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Data consisting of samples of probability density functions are increas-
ingly prevalent, necessitating the development of methodologies for their
analysis that respect the inherent nonlinearities associated with densities. In
many applications, density curves appear as functional response objects in a
regression model with vector predictors. For such models, inference is key
to understand the importance of density-predictor relationships, and the un-
certainty associated with the estimated conditional mean densities, defined
as conditional Fréchet means under a suitable metric. Using the Wasserstein
geometry of optimal transport, we consider the Fréchet regression of density
curve responses and develop tests for global and partial effects, as well as si-
multaneous confidence bands for estimated conditional mean densities. The
asymptotic behavior of these objects is based on underlying functional cen-
tral limit theorems within Wasserstein space, and we demonstrate that they
are asymptotically of the correct size and coverage, with uniformly strong
consistency of the proposed tests under sequences of contiguous alternatives.
The accuracy of these methods, including nominal size, power and coverage,
is assessed through simulations, and their utility is illustrated through a re-
gression analysis of post-intracerebral hemorrhage hematoma densities and
their associations with a set of clinical and radiological covariates.

1. Introduction. Samples of probability density functions arise naturally in many mod-
ern data analysis settings, including population age and mortality distributions across differ-
ent countries or regions (Bigot et al. (2017), Hron et al. (2016), Petersen and Müller (2019)),
and distributions of functional connectivity patterns in the brain (Petersen and Müller (2016)).
Methods for the analysis of density data began with the work of Kneip and Utikal (2001),
who applied standard functional principal components analysis (FPCA) in order to quantify
a mean density and prominent modes of variability about that mean. However, due to inherent
constraints of density functions, which must be nonnegative and integrate to one, nonlinear
methods are steadily replacing such standard procedures. For example, Hron et al. (2016)
and Petersen and Müller (2016) both proposed to apply a preliminary transformation to the
densities, mapping them into a Hilbert space, after which linear methods such as FPCA can
be suitably applied. The transformation of Hron et al. (2016) was specifically motivated by
the extension of the Aitchison geometry (Aitchison (1986)) to infinite-dimensional compo-
sitional data due to the work of Egozcue, Díaz-Barrero and Pawlowsky-Glahn (2006), while
those in Petersen and Müller (2016) were generic and not motivated by any particular geom-
etry.

Parallel developments in the analysis of nonlinear data have been made in the broader field
of object-oriented data analysis (Marron and Alonso (2014)), where a complex data space is
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endowed with a chosen metric that, in turn, defines the parameters of the model. Particu-
lar attention has been paid to manifold-valued data (e.g., Fletcher et al. (2004), Panaretos,
Pham and Yao (2014)), with the main objects of interest being the Fréchet mean and vari-
ance, as well as dimension reduction tools designed to optimally retain variability in the
data (Patrangenaru and Ellingson (2016)). Within this context, Srivastava, Jermyn and Joshi
(2007) and Bigot et al. (2017) developed manifold-based dimension reduction techniques
specifically designed for samples of density functions, the former utilizing the Fisher–Rao
geometry and the latter the Wasserstein geometry of optimal transport. Of these two, the
Wasserstein metric has proved in recent years to have greater appeal both theoretically, given
its clear interpretation as an optimal transport cost (Ambrosio, Gigli and Savaré (2008),
Villani (2003)), as well as in applied settings (Bolstad et al. (2003), Broadhurst et al. (2006),
Panaretos and Zemel (2016), Zhang and Müller (2011)).

In this paper, we study a regression model with density functions as response variables
under the Wasserstein geometry, with predictors being Euclidean vectors. Such data are fre-
quently encountered in practice (e.g., Nerini and Ghattas (2007), Talská et al. (2018)). The
goal of the model is to perform inference, specifically tests for covariate effects and confi-
dence bands for the fitted conditional mean densities. For this reason, we assume a global
regression model that does not require any smoothing or other tuning parameter to fit. Stan-
dard functional response models, such as the linear model (Faraway (1997)), are not suitable
for the nonlinear space of density functions unless the densities are first transformed into a
linear space, as demonstrated recently in Talská et al. (2018) using the compositional ap-
proach. However, there is no such transformation that is suitable for the Wasserstein geome-
try. Global regression models for Riemannian manifolds have been developed (Cornea et al.
(2017), Fletcher (2013), Niethammer, Huang and Vialard (2011)), but are also not directly
applicable to the Wasserstein geometry. Instead, we will develop our inferential techniques
under the Fréchet regression model proposed in Petersen and Müller (2019), which defines a
global regression function between response data in an arbitrary metric space and vector pre-
dictors. Although the theory of estimation under this model was well studied in the general
metric space framework, this is not the case for other forms of inference.

In Section 2, we briefly describe the necessary components of the Wasserstein geometry
and its implications when applied to the Fréchet regression model. An additional component
not considered in Petersen and Müller (2019) that is available through this particular formu-
lation is the random optimal transport map between the conditional Wasserstein mean density
and the observed one. These maps serve the purpose of the error term in the regression model,
although they do not act additively or even linearly. In Section 3, we develop intuitive test
statistics for covariate effects and derive their asymptotic distributions, leading to root-n con-
sistent testing procedures. We also describe different methods for implementing these tests,
including a bootstrap procedure involving residual optimal transport maps obtained from the
fitted model. Section 4 demonstrates how to compute asymptotic confidence bands about
the estimated conditional mean distributions. Finally, these methods are illustrated through
extensive simulations (Section 5) and the analysis of distributions of hematoma density for
stroke patients (Section 6), as captured by computed tomography scans, and their dependency
on patient-specific covariates (Figure 1).

2. Preliminaries. We begin with a brief definition of the Wasserstein metric in the lan-
guage of optimal transport. This Wasserstein metric has been known under other names,
including “Mallows” and “earth-mover’s” (Levina and Bickel (2001)), and its use in statis-
tics is rapidly expanding (Panaretos and Zemel (2019)). Let D be the class of univariate
probability density functions f that satisfy

∫
R

u2f (u)du < ∞, that is, absolutely continuous
distributions on with a finite second moment. In fact, the Wasserstein metric is well defined
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FIG. 1. Observed hematoma density distributions for a randomly selected subset of 40 post-intracerebral hem-
morhage patients.

for such distributions without requiring a density, but for simplicity of presentation we deal
specifically with this subclass. For a comprehensive treatment in the more general case, see
Villani (2003) or Ambrosio, Gigli and Savaré (2008). For f , g ∈ D, consider the collection
of maps Mf,g such that, if U ∼ f and M ∈ Mf,g , then M(U) ∼ g. The squared Wasserstein
distance between these two distributions is

d2
W(f,g) = inf

M∈Mf,g

∫
R

(
M(u) − u

)2
f (u)du.

It is well known that the infimum above is attained by the optimal transport map M
opt
f,g =

G−1 ◦ F , where F and G are the cumulative distribution functions of f and g, respectively,
leading to the closed forms

(2.1) d2
W(f,g) =

∫
R

(
M

opt
f,g(u) − u

)2
f (u)du =

∫ 1

0

(
F−1(t) − G−1(t)

)2 dt,

where the last equality follows by the change of variables t = F(u). A more proper term
for this metric is the Wasserstein-2 distance, since it is just one among an entire class of
Wasserstein metrics.

Within this larger class of metrics is also the Wasserstein-∞ metric, which will be useful in
the formation of confidence bands. For two densities f,g ∈ D, their Wasserstein-∞ distance
is

(2.2) d∞(f, g) = f - ess sup
u∈I

∣∣Mopt
f,g(u) − u

∣∣,
where f - ess sup refers to the essential supremum with respect to f .

2.1. Random densities. A random density F is a random variable taking its values almost
surely in D. It will also be useful to refer to the corresponding random cdf F , quantile func-
tion Q = F−1 and quantile density q = Q′ = 1/(F◦Q) (Parzen (1979)). For clarity, u, v ∈R

will consistently be used as density and cdf arguments throughout, whereas s, t ∈ [0,1] will
be used as arguments for the quantile and quantile density functions. Following the ideas of
Fréchet (1948), the Wasserstein–Fréchet (or simply Wasserstein) mean and variance of F are

(2.3) f ∗⊕ := argmin
f ∈D

E
(
d2
W(F, f )

)
, Var⊕(F) := E

(
d2
W(F, f ∗⊕)

)
.

In the regression setting, we model the distribution of F conditional on a vector X ∈ R
p of

predictors, where the pair (X,F) is distributed according to a probability measure G on the
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product space R
p × D. In this sense, the objects in (2.3) are the marginal Fréchet mean and

variance of F. Let SX denote the support of the marginal distribution of X. Our interest is in
the Fréchet regression function, or function of conditional Fréchet means,

(2.4) f⊕(x) := argmin
f ∈D

E
[
d2
W(F, f )|X = x

]
, x ∈SX.

Let F⊕(x), Q⊕(x), and q⊕(x) denote, respectively, the cdf, quantile and quantile density
functions corresponding to f⊕(x). We will use the notation f⊕(x, u) to denote the value of
the conditional mean density f⊕(x) at argument u ∈ R, and similarly for F⊕(x, u), Q⊕(x, t),
and q⊕(x, t), t ∈ [0,1]. For a pair (X,F), define T = Q ◦ F⊕(X) to be the optimal transport
map from the conditional mean f⊕(X) to the random density F. By (2.1), it must be that
E(Q(t)|X = x) = Q⊕(x, t), so that E(T (u)|X = x) = u for u such that f⊕(x, u) > 0. Then
the conditional Fréchet variance is

Var⊕(F|X = x) = E
[
d2
W

(
F, f⊕(x)

)|X = x
]

=
∫
R

E
[(

T (u) − u
)2|X = x

]
f⊕(x, u)du

=
∫
R

Var
(
T (u)|X = x

)
f⊕(x, u)du.

(2.5)

In these developments, we have assumed that the marginal and conditional Wasserstein
mean densities exist and are unique. However, this is not automatic and some conditions
are needed. Previous work on existence, uniqueness and regularity of Wasserstein means, or
barycenters, for a finite collection of probability meaures on R

d was done by Agueh and
Carlier (2011), and extended to continuously-indexed measures by Pass (2013). For random
probability measures with support on [0,1], Panaretos and Zemel (2016) (see Proposition 2
therein) gave sufficient conditions for the existence and uniqueness of a Wasserstein mean
measure, although it was not guaranteed to have a density. However, none of these are suf-
ficiently strong for the purposes of this paper, where existence, uniqueness and regularity of
both marginal (2.3) and conditional (2.4) Wasserstein means are needed. To this end, consider
the following assumptions on the joint distribution G.

(A1) F(u) ∈ (0,∞) for u ∈ (Q(0),Q(1)) almost surely, Var(Q(t)) < ∞ for all t ∈ (0,1),
and

∫ 1
0 Var(Q(t))dt < ∞.

(A2) For any t ∈ (0,1), there exists δ, 0 < δ < min{t,1− t} such that E(sup|s−t |<δ q(s)) <

∞.
(A3) For all x ∈ SX , P(supu∈(Q(0),Q(1)) F(u) < ∞|X = x) > 0.

Assumption (A1) is essentially the same as that made in Proposition 2 of Panaretos and
Zemel (2016), with additional moment assumptions on Q since F is not assumed to be sup-
ported on any bounded interval, and implies existence and uniqueness of the Wasserstein
mean measures. Assumption (A2) is a regularity condition to ensure these Wasserstein means
have densities in D, and (A3) implies that these mean densities are bounded; see Pass (2013)
for a similar assumption. The proof of the following and all other theoretical results can be
found in Petersen, Liu and Divani (2020).

PROPOSITION 1. Suppose conditions (A1)–(A3) hold. Then the marginal Wasserstein
mean f ∗⊕ in (2.3) exists, is a unique element of D, and satisfies supu f ∗⊕(u) < ∞ and
Var⊕(F) < ∞. For all x ∈ SX , the conditional Wasserstein mean f⊕(x) in (2.4) exists, is
a unique element of D, and satisfies supu f⊕(x, u) < ∞ and Var⊕(F|X = x) < ∞.
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2.2. Global Wasserstein–Fréchet regression. In order to facilitate inference, specifically
tests for no or partial effects of the covariates X and confidence bands for the conditional
Wasserstein means, we consider a particular global regression model for the conditional
Wassersteins f⊕(x) defined in (2.4). This model, proposed by Petersen and Müller (2019), is
termed Fréchet regression, and takes the form of a weighted Fréchet mean

(2.6) f⊕(x) = argmin
f ∈D

E
[
s(X,x)d2

W(F, f )
]
,

where the weight function is

s(X,x) = 1 + (X − μ)	�−1(x − μ), μ = E(X),� = Var(X),

and � is assumed to be positive definite. The model is motivated by multiple linear regres-
sion, and is its direct generalization to the case of a response variable in a metric space.
Specifically, if a scalar response Y is jointly distributed with X and E(Y |X = x) is linear in
x, Petersen and Müller (2019) showed that an alternative characterization of linear regression
is

E(Y |X = x) = argmin
y∈R

E
[
s(X,x)(Y − y)2]

.

Thus, model (2.6) generalizes linear regression to the case of density response by substituting
F for Y and (D, dW ) in place of the usual metric space (R, | · |) implicitly used in multiple
linear regression. Although D is not a linear space, (2.6) provides a sensible regression model
for the conditional Wasserstein means that retains some properties of linear regression. For
example, since s(z,μ) ≡ 1, we have f⊕(μ) = f ∗⊕, so that the regression function passes
through the point (μ,f ∗⊕).

For the remainder of the paper, and implicit in the statement of all theoretical results, we
assume that the distribution G satisfies model (2.6), with f ∗⊕, f⊕(x) being unique elements of
D. We now give a very basic example of this model, motivated by the well-known connection
between the Wasserstein metric and location-scale families (e.g., Bigot et al. (2017)).

EXAMPLE 1. Suppose X ∈R and fix f0 ∈ D. Letting aj , bj ∈R, define

ν(x) = a0 + a1x, τ (x) = b0 + b1x,

and suppose τ(X) > 0 almost surely. Let V1,V2 satisfy E(V1|X) = 0, E(V2|X) = 1, and
V2 > 0 almost surely. Then the location-scale model

F(u) = 1

V2τ(X)
f0

(
u − V1 − V2ν(X)

V2τ(X)

)
corresponds to (2.6) with

f⊕(x, u) = 1

τ(x)
f0

(
u − ν(x)

τ (x)

)
.

To show the above, it is sufficient to show that E(Q(t)|X) = Q⊕(X, t) almost surely. Let
F0 be the cdf corresponding to f0, so that Q⊕(x, t) = ν(x) + τ(x)Q0(t). Since

Q(t) = V1 + V2ν(X) + V2τ(X)Q0(t),

it is easily verified that E(Q(t)|X) = Q⊕(X, t) by the properties of V1, V2. Moreover, note
that the optimal transport map from f⊕(X) to F is

T (u) = Q ◦ F⊕(X,u) = V1 + V2u,

and satisfies E(T (u)|X) = u almost surely.
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Thus far, the regression model (2.6) provides us with a formula for the conditional Wasser-
stein mean of F, whereas one also needs information on the conditional variance in order to
conduct inference. To this end, observe that Q = T ◦ Q⊕(X), so that T acts as a residual
transport, although it acts on the quantile function, and not the density, and does so through
composition and not additively. As observed in Section 2.1, the first-order behavior of the
residual transport T is completely specified by the model as E(T (u)|X) = u almost surely.
We also impose the following assumption on the covariance.

(T1) The covariance function CT (u, v) = Cov(T (u), T (v)) is continuous,
supu∈R Var(T (u)) < ∞, and Cov(T (u), T (v)|X) = CT (u, v) almost surely.

This corresponds to the classical constant variance or exogeneity assumption requiring that
the second-order behavior of the residual transport be independent of the predictors. Define
S = Q⊕(X) ◦ F ∗⊕, which is the optimal transport map from the marginal Wasserstein mean to
the conditional one. Again, it is easily verified that E(T ◦ S(u)) = u for u such that f ∗⊕(u) >

0. These observations lead to the following decomposition of the Wasserstein variance.

PROPOSITION 2. Suppose that assumption (T1) is satisfied. Then

Var⊕(F) = E
[
Var⊕(F|X)

] + Var⊕
(
f⊕(X)

)
=

∫
R

E
[
CT

(
S(u), S(u)

)]
f ∗⊕(u)du

+
∫
R

(
S(u) − u

)2
f ∗⊕(u)du.

(2.7)

While a standard result in Euclidean spaces, the above variance decomposition does not
generally hold in metric spaces such as D. However, Proposition 2 demonstrates that this
decomposition does indeed hold for random densities under the Wasserstein metric whenever
model (2.6) holds. This finding motivates the specific choices of test statistics developed in
Section 3.

2.3. Estimation. In order to estimate the regression function f⊕(x), we utilize an empir-
ical version of the least-squares Wasserstein criterion in (2.6). First, set X̄ = n−1 ∑n

i=1 Xi ,
�̂ = n−1 ∑n

i=1(Xi − X̄)(Xi − X̄)	, and compute empirical weights sin(x) = 1 + (Xi −
X̄)	�̂−1(x − X̄), Let Q be the set of quantile functions in L2[0,1]. With ‖·‖L2 denoting
the standard Hilbert norm on L2[0,1], an estimator of Q⊕(x) is

(2.8) Q̂⊕(x) = argmin
Q∈Q

n∑
i=1

sin(x)‖Q − Qi‖2
L2 .

Implementation of this estimator is given in Algorithm 1 in Petersen, Liu and Divani (2020).
In finite samples, Q̂⊕(x) will not necessarily admit a density. For almost all procedures de-
scribed, this quantile estimate is sufficient, since it can be used to compute Wasserstein dis-
tances as in (2.1). Nevertheless, we will establish (see Lemma 2 in Petersen, Liu and Divani
(2020)) that Q̂⊕(x) admits a density f̂⊕(x) ∈ D for large samples with high probability.
When this holds, the estimate

(2.9) f̂⊕(x) = argmin
f ∈D

1

n

n∑
i=1

sin(x)d2
W(Fi , f )

is well defined, and f̂⊕(x) is the density corresponding to the quantile estimate Q̂⊕(x) above.
It can be computed in practice using Algorithm 2 in Petersen, Liu and Divani (2020).
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Since we will also consider hypothesis tests of partial effects, write x ∈ R
p as x = (y, z),

where y corresponds to the first q entries of x, q < p. Similarly, take X = (Y,Z), μ =
(μY ,μZ), and

� =
(
�YY �YZ

�ZY �ZZ

)
,

with corresponding notations for the partitions of X̄ and �̂. Consider the null hypothesis
HP

0 : f⊕(x) = f0,⊕(y),

f0,⊕(y) := argmin
f ∈D

E
[
s0(Y, y)d2

W(Fi , f )
]
, s0(Y, y) = 1 + (Y − μY )�−1

YY (y − μY ).

Then the restricted estimators Q̂0,⊕(y) and f̂0,⊕(y) are defined analogously to (2.8) and
(2.9), only using submodel weights

sin,0(y) = 1 + (Y − Ȳ )	�̂−1
YY (y − Ȳ ).

3. Hypothesis testing. Once estimation is under control, the first goal of any global re-
gression model is to test for effects of the predictors. In the more abstract setting of a response
variable in an arbitrary metric space, Petersen and Müller (2019) suggested a permutation ap-
proach based on a Fréchet generalization of the coefficient of determination R2 in multiple
linear regression, though the theoretical properties of this test were not investigated. In a
recent preprint, Dubey and Müller (2019) developed a test statistic and its asymptotic distri-
bution for the case of a random object response and categorical predictors, giving a Fréchet
extension of analysis of variance. Given that we are considering the more specific case of
density-valued response variables under the Wasserstein geometry, we are able to expand on
these results in order to develop asymptotically justified tests for both global and partial null
hypotheses, where predictors can be of any type.

3.1. Test of no effects. We begin with the global null hypothesis of no effects, HG
0 :

f⊕(x) ≡ f ∗⊕. Given the Wasserstein variance decomposition in (2.7), under HG
0 we have

Var⊕(f⊕(X)) = E(d2
W(f⊕(X), f ∗⊕)) = 0. This motivates

(3.1) F ∗
G =

n∑
i=1

d2
W(F̂i , f̂

∗⊕)

as a test statistic, where F̂i = f̂⊕(Xi) are the fitted densities and f̂ ∗⊕ = f̂⊕(X̄) is the sample
Wasserstein mean. This can be viewed as a generalization of the numerator of the global F -
test in multiple linear regression, and we thus refer to F ∗

G in (3.1) as the (global) Wasserstein
F -statistic.

In order to establish the asymptotic null distribution of F ∗
G, we require the following as-

sumptions. Define C
(l,m)
T = ∂l+m

∂ul∂vm CT and, for any x ∈R
p , set x̃ = (1x	)	. Let R = T ◦S =

Q ◦ F ∗⊕ and Ix = (Q⊕(x,0),Q⊕(x,1)).

(T2) T is differentiable almost surely, with T ′ having random Lipschitz constant L.
The covariance function CT has continuous partial derivatives C

(l,m)
T , for l,m = 0,1, with

supu∈R C
(1,1)
T (u,u) < ∞.

(T3) E(‖X‖4
E), E(‖X̃‖4

E supu∈R |T ′(u)|2), and E(‖X̃‖6
EL2) are all finite.

(T4) I∗ = Iμ is a bounded interval, and γ (u) = Cov(X,R(u)) has bounded second
derivative on I∗. Also, infu∈I∗ f ∗⊕(u) > 0 and, for some M > 0, supu∈Ix

f⊕(x, u) < M for
almost all x.
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Assumptions (T2) and (T3) impose conditions on the joint distribution of (X,T ). Condition
(T2) is a smoothness condition on the optimal transport process T , while the moment require-
ments in (T3) are tightness conditions that allow for the necessary asymptotic Gaussianity to
hold; see Lemma 1 in Petersen, Liu and Divani (2020). Assumption (T4) involves the regres-
sion relationship between X and F; importantly, it ensures that the conditional mean densities
are sufficiently and uniformly separated from the boundary of D within the space of distribu-
tions with finite second moments. In the spirit of regression, we will consider the asymptotic
behavior of F ∗

G conditional on the observed predictors. Define the covariance kernel

(3.2) K(u, v) = E
[
CT

(
S(u), S(v)

)] =
∞∑

j=1

λjφj (u)φj (v), u, v ∈ Ī∗,

where Ī∗ is the closure of I∗. The right-hand side is the Mercer decomposition of K (Hsing
and Eubank (2015)), so that {φj }∞j=1 forms an orthonormal set in L2(Ī∗, f ∗⊕) and λj are
positive, nonincreasing in j , and satisfy

∑∞
j=1 λj < ∞. Since K can be associated with a

linear integral operator on L2(Ī∗, f ∗⊕), we will refer to λj as the eigenvalues of K .

THEOREM 1. Suppose assumptions (T1)–(T4) hold. Then

F ∗
G|X1, . . . ,Xn

D→
∞∑

j=1

λjωj almost surely,

where ωj are i.i.d. χ2
p random variables and λj are the eigenvalues in (3.2).

While this limiting distribution may appear surprising at first sight given the non-Euclidean
setting, they are a result of the fact that central limit theorems can still be derived for data on
manifolds (e.g., Barden, Le and Owen (2013)), including the space of distributions under the
Wasserstein metric (Panaretos and Zemel (2016)).

The limiting distribution obtained in Theorem 1 depends on unknown parameters, namely
the eigenvalues λj , that must be approximated to formulate a rejection region. A natural
approach would be to estimate the kernel K in (3.2) directly, followed by applying a modi-
fied Mercer decomposition incorporating the estimated marginal Wasserstein mean. Thank-
fully, this complicated approach is not necessary. Define the quantile conditional covari-
ance kernel CQ(s, t) = E{Cov(Q(s),Q(t)|X)}. A simple calculation reveals that CQ(s, t) =
K(Q∗⊕(s),Q∗⊕(t)), so that λj are also the eigenvalues of CQ, which can be estimated by

(3.3) ĈQ(s, t) = 1

n

n∑
i=1

(
Qi(s) − Q̂i(s)

)(
Qi(t) − Q̂i(t)

)
,

where Q̂i are the fitted quantile functions corresponding to densities F̂i . Let λ̂j be the corre-
sponding eigenvalues of ĈQ.

One can consistently approximate the conditional null distribution of F ∗
G as follows. For

α ∈ (0,1) and eigenvalue estimates λ̂j , let b̂G
α be the 1 −α quantile of

∑∞
j=1 λ̂jωj , where ωj

are as in Theorem 1. Computation of this critical value is outlined in Algorithm 3 of Petersen,
Liu and Divani (2020). The following result on the conditional power βG

n = PX(F ∗
G > b̂G

α )

follows from Theorem 1. Let G denote the collection of distributions on R
p × D such that

model (2.6) holds.

COROLLARY 1. If G ∈ G satisfies HG
0 and (T1)–(T4) hold, then βG

n → α almost surely.
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In addition to having the correct asymptotic size for any null model, we demonstrate the
power performance of the above test under a sequence of contiguous alternatives. To do so,
consider a subclass G∗ ⊂ G of Wasserstein regression models, with the marginal distribution
of X being fixed and satisfying E(‖X‖4

E) < ∞, for which the criteria below are satisfied.
Recall that γ (u) = Cov(X,R(u)), where R = T ◦ S.

(G1) For all G ∈ G∗, (T1) and (T2) hold, with supu∈R CT (u,u) and supu∈R C
(1,1)
T (u,u)

uniformly bounded in G∗. In addition, supu∈I∗ ‖γ ′(u)‖E and supu∈I∗ ‖γ ′′(u)‖E are both
uniformly bounded in G∗.

(G2) With L being the random Lipschitz constant in (T2), the following uniform moment
conditions are satisfied:

lim sup
M→∞

sup
G∈G∗

E
[
‖X̃‖2

E sup
u∈R

∣∣T ′(u)
∣∣1(

‖X‖2
E sup

u∈R
∣∣T ′(u)

∣∣ > M
)]

= 0,

lim sup
M→∞

sup
G∈G∗

E
[‖X̃‖3

EL1
(‖X̃‖3

EL > M
)] = 0.

(G3) There exists M1 > 1 such that infG∈G∗ infu∈I∗ f ∗⊕(u) ≥ M−1
1 .

(G4) There exists M2 < ∞ such that supG∈G∗ supx∈SX
supu∈Ix

f⊕(x, u) ≤ M2.

THEOREM 2. Let G∗ satisfy (G1)–(G4), and an be a sequence such that an → 0 and√
nan → ∞. Consider a sequence of alternative global hypotheses

HG
A,n : G ∈ GA,n, GA,n = {

G ∈ G∗ : E[
d2
W

(
f⊕(X), f ∗⊕

)] ≥ a2
n

}
.

Then the worst case power converges strongly and uniformly to 1, that is, for any ε > 0,

inf
G∈GA,n

P
(

inf
m≥n

βG
m ≥ 1 − ε

)
→ 1.

3.2. Test of partial effects. Beyond a test for no effect, it is often necessary to test the
effect for just a single predictor or a subset of them. With X = (Y,Z) as in Section 2.3, under
the partial null hypothesis HP

0 : f⊕(x) = f0,⊕(y),

E
(
d2
W

(
f⊕(X), f ∗⊕

)) = E
(
d2
W

(
f0,⊕(Y ), f ∗⊕

))
,

motivating the partial Wasserstein F -statistic

(3.4) F ∗
P =

n∑
i=1

[
d2
W(F̂i , f̂

∗⊕) − d2
W(F̂0,i , f̂

∗⊕)
]
, F̂0,i = f̂0,⊕(Yi),

corresponding to the numerator of the partial F -statistic in the multiple linear regression
setting.

Setting J	 = [−�ZY �−1
YY Ip−1] and �Z|Y = �ZZ − �ZY �−1

YY �YZ , define the covariance
matrix kernel

K∗(u, v) = �
−1/2
Z|Y J	E

[
(X − μ)(X − μ)	CT

(
S(u), S(v)

)]
J�

−1/2
Z|Y

=
∞∑
l=1

τlϕl(u)ϕ	
l (v).

(3.5)

Here, the functions ϕl form an orthonormal set in (L2(Ī∗, f ∗⊕))p−q and the positive, nonin-
creasing eigenvalues τl of K∗ satisfy

∑∞
l=1 τl < ∞.
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THEOREM 3. Under (T1)–(T4),

F ∗
P |X1, . . . ,Xn

D→
∞∑
l=1

τlξ
2
l almost surely,

where ξl are independent standard normal random variables. If, in addition, E(Z|Y) is linear
in Y and Var(Z|Y) = �Z|Y almost surely, then

{τl}∞l=1 = λ1, . . . , λ1︸ ︷︷ ︸
p − q

, λ2, . . . , λ2︸ ︷︷ ︸
p − q

, . . .

so that
∑∞

l=1 τlξ
2
l

D= ∑∞
j=1 λjω

′
j , where ω′

j are i.i.d. χ2
p−q random variables.

Similar to the global case, the τl in (3.5) also correspond to the eigenvalues of the kernel
C∗

Q(s, t) = K∗(Q∗⊕(s),Q∗⊕(t)). Setting Xi,c = Xi − X̄, a natural estimator is

(3.6) Ĉ∗
Q(s, t) = �̂

−1/2
Z|Y Ĵ	

{
1

n

n∑
i=1

Xi,cX
	
i,c

(
Qi(s) − Q̂i(s)

)(
Qi(t) − Q̂i(t)

)}
Ĵ �̂

−1/2
Z|Y ,

where �̂Z|Y and Ĵ are plug-in estimates. Let τ̂j be the corresponding eigenvalue estimates
from Ĉ∗

Q(s, t), and b̂P
α be the 1 − α percentile of

∑∞
l=1 τ̂lξ

2
l , with ξl as in Theorem 3. If the

additional assumptions in the second part of Theorem 3 hold, then let b̂P
α be the 1−α quantile

of
∑∞

j=1 λ̂jω
′
j . Computation of these critical values can be done in the same was as the global

case. We have the following size and power results for the partial Wasserstein F -test, with
βP

n = PX(F ∗
p > b̂P

α ) denoting the conditional power as a function of the underlying model G.

COROLLARY 2. If G ∈ G satisfies HP
0 and (T1)–(T4) hold, then βP

n → α almost surely.

THEOREM 4. Let G∗ satisfy (G1)–(G4), and an be as in Theorem 2. Consider a sequence
of alternative partial hypotheses

HP
A,n : G ∈ G′

A,n, G′
A,n = {

G ∈ G∗ : E[
d2
W

(
f⊕(X), f0,⊕(Y )

)] ≥ a2
n

}
.

Then the worst case power converges strongly and uniformly to 1, that is, for any ε > 0,

inf
G∈G′

A,n

P
(

inf
m≥n

βP
m ≥ 1 − ε

)
→ 1.

3.3. Alternative testing approximations. As an alternative to estimating the eigenval-
ues in the limiting distributions of F ∗

G and F ∗
P , Satterthwaite’s approximation (Satterthwaite

(1941), Shen and Faraway (2004)) can also be employed. Using the global test as an example,
we approximate the null distribution of the test statistic by aχ2

m, where a,m > 0 are scalars
chosen to satisfy the moment matching conditions am = p

∑∞
j=1 λj , a2m = p

∑∞
j=1 λ2

j . Us-
ing this approximation, one does not need to estimate the individual eigenvalues λj , given
the equalities (Hsing and Eubank (2015))

∞∑
j=1

λj =
∫ 1

0
CQ(t, t)dt,

∞∑
j=1

λ2
j =

∫ 1

0

∫ 1

0
C2

Q(s, t)ds dt.

Hence, one can compute the approximate values a and m using the corresponding norms of
the estimate ĈQ. This alternative approach is outlined in Algorithm 4 of Petersen, Liu and
Divani (2020).
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Finally, as the limiting distributions in Theorems 1 and 3 are the result of underlying
central limit theorems, one may employ a bootstrap approach to testing these hypotheses.
Since the inference is conditional on the observed predictors Xi , a natural approach is to
perform a residual transport bootstrap. Using the global test as an example, let T̂i,0 = Qi ◦ F̂ ∗⊕
be the approximate versions of the residual transports Ti under HG

0 . Obtain B independent
bootstrap samples {T̃ b

i }ni=1, b = 1, . . .B , by sampling with replacement from the T̂i,0, and
form the bootstrapped quantile functions Q̃b

i = T̃ b
i ◦ Q̂∗⊕. Then compute bootstrap estimates

f̂ b⊕(x) and f̂
∗,b
⊕ using the data (Xi, Q̃

b
i ), i = 1, . . . , n. Finally, compute the bootstrap statistics

F̃
∗,b
G = ∑n

i=1 d2
W(f̂ b⊕(Xi), f̂

∗,b
⊕ ). The bootstrap p-value then becomes

#{F̃ ∗,b
G > F ∗

G} + 1

B + 1
.

This global residual bootstrap test is outlined in Algorithm 5 of Petersen, Liu and Divani
(2020). For the partial test, this residual bootstrap can only be employed if the support of the
densities is fixed, since otherwise the null residual transports T̂i,0 = Qi ◦ F̂0,⊕(Yi) will have
different supports.

4. Confidence bands. We now develop methodology for producing a confidence set for
f⊕(x), where x is considered to be fixed. In similar settings where one desires to make a con-
fidence statement for a functional parameter, such as nonparametric regression (Claeskens
and Van Keilegom (2003), Eubank and Speckman (1993)), mean and covariance estimation
in functional data analysis (Cao, Yang and Todem (2012), Degras (2011), Wang and Yang
(2009)), and the varying coefficient model (Fan and Zhang (2008)), one can either build
pointwise or simultaneous bands. In the current setting of Wasserstein regression for density
response data, the constraints inherent to the density targets f⊕(x) render pointwise confi-
dence bands of little use.

Hence, the approach we take will be motivated by simultaneous confidence bands. Here,
the descriptor “simultaneous” refers to the argument u of the functional parameter f⊕(x, u),
and not to the specific regressor value x under consideration. Let g be a generic functional
parameter of interest, where we assume that g is bounded. Given an estimator ĝ, a typical ap-
proach to formulating a simultaneous confidence band is to show that bn(ĝ(u) − g(u))/a(u)

converges weakly to a limiting process (usually Gaussian) in the space of bounded func-
tions under the uniform metric (van der Vaart and Wellner (1996)), where a > 0 is a scaling
function and b−1

n is the rate of convergence. By an application of the continuous mapping
theorem, one can then obtain a confidence band for g of the form

{
g∗ : ĝ(u) − ca(u)b−1

n ≤ g∗(u) ≤ ĝ(u) + ca(u)b−1
n for all u

}
.

This band corresponds to all functions that are almost everywhere between the lower and
upper bounds, and is the closest one can get to a confidence interval in function space. This
partial ordering is induced explicitly by the uniform metric, and indicates why simultaneous
confidence bands are so useful for functional parameters, in that one can visualize the en-
tire set graphically. We will explore two different approaches to formulating simultaneous
confidence bands. The first arises naturally from the Wasserstein geometry, and provides a
distributional band for either Q⊕(x) or F⊕(x), but not the density parameter. In the second
approach, we strengthen the convergence results and utilize the delta method to construct a
simultaneous confidence band for f⊕(x).
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4.1. Intrinsic Wasserstein-∞ bands. The first method is directly related to the geometry
imposed by the Wasserstein-∞ metric; see (2.2). Specifically, if V̂x = Q̂⊕(x) ◦ F⊕(x) is the
optimal transport from the target to the estimate, then

d∞
(
f⊕(x), f̂⊕(x)

) = f⊕(x)- ess sup
u

∣∣V̂x(u) − u
∣∣ = sup

u∈Ix

∣∣V̂x(u) − u
∣∣.

It is then natural to establish weak convergence (denoted by �) of the process V̂x(u) within
the space of bounded functions on Ix , denoted L∞(Ix). Define � = E(X̃X̃	) and the co-
variance kernel

(4.1) K̃(u, v) = �−1E
[
X̃X̃	CT

(
S(u), S(v)

)]
�−1, u, v ∈ Ī∗.

THEOREM 5. Suppose that (T1)–(T4) hold. Then there exists a zero-mean Gaussian pro-
cess Mx on L∞(Ix) such that

√
n(V̂x − id)|X1, . . . ,Xn �Mx almost surely.

With ux = Q∗⊕ ◦ F⊕(x, u) for any u ∈ Ix , the covariance of Mx is

(4.2) Cx(u, v) = x̃	K̃(ux, vx)x̃.

As in the testing procedures, estimation of the covariance kernel K̃ is simplified by moving
to quantile functions. Set DQ(s, t) = K̃(Q∗⊕(s),Q∗⊕(t)), with estimate

(4.3) D̂Q(s, t) = �̂−1

{
1

n

n∑
i=1

X̃iX̃
	
i

(
Qi(s) − Q̂i(s)

)(
Qi(t) − Q̂i(t)

)}
�̂−1,

where �̂ = n−1 ∑n
i=1 X̃iX̃

	
i . This leads to

(4.4) Ĉx(u, v) = x̃	D̂Q

(
F̂⊕(x, u), F̂⊕(x, v)

)
x̃, u, v ∈ [

Q̂⊕(x,0), Q̂⊕(x,1)
]
.

Let mα be the 1 − α quantile of the distribution of

ζx := sup
u∈Ix

Cx(u,u)−1/2∣∣Mx(u)
∣∣.

Since mα is unknown, we estimate it as follows. Observe that Nx = Mx ◦ Q⊕(x) is a Gaus-
sian process on L∞[0,1] with covariance x̃	DQ(s, t)x̃. Conditional on the data, let N̂x be a
zero-mean Gaussian process with covariance x̃	D̂Q(s, t)x̃. Define

ζ̂x = sup
t∈[0,1]

[
x̃	D̂Q(t, t)x̃

]−1/2∣∣N̂x(t)
∣∣,

and set m̂α as the 1 − α quantile of ζ̂x . Then the Wasserstein-∞ confidence band for f⊕(x)

is

(4.5) Cα,n(x) =
{
g ∈ D : sup

u∈Îx

|Tg,x(u) − u|
Ĉx(u,u)1/2

≤ m̂α√
n

}
, Tg,x = G−1 ◦ F̂⊕(x).

We have the following corollary of Theorem 5.

COROLLARY 3. Suppose (T1)–(T4) hold. If infu∈I∗ CT (u,u) > 0, then

PX

(
f⊕(x) ∈ Cα,n(x)

) → 1 − α almost surely.
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An important case arising in practice that is ruled out by the requirement of strictly positive
covariance is when the support of F is some fixed interval I , so that the random transport T is
necessarily fixed at the boundaries. In this case, a slight adjustment can be made as outlined
in Corollary 5 of Petersen, Liu and Divani (2020).

Next, we demonstrate a connection between these simultaneous Wasserstein-∞ bands and
the usual partial stochastic ordering of distributions. Recall that a cdf F is said to be stochas-
tically greater than another G, written F � G, if F(u) ≤ G(u) for all u. For F2 � F1, define
the bracket

[F1,F2] = {g ∈ D : F2 � G � F1}
consists of all distributions in D which lie between F1 and F2 in the stochastic ordering.
From (4.5), we deduce that the simultaneous confidence band consists of all densities g ∈ D
such that

ML(u) ≤ G−1 ◦ F̂⊕(x, u) ≤ MU(u),
(
ML(u),MU(u)

) = u ± n−1/2m̂αĈx(u,u)1/2.

Define TL to be the unique projection (in L2[0,1]) of ML onto the closed and convex set
of nondecreasing functions M for which M(u) ≥ ML(u). Similarly, TU is unique largest
nondecreasing function below MU . Note that TL(u) ≤ Tg,x(u) ≤ TU(u) for all g ∈ Cα,n(x).
Then the cdf bounds FL = F̂⊕(x)◦T −1

L and FU = F̂⊕(x)◦T −1
U represent the Wasserstein-∞

band, that is, Cα,n(x) = [FL,FU ]. Algorithm 6 in Petersen, Liu and Divani (2020) outlines
the steps for computing Cα,n(x) in practice.

4.2. Wasserstein density bands. One drawback of the above simultaneous confidence
bands is that they do not readily translate to the space of densities, since, if F1 ≺ F2 in
the stochastic ordering, their derivatives need not satisfy f1 ≥ f2. Thus, we take a second
approach to form a confidence band in density space, based on the direct difference f̂⊕(x) −
f⊕(x) rather than the optimal transport map between these distributions.

An interesting challenge associated with this approach is that the supports of the tar-
get f⊕(x) and its estimate f̂⊕(x) may differ, so that convergence may be ill-behaved near
the boundaries. To resolve this, for any δ ∈ (0,1/2), define Iδ

x = [Q⊕(x, δ),Q⊕(x,1 − δ)].
We consider conditional weak convergence of the process

√
n(f̂⊕(x) − f⊕(x)) in the space

L∞(Iδ
x). For l,m ∈ {0,1} and K̃ as in (4.1), define K̃(l,m) = ∂l+m

∂ul∂vm K̃ . Lastly, set

K(u, v) =
(

K̃(u, v)
[
f ∗⊕(v)

]−1
K̃(0,1)(u, v)[

f ∗⊕(u)
]−1

K̃(1,0)(u, v)
[
f ∗⊕(u)f ∗⊕(v)

]−1
K̃(1,1)(u, v)

)
, u, v ∈ I∗.

THEOREM 6. Suppose (T1)–(T4) hold, and that f ∗⊕ is continuously differentiable. Then,
for almost all x, there exists a zero-mean Gaussian process Fx on L∞(Iδ

x) such that
√

n
(
f̂⊕(x) − f⊕(x)

)|X1, . . . ,Xn �Fx almost surely.

With ux = Q∗⊕ ◦ F⊕(x, u) and c	
u = (∂/∂uf⊕(x, u),−f 2⊕(x, u)) for any u ∈ Iδ

x , and ⊗ de-
noting the Kronecker product, the covariance of Fx is

(4.6) Rx(u, v) = c	
u

(
x̃	 ⊗K(ux, vx) ⊗ x̃

)
cv.

We now describe the method for estimating Rx . With D̂Q as in (4.3), let D̂
(l,m)
Q =

∂l+m

∂sl∂tm
D̂Q. Then define D(s, t) = K(Q∗⊕(s),Q∗⊕(t)) and its estimate

(4.7) D̂(s, t) =
(

D̂Q(s, t) D̂
(0,1)
Q (s, t)

D̂
(1,0)
Q (s, t) D̂

(1,1)
Q (s, t),

)
s, t ∈ [δ,1 − δ],
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and set

K̂(u, v) = D̂
(
F̂⊕(x, u), F̂⊕(x, v)

)
, u, v ∈ Îδ

x = [
Q̂⊕(x, δ), Q̂⊕(x,1 − δ)

]
.

Next, the chain rule implies that ∂
∂u

f⊕(x, u) = −f 3⊕(x, u) ∂
∂t

q⊕(x,F⊕(x, u)). Hence, define
∂
∂t

q̂⊕(x, t) = n−1 ∑n
i=1 sin(x)q ′

i (t) for t ∈ [δ,1 − δ], yielding

∂

∂u
f̂⊕(x, u) = −f̂ 3⊕(x, u)

∂

∂t
q̂⊕

(
x, F̂⊕(x, u)

)
, u ∈ Îδ

x .

Finally, for u, v ∈ Îδ
x , set

(4.8) R̂x(u, v) = ĉ	
u

(
x̃	 ⊗ K̂(u, v) ⊗ x̃

)
ĉv, ĉ	

u =
(

∂

∂u
f̂⊕(x, u),−f̂ 2⊕(x, u)

)
.

Let lα be the unknown 1 − α quantile of

ξx = sup
u∈Iδ

x

Rx(u,u)−1/2∣∣Fx(u)
∣∣.

Similar to the case of the Wasserstein-∞ band, conditional on the data, let Ĵx(t) be a zero-
mean Gaussian process on (0,1), with covariance R̂x(Q̂⊕(x, s), Q̂⊕(x, t)). Define l̂α as the
the 1 − α quantile of

ξ̂x = sup
t∈[δ,1−δ]

[
R̂x

(
Q̂⊕(x, t), Q̂⊕(x, t)

)]−1/2∣∣Ĵx(t)
∣∣.

Then the nearly simultaneous Wasserstein density confidence band is

(4.9) Bα,n(x) =
{
g ∈ D : sup

u∈Îδ
x

|g(u) − f̂⊕(x, u)|
R̂x(u,u)1/2

≤ l̂α√
n

}
.

See Algorithm 7 in Petersen, Liu and Divani (2020) for an implementation of this confidence
band.

The final corollary demonstrates almost sure convergence of the coverage rate of the
Wasserstein density confidence band. Since the estimation of the covariance Rx is consider-
ably more complex than for the Wasserstein-∞ band, additional smoothness assumptions are
required on the random transport map T .

COROLLARY 4. Suppose the assumptions of Theorem 6 hold, and that
infu∈Iδ

x
Rx(u,u) > 0. Furthermore, assume that T is twice differentiable almost surely, with

T ′′ having Lipschitz constant L̃ and satisfying

E
(
‖X̃‖6

E sup
u∈R

∣∣T ′′(u)
∣∣2)

< ∞, E(L̃) < ∞.

Then

PX

(
f⊕(x) ∈ Bα,n

) → 1 − α almost surely.

5. Simulations. Extensive simulations were conducted to investigate the empirical per-
formance of the F -tests and confidence bands developed in Sections 3 and 4. Data were
generated according to model (2.6) for increasing sample sizes and different random opti-
mal transport processes T . Furthermore, to assess the robustness of our procedures when
densities are only indirectly observed through samples, simulations were also conducted us-
ing only raw data generated from the random densities. For brevity, results for the indirectly
observed case are reported in Petersen, Liu and Divani (2020).
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We first describe the simulation settings for the Wasserstein F -tests. Following Ex-
ample 1, set f0 as the standard normal distribution, truncated to the interval [−2.5,2.5]
and renormalized to have integral one. Bivariate predictors Xi = (Xi1,Xi2) were gener-
ated as independent uniform random variables on [−0.5,0.5]. Let ν(x) = α1x1 + α2x2 and
τ(x) = 2 + β1x1 + β2x2, where the parameters αj , βj were varied to increase signal strength
for assessing power performance. The conditional Wasserstein mean density was

(5.1) f⊕(x, u) = 1

τ(x)
f0

(
u − ν(x)

τ (x)

)
.

To produce the random densities Fi , random optimal transport maps Ti were generated in
two different ways. In the first setting, Ti(u) = Vi1 + Vi2u, where Vi1 ∼ U(−0.5,0.5) and
Vi2 ∼ U(0.5,1.5) were generated independently, yielding linear optimal transport maps. In
the second setting, following the method described in Section 8.1 of Panaretos and Zemel
(2016), nonlinear optimal transport maps were generated. Specifically, define template trans-
port maps M0(u) = u and

Mk(u) = u − sin(ku)

|k| , k �= 0.

For J = 10, (Wi1, . . . ,WiJ ) were sampled from a order J Dirichlet distribution, so that Wj >

0 and
∑J

j=1 Wj = 1. Then Kij , j = 1, . . . , J , were sampled independently and uniformly
from (−0.250,−0.125,0,0.125,0.250). The resulting optimal transport map in the second
setting was Ti(u) = ∑J

j=1 WijMKij
(u). Finally, the random density was generated as

Fi (u) = f⊕
(
Xi,T

−1
i (u)

)(
T −1

i

)′
(u).

In the case when the densities were not directly observed, secondary samples of size 300
from each Fi were generated, and local linear smoothing of the empirical quantile function
was used to estimate the quantile functions Q̂i for use in the testing algorithms. The Matlab
function “smooth” was used with default choice of the smoothing parameter.

In both the global and partial F tests simulations, the empirical size approached the nominal
size α = 0.05 as the sample size grew, and the empirical power function increased with the
increasing signal strength. To create models satisfying global null and alternative hypotheses,
α1 = α2 = β1 = β2 were set to be equal, with the common value running through (0,0.5). In
the partial F -test, α1 and β1 were fixed as α1 = 2 and β1 = 1, respectively, while α2 = β2
varied across (0,0.5). Therefore, the null hypothesis in the partial Wasserstein F -test was
HP

0 : f⊕(x) = f 0⊕(x1).
For each of three sample sizes n = 100,200,500, five hundred simulations were used to

compute empirical power curves shown in Figure 2. For the global tests, performance was
similar among the χ2 mixture and alternative Satterthwaite and bootstrap tests outlined in
Section 3.3. The nominal sizes converged to the right level, and power converged to one with
increasing values of the common parameter value. Power was generally higher for the linear
transport map setting, as expected. The same pattern is observed for the partial test, although
the Satterthwaite alternative more accurately maintained the nominal level for low sample
sizes. The bootstrap test could not be implemented for the partial test due to the fact that the
support of the density varies with x. Similar results for indirectly observed densities are given
in Figure 5 in Petersen, Liu and Divani (2020). For both global and partial tests, the difference
in performance is more prominent in low sample sizes (in n, the number of densities), with
the power converging at a slower rate and slightly larger deviations from the nominal level
compared to the case of observed densities.

For simplicity, in the simulations for confidence bands, a single predictor Xi ∼ U(−0.5,

0.5) was used. With ν(x) = 2x and τ(x) = 2 + x, the mean was again given by (5.1),
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FIG. 2. Power curves for global (top) and partial (bottom) Wasserstein F -tests, for sample sizes
n = 100,200,500. The dotted horizontal line represents the nominal level α = 0.05.

where f0 was the same as in the testing simulations. The random optimal transports
and case of indirectly observed densities were handled the same as in the testing sim-
ulations as well. Both types of confidence intervals were computed for predictor values
x ∈ (−0.30,−0.24, . . . ,0.24,0.30), with δ = 0.1 being used for the density bands. In addi-
tion, for the case of indirectly observed densities, coverage of Wasserstein-∞ bands was also
measured using δ = 0.1 due to boundary effects associated with the preliminary smoothing,
as the random quantile functions are very steep near the boundary. The error rates in Table 1
were computed using 500 runs for each setting. Overall, error rates improved as sample size
increased, with error rates near α = 0.05 at all x values when n = 500.

Table 3 in Petersen, Liu and Divani (2020) contains the corresponding results when for
indirectly observed densities. Note that Algorithm 7 for computing the Wasserstein density
band also requires estimation of qi and q ′

i in addition to the quantile function Qi . In our
experiments, q̂i and q̂ ′

i were computed by numerical differentiation of Q̂i . Clearly, there are
alternative ways in which one might estimate these functions, but numerical differentiation
was chosen because it represents a worst-case scenario in order to reveal sensitivities of the
density bands to errors induced by this preprocessing step. Convergence to the nominal cov-
erage rate was slower for indirectly observed densities. In particular, the Wasserstein-∞ band
suffered from the aforementioned boundary issues associated with local linear estimation of
quantile functions that are steep near the boundary. However, with n = 500, all but one of the
error rates were below 0.1, compared to the nominal rate α = 0.05.

6. Application to stroke data. Intracerebral hemorrhage (ICH), caused by small blood
vessel ruptures inside the brain, is the second most common stroke subtype (Morgenstern et
al. (2017)). Computed tomography (CT) is the most utilized imaging modality to diagnose
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TABLE 1
Confidence band error rates for fully observed densities over 500 simulation runs

Linear transport map Nonlinear transport map

n = 100 n = 200 n = 500 n = 100 n = 200 n = 500

Wasserstein-∞ band
x = −0.30 0.050 0.050 0.046 0.044 0.074 0.048
x = −0.24 0.056 0.040 0.058 0.044 0.068 0.044
x = −0.18 0.058 0.042 0.058 0.052 0.064 0.046
x = −0.12 0.056 0.036 0.062 0.058 0.064 0.054
x = −0.06 0.056 0.040 0.048 0.058 0.070 0.058
x = 0 0.056 0.042 0.042 0.052 0.074 0.056
x = 0.06 0.062 0.052 0.036 0.052 0.072 0.056
x = 0.12 0.060 0.050 0.036 0.054 0.072 0.058
x = 0.18 0.062 0.052 0.040 0.054 0.066 0.052
x = 0.24 0.068 0.052 0.042 0.058 0.064 0.058
x = 0.30 0.076 0.044 0.050 0.058 0.062 0.056

Wasserstein density band*
x = −0.30 0.062 0.056 0.054 0.066 0.074 0.064
x = −0.24 0.056 0.056 0.052 0.062 0.072 0.058
x = −0.18 0.052 0.052 0.054 0.054 0.058 0.050
x = −0.12 0.034 0.042 0.052 0.048 0.052 0.046
x = −0.06 0.038 0.038 0.038 0.046 0.050 0.044
x = 0 0.030 0.026 0.040 0.058 0.050 0.052
x = 0.06 0.028 0.030 0.036 0.066 0.054 0.058
x = 0.12 0.048 0.046 0.032 0.068 0.046 0.062
x = 0.18 0.052 0.048 0.034 0.074 0.060 0.062
x = 0.24 0.062 0.046 0.036 0.074 0.066 0.062
x = 0.30 0.064 0.048 0.036 0.086 0.076 0.064

∗*δ = 0.1 used to avoid boundary issue.

and study ICH in clinical settings. Various studies of ICH have revealed the importance of
the density of the hematoma, in addition to important factors such as the size and location of
the hematoma inside brain parenchyma. (Barras et al. (2009), Delcourt et al. (2016), Salazar
et al. (2020)). The density of the hematoma is not homogenous, and common practice is to
summarize this important feature by some set of subjective scalar measures that are often ob-
tained by visual inspection and are thus user-dependent. For example, Boulouis et al. (2016)
demonstrated the importance of the CT hypodensity, a binary variable indicating the pres-
ence of low-density regions within the hematoma. Instead of using any particular summary,
one can study the distribution of hematoma density (i.e., a probability density function of
hematoma density) throughout the entire hematoma as a functional object. Specifically, the
hematoma density is measured on the Hounsfield scale (0–100 HU) for each voxel within
the hematoma, and these can be used to produce a probability density function in a variety
of ways. In this application, the hematoma densities were first combined into a histogram,
followed by smoothing to obtain a probability density function; see Figure 1. Other meth-
ods, such as local linear smoothing to obtain quantile function estimates as illustrated in the
simulations, could also be used.

To illustrate the utility of the proposed inferential methods for Wasserstein regression, we
considered a study of n = 393 ICH anonymized subjects and analyzed the associations be-
tween 5 clinical and 4 radiological variables as predictors of the head CT hematoma densities
as distributional responses. The clinical predictors were age, weight, history of diabetes and
two variables indicating history of coagulopathy (Warfarin and AntiPt). Radiological predic-
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TABLE 2
LQD transformation method and Wasserstein regression p-values

Category Predictor Wasserstein LQD

Clinical Age 0.862 0.761
Weight <0.001 0.479
DM 0.034 0.742
Warfarin 0.298 0.640
AntiPt 0.078 0.900

Radiological log(Volume) <0.001 <0.001
Hematoma Shape <0.001 <0.001
Midline Shift <0.001 0.039
TimetoCT 0.902 0.657

tors included the logarithm of hematoma volume, a continuous index of hematoma shape
(Shape), presence of a shift in the midline of the brain, and length of the interval between
stroke event and the CT scan (TimetoCT). These predictors were selected based on the natu-
ral history and published clinical studies (Al-Mufti et al. (2018), Salman, Labovitz and Stapf
(2009)). A complete description of the data source can be found in Hevesi et al. (2018). As
seen in Figure 1, important features that vary from subject to subject are the location and
mode of the hematoma density distribution, as well as the spread, where some hematoma
densities are homogeneous and concentrated around the single mode, while others are more
heterogeneous or even bimodal. Thus, while the mean is an important aspect of the hematoma
density, this natural summary fails to capture other forms of variability that are automatically
taken into account by the Wasserstein regression model.

To assess the goodness of fit, the Wasserstein coefficient of determination (Petersen and
Müller (2019)) was computed as

R̂2⊕ = 1 −
∑n

i=1 d2
W(Fi , F̂i)∑n

i=1 d2
W(Fi , f̂

∗⊕)
= 0.2242,

representing the fraction of Wasserstein variability explained by the model. As a comparison,
a standard linear functional response model (Faraway (1997)) was also fit, after transforming
the densities into a linear function space using the log quantile density (LQD) transforma-
tion of Petersen and Müller (2016). Because the hematoma densities fail to have common
supports, as required by the LQD transformation, the densities were regularized to be strictly
positive on (0,100). This was done by appropriately mixing each density with the uniform
distribution on (0,100), with the mixture coefficient chosen so that the densities were all
bounded below by 0.0005. This alternative LQD model yielded fitted densities by means of
the inverse LQD transformation. The LQD method suffered from quite poor recovery of the
quantile functions near the boundaries t ∈ {0,1}, due to the fact that the observed densities
decay to zero at the boundary of their supports. The Wasserstein distance in (2.1) was sensi-
tive to these errors, and resulted in a much lower Wasserstein coefficient of determination of
R̂2⊕ = 0.0389, so that the Wasserstein regression model provided a substantial improvement
on the LQD approach.

The p-value for the global Wasserstein F -test was approximately zero using the mixture
χ2 test, giving strong evidence of a significant regression relationship between the hematoma
densities and candidate predictors. The alternative testing procedures of Section 3.3 gave sim-
ilar results. Significance of the effects of individual predictors are found in Table 2, where
these were computed via partial Wasserstein F -tests. As a baseline for comparison, the F -
tests of Shen and Faraway (2004) were performed on the LQD functional linear model. The
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FIG. 3. 95% confidence bands for conditional Wasserstein mean CDF (left) and density (right) when hematoma
volume is equal to the first (Q1) and third (Q3) quartile in the sample, with other variables set to their mean value
for continuous variables and mode for binary variables.

global F -test on the LQD model was also approximately zero, with partial p-values given in
the last column of Table 2. Both models identified hematoma size and shape, as well as pre-
senece of midline shift, as important factors in determining the distribution of density within
the hematoma. However, the Wasserstein regression model identifies two clinical variables
related to weight and diabetes as also affecting the hematoma density distribution.

Finally, we demonstrate the use of the two types of Wasserstein confidence bands devel-
oped in Section 4. Figure 3(a) shows two fitted Wasserstein mean cdfs. The first corresponds
to a hematoma volume equivalent to the first quartile (Q1) of the observed values, with all
other predictors set at their mean (for continuous variables) or mode (for binary variables).
The second is similar, but for the third quartile (Q3) of hematoma volume. Each fitted cdf is
also accompanied by a Wasserstein-∞ band, represented by the stochastic ordering bracket
[FL,FU ]. These bands may be interpreted as bounds on the “horizontal” sampling variabil-
ity of the fitted distributions, that is, the sampling variability of the fitted quantile function.
Figure 3(b) shows the corresponding fitted Wasserstein mean densities, along with density
bands. These density bands reflect sampling variability at the density level and aid in in-
ferring the relevance of local features seen in the fitted densities. As indicated by Figure 1,
the magnitude of the horizontal variability is the smaller of the two, and this is reflected in
the confidence bands. From a neurological point of view, the physiology dictates that larger
hematomas tend to be more dense and homogeneous, since the pressure put on them from
the surrounding tissue restricts growth and causes voids within the hematoma to be filled,
confirming the observed differences between fitted cdfs/densities in Figure 3.

7. Discussion. We have studied the regression of density response curves on vector pre-
dictors under the Fréchet regression model and the Wasserstein geometry of optimal trans-
port. The targets are the conditional Wasserstein mean densities, which can be estimated
without the need of a tuning parameter, akin to a parametric model. By replacing the additive
error term in ordinary linear regression with a random optimal transport map, intuitive test
statistics are proposed for testing null hypotheses of both no and partial predictor effects.
In the spirit of regression, asymptotic distributions are derived conditional on the observed
predictors. The covariance of the random transport map is a nuisance parameter that can be
consistently estimated and thus used to form a rejection region with correct asymptotic size
and which are uniformly consistent against classes of contiguous alternatives.

Confidence bands are also derived for the fitted Wasserstein mean densities in two forms.
Due to the intimate connection between the Wasserstein metric and quantile functions for
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univariate distributions, the first type of confidence band is formed in terms of the fitted
Wasserstein mean quantile function (equivalently, the Wasserstein mean cdf), and forms a
bracket in the usual stochastic ordering of distributions on the real line. These intrinsic con-
fidence bands are complemented by extrinsic bands in density space, allowing the user to
simultaneously quantify sampling variability of all quantiles of the distribution, as well as the
uncertainty of local features seen in the conditional Wasserstein mean densities.

As for any regression model, it will be necessary in future work to develop diagnostic
tools to assess the validity of the Wasserstein regression model for a given data set. It is likely
that tools for functional regression models can similarly be adapted to the setting of density
response curves (Chiou and Müller (2007)). Likewise, model selection or regularized estima-
tion procedures are clearly desirable, especially in cases where the number of predictors is
large (Barber, Reimherr and Schill (2017)).

While our theoretical developments have assumed the density response curves are known,
in the majority of practical situations these will need to be estimated from a collection of
univariate samples, each generated by one of the random densities. In the simulations, we
have demonstrated how this can be done using local linear smoothing of empirical quantile
functions, while smoothed histograms could also be used as in the application to head CT
densities. Some previous theoretical work in the analysis of density samples has accounted
for this preprocessing step, similar to the effects of presmoothing in functional data analysis
when curves are measured sparsely in time and often contaminated with noise (Kneip and
Utikal (2001), Panaretos and Zemel (2016), Petersen and Müller (2016)). An important point
of future research in this area will include identifying a division of regimes between dense
and sparse samples for density functions, similar to Zhang and Wang (2016) for classical
functional data, and their implications on inferential procedures such as those proposed in
this paper.
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