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1 Introduction

Let A ∈ F be an event in some probability space (Ω,F , P ), and let

X = P (A | G) and Y = P (A |H) (1.1)

for two sub-σ-fields G,H ⊆ F . Equivalently, X and Y are random variables with

0 ≤ X,Y ≤ 1 and X = P (A |X) and Y = P (A |Y ), hence EX = EY = P (A) = p (1.2)

for some p ∈ [0, 1] and A ∈ F . Following [7], we interpret X and Y as the opinions of
two experts about the probability of A given different sources of information G and H,
assuming the experts agree on some initial assignment of probability P to events in F .

There is a body of literature on related topics, some of them inspired by modern
uses of technology. Consider N experts represented by sub-σ-fields who are all trying
to predict the probability of a common event. A natural question is if there is a way
to combine their predictions to come up with a better forecast. Introduced this way
in the mid 80’s onwards, see [16, 10, 7], such combinations typically take the form of
weighted averages ([9]). The field has found a renewed interest in the current age of
social networks (see [25, 15]). In particular, [31, 17] recommend both linear and non-
linear combinations, [32] develops a mathematical framework to combine predictions
when experts use “partially overlapping information sources”, and [8] uses it for the
case of N = 2 experts in prediction markets who take turn in updating their beliefs.
Also see [27, 6, 20] for applications to economics, [23] for applications to banking and
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Bounds on the probability of radically different opinions

finance, [26] for applications to meteorology, [34] for applications to maintenance of
wind turbines, and [14] for philosophical implications. The problem is also related to
modeling insider trading in finance [21] where the insider has more information that the
rest of the traders, i.e., G ⊆ H, although the general non-containment scenario makes
sense for two different insiders.

We will use the term coherent, as in [7], for (X,Y ) as in (1.1) or (1.2), or for the joint
distribution of such (X,Y ) on [0, 1]2. Note the obvious reflection symmetry that

if (X,Y ) is coherent then so are (Y,X), (1−X, 1− Y ), and (1− Y, 1−X). (1.3)

Elementary examples in [7, §4.1] show that for any prescribed value of EX = EY =

P (A) ∈ (0, 1), the correlation between coherent opinions X and Y about A can take
any value in (−1, 1]. Consider for instance, for δ ∈ (0, 1), the distribution of (X,Y )

concentrated on the three points (1− δ, 1− δ) and (0, 1− δ) and (1− δ, 0), with

P (X = Y ) = P (1− δ, 1− δ) =
1− δ
1 + δ

and P (0, 1− δ) = P (1− δ, 0) =
δ

1 + δ
. (1.4)

This example from [12] gives a pair of coherent opinions (X,Y ) about the event A =

(X = Y ), with correlation ρ(X,Y ) = −δ which can be any value in (−1, 0).
The idea expressed above, that coherent opinions X and Y should not be too radically

different, leads to the following precise problem, posed in [3, Sect. 14.4, p. 242] and
[30]: for 0 ≤ δ ≤ 1, evaluate

ε(δ) := sup
coherent (X,Y )

P (|X − Y | ≥ 1− δ) = sup
coherent (X,Y )

P (1− |X − Y | ≤ δ). (1.5)

For m,n = 1, 2, 3, . . . consider also εm×n(δ) = εn×m(δ) defined by restricting the above
supremum to m× n coherent (X,Y ), meaning that X takes at most m and Y at most n
possible values. Let εfinite(δ) := supm,n εm×n(δ), which is the supremum in (1.5) restricted
to (X,Y ) with a finite number of possible values. Each of these functions of δ is evidently
non-decreasing and bounded above by 1. Then for all δ ∈ [0, 1]

2δ

1 + δ
≤ ε2×2(δ) ≤ εfinite(δ) ≤ ε(δ) ≤ lim

a↓δ
εfinite(a). (1.6)

The first inequality is due to the example (1.4). The second and third are obvious, and the
last is by elementary construction of n×n coherent (Xn, Yn) with |Xn−X|+|Yn−Y | ≤ 2/n

for any coherent (X,Y ) (see [5, Lemma 2.2]). We use the notation x ∧ y := min(x, y) and
x ∨ y := max(x, y), and either 1A or 1(A) for an indicator function whose value is 1 if A
and 0 else.

Proposition 1.1. There are the following evaluations and bounds: for δ ∈ [0, 1] and
n ≥ 2,

ε1×n(δ) = δ if δ ∈ [0, 12 ) and 1 if δ ∈ [ 12 , 1], (1.7)

ε2×2(δ) =
2δ

1 + δ
if δ ∈ [0, 12 ) and 1 if δ ∈ [ 12 , 1], (1.8)

ε2×2(δ) ≤ ε(δ) ≤ (2δ) ∧ 1. (1.9)

The bounds (1.6) and (1.9) were given in [3, Theorem 14.1, p. 243], [30] and [4,
Theorem 18.1, p. 389], while (1.7) and (1.8) are new. Our renewed interest in these
results is prompted by

Theorem 1.2 ([5]). ε2×2(δ) = εfinite(δ) = ε(δ) for all δ ∈ [0, 1].
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Bounds on the probability of radically different opinions

To see that this identity holds with all values 1 for δ ∈ [ 12 , 1], consider the coherent
1× 2 distribution of (X,Y ) with equal probability 1

2 at the points ( 1
2 , 0) and ( 1

2 , 1) ∈ [0, 1]2.
That is

X = E(Y ) = 1
2 for Y = B1/2 (1.10)

where Bp for 0 ≤ p ≤ 1 denotes a random variable with the Bernoulli(p) distribution

P (Bp = 1) = p and P (Bp = 0) = 1− p. (1.11)

For δ ∈ (0, 12 ), Theorem 1.2 is that equality holds in all the inequalities (1.6). The first
of these equalities is proved here as (1.8). Equality in the second inequality of (1.6) for
δ ∈ (0, 12 ) is much less obvious. The proof of this in [5] is quite long and difficult, by
recursive reduction of m and n for m× n coherent (X,Y ), until the problem is reduced
to the 2× 2 case treated here by (1.8). We hope this exposition of the easier evaluations
in Proposition 1.1 might provoke someone to find a simpler proof of Theorem 1.2.

Note from (1.7), (1.8) and Theorem 1.2 that each of the functions ε1×n(δ) and
ε2×2(δ) = ε(δ) is continuous on each of the intervals [0, 12 ) and [ 12 , 1], but has an up-
ward jump to 1 at δ = 1

2 .
The rest of this article is organized as follows. Section 2 recalls some background

related to Proposition 1.1, which is proved in Section 3. Section 4 recalls some known
characterizations of coherent distributions of (X,Y ). For reasons we do not understand
well, these general characterizations seem to be of little help in establishing the evalua-
tions of ε(δ) discussed above, or in settling a number of related problems about coherent
distributions, which we present in Section 5. So much is left to be understood about the
limitations on coherent opinions.

2 Background

Let (Xi, i ∈ I) be a finite collection of random variables defined on some common
probability space (Ω,F , P ), and suppose that each Xi is the conditional expectation of
some integrable random variable X∗ given some sub-σ-field Fi of F :

Xi = E(X∗ | Fi) (i ∈ I). (2.1)

Doob’s well known bounds for tail probabilities and moments of the distributions of
maxi∈I Xi and maxi∈I |Xi|, for either an increasing or decreasing family of σ-fields,
and extensions of these inequalities to families of σ-fields indexed by a directed set I,
with suitable conditional independence conditions, play a central role in the theory of
martingale convergence. See for instance [22, 19] and [29] for recent refinements of
Doob’s inequalities, and further references. For the diameter of a martingale

max
i,j∈I

|Xi −Xj | =
(

max
i∈I

Xi

)
+

(
−max

i∈I
(−Xi)

)
≤ 2 max

i∈I
|Xi| (2.2)

there is no difficulty in bounding tail probabilities and moments, with an additional factor
of 2 to a suitable power. But finer results with best constants for the diameter have also
been obtained in [11, 28].

Much less is known about limitations on the distributions of such maximal variables
for finite collections of σ-fields (Fi, i ∈ I) without conditions of nesting or conditional
independence. We focus here on joint distributions of Xi = E(X∗ | Fi) for X∗ with
0 ≤ X∗ ≤ 1, and no restrictions except Fi ⊆ F in a probability space (Ω,F , P ). Setting
XJ := E[X∗ |σ(∪i∈JFi)] makes ((XJ ,FJ), J ⊆ I) a martingale indexed by subsets of J of
I, with (Xi, i ∈ I) the random vector of values of this martingale on singleton subsets of
I. Assuming the basic probability space is sufficiently rich, there is a random variable U
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with uniform distribution on [0, 1], with U independent of X∗ and FI . Then X∗ can be be
replaced by the indicator random variable 1(U ≤ X∗). So there is no loss of generality in
supposing X∗ = 1(A) is the indicator of some event A with P (A) = p ∈ [0, 1]. It follows
that each Xi is the conditional probability of A given Fi:

Xi = P (A | Fi) implying EXi ≡ p := P (A) (i ∈ I). (2.3)

Then either (Xi, i ∈ I) or its joint distribution on [0, 1]I will be called coherent. Besides
EX = EY , another necessary condition for a pair (X,Y ) to be coherent is provided by
the following simplification and extension of [7, Theorem 5.2]. See also Proposition 4.1
for some conditions that are both necessary and sufficient for (X,Y ) to be coherent.

Proposition 2.1. Consider a pair of real-valued random variables (X,Y ) and assume
that there exist disjoint intervals G and H and Borel sets G′ ⊆ G and H ′ ⊆ H such that
the events (X ∈ G′) and (Y ∈ H ′) are almost surely identical, with P (X ∈ G′) > 0.

(i) There is no integrable Z with X = E(Z |X) and Y = E(Z |Y ).

(ii) If (X,Y ) takes values in [0, 1]2 then (X,Y ) is not coherent.

(iii) Suppose (X,Y ) takes values in [0, 1]2. If X − a and Y − b are sure to be of opposite
sign for some 0 ≤ a ≤ b ≤ 1:

P ((X − a)(Y − b) < 0) = 1, (2.4)

and P (Y > b) > 0, then the distribution of (X,Y ) is not coherent.

Proof. Suppose that G′ ⊆ G and H ′ ⊆ H. If X = E(Z |X) and Y = E(Z |Y ) for some
integrable Z then it is easily seen that

G 3 E(Z |X ∈ G′) = E(Z |Y ∈ H ′) ∈ H, (2.5)

where E(Z |B) denotes E(Z1B)/P (B) for any B with P (B) > 0. Since G ∩ H = ∅,
we obtain (i). Part (ii) follows from (i) and (1.2). Part (iii) follows by applying (ii) to
G′ = G = [0, a) and H ′ = H = (b, 1].

Proposition 2.1 (iii) corrects the claim above [7, Theorem 5.2] that (2.4) alone makes
(X,Y ) not coherent. (This is false if P (Y > b) = 0; take a = 1

4 , b = 3
4 and X = Y = 1

2 ).
The following construction of a coherent distribution of n variables (X1, . . . , Xn) was

used in [12] to build counterexamples in the theory of almost sure convergence of
martingales relative to directed sets.

Example 2.2 (The (n, p)-daisy, with n petals and a Bernoulli(p) center [12]). Let
A,A1, . . . , An be a measurable partition of Ω with

P (A) = p and P (Ai) =
1− p
n

for 1 ≤ i ≤ n.

For 1 ≤ i ≤ n let Fi be the σ-field generated by A ∪Ai. Then set

Xi := P (A | Fi) = pn1(A ∪Ai) with pn :=
np

np− p+ 1
. (2.6)

To explain the daisy mnemonic, imagine Ω is the union of n+ 1 parts of a daisy flower,
with center A of area p, surrounded by n petals Ai of equal areas, with total petal area
1− p. For each petal Ai, an ith petal observer learns whether or not a point picked at
random from the daisy area has fallen in (the center A or their petal Ai), or in some
other petal. Each petal observer’s conditional probability Xi of A is then as in (2.6). The
sequence of n variables (X1, . . . , Xn) is both coherent and exchangeable, with constant
expectation p:
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• given A the sequence (X1, . . . , Xn) is identically equal to the constant pn;

• given the complement Ac, the sequence (X1, . . . , Xn) is pn times an indicator
sequence with a single 1 at a uniformly distributed index in {1, . . . , n}.

The (n, p)-daisy example was designed to make max1≤i≤nXi = pn, a constant, as
large as possible with EXi ≡ p. As observed in [13, p. 224], this pn is the largest possible
essential infimum of values of maxiXi for any coherent distribution of (X1, . . . , Xn) with
EXi ≡ p. This special property involves the n-petal daisy in the solution in various
extremal problems for coherent opinions. For instance, (X,Y ) = (X1, X2) derived from
the (2, p) daisy with p = (1− δ)/(1 + δ), so p2 = 1− δ, is the coherent pair in (1.4). This
provides the lower bound for ε2×2(δ) in (1.6), which according to (1.8) is attained with
equality for δ ∈ [0, 12 ). Also:

Proposition 2.3. (i) [13] For every coherent distribution of (Xi, 1 ≤ i ≤ n) with EXi ≡ p,

E max
1≤i≤n

Xi ≤
p(n− p)

1 + p(n− 2)
. (2.7)

Moreover, this bound is attained by taking (X1, . . . , Xn−1) to be the (n − 1, p)-daisy
sequence, and Xn = 1A, the Bernoulli(p) indicator of the daisy center.

(ii) For every coherent distribution of (X,Y ) on [0, 1]2 with EX = EY = p,

E|X − Y | ≤ 2p(1− p) ≤ 1
2 (2.8)

with equality in the first inequality if X = p and Y
d
= Bp as in (1.11).

Proof. See the cited paper for the proof of (i). For (ii), take n = 2 in (2.7) and use
|X − Y | = 2(X ∨ Y )−X − Y .

3 Proof of Proposition 1.1

The evaluation (1.7) in Proposition 1.1 is implied by Lemma 3.1 for δ ∈ [0, 12 ) and by
example (1.10) for δ ∈ [ 12 , 1].

Lemma 3.1. If X = E(Y |X) and 0 ≤ Y ≤ 1 then P (|Y −X| ≥ 1 − δ) ≤ δ for δ ∈ [0, 12 ),
with equality if X = δ and Y = Bδ.

Proof. Suppose X = p is constant and Y = Yp ∈ [0, 1] has EYp = p. By consideration of
Y1−p = 1− Yp it can be supposed that p ∈ [0, 12 ]. But then for δ ∈ [0, 12 )

|Yp − p| ≥ 1− δ iff Yp ≥ 1− δ + p,

so Markov’s inequality gives

P (|Yp − p| ≥ 1− δ) ≤ p 1(p ≤ δ)
1− δ + p

≤ δ for 0 ≤ p ≤ 1
2 and 0 ≤ δ < 1

2 . (3.1)

The more general assertion of the lemma follows by conditioning on X.

Turning to consideration of (1.8), we start with a lemma of independent interest,
which controls the variability of P (A |G) as a function of G with P (G) > 0 by a bound
that does not depend on A. We work here with the elementary conditional probability
which is the number P (A |G) := P (A ∩ G)/P (G) rather than a random variable. Let
G4H := (G ∩Hc) ∪ (Gc ∩H) denote the symmetric difference of G and H.
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Lemma 3.2. For events A, G and H with P (G) > 0 and P (H) > 0,

|P (A |G)− P (A |H)| ≤ P (G4H |G ∪H) = 1− P (G ∩H)

P (G) + P (H)− P (G ∩H)
. (3.2)

Consequently, for each 0 ≤ δ ≤ 1,

|P (A |G)− P (A |H)| ≥ 1− δ =⇒ P (G ∩H) ≤ δ

(1 + δ)
(P (G) + P (H)). (3.3)

Proof. Let p = P (G ∩ Hc), q = P (G ∩ H), r = P (Gc ∩ H) and a = P (A |G ∩ Hc),
b = P (A |G∩H), c = P (A |Gc ∩H), with the convention that a = 0 if P (G∩Hc) = 0, and
a similar convention for b and c. Then

P (A |G)− P (A |H) =
pa+ qb

p+ q
− qb+ rc

q + r
≤ p+ r

p+ q + r
(3.4)

from which (3.2)–(3.3) follow easily. To check the inequality in (3.4), observe that for
fixed p, q, r the difference of fractions in the middle is obviously maximized by taking
a = 1, c = 0. That done, the difference is a linear function of b, whose maximum over
0 ≤ b ≤ 1 is attained either at b = 0 or at b = 1, when the inequality is obvious.

It is easily checked that for p, q, r as above, with p + q > 0 and q + r > 0, there is
equality in (3.4) iff one of the following three conditions holds, where in each case the
condition on G, H, and A should be understood modulo events of probability 0:

• either p > 0, q = 0, r > 0, a = 1, b = c = 0, meaning G ∩H = ∅ and A = G;

• or p = 0, q > 0, r > 0, a = 0, b = 1, c = 0, meaning G ⊆ H and A = G;

• or p > 0, q > 0, r = 0, a = 1, b = c = 0, meaning H ⊆ G and A = G ∩Hc.

Consequently, there is equality in (3.2) iff one of these three conditions holds, either
exactly as above or with G and H switched.

Lemma 3.3. Suppose that X = P (A |X) and Y = P (A |Y ) have discrete distributions.
Fix 0 < δ < 1/2, and suppose that for each pair of possible values (x, y) of (X,Y ) with
|y − x| ≥ 1− δ there is no other such pair (x′, y′) with either x′ = x or y′ = y. Then

P (|Y −X| ≥ 1− δ) ≤ 2δ

1 + δ
(0 < δ < 1/2). (3.5)

Proof. Application of (3.3) gives for each pair (x, y) with |y − x| ≥ 1− δ

P (X = x, Y = y) ≤ δ

1 + δ
(P (X = x) + P (Y = y)) . (3.6)

The assumption is that as (x, y) ranges over pairs (x, y) with |y − x| ≥ 1− δ, the events
(X = x) are disjoint, and so are the events (Y = y). So (3.5) follows by summation of
(3.6) over such (x, y).

Proof of (1.8). The example given in (1.10) proves (1.8) for δ ∈ [ 12 , 1]. The claim (1.7) has
been proved at the beginning of this section. Hence, we can limit our attention to the case
when each X and Y takes two values. For (X,Y ) in (1.4), P (|X −Y | ≥ 1− δ) = 2δ/(1 + δ)

so the lower bound in (1.8) is proved. It is now enough to establish (3.5) for 2× 2

coherent (X,Y ) whose possible values are contained in the 4 corners of a rectangle
R := [x1, x2] × [y1, y2] ⊆ [0, 1]2 with x1 < x2 and y1 < y2. Fix 0 < δ < 1

2 . Then
{(x, y) : |y − x| ≥ 1− δ} = T ∪ T ′ for right triangles T and T ′ in the upper left and lower
right corners of [0, 1]2. If neither T nor T ′ contains two corners on the same side of
R, then (3.5) holds by Lemma 3.3. Otherwise, by the reflection symmetries (1.3), it is
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enough to discuss the case when T contains the two left corners of R. If T contains at
least three corners of R then EX ≤ δ < 1/2 < 1− δ ≤ EY . This is not possible because
EX = EY . Finally, suppose that the two left corners of R are in T and the two right
corners not in T and, therefore, not in T ∪ T ′. Let Y ′ ≡ y3 = EY . Note that y1 ≤ y3 ≤ y2
so (x1, y3) ∈ T and (x2, y3) /∈ T ∪ T ′. Hence, by (1.7) applied to (X,Y ′),

P (|X − Y | ≥ 1− δ) = P ((X,Y ) ∈ T ) = P ((X,Y ′) ∈ T ) = P (|X − Y ′| ≥ 1− δ)

≤ δ ≤ 2δ

1 + δ
.

Proof of (1.9). This argument from [30] was presented in [4, Theorem 18.1, p. 389], but
is included here for the reader’s convenience. The lower bound in (1.9) is obvious from
(1.6). For the upper bound, it is enough to discuss the case δ ∈ [0, 12 ). Observe that

(|X − Y | ≥ 1− δ) ⊆ (X ≤ δ, Y ≥ 1− δ) ∪ (Y ≤ δ,X ≥ 1− δ). (3.7)

But since X = P (A |X) and 1− Y = P (Ac |Y ),

P (X ≤ δ, Y ≥ 1− δ, A) ≤ P (X ≤ δ, A) = E1(X ≤ δ)X ≤ δP (X ≤ δ),
P (X ≤ δ, Y ≥ 1− δ, Ac) ≤ P (Y ≥ 1− δ, Ac) = E1(1− Y ≤ δ)(1− Y )) ≤ δP (Y ≥ 1− δ).

It follows that

P (X ≤ δ, Y ≥ 1− δ) ≤ δ[P (X ≤ δ) + P (Y ≥ 1− δ)], (3.8)

P (Y ≤ δ,X ≥ 1− δ) ≤ δ[P (Y ≤ δ) + P (X ≥ 1− δ)]. (3.9)

For δ < 1/2 the events (X ≤ δ) and (X ≥ 1 − δ) are disjoint, so P (X ≤ δ) + P (X ≥
1 − δ) ≤ 1, and the same for Y . Add (3.8) and (3.9) and use (3.7) to obtain the upper
bound in (1.9).

4 Coherent distributions

The following proposition summarizes a number of known characterizations of the
set of coherent distributions of (X,Y ), due to [13], [18] and [7].

Proposition 4.1. Let (X,Y ) be a pair of random variables defined on a probability space
(Ω,F , P ), on which there is also defined a random variable U with uniform distribution,
independent of (X,Y ). Then the following conditions are equivalent:

(i) The joint law of (X,Y ) is coherent.

(ii) There exists a random variable Z defined on (Ω,F , P ), with 0 ≤ Z ≤ 1, such that
both

E[Zg(X)] = E[Xg(X)] and E[Zg(Y )] = E[Y g(Y )] (4.1)

either for all bounded measurable functions g with domain [0, 1], or for all bounded
continuous functions g.

(iii) There exists a measurable function φ : [0, 1]2 7→ [0, 1] such that

E[φ(X,Y )g(X)] = E[Xg(X)] and E[φ(X,Y )g(Y )] = E[Y g(Y )] (4.2)

either for all bounded measurable g, or for all bounded continuous g.

(iv) EX = EY = p for some 0 ≤ p ≤ 1, and

E
[
X1(X ∈ B)

]
+ E

[
Y 1(Y ∈ C)

]
≤ p+ P (X ∈ B, Y ∈ C) (4.3)

for all B,C ∈ B, where B may be either the collection of all Borel subsets of [0, 1],
or the collection of all finite unions of intervals contained in [0, 1].
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Proof. Condition (i) is just (ii) for Z an indicator variable, while (ii) for 0 ≤ Z ≤ 1 implies
(iii) for φ(X,Y ) = E(Z |X,Y ). Assuming (iii), (ii) holds with Z = 1(U ≤ φ(X,Y )) for the
uniform [0, 1] variable U independent of (X,Y ). So (i), (ii) and (iii) are equivalent. The
equivalence of (iii) and (iv) is an instance of [33, Theorem 6], according to which for any
finite measure m on [0, 1]2, a pair of probability distributions Q and R on [0, 1] are the
marginals of the measure φ(x, y)m(dx dy) on [0, 1]2, for φ a product measurable function
with 0 ≤ φ ≤ 1, iff

Q(B) +R(C) ≤ 1 +m(B × C)

for all Borel sets B and C. This is equivalent to the same condition for all finite unions
of intervals, by elementary measure theory. After dismissing the trivial case p = 0,
this result is applied here to m(·) = P ((X,Y ) ∈ ·)/p for X and Y with mean p, with
Q(B) := E [X1(X ∈ B)] /p and R(C) := E [Y 1(Y ∈ C)] /p.

The characterizations (ii) and (iii) above extend easily to a coherent family (Xi, i ∈ I),
while (iv) does not [7, p. 288].

Corollary 4.2 ([13]). For any finite I, the set of coherent distributions of (Xi, i ∈ I)

is a convex, compact subset of probability distributions on [0, 1]I with the usual weak
topology.

Proof. To check convexity, suppose that (Xi, i ∈ I) is subject to the extension of (4.1).
That is for some additional index ∗ /∈ I and X∗ = Z ∈ [0, 1],

E[X∗g(Xi)] = E[Xig(Xi)] for all bounded continuous g and i ∈ I, (4.4)

and the same for Y = (Yi, i ∈ I∗) instead of X, with I∗ := I∪{∗}. Construct these random
vectors X and Y on a common probability space with a Bernoulli(p) variable Bp, with
X,Y and Bp independent. Let W := BpX + (1−Bp)Y , so the law of W is the mixture of
laws of X and Y with weights p and 1− p. Then (4.4) for X and Y implies (4.4) for W .

The proof of compactness is similar. Suppose X is the limit in distribution of some
sequence of random vectors Xn := (Xn,i, i ∈ I). Then the sequence of random vectors
Xn := (Xn,i, i ∈ I∗) subject to (4.4) has a subsequence which converges in distribution
to some (Xi, i ∈ I∗), and deduce (4.4) for (Xi, i ∈ I∗) using bounded convergence.

Corollary 4.3. Let C be a non-empty set of distributions of X = (Xi, i ∈ I) on RI that
is compact in the topology of weak convergence, such as coherent distributions of X
on [0, 1]I . Let G(x) := supC P (g(X) ≤ x) for some particular continuous function g, and
x ∈ R, where the supC is over X with a distribution in C. Then

(i) for each fixed x ∈ R there exists a distribution of X in C with G(x) = P (g(X) ≤ x);

(ii) G(x) = P (γ ≤ x) is the cumulative distribution function of a random variable γ
which is stochastically smaller than g(X) for every distribution of X in C: P (γ >

x) ≤ P (g(X) > x) for all real x.

Proof. By definition of G(x), for each fixed x there exists a sequence of random vectors
Xn with distributions in C such that Fn(x) := P (g(Xn) ≤ x) ↑ G(x). By compactness

of C, it may be supposed that Xn
d→ X, meaning the distribution of Xn converges to

that of some X ∈ C. That implies g(Xn)
d→ g(X). Let F (x) := P (g(X) ≤ x). Since Fn(x)

and F (x) are the probabilities assigned by the laws of g(Xn) and g(X) to the closed set
(−∞, x], [2, Theorem 29.1] gives

G(x) ≥ F (x) ≥ lim sup
n

Fn(x) = G(x).
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For (ii), the only property of a cumulative distribution function that is not an obvious
property of G is right continuity. To see this, take xn ↓ x and Xn with P (g(Xn) ≤
x) = Fn(x) such that Fn(xn) = G(xn), and Xn

d→ X with distribution in C. Let F (x) :=

P (g(X) ≤ x). Then for each fixed m, by the same result of [2],

F (xm) ≥ lim sup
n

Fn(xm) ≥ lim sup
n

Fn(xn) = lim sup
n

G(xn) = G(x+).

Finally, letting m→∞ gives G(x) ≥ F (x) = F (x+) ≥ G(x+) ≥ G(x).

Returning to discussion of just a pair random variables (X,Y ) with values in [0, 1]2, as
in Proposition 4.1, suppose further that X and Y are independent, with EX = EY = p.
Then the inequality (4.3) becomes

EX1(X ∈ B) + EY 1(Y ∈ C) ≤ p+ P (X ∈ B)P (Y ∈ C). (4.5)

It was shown in [18, Theorem 4] that this condition, just for B = (s, 1] and C = (t, 1]

for 0 ≤ s, t ≤ 1, characterizes all possible pairs of marginal distributions on [0, 1] of
independent X and Y with mean p such that (X,Y ) is coherent. See also [24, Proposition
3].

5 Open problems

Conjecture 5.1. If (X,Y ) is coherent, and X and Y are independent, then

P (|X − Y | ≥ 1− δ) ≤ 2δ(1− δ) for δ ∈ [0, 12 ). (5.1)

Equality is attained in (5.1) for independent X and Y with

X
d
= Y

d
= (1− δ)B1−δ and A = (X = Y = 1− δ). (5.2)

One can prove (5.1) for 2× 2 laws of (X,Y ) in a manner similar to the proof of (1.8); we
leave the proof to the reader. But like Theorem 1.2, the extension of (5.1) to general
distributions of X and Y seems quite challenging.

The problems solved by (1.8) for t(X,Y ) = 1(|X − Y | ≥ 1− δ) and by the case n = 2

of (2.7) for t(X,Y ) = X ∨ Y , are instances of the following more general problem, with
further variants as above, assuming X and Y are independent.

Problem 5.2 ([13, p. 224]). Given some target function t(X,Y ) defined on [0, 1]2, eval-
uate supC Et(X,Y ), the supremum of Et(X,Y ) as the law of (X,Y ) ranges over the
set C of coherent laws on [0, 1]2. Or the same for C(p), coherent laws of (X,Y ) with
EX = EY = p.

This problem seems to be open even for XY , or |X − Y |r for r 6= 1. Another instance
of this problem is to evaluate

ε(δ, p) := sup
C(p)

P (|X − Y | ≥ 1− δ). (5.3)

For each δ ∈ (0, 1), examples of coherent (X,Y ) with

P (|X − Y | ≥ 1− δ) = p(δ) := 2δ/(1 + δ) (5.4)

are the 2× 2 example (1.4), say (Xδ, Yδ), its reflection (1−Xδ, 1− Yδ), and any mixture
of these two laws, which is a 4× 4 law in C(p) for p between p(δ) and 1− p(δ). So

p(δ) ≤ ε(δ, p) ≤ ε(δ) for p between p(δ) and 1− p(δ). (5.5)

It follows from Theorem 1.2 that both inequalities are equalities for δ ∈ (0, 12 ]. But that
leaves open:
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Problem 5.3. Find ε(δ, p) for δ ∈ (0, 12 ], and p not covered by (5.5).

Problem 5.2 is related to some concepts in the optimal transport theory. For example,
the square of the L2-Wasserstein distance between the distributions of X and Y is
the minimum of Et(X ′, Y ′) for t(x, y) = (x − y)2, over all (X ′, Y ′) with the marginal
distributions the same as those of X and Y (see [35, Ch. 6]).

For a bounded upper semicontinuous t, such as the indicator of a closed set, the
supC Et(X,Y ) will be attained at a distribution of (X,Y ) in ext(C), the set of extreme
points of the compact, convex set C of coherent distributions [1]. This leads to:

Problem 5.4 ([13, p. 224] [7, p. 273]). Characterize ext(C).
For the particular target functions t involved in (2.7) and in Theorem 1.2, the

supC Et(X,Y ) is attained by 2× 2 distributions of (X,Y ).
It has been recently proved in [36] that there are extreme coherent laws of (X,Y )

with an arbitrarily large finite number of atoms.
The following proposition is easily proved using (4.3):

Proposition 5.5. For each a rectangle R = [x1, x2]× [y1, y2] ⊆ [0, 1]2, let C2×2(R) denote
the set of coherent laws of (X,Y ) on the corners of R. Then

• C2×2(R) is non-empty iff R intersects the diagonal {(p, p), 0 ≤ p ≤ 1}, that is iff
x1 ∨ y1 ≤ x2 ∧ y2.

• If x1 ∨ y1 = x2 ∧ y2 = p, then (p, p) is a corner of R, and the unique law in C2×2(R)

is degenerate with X = Y = p.

• If x1 ∨ y1 < x2 ∧ y2, the set of laws ext C2×2(R) forms a convex polygon in a 2-
dimensional affine subspace of the set of probability distributions on those corners,
with at least 2 and at most 8 vertices.

It has been proved in [36] that the number of vertices must be 2, 3, 4 or 6, and
examples show that each of these cases holds for some distribution.

Problem 5.6. Provide an accounting of the extreme 2× 2 coherent laws of (X,Y ) which
is adequate to recover (1.8) and (2.8), and to find the extrema of Et(X,Y ) over 2 × 2

coherent laws for other functions t, such as t(X,Y ) = XY or |X − Y |r for r > 0.

Problem 5.7. Extensions of above problems to n > 2 coherent opinions.
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