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Abstract

The extra-clustering model for the group formation process of social animals was
introduced by Durand, Blum and François. The model uses the relatedness of the
animals, which is described by phylogenetic trees. If these trees are drawn from
the Yule-Harding model, it was analyzed in recent work. Here, we analyze it for the
uniform model, which is the other widely-studied model on phylogenetics trees. More
precisely, we derive moments and limit laws for the number of groups, the number of
groups of fixed size and the largest group size. Our results show that, independent of
the probability of extra-clustering, there is on average only a finite number of groups,
one of which is very large whereas all others are small. This behavior considerably
differs from the Yule-Harding case, where the finiteness of the number of groups is
dependent on the extra-clustering probability.
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1 Introduction

The extra-clustering model, proposed by Durand et al. in [5], is a model for the group
formation process of social animals. Under this model, the number of groups Nn formed
by n animals satisfies the distributional recurrence: for n ≥ 2,

Nn
d
=

{
NIn +N∗n−In , if Kn = 0 and In 6∈ {1, n− 1};
1, if Kn = 1 or In ∈ {1, n− 1},

(1.1)

whereN∗n is an independent copy ofNn, the sequences of random variablesKn, In, Nn, N
∗
n

are independent, Kn is a Bernoulli random variable with P(Kn = 1) = p and 0 ≤ p < 1,
and In has throughout this note the Catalan distribution:

P(In = j) =
Cj−1Cn−j−1

Cn−1
, 1 ≤ j ≤ n− 1, (1.2)
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Extra-clustering model with uniform phylogenetic trees

(a) (b)

Figure 1: A phylogenetic tree representing the interrelationship of 5 animals (grey
leaves; labels are omitted). On the left, the two encircled nodes are the clade of the
first or second leaf from the left; note that this clade is not maximal since it is strictly
contained in the clade of the third leaf from the left. On the right, the two maximal clades
of the tree (which arise from the third and forth or fifth leaf from the left). So, if the the
interrelationship of 5 animals is represented by this tree, then Nn = 2, N [2]

n = N
[3]
n = 1,

N
[m]
n = 0 for m ≥ 3, and Mn = 3.

where Cn = 1
n+1

(
2n
n

)
denotes the n-th Catalan number. (That this is indeed a random

distribution will become clear below.)

We give a brief description of the aforementioned extra-clustering model which then
will also explain the above recurrence for the number of groups.

First, consider p = 0, where the model is called the neutral model. In this case, the
model is based on the assumption that the main (and in fact) only driving force behind
the group formation process is genetic relatedness; see [5]. Thus, we first need to
understand the interrelationship between the n animals which is done via phylogenetic
trees, i.e., rooted, binary, leaf-labeled trees, where we do not consider a left-right order
of the children of nodes and leaves represent the n animals; see Semple and Steel [9] for
a comprehensive introduction into properties of such trees and Figure 1 for an example
(where labels of leaves are omitted). A clade of a leaf of such a tree is the set of leaves
contained in the tree which is rooted at the parent of the leaf; see Figure 1, (a). The
reason for considering clades is that the leaves (resp. animals) from a clade can be
considered to be all closely related. Of particular interest are maximal clades, i.e., clades
which are maximal under set inclusion in the poset of all clades; see Figure 1, (b). The
set of all maximal clades is taken to be the set of groups formed by the n animals under
the neutral model and its cardinality is denote by Nn (which so far is not random).

Of course, we usually do not have the phylogenetic tree representing the interrela-
tionship of the n animals and thus we need to resort to probabilistic tree reconstruction
methods. More precisely, we will consider random models on the set of all phylogenetic
trees of size n. The most simple and widely-used models for such random phylogenetic
trees are the Yule-Harding model and the uniform model (also called PDA model in the
biological literature); see [9] and Aldous [1] for motivation and background on these
models. Properties of the (now random) Nn if the former model is used were studied by
Durand and François [6] and Drmota et al. [3, 4]. In this paper, we are interested in the
uniform model which assumes that each phylogenetic tree with n leaves is equally likely.

Note that the distribution of Nn for a random phylogenetic tree of size n does not
change if one considers a left-right order of the children of the nodes in trees and also if
one ignores the labels of the leaves; see for instance the discussion in Blum et al. [2]
where this was also used. Thus, we will from now on (with a slight abuse of notation)
consider phylogenetic trees as rooted, binary with children of nodes having a left-right
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Extra-clustering model with uniform phylogenetic trees

order and leaves having no labels. It is a basic combinatorial fact that the number of
such trees with n leaves is given by Cn−1. Thus, under the uniform model, each tree
with n leaves has probability 1/Cn−1 and the probability that the left subtree has size j
is given by (1.2) since there are exactly Cj−1Cn−j−1 trees whose left subtree has size j.
(This now also shows that (1.2) is indeed a random distribution.)

We can now explain the above distributional recurrence for the number of groups Nn.
Recall, that Nn is the number of maximal clades of a random phylogenetic tree of size n
under the uniform model. It is immediate that this number can be computed as the sum
of the number of maximal clades of the left and right subtree unless all leaves are in one
maximal clade. This, together with the fact that if the left subtree size equals j, then
left and right subtree are independent random phylogenetic trees of size j and n − j,
respectively, explains the above distributional recurrence for p = 0. (In particular, note
that in this case, we have Kn ≡ 0.)

Next, we are going to explain the more general extra-clustering model. Recall that,
as just explained, the neutral model is based on the assumption that the only reason for
animals to form groups is genetic relatedness. Whereas for some types of social animals
this assumption is reasonable, for others it is not; see [5] where this was discussed with
real-world data. In order to take into account other factors which cause animals to form
groups (and also in order to devise statistical tests to test whether or not the neutral
model is appropriate), the authors in [5] introduced the more general extra-clustering
model. Here, one in addition has a probability p which measures the degree of which
other factors are decisive in the group formation process. According to this probability,
in each step of the recursive procedure to compute Nn, it may happen independently
from everything else that an extra-clustering event occurs which means all the remaining
animals are in one cluster. These extra-clustering events are modeled via the random
variable Kn in (1.1) which was the last unexplained piece in (1.1). Thus, the distributional
recurrence for Nn is now fully explained.

In [3, 4, 6], moments and limit laws of Nn for the Yule-Harding model were studied.
Here, we will prove corresponding results for Nn as well as for more refined character-
istics of the group formation process under the extra-clustering model with uniformly
chosen random phylogenetic trees.

The paper is organized as follows. In the next section, we introduce cluster trees and
associate two generating functions with it. This will then be used in Section 3 to derive
limit distribution results for Nn and the number of groups containing exactly m animals
where m ≥ 2. Finally, in Section 4 we will study moments and the limit distribution of
the largest group size. We will conclude in Section 5 by comparing the results from this
paper with those for the Yule-Harding model from previous works.

2 Cluster trees and weights

In order to find the limit distribution of Nn, one could work with the distributional
recurrence (1.1). However, we will use a more combinatorial method which will turn out
to be advantageous when dealing with more refined properties of the group formation
process.

First, note that the definition of the extra-clustering model (with uniformly generated
phylogenetic trees) can be broken into two probabilistic stages: (i) a phylogenetic tree of
size n is picked uniformly at random and (ii) the picked tree is traced (starting from the
root and then recursively in the subtrees) and one stops if either a node is encountered
whose left or right subtree is a leaf or an extra clustering event has occurred. In the
second step, we replace the subtrees at the places where one has stopped by leaves
and call the resulting tree a cluster tree of the picked tree. Note that cluster trees
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(a) (b)

qp2 + 2q2p+ q3

(c)

p

Figure 2: The phylogenetic tree from Figure 1 together with its cluster trees in (b)
and (c). The tree is traced from the root until extra-clustering events occur and/or the
grey internal nodes are reached (which are the parents of the leafs whose clades are
maximal). The shapes of all possible cluster trees are in (b) and (c): the one in (b) occurs
4 times (depending on whether there are extra-clustering events at the gray nodes or
not) and the one in (c) only occurs if there is an extra-clustering event at the root. The
probabilities are indicated below the shapes and as explained in the paragraph preceding
Lemma 1 they indeed sum up to 1.

are again rooted, binary trees with children having a left-right order and leaves not
labeled. Moreover, note that they are not unique but rather depend on the outcome of
the probabilistic procedure in Step (ii) above; see Figure 2 where the tree on the left
produces two different cluster trees: either an extra-clustering event occurs at the root
itself (which gives the cluster tree in (c) with probability p) or there is no extra-clustering
event at the root but possibly at the gray nodes (this gives the cluster tree in (b) with
probabilities qp2 if extra-clustering events occurred at both gray nodes; twice q2p if only
one extra-clustering event took place at a gray node, or q3 if no extra-clustering event
took place at a gray node).

Now, in order to keep track of the probabilities attached to cluster trees, we associate
two generating functions with them. First, since no extra-clustering event has occurred
at any internal node of a cluster tree, we attach the probability q := 1− p to these nodes,
i.e., we consider

G(z) :=
∑
n≥1

qn−1Cn−1z
n = zC(qz),

where C(z) := (1 −
√

1− 4z)/(2z) is the ordinary generating function of the Catalan
numbers (see, e.g., Page 34 and 35 in [7]).

Next, for the leaves of the cluster tree, they either resulted from an extra-clustering
event (in which case we have to attach the weight p to them and there are Cn−1 possible
trees) or they have been nodes in the original phylogenetic tree with either one or two
children as leaves (in this case, we use the weight q and the number of trees is either
2Cn−2 in the former case or 1 in the latter case). Thus, for each single leaf of the cluster
tree, we consider the generating function

H(z) : = (pC1 + q)z2 +
∑
n≥3

(pCn−1 + 2qCn−2)zn

= z2 + pz(C(z)− 1− z) + 2qz2(C(z)− 1).

Now, by well-known facts about the combinatorics of generating functions (e.g., see
Chapter I in [7]), the composition of these two generating functions, namely, G(H(z))

generates for any phylogenetic trees all its associated cluster trees with their corre-
sponding probabilities. In particular, since for each phylogenetic tree the probabilities
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of its cluster trees sum up to 1, we have

[zn]G(H(z)) = Cn−1, (n ≥ 2)

and [z1]G(H(z)) = 0 because all phylogenetic trees have at least two leaves. (Here,
[zn]f(z) denotes the n-th coefficient of the Maclaurin series of f(z).) We formulate this
as a lemma.

Lemma 1. For all 0 ≤ p < 1, we have G(H(z)) = z(C(z)− 1).

3 Number of groups and number of fixed-size groups

The two generating functions from the previous section become really useful only if
one introduces a second variable, say u, which keeps track of the number of leaves of
the cluster trees which by definition is the number of groups under the extra-clustering
model (see the introduction). More precisely, we consider now G(uH(z)). By the above
description, this generating function is related to the distribution of Nn via

P(Nn = k) =
[ukzn]G(uH(z))

Cn−1
,

where the denominator incorporates the probability from Step (i) of the stochastic
description of the extra-clustering model from the beginning of the last section and
G(uH(z)) incorporates the probabilities from Step (ii).

Limit laws for random variables arising in the above way from a composition of gen-
erating functions have been studied before in the literature; see Flajolet and Sedgewick
[7]. We recall here one such result which we will use in the sequel. To state the result,
we need some notations.

Assume that g(z) and h(z) are two generating functions with non-negative coefficients
and h(0) = 0. Denote the radii of convergence of g(z) and h(z) by ρg and ρh, respectively.
Moreover, set

τg := lim
z→ρg−

g(z) and τh := lim
z→ρh−

h(z).

Then, the following result holds.

Theorem 1 (Proposition IX.1 in [7]). Assume that τh < ρg. Moreover, assume that ρh is
finite and that z = ρh is the only singularity of h(z) on the circle of convergence. Finally,
assume that

h(z) = τh − c
(

1− z

ρh

)λ
+ o

((
1− z

ρh

)λ)
,

where c is a positive real number, 0 < λ < 1 and the above asymptotics holds for z in

∆ := {z : |z| < r and | arg(z − ρh)| > φ},

where r > 1 and 0 < φ < π/2.
Then, for the sequence of random variables defined by

P(Xn = k) :=
[ukzn]g(uh(z))

[zn]g(h(z))
,

we have the limit distribution result

Xn
d−→ X

with convergence of all moments, where X is a discrete random variable with probability
generating function:

PX(u) =
ug′(uτh)

g′(τh)
.

ECP 25 (2020), paper 13.
Page 5/13

http://www.imstat.org/ecp/

https://doi.org/10.1214/20-ECP291
http://www.imstat.org/ecp/
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The proof of this result follows from singularity analysis, where the dominant singu-
larity (the one closest to the origin) of g(h(z)) comes from the dominant singularity of
h(z) since τh < ρg; for details see [7] and the proof of Theorem 3 below. The condition
τh < ρg is the so called subcritical case and one usually refers to f(ug(z)) as subcritical
composition schema.

In fact, G(uH(z)) is also a subcritical composition schema and thus the limit distribu-
tion of Nn follows from the above result.

Theorem 2. We have the limit distribution result

Nn
d−→ N

with convergence of all moments, where

N
d
= NB

(
1

2
,

3− 2p− p2

4

)
+ 1.

Here, NB(r, p) denotes the negative binomial distribution.

Remark 1. NB in the above theorem is more precisely the (standard) generalization of
the negative binomial distribution to the case where the first parameter is allowed to be
any positive real number.

Proof. First, note that

ρH =
1

4
, ρG =

1

4q
and τH =

3 + p

16
, τG =

1

2q
.

Since

τH =
3 + p

16
<

1

4
≤ 1

4q
= ρG,

G(uH(z)) is indeed a subcritical composition schema. Moreover, by a straightforward
expansion

H(z) =
3 + p

16
− 1 + p

4

√
1− 4z + o(

√
1− 4z)

in a suitable ∆-domain.
Thus, by applying the proposition, we obtain the claimed result with the probability

generating function of N given by

PN (u) = u

√
1− 4qτH

1− 4qτHu
.

From this, it is clear that N has the claimed distribution.

Remark 2. The previous theorem can also be proved by deriving the asymptotics of all
moments of Nn which can be done in a recursive way since it follows from (1.1) that all
moments satisfy the same type of recurrence. Then, the above result also follows since
the negative binomial distribution is uniquely determined by its moment sequence; see,
e.g., [3, 4] where such a recursive approach was employed to prove limit distribution
results (but with other limiting distributions).

As a corollary, we obtain the following.

Corollary 1. We have,

E(Nn) ∼ 5 + 2p+ p2

2 + 4p+ 2p2
.
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Thus, on average, there are only a finite number of groups.
Next, we fix m ≥ 2 and consider the number of groups of size m which we denote

by N [m]
n ; see the description of Figure 1 for an example. In order to understand the

distribution of this random variable we can again use the two generating functions
G(z) and H(z). However, this time we only mark with u those leaves of the cluster tree
which correspond to groups of size m, i.e., only the coefficient of [zm] in H(z). Thus, we
consider

G((pCm−1 + (2− δ2,m)qCm−2)(u− 1)zm +H(z)),

were δ2,m is the Kronecker delta function. Then,

P(N [m]
n = k) =

[ukzn]G((pCm−1 + (2− δ2,m)qCm−2)(u− 1)zm +H(z))

Cn−1
.

In order to find the limit distribution of N [m]
n , we cannot directly apply Theorem 1.

However, the method of proof of Theorem 1 can be applied and yields the following
result.

Theorem 3. We have the limit distribution result

N [m]
n

d−→ N [m]

with convergence of all moments, where

N [m] d= NB

(
1

2
,

42−m(1− p)(pCm−1 + (1− p)(2− δ2,m)Cm−2)

1 + 2p+ p2 + 42−m(1− p)(pCm−1 + (1− p)(2− δ2,m)Cm−2)

)
.

Proof. Let
Hm(u, z) = (pCm−1 + (2− δ2,m)qCm−2)(u− 1)zm +H(z)

which has dominant singularity at z = 1/4. By a straightforward expansion, as z → 1/4,

Hm(u, z) = cm(u)− 1 + p

4

√
1− 4z + o(

√
1− 4z),

where

cm(u) = (pCm−1 + (2− δ2,m)qCm−2)(u− 1)4−m +
3 + p

16
.

Note that for u close to 1, we have

|cm(u)| < 1

4q

and the upper bound is the dominant singularity of G(z). Thus, G(Hm(u, z)) has also
dominant singularity at z = 1/4. Moreover, as z → 1/4,

G(Hm(u, z)) =
1−

√
1− 4qcm(u)

2q
− 1 + p

4
√

1− 4qcm(u)

√
1− 4z + o(

√
1− 4z).

Now, by the transfer theorems of singularity analysis (see Chapter VI in [7]),

[zn]G(Hm(u, z)) ∼ 1 + p

8
√
π
√

1− 4qcm(u)
· 4n

n3/2

and by using the well-known expansion of the Catalan numbers

Cn =
4n√
πn3/2

(
1 +O

(
1

n

))
, (3.1)
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we obtain that

P
N

[m]
n

(u) ∼ 1 + p

2
√

1− 4qcm(u)
,

where P
N

[m]
n

(u) denotes the probability generating function of N [m]
n . From this the

claimed result follows by standard results from probability theory; see, e.g., Chapter IX
in [7].

Remark 3. Again this result can alternatively be proved via the asymptotics of moments
since N [m]

n satisfies the following distribution recurrence: for n > m,

N [m]
n =

{
N

[m]
In

+ (N
[m]
n−In)∗, with probability 1− p and In 6∈ {1, n− 1};

0, otherwise,

where notation is as in (1.1) and initial conditions are given by N [m]
n = 0 if n < m and

N [m]
m =

{
0, with probability 1− p and Im 6∈ {1,m− 1};
1, otherwise.

As a consequence, we again obtain the asymptotics of the mean.

Corollary 2. We have,

E(N [m]
n ) ∼ 2

41−m(1− p)(pCm−1 + (1− p)(2− δ2,m)Cm−2)

1 + 2p+ p2
.

Corollary 1 and Corollary 2 now imply the following proposition.

Proposition 1. We have,
E(N) = 1 +

∑
m≥2

E(N [m]).

Proof. This is proved by a straightforward computation (probably best done with mathe-
matical software such as Maple).

This suggests that there is only one big group and all other groups are small. That
this is indeed the case will be proved in the next section.

4 Largest group size

Denote by Mn the largest size of the groups (i.e. largest size of the maximal clades)
of a random phylogenetic tree of size n under the uniform model; e.g., for the tree in
Figure 1 we have Mn = 3. Due to the above observation that there should be one big
group, we set Xn := n−Mn.

In order to find the distribution of Xn, we again make use of the above two generating
functions for the cluster tree. The main observation is that for 0 ≤ k < n/2, we have

P(Xn = k) =
[zk]G′(H(z))[zn−k]H(z)

Cn−1

which is explained as follows: since the largest group size is equal to n− k, we have to
replace one leaf of the cluster tree by a group of size n− k (this is the factor [zn−k]H(z)),
whereas all other leaves are replaced by arbitrary groups (this is the factor [zk]G′(H(z)));
note that the restriction 0 ≤ k < n/2 is essential here, because it ensures that all other
groups are indeed of size smaller than n−k. Moreover, the range 0 ≤ k < n/2 is expected
to be sufficient for our purpose since we expect that the largest group size is close to n.

We start with the following lemma.
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Lemma 2. Uniformly for 0 ≤ k < n/2, we have

P(Xn = k) =
1 + p

2
4−k[zk]G′(H(z))

(
1− k

n

)−3/2(
1 +O

(
1

n

))
.

Proof. Note that

[zn−k]H(z) = pCn−k−1 + 2qCn−k−2.

The result follows from this by a standard computation using (3.1).

From the last lemma, we obtain the limit distribution of Xn.

Theorem 4. We have the limit distribution result

Xn
d−→ X,

where X is a discrete random variable with probability generating function

PX(u) =
∑
k≥0

pku
k =

1 + p

2F (u/4)
.

Here,

F (u) =

√
1− 2p+ 2p2 − 4(1− 2p)(1− p)z + 4(1− p)2z2 − 2(1− p)(p− 2(1− p)z)

√
1− 4u.

(4.1)

Proof. From Lemma 2, we have for fixed k

pk := lim
n→∞

P(Xn = k) =
1 + p

2
4−k[zk]G′(H(z)).

Thus,

PX(u) =
∑
k≥0

pku
k =

1 + p

2
G′(H(u/4))

and the claimed form follows now by plugging into this the expressions for G(z) and
H(z) and straightforward computation.

Remark 4. Note that F (u) has dominant singularity at u = 1/4. Moreover, as u→ 1/4,

PX(u) = 1− 2(1− p)
1 + p

√
1− u+ o(

√
1− u).

From this, we obtain by the transfer theorems of singularity analysis,

pk =
1− p

(1 + p)
√
πk3/2

(
1 +O

(
1

k

))
, (k →∞). (4.2)

Remark 5. Note that all moments of X are infinite. Thus, in contrast to Theorem 2 and
Theorem 3, we do not have moment convergence in the above limit theorem for the
largest group size.

Due to the latter remark, it is interesting to compute moments of Xn (and thus of
Mn). We will do this next with the help of Lemma 2, (4.2) and the Euler-Maclaurin
summation formula (for the latter see, e.g., Chapter 9 of Graham et al. [8]). We first
need the following (crucial) lemma.
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Lemma 3. We have, ∑
0≤k<n/2

P(Xn = k) = 1 + o(n−1/2) (4.3)

and for ` ≥ 1 ∑
0≤k<n/2

k`P(Xn = k) ∼ d`n`−1/2 (4.4)

where

d` =
1− p

(1 + p)
√
π

∫ 1/2

0

x`−3/2(1− x)−3/2dx.

Proof. We will derive the asymptotics of the sum in (4.3) by splitting it into two parts:∑
0≤k<n/2

P(Xn = k) =
∑

0≤k<nρ
P(Xn = k) +

∑
nρ≤k<n/2

P(Xn = k), (4.5)

where ρ > 0 will be chosen as the proof proceeds.
For the first part, we have by Lemma 2,∑

0≤k<nρ
P(Xn = k) =

∑
0≤k<nρ

pk(1 +O(nρ−1)) =
∑

0≤k<nρ
pk(1 + o(n−1/2)),

where pk was defined in Theorem 4 and ρ < 1/2 so that the last equality holds. Note that∑
0≤k<nρ

pk = 1−
∑
k≥nρ

pk = 1− 1− p
(1 + p)

√
π

∑
k≥nρ

k−3/2(1 +O(1/k)),

where we used (4.2) in the last step. Combining the two equations above, we get∑
0≤k<nρ

P(Xn = k) = 1− 1− p
(1 + p)

√
π

∑
k≥nρ

k−3/2(1 +O(1/k)) + o(n−1/2). (4.6)

The asymptotic of the sum on the right-hand side of the equation can be derived by using
the Euler-Maclaurin summation formula:∑

k≥nρ
k−3/2 =

∫ ∞
nρ

x−3/2dx+O(n−3ρ/2) = 2n−ρ/2 + o(n−1/2),

where the last step holds whenever ρ > 1/3. The asymptotic of the O-term in (4.6) can
be derived in a similar manner. Thus, we obtain that∑

0≤k<nρ
P(Xn = k) = 1− 2(1− p)

(1 + p)
√
π
n−ρ/2 + o(n−1/2). (4.7)

Now, we turn to the second part of the decomposition of (4.5) for which we use the
expansions from Lemma 2 and (4.2):∑

nρ≤k<n/2

P(Xn = k) =
1− p

(p+ 1)
√
π

∑
nρ≤k<n/2

k−3/2(1− k/n)−3/2(1 +O(1/k)). (4.8)

Using again Euler-Maclaurin summation formula,

∑
nρ≤k<n/2

k−3/2(1− k/n)−3/2 =

∫ n/2

nρ
x−3/2(1− x/n)−3/2dx+ o(n−1/2).
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Note that ∫
x−3/2(1− x/n)−3/2dx =

2(2x− n)√
nx(n− x)

and thus ∑
nρ≤k<n/2

k−3/2(1− k/n)−3/2 = 2n−ρ/2 + o(n−1/2).

Together with a similar treatment of the O-term in (4.8), we obtain that∑
nρ≤k<n/2

P(Xn = k) =
2(1− p)

(1 + p)
√
π
n−ρ/2 + o(n−1/2). (4.9)

Finally, substituting (4.7) and (4.9) into (4.5) gives the desired result.
Next, we proceed to the proof of (4.4). In a similar manner, we split the sum into∑

0≤k<n/2

k`P(Xn = k) =
∑

0≤k<nρ
k`P(Xn = k) +

∑
nρ≤k<n/2

k`P(Xn = k), (4.10)

where ρ is again chosen as the proof proceed.
For the first term on the right-hand side of (4.10):∑

0≤k<nρ
k`P(Xn = k) ≤ nρ` = o(n`−1/2),

where the last step holds when ρ < 1/2.
For the second term on the right-hand side of (4.10), we again apply the expansions

in Lemma 2 and (4.2):∑
nρ≤k<n/2

k`P(Xn = k) =
1− p

(1 + p)
√
π

∑
nρ≤k<n/2

k`−3/2(1− k/n)−3/2(1 +O(1/k)). (4.11)

Using once more Euler-Maclaurin summation formula yields

∑
nρ≤k<n/2

k`−3/2(1− k/n)−3/2 =

∫ n/2

nρ
x`−3/2(1− x/n)−3/2dx+ o(n`−1/2)

=

∫ n/2

0

x`−3/2(1− x/n)−3/2dx+ o(n`−1/2)

=

(∫ 1/2

0

x`−3/2(1− x)−3/2dx

)
n`−1/2 + o(n`−1/2).

The O-term in (4.11) is treated similarly.
Finally, substituting the above two equations into (4.10) gives the desired result.

From this lemma, we obtain now the asymptotics of all moments of Xn.

Theorem 5. For ` ≥ 1, we have

E(X`
n) ∼ d`n`−1/2,

where d` is as in Lemma 3.

Proof. Since

E(X`
n) =

∑
0≤k≤n

k`P(Xn = k) =
∑

0≤k<n/2

k`P(Xn = k) +
∑

n/2≤k≤n

k`P(Xn = k)
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we only need to show that the second term is o(n`−1/2). This follows directly from

∑
n/2≤k≤n

k`P(Xn = k) ≤ n`
1−

∑
0≤k<n/2

P(Xn = k)

 = o(n`−1/2),

where (4.3) is used in the last estimate.

As a corollary, we obtain the asymptotics of moments of the maximal group size Mn.

Corollary 3. We have,

E(Mn) = n− 2(1− p)
(1 + p)

√
π
n1/2 + o(n1/2)

and for ` ≥ 2

E(Mn − E(Mn))` ∼ (−1)`d`n
`−1/2,

where d` is as in Lemma 3.

5 Conclusion

In this paper, we considered the number of groups, number of fixed-size groups
and the largest group size of the extra clustering model with uniformly distributed
phylogenetic trees. For all these random variables, we derived limit laws and computed
moments. Our results show that on average, there is only a finite number of groups and
that one of these groups contains almost all animals (and thus all the others are small).
This holds for all p with 0 ≤ p < 1.

Our results have to be compared with those for the extra clustering model where
the phylogenetic trees are generated by the Yule-Harding model; see [6] and [3, 4]. In
particular, in [6], the following asymptotics for the mean of number of groups (again
denoted by Nn) was proved:

E(Nn) =



c(p)

Γ(2(1− p))
n1−2p, if 0 ≤ p < 1/2;

log n

2
, if p = 1/2;

p

2p− 1
, if 1/2 < p < 1,

where

c(p) =
1

e2(1−p)

∫ 1

0

(1− t)−2pe2(1−p)t
(
1− (1− p)t2

)
dt.

Thus, for the Yule-Harding model, the number of groups is on average finite if and only if
p > 1/2. In all other cases, the number of groups is growing as n tends to infinity.

Higher moments and limit laws of Nn where discussed in [3, 4], where the authors
proved that the limit law for p = 0 is continuous, for 0 < p < 1/2 it is a mixture of a
continuous and discrete random variables and only for p ≥ 1/2 it becomes discrete. On
the other hand, for the uniform model we proved in this paper that it is always discrete.
Moreover, one also has convergence of all moments which in the Yule-Harding model
was only the case for 0 < p < 1/2 and 1/2 < p < 1.

For the number of fixed-sized groups in the Yule-Harding model, only the mean was
considered so far. For example, in [6], the authors showed that for 0 ≤ p < 1/2, the mean
is again of order n1−2p. Using the tools from [3, 4], higher moments and limit laws for
the number of fixed-sized groups could be added as well (also for the range p ≥ 1/2).
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However, of possible greater interest would be a study of the largest group size in the
Yule-Harding model, in particular, because it was claimed in [6] that the “typical” group
size is of order log n in the neutral model (p = 0) and of order n in the extra clustering
model with p > 0. Whether or not a similar sharp transition also holds for the maximal
group size is an open problem.
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