochastic recursive optimal
control problem of the cost functional described by a controlled FBSDE system. This
DPP is a well-known result and can be obtained by corresponding results in Peng [20]
and Pu and Zhang [21], so we omit its proof.

The set U of admissible control processes is defined by

U :=
{

(vt)t∈[0,T ] : v(·) ∈ H2(0, T ;Rk) and takes values in a compact set U ⊂ Rk
}
.

For a given admissible control v(·) ∈ U , we consider the following FBSDE system:
Xt,x;v
s = x+

∫ s

t

b(r,Xt,x;v
r , vr) dr +

∫ s

t

σ(r,Xt,x;v
r , vr) dBr,

Y t,x;v
s = Φ(Xt,x;v

T )+

∫ T

s

g(r,Xt,x;v
r , Y t,x;v

r , Zt,x;v
r , vr) dr −

∫ T

s

〈Zt,x;v
r ,dBr〉, s∈ [t, T ],

(3.1)

where t ∈ [0, T ] is the initial time, x ∈ Rn is the initial state, and mappings b : [0, T ] ×
Rn×U 7→ Rn, σ : [0, T ]×Rn×U 7→ Rn×d, g : [0, T ]×Rn×R×Rd×U 7→ R, Φ : Rn 7→ R

satisfy the following conditions:
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(H1) For each x ∈ Rn, y ∈ R, z ∈ Rd and v ∈ U , b(·, x, v), σ(·, x, v) and g(·, x, y, z, v) are
continuous;

(H2) There exists a constant K ≥ 0 such that for each x, x′ ∈ Rn, and v, v′ ∈ U ,

|b(t, x, v)− b(t, x′, v′)|+ |σ(t, x, v)− σ(t, x′, v′)| ≤ K(|x− x′|+ |v − v′|);

(H3) There exists a constant K ≥ 0 such that for each x, x′ ∈ Rn, y, y′ ∈ R, z, z′ ∈ Rd,
v, v′ ∈ U ,

|g(t, x, y, z, v)−g(t, x′, y′, z′, v′)|+|Φ(x)−Φ(x′)| ≤ K(|x−x′|+|y−y′|+|z−z′|+|v−v′|).

Obviously, under the above assumptions, for any v(·) ∈ U the control system (3.1) admits
a unique solution (Xt,x;v

· , Y t,x;v
· , Zt,x;v

· ) in S2(t, T ;Rn ×R)×H2(t, T ;Rd).

We now define the associated cost functional,

J(t, x; v(·)) := Y t,x;v
s |s=t, (t, x) ∈ [0, T ]×Rn, v(·) ∈ U ,

and define the value function of the stochastic recursive optimal control problem,

u(t, x) := esssup
v(·)∈U

J(t, x; v(·)), (t, x) ∈ [0, T ]×Rn. (3.2)

Here by standard estimates for FBSDE (3.1) we know that u(t, x) is well defined. More-
over, u(t, x) is deterministic, continuous in (t, x) and of at most linear growth with respect
to x, see Peng [20] or Pu and Zhang [21] for a survey. To introduce the DPP, we need
the notion of backward semigroups, which is originaly due to Peng [20]. For each
(t, x) ∈ [0, T ] ×Rn, v(·) ∈ U , 0 ≤ δ ≤ T − t and a random variable ξ ∈ L2(Ω,Ft+δ,P;R),
we denote Gt,x;v

t,t+δ[ξ] := Yt, where (Ys, Zs)s∈[t,t+δ] is the solution of the following BSDE,

Ys = ξ +

∫ t+δ

s

g(r,Xt,x;v
r , Yr, Zr, vr) dr −

∫ t+δ

s

〈Zr,dBr〉, s ∈ [t, t+ δ].

Then for the control system (3.1) we have that Gt,x;v
t,T [Φ(Xt,x;v

T )] = Gt,x;v
t,t+δ[Y

t,x;v
t+δ ].

Theorem 3.1 (DPP). Assume that (H1)–(H3) hold. Then the value function u(t, x) enjoys
the following dynamic programming principle, for each 0 ≤ δ ≤ T − t,

u(t, x) = sup
v(·)∈U

Gt,x;v
t,t+δ[u(t+ δ,Xt,x;v

t+δ )].

Next we will relate the value function (3.2) with the following generalized HJB
equation, which is a fully nonlinear second order PDE of parabolic type,{

∂tu(t, x) + supv∈U {Lvt u(t, x) + g(t, x, u(t, x), σ∗(t, x, v)∇u(t, x), v)} = 0,

u(T, x) = Φ(x),
(3.3)

where Lvt is a family of second order partial differential operators,

Lvt u :=
1

2
Tr{σσ∗(t, x, v)D2u}+ 〈b(t, x, v),∇u〉.

We would like to prove that the value function u(t, x) defined in (3.2) is a viscosity
solution of the HJB equation (3.3). We first recall the notion of viscosity solution for (3.3),
which is adapted from Crandall, Ishii and Lions [6] and Peng [20].
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Definition 3.2. A function u ∈ C([0, T ]×Rn;R) is called a viscosity subsolution (resp.,
supersolution) of the HJB equation (3.3), if u(T, x) ≤ Φ(x) (resp., u(T, x) ≥ Φ(x)) for all
x ∈ Rn, and for any ϕ ∈ C1,2

b ([0, T ]×Rn;R) and (t, x) ∈ [0, T )×Rn is a local minimum
(resp., maximum) point of ϕ− u, then

∂tϕ(t, x) + sup
v∈U
{Lvtϕ(t, x) + g(t, x, u(t, x), σ∗(t, x, v)∇ϕ(t, x), v)} ≥ (resp., ≤ ) 0.

A function u ∈ C([0, T ] × Rn;R) is called a viscosity solution of (3.3) if it is both a
viscosity subsolution and a viscosity supersolution.

Theorem 3.3 (Probabilistic interpretation). Let assumptions (H1)–(H3) hold. Then the
value function u(t, x) defined by (3.2) is a viscosity solution of the HJB equation (3.3).

Proof. Note that u(t, x) is continuous in (t, x). We first prove that u is a viscosity
supersolution. Take any ϕ ∈ C1,2

b ([0, T ] × Rn;R), (t, x) ∈ [0, T ) × Rn such that ϕ − u
achieves the local maximum at (t, x). Without loss of generality, we assume u(t, x) =

ϕ(t, x). Since u(T, x) = Φ(x) holds for all x ∈ Rn, it reduces to prove that

∂tϕ(t, x) + sup
v∈U
{Lvtϕ(t, x) + g(t, x, u(t, x), σ∗(t, x, v)∇ϕ(t, x), v)} ≤ 0. (3.4)

It follows from Theorem 3.1 that for each 0 < δ ≤ T − t,

ϕ(t, x) = u(t, x) = sup
v(·)∈U

Gt,x;v
t,t+δ[u(t+ δ,Xt,x;v

t+δ )].

The fact that ϕ ≤ u and the monotonicity of backward semigroup G (or the comparison
theorem for solutions of BSDEs, Theorem 2.2 in El Karoui, Peng and Quenez [7]) yield
that

sup
v(·)∈U

{
Gt,x;v
t,t+δ[ϕ(t+ δ,Xt,x;v

t+δ )]− ϕ(t, x)
}
≤ 0. (3.5)

For each v(·) ∈ U , we set Y v,δt := Gt,x;v
t,t+δ[ϕ(t + δ,Xt,x;v

t+δ )], which is a solution of the
following BSDE,

Y v,δt = ϕ(t+ δ,Xt,x;v
t+δ ) +

∫ t+δ

t

g(r,Xt,x;v
r , Y v,δr , Zv,δr , vr) dr −

∫ t+δ

t

〈Zv,δr ,dBr〉.

Itô’s formula to ϕ(r,Xt,x;v
r ) on the time interval [t, t+ δ] yields that

ϕ(t, x) = ϕ(t+ δ,Xt,x;v
t+δ )−

∫ t+δ

t

[
∂rϕ(r,Xt,x;v

r ) + Lvrϕ(r,Xt,x;v
r )

]
dr

−
∫ t+δ

t

〈σ∗(r,Xt,x;v
r , vr)∇ϕ(r,Xt,x;v

r ),dBr〉.

Setting Ŷ v,δ· := Y v,δ· − ϕ(·, Xt,x;v
· ), Ẑv,δ· := Zv,δ· − σ∗(·, Xt,x;v

· , v·)∇ϕ(·, Xt,x;v
· ), we deduce

that,

Ŷ v,δt =

∫ t+δ

t

F (r,Xt,x;v
r , Ŷ v,δr , Ẑv,δr , vr) dr −

∫ t+δ

t

〈Ẑv,δr ,dBr〉, (3.6)

where for each r ∈ [t, t+ δ], x ∈ Rn, y ∈ R, z ∈ Rd and v ∈ U ,

F (r, x, y, z, v) := ∂rϕ(r, x) + Lvrϕ(r, x) + g(r, x, y + ϕ(r, x), z + σ∗(r, x, v)∇ϕ(r, x), v).

Now by (3.5) we have that for each 0 < δ ≤ T − t, supv(·)∈U Ŷ
v,δ
t ≤ 0. Hence, we deduce

that Ŷ v
′,δ

t ≤ 0 holds for each v′ ∈ U . It is obvious that (A1) and (A2) hold true for
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F (r,Xt,x;v
r , y, z, vr) since g satisfies (H1) and (H3). Then (2.3) in Theorem 2.1 implies

that for each v′ ∈ U ,

F (t, x, 0, 0, v′) = lim
δ→0

Ŷ v
′,δ

t

δ
≤ 0.

Thereby, we know that (3.4) holds by the definition of F .
Finally, we prove that u is a viscosity subsolution. Take any ϕ ∈ C1,2

b ([0, T ]×Rn;R)

such that ϕ − u achieves the local minimum 0 at (t, x) ∈ [0, T ) ×Rn. We only need to
prove that

∂tϕ(t, x) + sup
v∈U
{Lvtϕ(t, x) + g(t, x, u(t, x), σ∗(t, x, v)∇ϕ(t, x), v)} ≥ 0. (3.7)

In this case we have ϕ ≥ u, then the monotonicity of back semigroup G leads to that for
each 0 < δ ≤ T − t,

sup
v(·)∈U

{
Gt,x;v
t,t+δ[ϕ(t+ δ,Xt,x;v

t+δ )]− ϕ(t, x)
}
≥ 0. (3.8)

Note that the BSDE (3.6) still holds since its derivation relies only on the definition
of back semigroups and Itô’s formula. Then by the definitions of Y v,δt and Ŷ v,δ· we
can rewrite the inequality (3.8) as supv(·)∈U Ŷ

v,δ
t ≥ 0. Thus, there exists a sequence

{vi(·)}i≥1 ⊂ U such that, P – a.s., supv(·)∈U Ŷ
v,δ
t = supi≥1 Ŷ

vi,δ
t . For each 0 < δ ≤ T − t

and ε > 0, we define

Γ̃i :=

{
sup
v(·)∈U

Ŷ v,δt ≤ Ŷ v
i,δ

t + δε

}
∈ Ft, i ≥ 1.

Then the events Γ1 := Γ̃1, Γi := Γ̃i/(∪i−1
j=1Γ̃j) ∈ Ft, i ≥ 2 are mutually disjoint and form

a (Ω,Ft)-partition. Obviously, we have that vε(·) :=
∑
i≥1 1Γi

vi(·) ∈ U . And from the

uniqueness for solutions of BSDEs, we know that P – a.s., Ŷ v
ε,δ

t =
∑
i≥1 1Γi

Ŷ v
i,δ

t . Hence,
we conclude that, P – a.s.,

Ŷ v
ε,δ

t =
∑
i≥1

1Γi
Ŷ v

i,δ
t ≥ sup

v(·)∈U
Ŷ v,δt − δε ≥ −δε.

We now suppose that (3.7) does not hold. Then by the definition of F , there exists a ε0 > 0

such that F (t, x, 0, 0, v) < −ε0 for each v ∈ U . Since F (·, x, 0, 0, ·) is uniformly continuous,
when δ is small enough we derive that F (r, x, 0, 0, v) < −ε0/2 for each r ∈ [t, t + δ] and
v ∈ U . Applying (2.2) in Theorem 2.1 we have that for each t ∈ [0, T ],

lim
δ→0

1

δ
E

[∣∣∣∣Ŷ vε,δt −
∫ t+δ

t

F (r,Xt,x;vε

r , 0, 0, vεr) dr

∣∣∣∣] = 0.

Then, for ε0/4 > 0, there exists a small enough δ > 0 such that

1

δ
E[Ŷ v

ε,δ
t ] ≤ 1

δ
E

[ ∫ t+δ

t

F (r,Xt,x;vε

r , 0, 0, vεr) dr

]
+
ε0

4
.

Noticing that Ŷ v
ε,δ

t ≥ −δε and the following two estimates, where C ≥ 0 and p ≥ 1 are
two constants,

|F (r,Xt,x;vε

r , 0, 0, vεr)− F (r, x, 0, 0, vεr)| ≤ C(1 + |x|2)(|Xt,x;vε

r − x|+ |Xt,x;vε

r − x|3),

E

[
sup

r∈[t,t+δ]

|Xt,x;vε

r − x|p
]
≤ Cδp/2,
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we can take δ → 0 and then combine with P – a.s., F (r, x, 0, 0, vεr) < −ε0/2, obtaining that

−ε ≤ lim
δ→0

1

δ
E

[ ∫ t+δ

t

F (r, x, 0, 0, vεr) dr

]
+
ε0

4
≤ −ε0

2
+
ε0

4
= −ε0

4
.

Hence, when ε = ε0/6 it will contradict with ε0 > 0. So the inequality (3.7) holds.
Therefore, the proof of Theorem 3.3 is finished.

Remark 3.4. From the proof procedure of Theorem 3.3, we can observe that if the DPP
holds true, the probabilistic interpretation of HJB equations can be proved as soon as the
representation theorem for generators of BSDE (3.6) holds true, where such theorem is
determined by the conditions for the generator g of the BSDE in (3.1). So our method
also applies to the cases of Buckdahn and Li [4] and Pu and Zhang [21]. Moreover, the
additional assumption, adopted in Pu and Zhang [21], that g(t, x, y, z) is independent of z
can be naturally eliminated by the representation theorem in Fan, Jiang and Xu [8].

Next we introduce a space of continuous functions,

Θ : =
{
ϕ ∈ C([0, T ]×Rn;R) : There exists a constant A > 0 such that

lim|x|→∞ ϕ(t, x) exp{−A(log
√

1 + |x|2)2} = 0, uniformly in t ∈ [0, T ]
}
.

The growth condition of the functions in Θ is slightly weaker than the polynomial growth.
Note that u(t, x) defined in (3.2) belongs to Θ since it is of at most linear growth with
respect to x. We give a comparison theorem, in the space Θ, for viscosity subsolutions
and supersolutions of the HJB equation (3.3), which yields that u(t, x) is the uniqueness
viscosity solution of (3.3). Since the proof is analogous to Theorem 5.3 of Buckdahn and
Li [4], we just provide a sketch of this proof.

Theorem 3.5 (Comparison principle). Assume that (H1)–(H3) hold. Let u1 ∈ Θ and
u2 ∈ Θ be, respectively, a viscosity subsolution and supersolution of (3.3). Then we have
u1(t, x) ≤ u2(t, x) for each (t, x) ∈ [0, T ]×Rn.

Proof. Suppose that the assumptions are in force, and define w(t, x) := u1(t, x)− u2(t, x),
(t, x) ∈ [0, T ]×Rn. Then we have the following lemma.

Lemma 3.6. The function w(t, x) is a viscosity subsolution of the following equation,
∂tw(t, x)+ sup

v∈U
{Lvtw(t, x) +K|w(t, x)|

+K|∇w(t, x)||σ(t, x, v)|} = 0, (t, x) ∈ [0, T )×Rn,

w(T, x) = 0, x ∈ Rn.

(3.9)

The proof of this lemma is analogous to that of Lemma 3.7 in Barles, Buckdahn and
Pardoux [1], so we omit it here. Next it is sufficient to prove that w(t, x) ≤ 0. For any
A > 0, we define the function χ(t, x) := exp{(C1(T − t) + A)ψ(x)}, (t, x) ∈ [0, T ] ×Rn,
where ψ(x) := (log

√
1 + |x|2 + 1)2 and the constant C1 > 0 will be chosen later. By some

direct computations we have the following properties,

|∇ψ(x)| ≤
2
√
ψ(x)√

1 + |x|2
≤ 4, |D2ψ(x)| ≤

C(1 +
√
ψ(x))

1 + |x|2
, x ∈ Rn,

where and hereafter C > 0 is a constant and may vary line by line. We denote t1 :=

T −A/C1. Then for each t ∈ [t1, T ], we have that

∂tχ(t, x)=−C1ψ(x)χ(t, x), |∇χ(t, x)|≤Cχ(t, x)

√
ψ(x)√

1 + |x|2
, |D2χ(t, x)|≤Cχ(t, x)

ψ(x)

1 + |x|2
.
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Note that both b and σ are of linear growth with respect to x. By virtue with the previous
estimates we can obtain that for each (t, x) ∈ [t1, T ]×Rn,

∂tχ(t, x) + sup
v∈U
{Lvtχ(t, x) +K|χ(t, x)|+K|∇χ(t, x)||σ(t, x, v)|}

≤ −χ(t, x)[C1 − (2C +K)]ψ(x) < 0, (3.10)

provided that C1 > 2C +K.
Since both u1 and u2 belong to Θ, we have that for some A > 0,

lim
|x|→∞

w(t, x) exp{−A(log
√

1 + |x|2)2} = 0,

uniformly with respect to t ∈ [0, T ]. Thus, for any ε > 0, w(t, x)− εχ(t, x) is bounded from
above in [t1, T ]×Rn and

M(ε) := max
[t1,T ]×Rn

(w − εχ)(t, x) exp{−K(T − t)}

is achieved at some point (tε, xε) ∈ [t1, T ] × Rn. For each (t, x) ∈ [t1, T ] × Rn, define
ϕ(t, x) := εχ(t, x) +M(ε) exp{K(T − t)}. Then ϕ ∈ C([t1, T ]×Rn;R), ϕ(tε, xε) = w(tε, xε)

and w(t, x)−ϕ(t, x) ≤ 0 for each (t, x) ∈ [t1, T ]×Rn. We suppose that M(ε) > 0 for some
ε > 0. Then w(tε, xε) = ϕ(tε, xε) > 0, and by the definition of viscosity subsolution we
have that

∂tϕ(tε, xε) + sup
v∈U
{Lvtϕ(tε, xε) +K|w(tε, xε)|+K|∇ϕ(tε, xε)||σ(tε, xε, v)|} ≥ 0.

On the other hand, by some easy computations and (3.10) we deduce that

∂tϕ(tε, xε) + sup
v∈U
{Lvtϕ(tε, xε) +K|w(tε, xε)|+K|∇ϕ(tε, xε)||σ(tε, xε, v)|}

= ε
(
∂tχ(tε, xε) + sup

v∈U
{Lvtχ(tε, xε) +K|χ(tε, xε)|+K|∇χ(tε, xε)||σ(tε, xε, v)|}

)
< 0.

This contradiction indicates that M(ε) ≤ 0 holds for each ε > 0. Thus we have that
w(t, x) ≤ εχ(t, x) for all t ∈ [t1, T ] ×Rn. Sending ε → 0 yields that w(t, x) ≤ 0. Finally,
utilizing the same arguments in the intervals [ti+1, ti] (i = 1, 2, · · · ), where ti+1 :=

(ti −A/C1)+, we can obtain that w(t, x) ≤ 0 holds for each (t, x) ∈ [0, T ]×Rn.

4 Discussion

Although this note concentrates on PDEs of HJB type, the representation theorem
approach is applicable for the probabilistic interpretation of semilinear (or quasilinear)
second order PDEs of parabolic types, see our previous works in Section 4 of Xiao and
Fan [22]. Compared with the case of semilinear PDEs, the special representation form
(2.2) in Theorem 2.1 is employed when proving viscosity subsolution, in order to treat
the dependence on a control process v(·) of the coefficients. For semilinear PDEs, the
representation theorem approach is easier since the functions b, σ and g are independent
of the control process v(·).

There have been many attempts previously to study probabilistic interpretations
in the viscosity sense by BSDEs after the initial works of Peng [18, 19]. Yet existing
methods are formidable to handle different situations in a unified way. As an alternative,
researchers adopted different methods under different frameworks, such as strict com-
parison theorem for solutions of BSDEs under monotonicity condition and semilinear
(quasilinear) PDEs (Pardoux, Pradeilles and Rao [15], Pardoux and Zhang [17], Pardoux
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[13], Pardoux and Tang [16]), approximation method for HJB or Isaacs equations (afore-
mentioned Peng [20], Pu and Zhang [21], etc.). Usually, methods adopted for semilinear
(or quasilinear) PDEs are not applicable to HJB equations.

Synthesizing the results of Section 4 in Xiao and Fan [22] and this note, the represen-
tation theorem method can be regarded as a feasible unified approach to the probabilistic
interpretation of semilinear (quasilinear) and HJB type PDEs, whereas researchers can
only focus on the representation theorem for generators of the corresponding BSDEs
when proving the existence of viscosity solutions and ignore some redundant steps.
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