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We study the problem of change point localization in dynamic networks
models. We assume that we observe a sequence of independent adjacency ma-
trices of the same size, each corresponding to a realization of an unknown in-
homogeneous Bernoulli model. The underlying distribution of the adjacency
matrices are piecewise constant, and may change over a subset of the time
points, called change points. We are concerned with recovering the unknown
number and positions of the change points. In our model setting, we allow
for all the model parameters to change with the total number of time points,
including the network size, the minimal spacing between consecutive change
points, the magnitude of the smallest change and the degree of sparsity of
the networks. We first identify a region of impossibility in the space of the
model parameters such that no change point estimator is provably consistent
if the data are generated according to parameters falling in that region. We
propose a computationally-simple algorithm for network change point local-
ization, called network binary segmentation, that relies on weighted averages
of the adjacency matrices. We show that network binary segmentation is con-
sistent over a range of the model parameters that nearly cover the comple-
ment of the impossibility region, thus demonstrating the existence of a phase
transition for the problem at hand. Next, we devise a more sophisticated al-
gorithm based on singular value thresholding, called local refinement, that
delivers more accurate estimates of the change point locations. Under ap-
propriate conditions, local refinement guarantees a minimax optimal rate for
network change point localization while remaining computationally feasible.

1. Introduction. The analysis of network is a fundamental task in statistics due to the
increasing popularity of network data generated from various scientific areas, social sciences,
emerging industries, as well as everyday life. Over the last decade, most of the advances in
the area of statistical network analysis have revolved around static network models, where the
properties of the data generating process are inferred from a single realization of the network.
For this type of problems, a large collection of results of computational, methodological and
theoretical nature exist.

In contrast to the basic premise of the static network modeling framework, many modern
network data sets consist instead of multiple network realizations indexed by time, so that
both the number of nodes and the connectivity structure of the network exhibit time-varying
features. Such a dynamic network modeling setting is naturally more complex and challeng-
ing, as it is necessary to additionally formalize and model the underlying temporal dynamic.
While there is a vast body of work on dynamic network models (see, e.g., Barabási and Albert
(1999)) in the broader scientific literature, theoretical results on such models are compara-
tively scarce in the statistical literature, with many of the contributions being fairly recent
(see Section 1.3 below for some literature review).
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In this article, we are concerned with a discrete time network dynamic setting in which the
set of nodes is fixed but the edge probabilities are time varying. We assume that we observe a
sequence of T independent and possibly sparse networks of constant size whose distributions
may change at K < T unknown time points, or change points. We impose minimal restric-
tions on the number and locations of the possible change points and especially on the nature
of the distributional changes that may occur at those times. In particular, most popular static
network models can fit into our framework. Our goal is to detect whether any such change
has taken place, and to accurately estimate the time of the corresponding change point. Im-
portantly, we are not interested in estimating the underlying data-generating distributions. As
our analysis will reveal, although we only consider a fairly straightforward form of network
dynamics, the associated inference problem is rather subtle and far from trivial. Furthermore,
if one is interested in the underlying distributions, then static network estimation methods can
be applied to the sample means of the adjacency matrices between two consecutive change
point estimators.

1.1. Problem setup. To set up the problem, we assume a sequence of T independent
adjacency matrices of size n, each from a possibly sparse inhomogeneous Bernoulli network
model, defined next.

DEFINITION 1 (Inhomogeneous Bernoulli networks). A network with node set {1, . . . , n}
is an inhomogeneous Bernoulli network if its adjacency matrix A ∈ Rn×n satisfies

Aij = Aji =
{

1 nodes i and j are connected by an edge,

0 otherwise;
and {Aij , i < j} are independent Bernoulli random variables with E(Aij ) = �ij .

Definition 1 covers a wide range of models for undirected networks, including the Erdős–
Rényi random graph (Erdős and Rényi (1959)), the stochastic block model (Holland, Laskey
and Leinhardt (1983)), the degree corrected block model (Karrer and Newman (2011)) and
the random dot product model (Young and Scheinerman (2007)), etc. It is worth pointing out
that although we are only considering undirected networks, our results extend straightfor-
wardly to directed networks, that is, asymmetric adjacency matrices. Additionally, for tech-
nical convenience, we are allowing self-loops, even though networks with no loops can be
easily accommodated; see Section 3.2 below. Finally, discussions on the possible relaxations
on the independence and Bernoulli assumptions can be found in Section 5.

We further assume that the probability distributions of the networks change only over an
unknown subset of the time points, called change points. We formalize our setting below.

ASSUMPTION 1 (Change point dynamic network model). Let {A(t)}Tt=1 be a sequence
of n × n adjacency matrices of independent inhomogeneous Bernoulli networks with means
{�(t)}Tt=1 satisfying the following properties:

1. The sparsity parameter

(1) ρ := max
t=1,...,T

∥∥�(t)
∥∥∞

is such that

(2) ρn ≥ log(n),

where ‖ · ‖∞ denotes the entrywise maximum norm of a matrix.
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2. There exists a sequence (η0, . . . , ηK+1) of time points, called change points, such that
1 = η0 < η1 < · · · < ηK ≤ T < ηK+1 = T + 1 and, for t = 2, . . . , T ,

�(t) �= �(t − 1) if and only if t ∈ {η1, . . . , ηK}.
We let

� := min
k=1,...,K+1

{ηk − ηk−1} ≤ T

be the minimal spacing between two consecutive change points and set

(3) κ0 := mink=1,...,K ‖�(ηk) − �(ηk − 1)‖F

nρ
∈ (0,1],

to be the normalized magnitude of the smallest changes in the data generating distribution,
where ‖ · ‖F denotes the Frobenius norm.

A few comments on our modeling assumptions are in order. First, we rely on the Frobe-
nius norm of the difference between two consecutive expected adjacency matrices at a change
point to quantify the magnitude of the corresponding distributional change. This is a fairly
general metric, able to capture both “dense” changes caused by small variations spread across
many edge probabilities as well by “sparse” changes due to large difference only along few
coordinates. Next, the quantity κ0 ∈ (0,1] appearing in (3) measures the size of the smallest
distributional change in the model in a manner that is independent of the choice of the other
parameters. Indeed, the terms ‖�(ηk) − �(ηk − 1)‖F’s depend on both the sparsity param-
eter ρ and the size of the networks n. To avoid such confounding, and using the fact that
maxk ‖�(ηk) − �(ηk − 1)‖F ≤ nρ, setting κ0 as in (3) yields a scale-free parameter in (0,1]
that is independent of both ρ and n.

The model described above is defined by the parameters �, κ0, n and ρ. We adopt a high-
dimensional framework whereby T grows unbounded and all the defining parameters are
allowed to change as a function of T . The number of change points K also may change with
T , but since K ≤ T

�
by definition, we will capture any dependence on K only through �. We

refer to any relationship among all the model parameters (�,κ0, n, ρ) and T that holds as
T → ∞ as a scaling. For ease of readability, we will not make the dependence on T explicit
in our notation.

We are concerned with the problem of estimating the unknown number and unknown
locations of the change points based on one observation of a sequence (A(1), . . . ,A(T )) of
adjacency matrices satisfying the above assumptions. More precisely, for a given scaling of
the model parameters, we aim to construct an estimator of (η1, . . . , ηK) of the form

(4)
(
A(1), . . . ,A(T )

) 	→ (η̂1, . . . , η̂K̂
) ⊂ (2, . . . , T )

and with η̂1 < η̂2 < · · · < η̂
K̂

satisfying the following notion of localization consistency.

DEFINITION 2 (Consistent localization). A change point estimator of the form (4) is
consistent if, with probability tending to 1 as T → ∞,

(5) K̂ = K and max
k=1,...,K

|η̂k − ηk| ≤ ε,

where ε = ε(T ,�,κ0, ρ, n) is such that

(6)
ε

�
→ 0.

The term ε is called the localization error of the estimator and the sequence { ε
�

} the local-
ization rate.
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Infeasible regime
(Section 2.1)

Consistent localization
(Section 2.2)

Optimal localization
(Section 3)

An example: SBM
(Section 3.2)

FIG. 1. Reading guide.

Thus, we will deem a change point estimator consistent if, with high probability as the
number of time points grows, its localization error is a vanishing fraction of the minimal
distance between consecutive change points. The limiting probability (in T ) of the event in
(5) and the value of the localization error ε depend on the choice of the scaling. For instance,
it is intuitively clear that scalings in which all parameters decrease with T will lead to a
sequence of change point problems of increasing difficulty.

Our main goal is to derive conditions on the scaling of the model parameters that guaran-
tee the feasibility of consistent estimation of the change points and to derive computationally
efficient estimators that are consistent and in fact optimal, in the sense of achieving the mini-
max localization rate. Throughout, we will specify any scaling regime among the parameters
by expressing them as functions of the quantity

(7)
√

ρκ0,

which can be considered as a uniform lower bound on the signal-to-noise ratio for any net-
work change point model satisfying Assumption 1. Indeed, the above quantity is the minimal
magnitude of the signal jump, namely κ0nρ, divided by n

√
ρ, which is an upper bound on

the total standard deviation of the entries of A.

1.2. List of contributions. The main theoretical contribution of the paper is the identifi-
cation of three regions inside the space of model parameters corresponding to different types
of scaling or regimes: (i) an impossibility regimes, where no change point localization al-
gorithm is guaranteed to be consistent (see Section 2.1); (ii) a feasibility regime, described
in Assumption 2), for which we demonstrate the existence of a polynomial-time, consistent
change point estimator (see Section 2.2) and (iii) a subset of (ii), described in Assumption 3,
for which we further show that change point localization can be achieved at a nearly minimax
optimal rate, again using a polynomial-time algorithm (see Section 3). The partition of scal-
ing regimes, represented pictorially in Figure 1, is relatively sharp, in the sense that regimes
(i) and (ii) are only off by any diverging factor in T .

To be specific, our contributions are as follows:

• We first demonstrate the existence of a phase transition for the problem at hand by giving
nearly matching necessary and sufficient conditions on the scaling of the model parameters
and T for consistent estimation of the change points. Specifically, under the low signal-to-
noise scaling

(8) ρκ2
0 � log(T )

n�
,

no algorithm is guaranteed to be consistent (in the minimax sense: there exists a change
point problem setting compatible with the above assumption such that any algorithm will
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have a localization rate uniformly bounded away from 0). On the other hand, if for any
ξ > 0,1

(9) ρκ2
0 � log2+2ξ (T )

�n
,

we demonstrate a computationally-efficient procedure, called Network Binary Segmenta-
tion (NBS) (see Algorithmic 1 below) that is provably consistent. The procedure combines
sample splitting with the randomized search strategy implemented in the wild binary seg-
mentation (WBS) algorithm of Fryzlewicz (2014). To show the consistency of the NBS,
we have generalized in nontrivial ways the analysis in Venkatraman (1992) to allow for
vector- and matrix-valued CUSUM statistics; we believe that such generalization may be
applied to other change point detection problems and is of independent interest.

The NBS is consistent under nearly the weakest possible conditions, since it leads to
a vanishing localization rate under the scaling (9) which, save for a log1+2ξ (T ) term,
matches the phase transition boundary in (8). Remarkably, no structural assumptions on
the distributions of the networks themselves are used. Indeed, in deriving the bound (8),
we construct a worst-case class of distributions consisting of dynamic networks satisfying
stochastic block models. This reveals that, under the scaling in which the NBS is ana-
lyzed, imposing extra network structural assumptions do not necessarily lead to easier
change point detection problems. This is in stark contrast with many other network prob-
lems, such as graphon estimation, clustering and testing, where some structural conditions
on the edge probabilities are always necessary. For instance, Gao, Lu and Zhou (2015)
showed that, when the number of communities r in a stochastic block model is of order
n, the minimax lower bound under the normalized mean squared error loss for graphon
estimators is of order 1. The dynamic version optimality is shown in Pensky (2019).

• In our second set of results, we seek to investigate conditions under which structural as-
sumptions do help with our change point localization task. Toward that end, we introduce
additional assumptions on the model defined in Assumption 1 by requiring that each dif-
ference �(ηk)−�(ηk − 1), k = 1, . . . ,K , be a matrix of rank at most r ≤ n, an additional
parameter that is also allowed to change with T . Such low rank condition is relative mild
and is satisfied by many instances of the stochastic block model. Then, with this assump-
tion in place and under the stronger scaling,

(10) ρκ2
0 � log2+2ξ (T )

�

r

n
,

we are able to devise a computationally-efficient and consistent change points estimator
with localization error of the order

(11) ε � log2(T )

κ2
0n2ρ

.

The proposed procedure takes as input the estimates of the change point locations from
any reasonable (not necessarily consistent nor optimal) estimator, including the NBS, and
further improves their accuracy to deliver the above localization rate. At its core, the LR
algorithm relies on exactly K (this, we recall, being the number of change points) separate
applications of the universal singular value thresholding procedure of Chatterjee (2015).
Furthermore, we show that the localization rate afforded by the LR algorithm, given in
(11), is in fact nearly minimax rate-optimal, aside for the log2(T ) term. Interestingly, the

1In fact, ξ is allowed to be zero if n diverges with T . More generally, in that case, we may replace the term

logξ (T ) with any other quantity one diverging in T .
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expression of the rate (11) is essentially identical to the optimal localization rate for covari-
ance and mean change point estimation, adjusted for the differences in the model settings
(e.g., Wang, Yu and Rinaldo (2017)).

More discussions on the gap between the scalings (9) and (10), and on the comparisons
with Wang, Yu and Rinaldo (2017) are provided later in the paper.

• We apply the LR algorithm to the problem of change point detection for sequence of
networks from stochastic block models and derive optimal localization rates. For net-
works without self-loops—a common feature of network models—a technical complica-
tion arises in treating the expected adjacency matrix from a stochastic model as a low-rank
matrix. When the network has no self-loops, the diagonal entries of the expected adjacency
matrix are set to be zero, which in general would prevent the low-rank assumption. In fact,
this complication is often ignored in the existing literature. In this case, we show that with a
very mild additional assumption, we are still able to recover the nearly optimal localization
rate (11). In our analysis, we borrow tools and ideas from several areas, including change
point detection, network analysis and graphon estimation.

The rest of this paper is organized as follows. Section 1.3 summarizes some of the related
literature. In Section 2, we first identify the scalings for which consistent localization is im-
possible and then present the NBS change point estimator, which we show to be consistent
under almost any scaling outside this impossibility regime. In Section 3, we develop the more
sophisticated algorithm LR, which we then show to be almost minimax rate-optimal under
an additional low-rank assumption. We further demonstrate in Section 3.2 how our proce-
dure is applicable to the dynamic stochastic block model. Section 4 presents few illustrative
simulations that verify the effectiveness of our procedures. Finally, we conclude with more
discussions including potential future work directions in Section 5. The proofs of our results
are presented in the Appendix and Supplementary Material.

1.3. Related work. Dynamic network is a topical area which is intensely studied across
different disciplines. The relevant papers listed in this section are by no means exhaustive.
Readers may refer to Carrington, Scott and Wasserman (2005), Goldenberg et al. (2010),
Boccaletti et al. (2014) and Kolaczyk (2017) for more comprehensive reviews.

In terms of the invariant quantities, most of the existing work focus on a fixed set of nodes
across time, but there are also exceptions. For instance, Barabási and Albert (1999) allowed
for time-varying nodes and edges, Crane (2015) assumed infinite population at every time
point and allowed for random observations at different time points, to name but a few. In
terms of the network models imposed for every time point, Snijders (2002) explored dynamic
exponential random graph models, Tang et al. (2013) studied a dynamic version of random
dot product models, Ho, Song and Xing (2011) extended the mixed membership models to a
dynamic one, Xu and Zheng (2009), Sewell and Chen (2015) among others considered dy-
namic latent space models, and dynamic stochastic block models have also been extensively
studied.

Among the work on dynamic stochastic block models, Xu (2015) proposed a stochastic
block transition model using a hidden Markov-type approach; Xu and Hero (2014) proposed
to track dynamic stochastic block models using Gaussian approximation and an extended
Kalman filter algorithm; Matias and Miele (2017) integrated a Markov chain determined
group labels evolving process; Pensky and Zhang (2019) exploited kernel-based smoothing
techniques dealing with the evolving block structures; Bhattacharyya and Chatterjee (2017)
focused on time-varying stochastic block model and variants thereof with time-independent
community labels, applied spectral clustering on an averaged version of adjacency matri-
ces, and achieved consistent community detection. Bhattacharjee, Banerjee and Michailidis
(2018) dealt with a change point detection problem in a one-change-point stochastic block
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model sequences and focused on recovering underlying models, which resulted in a cost of
suboptimal change point detection. Wang et al. (2014) used two types of scan statistics inves-
tigating change point detection on time-varying stochastic block model sequences, empha-
sizing testing connectivity matrices changes. Cribben and Yu (2017) proposed an eigenspace
based statistics testing the community structures changes in stochastic block model se-
quences. Liu et al. (2018) proposed a loss function based on the eigenspace to track the
changes of the community structures in stochastic block model sequences. Both Cribben and
Yu (2017) and Liu et al. (2018) have roots in subspace tracking in signal processing, but both
lack theoretical justifications. Chu and Chen (2017) proposed a test statistics for general data
type including network sequences, and their method focuses on the testing perspective. Zhao,
Chen and Lin (2019) provided a two-step algorithm, which first estimates the networks and
then uses a moving window to detect change points. The results thereof are consistent yet
optimal. Another consistent yet optimal result on network change point detection problems
is derived in Chapter 5 in Mukherjee (2018).

1.4. Notation. For any A ∈ Rn×n, let Aij be the (i, j)th entry of A, Ai∗ and A∗j

the ith row and j th column of A. Let κi(A) be the ith eigenvalue of A with ordering
|κ1(A)| ≥ |κ2(A)| ≥ · · · ≥ |κn(A)|, and ‖A‖op = |κ1(A)| be the operator norm of A. Let
‖A‖∞ = max1≤i,j≤n |Aij | be the entrywise maximum norm. In addition, for any B ∈ Rn×n,
let (A,B) = ∑

1≤i,j≤n AijBij be the inner product of A and B in the matrix space, and
‖A‖F = √

(A,A) be the Frobenius norm of A. For any vector v ∈ Rp , let vi be the ith entry
of v, ‖v‖ and ‖v‖∞ be the 	2- and entrywise maximum norms of v, respectively. For any set
S, let Sc be its complement.

For any positive functions of n, namely f (n) and g(n), denote f (n) � g(n), if there exist
constants C > 0 and n0 such that f (n) ≤ Cg(n) for any n ≥ n0; denote f (n) � g(n), if
g(n) � f (n); and denote f (n)  g(n), if f (n) � g(n) and f (n)� g(n).

We now recall the definition of cumulative sum (CUSUM) statistic (Page (1954)).

DEFINITION 3 (CUSUM statistics). For a collection of any type of data {X(t)}Tt=1, any
pair of time points (s, e) ⊂ {0, . . . , T } with s < e−1, and any time point t = s +1, . . . , e−1,
let the CUSUM statistics be

X̃s,e(t) =
√

e − t

(e − s)(t − s)

t∑
i=s+1

Xi −
√

t − s

(e − s)(e − t)

e∑
i=t+1

Xi.

Since the CUSUM statistic is linear in its arguments, we have that, for any 0 ≤ s < t <

e ≤ T ,

E
(
Ãs,e(t)

)= �̃s,e(t).

2. Consistent localization. In this section, we study the conditions under which con-
sistent estimation of the change point locations for the model described in Assumption 1 is
feasible. Specifically, we derive a phase transition in the space of the model parameters that
separates parameter scalings for which there exists some algorithm with a vanishing localiza-
tion rate from the ones for which no estimator is consistent. To be precise, when we say that
consistent localization is impossible for a given scaling, we mean it in a minimax sense that
there exists some change point model satisfying Assumption 1 for which no estimator of the
change points is consistent.
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2.1. The impossibility regime. Below we establish an information-theoretic lower bound,
which demonstrates that, if

(12) ρκ2
0 � log(T )

n�
,

then no consistent estimator of the change points exists. The proof constructs two sequences
of mixtures of stochastic block models with two communities of all possible sizes that cannot
be reliably discriminated under the above scaling, and then employs the convex version of Le
Cam’s lemma (see, e.g., Yu (1997)) to conclude that any change point estimator must have a
localization rate bounded away from zero. As a by-product of our lower bound construction,
we also see that imposing additional structural assumptions on the edge probabilities (such as
that of a stochastic block model with a bounded number of communities and, therefore, low
rank) does not necessarily lead to a consistent estimator under the scaling in (12). The details
are given in Section S.1.

LEMMA 1. Let {A(t)}Tt=1 be a sequence of independent inhomogeneous Bernoulli net-
works satisfying Assumption 1 with K = 2 (i.e., there exist two and only two change points).
Let P T

κ0,�,n,ρ denote the corresponding joint distribution. Consider the class of distributions

P =
{
P T

κ0,�,n,ρ : � = min
{⌊

log(T )

nρκ2
0

⌋
, �T/4�

}
, ρ < 1/2, κ0 ≤ 1

}
.

Then there exists a T0, such that for all T ≥ T0,

inf
η̂

sup
P∈P

EP

(
H
(
η̂, η(P )

))≥ �/2,

where the infimum is over all estimators η̂ = {η̂k}K̂k=1 of the change point locations, η(P ) is
the set of the change points of P ∈P and H(·, ·) denotes the Hausdorff distance.

2.2. Network binary segmentation. In our next result, we show that parameter scalings
of the form given in (12) are essentially the only ones for which consistent change point
estimation is infeasible, thus proving the existence of a phase transition in the space of pa-
rameters. In particular, we will derive an algorithm (see Algorithmic 1 below) that will return
a consistent estimator provided the following signal-to-noise condition is met.

ASSUMPTION 2. For a constant Cα > 0 and any ξ > 0, we have that

(13) κ0
√

ρ ≥ Cα

√
1

n�
log1+ξ (T ).

Recalling (12), our results cover all parameter scalings, aside from a logξ (T ) term, where
ξ > 0 can be arbitrarily small. When the size of the networks n diverges with T , arguably
a very natural asymptotic regime, one can take ξ in Assumption 2 to be zero. In fact, in
this case the signal-to-noise ratio condition (13) can be weakened to be of the form κ0

√
ρ ≥

Cα

√
1

n�
log(T )eT , for any sequence of positive numbers {eT }T =1,2,... diverging to infinity

arbitrarily slowly.
To appreciate how Assumption 2 is compatible with a broad range of network change point

scenarios and is therefore fairly mild, we highlight the following two extreme cases:

• Assume a nonsparse setting (i.e., ρ  1). If the minimal spacing � is of order log2+2ξ (T ),
then Assumption 2 demands that nκ0 � n1/2. This means that the edge probabilities need
to change for at least

√
n order many nodes.
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Algorithm 1 Network binary segmentation. NBS((s, e), {(αm,βm)}Mm=1, τ1)

INPUT: Two independent samples {A(t)}Tt=1, {B(t)}Tt=1 ∈ Rn×n, τ1.
for m = 1, . . . ,M do

[s ′
m, e′

m] ← [s, e] ∩ [αm,βm]
(sm, em) ← [s′

m + 64−1(e′
m − s′

m), e′
m − 64−1(e′

m − s′
m)]

if em − sm ≥ 1 then
bm ← arg maxt=sm+1,...,em−1(Ã

sm,em(t), B̃sm,em(t))

am ← (Ãsm,em(bm), B̃sm,em(bm))

else
am ← −1

end if
end for
m∗ ← arg maxm=1,...,M am

if am∗ > τ1 then
add bm∗ to the set of estimated change points
NBS((s, bm∗), {(αm,βm)}Mm=1, τ1)

NBS((bm∗ + 1, e), {(αm,βm)}Mm=1, τ1)

end if
OUTPUT: The set of estimated change points.

• On the other hand, in the sparse setting where ρ is chosen to be log(n)/n as in (2), if
�  T (so that the number of change points is bounded), then Assumption 2 only requires
κ0 to be at least of the order

log1+ξ (T )√
T log(n)

.

Thus κ0 is allowed to vanish with T , even for fixed n.

We now introduce the procedure Network Binary Segmentation (NBS), detailed in Algo-
rithmic 1, for consistent estimation under nearly the worst possible scaling of Assumption 2.

The NBS is a novel algorithm that builds on the traditional machinery developed for
the univariate mean change point detection problem. The cornerstones of the NBS are the
CUSUM statistics Ãsm,em(t) and B̃sm,em(t) (see Definition 1). However, instead of searching
for the maximum CUSUM statistics directly, as it is traditionally done in the binary segmen-
tation and its more modern variants (see, e.g., Fryzlewicz (2014), Vostrikova (1981), Wang
and Samworth (2018)), the NBS maximizes the inner product of two CUSUM statistics based
on two independent samples. This is due to the fact that each entry of the adjacency matrix is
a Bernoulli random variable, and for any Bernoulli random variable X, it holds that X2 = X.
As a result, ‖Ãsm,em(t)‖2

F cannot serve as a good estimator of ‖�̃sm,em(t)‖2
F. In practice, these

two independent samples can be acquired by splitting the data into, say, odd and even time
points. In addition, every random interval (s′

m, e′
m) provided to the algorithm is shrunk by a

constant fraction of its original length. This is done in order to avoid false positives around
newly-found change points, a correction usually performed in WBS-style algorithm: see, for
example, the parameter δ used in Algorithm 3 in Wang, Yu and Rinaldo (2017) and the pa-
rameter β used in Algorithm 4 Wang and Samworth (2018). Note that in our paper, however,
the amount of shrinking does not depend on unknown quantities.

An interesting and possibly surprising feature of the NBS algorithm is that it merely relies
on network CUSUM statistics—weighted sample averages of adjacency matrices (see Def-
inition 3)—and does not rely on any network or graphon estimation procedures, which are



212 D. WANG, Y. YU AND A. RINALDO

computationally costly. Though the NBS is not estimating any network parameters at all, it is
still able achieve consistent network change point detection for a fairly large class of models
in a fast fashion. In our next result, we show that the NBS yields in fact a consistent estimator
the change points.

THEOREM 1. Assume the model described in Assumption 1 and the condition of Assump-
tion 2. There exist absolute positive constants CR > 3/2, Cβ , c2 ∈ (0,1), c, cT and C1 such
that, letting {(αm,βm)}Mm=1 ⊂ (0, T ) be a collection of random intervals whose end points
are drawn independently and uniformly from {1, . . . , T } and such that

(14) max
m=1,...,M

(βm − αm) ≤ CR�,

and

(15) Cβρn log3/2(T ) < τ < c2κ
2
0n2ρ2�

guarantees that the collection of the estimated change points B = {η̂k}K̂k=1 returned by the
NBS procedure with input parameters (0, T ), {(αm,βm)}Mm=1 and τ will satisfy

P
{
K̂ = K; max

k=1,...,K
|ηk − η̂k| ≤ ε

}
≥ 1 − exp

(
log

(
T

�

)
− M

�

4CRT

)
− (

6T 3−cT + 2T 3−c),(16)

where

(17) ε = C1 log(T )

( √
�

κ0nρ
+

√
log(T )

κ2
0nρ

)
.

The constants in the theorem statement and their hierarchy of dependencies can be ex-
plicitly tracked in the proof; in particular, we require that the signal-to-noise ratio constant
Cα in Assumption 2 to be sufficiently large. See the remark at the beginning of the proof of
Theorem 1 in the Appendix.

To see how Theorem 1 implies that the NBS is consistent according to Definition 2, we
plug in the inequalities

√
ρκ0 ≥ Cα log1+ξ (T )√

n�
and ρ ≥ log(n)

n
,

stemming from Assumptions 2 and 1, respectively, into the bound (17) on the localization
error to get that

ε

�
= C1 log(T )

( √
�

κ0nρ
+

√
log(T )

κ2
0nρ

)
1

�

≤ C1

(
1

Cα

√
log(n) logξ (T )

+ 1

C2
α log1/2+2ξ (T )

)
→ 0,

(18)

as T → ∞ (with all the remaining parameters also possibly changing in accordance to any
scaling compatible with Assumption 2). The last expression also shows that, if n diverges as
T grows unbounded, the parameter ξ can be taken to be 0 in Assumption 2 and consistent
localization is still guaranteed. More interestingly, (18) continues to hold also when n  1,
so that consistent localization is possible even when the number of nodes remains bounded.
Of course, this is in striking contrast with the problem of consistent estimation of the edge
probabilities—or, more generally, of an underlying graphon—which requires n → ∞.
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We remark that, while Theorem 1 shows that the NBS algorithm is consistent, we make no
claim as to whether the localization rate is optimal. In the next section, we will propose a two-
step algorithm for change point localization that is not only consistent but nearly minimax
rate-optimal under more favorable scalings on the parameters than the ones considered in
Theorem 1.

We conclude this section with few technical remarks on the assumptions of Theorem 1.
In order for the NBS algorithm to be consistent, the threshold parameter τ needs to belong
to an appropriate range; see (15). Such choice essentially guarantees that τ is both large
enough to avoid false positives and small enough to never miss any true change points, both
events occurring with high probability. Next, the condition in (14) requires that each of the
random intervals fed to the NBS algorithm is not too large, compared to the minimal spacing
parameter �. Without assuming (14), and using the trivial bound CR ≤ T/�, it can be shown
that the NBS will achieve a larger localization error of

ε = C1 log(T )

( √
�

κ0nρ
+

√
log(T )

κ2
0nρ

)(
T

�

)2
,

under the scaling

κ0
√

ρ ≥ Cα

√
1

n�
log1+ξ (T )

√
T

�
,

which is stronger than the one in Assumption 2. Assumption (14) about the length of the
random time intervals used as input to the algorithms is of somewhat technical nature, but it
appears necessary to yield the localization error in (17). Indeed, this condition, or analogous
ones requiring some knowledge of �, are commonly assumed in the literature for change
point localization to derive theoretical guarantees for WBS-style methods; see, for example,
Fryzlewicz (2014), Wang and Samworth (2018), Wang, Yu and Rinaldo (2018), Baranowski,
Chen and Fryzlewicz (2019), Anastasiou and Fryzlewicz (2019) and Eichinger and Kirch
(2018). Finally, the parameter M , the number of random intervals used by the procedure,
affects the results through the probability lower bound in (16). In order to guarantee that the
probability tends to 1, one needs that

M � T

�
log

(
T

�

)
.

3. Optimal localization. In the previous section, we saw how the NBS algorithm can
consistently estimate the locations of the change points for the dynamic network model of
Assumption 1 under nearly any scaling for which this task is feasible, albeit possibly not in
an optimal manner. In this section, we are to show that under stronger, but still fairly general,
conditions on both the model and the scaling, a two-step procedure that first applies the NBS
and then refines the resulting estimators of the locations of the change points, will achieve
a minimax optimal localization rate. The additional step beyond the NBS is named local
refinement (LR) and is detailed in Algorithmic 3.

The LR algorithm takes as input two identically distributed sequences of networks fulfill-
ing Assumption 1 (obtained for instance by sample splitting), along with a sequence {νk}Kk=1
of initial change point estimates that are sufficiently close to the locations of the true change
points, in way made precise in (20) below. In particular, this preliminary estimates may be
computed on the same data. The procedure then inspects all the triplets of consecutive change
point estimators one at a time (with the time points 1 and T +1 as two dummy change points,
for notational consistency). For each such triplet, the LR utilizes the universal singular value
thresholding (USVT) algorithm (Chatterjee (2015)) to construct a more accurate estimator of
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Algorithm 2 Universal singular value thresholding. USVT(A, τ2, τ3)

INPUT: Symmetric matrix A ∈ Rn×n, τ2, τ3 > 0.
(κi(A), vi) ← the ith eigen-pair of A, with |κ1(A)| ≥ · · · |κn(A)|
A′ ←∑

i:|κi(A)|≥τ2
κi(A)viv

�
i

USVT(A, τ2, τ3) ← (A′′
ij ) with

(A′′)ij ←
{
(A′)ij if |(A′

ij )| ≤ τ3,

sign((A′)ij )τ3 if |(A′
ij )| > τ3

OUTPUT: USVT(A, τ2, τ3).

a local CUSUM matrix of the expected adjacency matrix at the middle point estimator. This
estimator is in turn used to probe nearby locations in order to refine the original estimator
of the location of the middle change point location. This results in a provably more precise
estimator of that location. From a computational standpoint, Algorithmic 3 is parallelizable
in the sense that we can deal with each k ∈ {1, . . . ,K} separately.

The signal-to-noise ratio conditions under which the LR improves upon the NBS are
stronger than the ones that guarantee consistency of the latter, and are imposed in order to
ensure that the USVT procedure is effective (see, e.g., Xu (2018)). We formalize them next.

ASSUMPTION 3. Let {�(t)}Tt=1 be defined as in Assumption 1. For some 0 < r ≤ n,

max
k=1,...,K

rank
(
�(ηk) − �(ηk − 1)

)≤ r.

Furthermore, for a constant Cα > 0 and any ξ > 0,

(19) κ0
√

ρ ≥ Cα

log1+ξ (T )√
�

√
r

n
.

The fixed quantity ξ > 0 in in the previous assumption is required only for the case of
r  n  1 and can be set to zero in all other scenarios. The parameter r controlling the
maximal rank of the difference of consecutive expected adjacency matrices is, like all the
other parameters, also allowed to change with T . The first condition in Assumption 3 is about
the model itself and requires that, in addition to all the properties listed in Assumption 1, the
difference between any two different consecutive expected adjacency matrices is of low rank.
Using the fact that, for any matrices A,B ∈ Rn×n of rank r1 and r2, respectively, it holds that

rank(A − B) = min{r1 + r2, n},

Algorithm 3 Local refinement

INPUT: {A(t)}Tt=1, {B(t)}Tt=1 ∈Rn×n, τ2, τ3, {νk}Kk=1 ⊂ {1, . . . , T −1}, ν0 = 1, νK+1 = T +
1.
for k = 1, . . . ,K do

[s, e] ← [2−1(νk−1 + νk),2−1(νk + νk+1)]
�̃k ←

√
(e−νk)(νk−s)

e−s

�̂k ← USVT(B̃s,e(νk), τ2, τ3�̃k)

bk ← argmaxs≤t≤e(Ã
s,e(t), �̃k)

end for
OUTPUT: {bk}Kk=1.
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we see that Assumption 3 indirectly constraints the ranks of {�(t)}Tt=1. In particular, if �(ηk)

and �(ηk−1) are the expected adjacency matrices of stochastic block models with M1 and
M2 communities, respectively, then rank(�(ηk) − �(ηk−1)) ≤ min{M1 + M2, n}.

Assumption 3 is compatible with a broad range of parameter scalings. Focusing on the
rank parameter, we highlight two extreme cases:

• When r  1, the scaling (19) match the one in Assumption 2.
• On the other hand, if the change points are far from each others so that �  T and again

κ0
√

ρ  n−1/2, then as long as r � T log−(2+2ξ)(T ), then Assumption 3 holds. This in-
cludes the situation where T log−(2+2ξ)(T ) ≥ n, which essentially leaves the order of mag-
nitude of r unconstrained (though, of course, necessarily, r ≤ n.)

3.1. Upper and lower bounds on the localization error. The next theorem derives im-
proved localization rates for the LR procedure under and is the main result of this section.

THEOREM 2. Assume the model described in Assumption 1 and the conditions of As-
sumption 3. There exist absolute positive constants C, Cε , C2 and C3 such that if {νk}Kk=1 ⊂
(2, . . . , T ) is an increasing sequence satisfying

(20) max
k=1,...,K

|νk − ηk| < �/6,

then the collection of the estimated change points B = {η̂k}Kk=1 returned by the LR procedure
with input parameters (0, T ), {νk}Kk=1,

τ2 = (3/4)
(
C

√
nρ + Cε log(T )

)
and τ3 = ρ,

is such that

P
{

max
k=1,...,K

|ηk − η̂k| ≤ ε
}

≥ 1 − 2T 3−3Cε/4 − 4T 3−3C2
3/8,

where

(21) ε = C2
log2(T )

κ2
0n2ρ

.

The proof of Theorem 2 is given in the Appendix. The values and dependence among the
constants can be tracked throughout and, just like with Theorem 1, demand that the constant
Cα in the signal-to-noise ratio condition (19) is chosen large enough.

It is immediate to see that Theorem 2 offers stronger consistency guarantees than Theo-
rem 1. Indeed, using Assumption 3 along with the assumption that ρ ≥ log(n)

n
, we see that the

localization rate implied by (21) is

(22)
ε

�
≤ 1

C2
α log2ξ (T )r logn

→ 0,

as T → ∞. This upper bound on the localization error is of smaller order than the one in
(18) afforded by Theorem 1. Furthermore, as remarked above, change point consistency is
still guaranteed even as n  1. On the other hand, if n is diverging in T , we may set ξ = 0 in
Assumption 3.

To gain a further appreciation for the type of improvement Theorem 2 delivers over The-
orem 1, assume that r  n. Then, according to Theorem 1, in order for the NSB procedure
to yield the same localization error as in Theorem 2 it appears necessary to strengthen the
signal-to-noise ratio requirement to be

κ0
√

nρ� �
√

n log1+ξ (T )

instead of just κ0
√

nρ� � log1+ξ (T ).
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In addition to Assumption 3, Theorem 2 further requires that the sequence {νk}Kk=1 of pre-
liminary estimates used as an input to the procedure to be within a constant fraction of �

from the true change points; see (20). Notice that this assumption may be satisfied even if
the ratio maxk=1,...,K |νk − ηk| is not a vanishing fraction of �, thus failing to fulfill Defini-
tion 2. Of course, the change point estimators obtained using the NBS algorithm satisfy (20)
with high probability and for all large enough T , as demonstrated above in Theorem 1 and,
therefore, can be used as inputs to the LR algorithm.

Finally, the choices of threshold parameters τ2 and τ3 stem from the analysis of the USVT
procedure for network estimation in Xu (2018). In particular, the parameter τ2 serves as a
cutoff for the upper bound of the operator norm difference between the sample and population
version of certain matrices of interest.

In the second result of the section, we prove that the localization rate demonstrated in
Theorem 2 is nearly minimax optimal, save for a term poly-logarithmic in T .

LEMMA 2. Let {A(t)}Tt=1 be a sequence of independent inhomogeneous Bernoulli net-
works satisfying Assumption 1 with K = 1 (i.e., there exists one and only one change point).
Let P T

κ0,�,n,ρ denote the corresponding joint distribution. Consider the class of distributions

Q = {
P T

κ0,�,n,ρ : κ0 ≤ 1/2, ρ ≤ 1/2
}
.

Then

inf
η̂

sup
P∈Q

EP

(|η̂ − η|)≥ max
{
cκ−2

0 n−2ρ−1,1/2
}
.

The family of distributions Q allows for a wide range of changes. Indeed, the constraints
that κ0 ≤ 1/2 is fairly general and, in particular, include the challenging scenario where all
edge probabilities change at the change points. The constant 1/2 is arbitrary and can be
replaced by any constant between 0 and 1.

3.2. Sparse stochastic block model. In Theorem 2, we show that, for network models
with rank constraints, combining the NBS and the LR algorithms yields nearly optimal lo-
calization under the low rank assumption and the scaling described in Assumption 3. Low
rank network models include a wide range of common network models, for example, the
Erdős–Rényi random graph model (Erdős and Rényi (1959)), stochastic block models (e.g.,
Holland, Laskey and Leinhardt (1983)) and random dot product models (Young and Schein-
erman (2007)). However, in these models, it is often also assumed that no self-loops are
allowed, that is, the diagonal entries of the adjacency matrices are always 0. As a result, the
low rank assumption no longer holds. In this section, we show that, for the case of stochastic
block models, this issue can be overcome and that the guarantees of Theorem 2 hold also in
this case. For completeness, we include the definition of a sparse stochastic block model and
some of its properties.

DEFINITION 4 (Sparse stochastic block model). A network is from a sparse stochastic
block model with size n, sparsity parameter ρ, membership matrix Z ∈ {0,1}n×s and con-
nectivity matrix Q ∈ [0,1]r×r , if the expected adjacency matrix satisfies

E(A) = ρZQZ� − diag
(
ρZQZ�).

Each of the rows of the membership matrix Z contains only one nonzero entry; moreover,
Z is a column full rank matrix, that is, rank(Z) = r . In particular, rank(ZQZ�) ≤ r , with
identity holding when Q is a full rank matrix.
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In order to accommodate for the lack of self-loops, we rely on a new set of conditions,
described next.

ASSUMPTION 4. Let {A(t)}Tt=1 ∈ Rn×n be a sequence of independent adjacency ma-
trices satisfying the dynamic network model of Assumption 1. Assume that, for all k =
1, . . . ,K ,

�(ηk) − �(ηk − 1) = �(k) − diag
(
�(k)

)
,

where �(k) = ZkQkZ
�
k , Zk is a membership matrix such that rank(Zk) ≤ r and Qk is a

connectivity matrix. Furthermore, for a constant Cα > 0 and any ξ > 0,

κ0
√

ρ ≥ Cα

log1+ξ (T )√
�

√
r

n
.

Assumption 4 differs from Assumption 3 only in the how it constraints the difference of the
expected adjacency matrices. Indeed, under Assumption 4, �(ηk) − �(ηk − 1) is typically
not a low rank matrix and, therefore, Assumption 3 would not hold. Aside from this, the
signal-to-noise condition is identical in the two sets of assumptions.

Now, unlike in the problem of recovering the community assignment in a stochastic block
model, where zeroing out the diagonal entries of the low rank matrix corresponding to the
expected adjacency matrix is essentially inconsequential, in the localization problem this is
not the case. To see this, observe that if the time interval (s + 1, . . . , e) contains one change
point ηk , then for t ∈ (s + 1, . . . , e − 1),

�̃s,e(t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
t − s

(e − s)(e − t)
(e − ηk)

(
�(k) − diag

(
�(k)

))
if t ≤ ηk,√

e − t

(e − s)(t − s)
(ηk − s)

(
�(k) − diag

(
�(k)

))
if t ≥ ηk.

In particular, at t = ηk ,∥∥∥∥
√

(t − ηk)(e − ηk)

(e − s)
diag

(
�(k)

)∥∥∥∥
F

� ρ
√

n
√

min{e − ηk, ηk − s},
a quantity that depends on the spacing between change points and may potentially be quite
large. In order to handle such issue, we make the following assumption.

ASSUMPTION 5. For each k = 0, . . . ,K , set

�(ηk) = �(k) − diag
(
�(k)

)
,

where �(k) = Z′
kQ

′
kZ

′�
k , Z′

k is a membership matrix and Q′
k is a connectivity matrix. For an

absolute constant C� > 0, it holds that∥∥�(k)
∥∥

F ≥ C�

∥∥diag
(
�(k)

)∥∥
F.

Since ‖�(k)‖F is of order no larger than ρn and ‖diag(�(k))‖F is of order no larger than
ρ
√

n, overall Assumption 5 is a mild condition. Of course, if �(k) is a diagonally-dominant
matrix, then it is unclear how to estimate �(k) because in the no-self-loop networks, the
diagonals of the adjacency matrices are always 0.

THEOREM 3. In Theorem 2, if Assumption 3 is replaced by Assumption 4 and Assump-
tion 5, then the same conclusion still holds.

The proof of Theorem 3 can be found in the Appendix. The main difference between this
proof and the proof of Theorem 2 is the treatment on the diagonal entries under Assumption 5.
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4. Illustrative simulations. In this section, we will present the results of various illustra-
tive simulations intended to corroborate the theory developed in the paper and to demonstrate
the type of improvements the LR delivers over the NBS. As for this, we will use well-tuned
tuning parameters, which will be reported.

We point out that we could not find a methodology for the problem of multiple change
point localization in network models with which to directly compare the NBS and LR. We
have looked into existing methods for multiple change point localization that have been pro-
posed for change point localization in settings different than dynamic network models, such
as the ones put forward in Keshavarz, Michailidis and Atchade (2018), Cho (2016), Cho and
Fryzlewicz (2015) and Wang and Samworth (2018), among others. However, none of these
procedures could be successfully deployed in the simulation settings described below. For
this reason, we do not report the results of these comparison.

We consider the following three simulation settings. All settings have equally-spaced
change points, therefore the total number of time points T = (K + 1)�.

Setting (i). We set � = 60,80,120,200, K = 2, n = 150 and ρ = 0.02. Each network is
generated from a balanced 3-community stochastic block model. At the change points, the
connectivity matrices are

Q1 = ρ

⎛⎝0.6 1 0.6
1 0.6 0.5

0.6 0.5 0.6

⎞⎠ , Q2 = ρ

⎛⎝0.6 0.5 0.6
0.5 0.6 1
0.6 1 0.6

⎞⎠ and Q3 = Q1,

respectively.
Setting (ii). We set � = 60,80,120,200, K = 2, n = 150, ρ = 0.015 and the connectivity

matrix be

Q = ρ

⎛⎝0.25 0.5 0.25
0.5 1 0.5

0.25 0.5 0.25

⎞⎠ .

Each network is generated from a balanced 3-community stochastic block model. At the
change points, membership are reshuffled randomly.

Setting (iii). We set � = 80, K = 2, n = 150,180,210,240, ρ = 0.01. Each network is
generated from a balanced 3-community stochastic block model. At the change points, the
connectivity matrices are

Q1 = ρ

⎛⎝0.9 0.8 0.3
0.8 0.3 0.3
0.3 0.3 0.3

⎞⎠ , Q2 = ρ

⎛⎝0.3 0.3 0.7
0.3 0.6 0.3
0.7 0.3 0.3

⎞⎠ and

Q3 = ρ

⎛⎝0.3 0.3 0.3
0.3 0.3 0.6
0.3 0.6 0.1

⎞⎠ ,

respectively.
For each of the above settings, we simulated a dynamic network realization and applied

both the NBS and LR 200 times. In fact, we have applied a simplified version of the NBS
algorithm based on the BS procedure (see, e.g., Vostrikova (1981)) instead of WBS. Since
the number of change points is small, it can be shown that the guarantees of Theorem 3 hold
true even for this simpler, computationally less demanding algorithm.2

To evaluate the performance of the algorithms, for each simulation we recorded:

2In general, however, when the number of change points increases with T , BS is suboptimal compared to WBS.
Note that the default choices in R packages based on Cho (2016), Cho and Fryzlewicz (2015) and Wang and
Samworth (2018) are all based on BS instead of WBS.
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TABLE 1
Simulation results for both the NBS and LR

d(Ŝ, S)/T sub. d(Ŝ, S)/T

NBS LR |K̂ − K| Prop NBS LR

Setting (i)
T = 180 0.164 (0.010) 0.130 (0.011) 0.955 (0.062) 0.400 0.043 (0.005) 0.008 (0.004)
T = 240 0.113 (0.009) 0.078 (0.009) 0.820 (0.063) 0.485 0.023 (0.002) 0.000 (0.000)
T = 360 0.049 (0.006) 0.027 (0.006) 0.450 (0.051) 0.675 0.010 (0.001) 0.000 (0.000)
T = 600 0.019 (0.003) 0.003 (0.001) 0.265 (0.036) 0.770 0.004 (0.000) 0.000 (0.000)

Setting (ii)
T = 180 0.033 (0.003) 0.004 (0.002) 0.195 (0.033) 0.830 0.021 (0.002) 0.000 (0.000)
T = 240 0.013 (0.002) 0.001 (0.000) 0.070 (0.018) 0.930 0.009 (0.001) 0.000 (0.000)
T = 360 0.006 (0.001) 0.001 (0.000) 0.070 (0.018) 0.930 0.003 (0.000) 0.000 (0.000)
T = 600 0.002 (0.000) 0.000 (0.000) 0.055 (0.016) 0.945 0.001 (0.000) 0.000 (0.000)

Setting (iii)
n = 150 0.115 (0.010) 0.095 (0.010) 0.415 (0.038) 0.610 0.029 (0.004) 0.014 (0.005)
n = 180 0.027 (0.003) 0.008 (0.003) 0.250 (0.034) 0.775 0.012 (0.001) 0.000 (0.000)
n = 210 0.013 (0.002) 0.000 (0.000) 0.165 (0.027) 0.840 0.004 (0.001) 0.000 (0.000)
n = 240 0.013 (0.002) 0.000 (0.000) 0.165 (0.026) 0.835 0.002 (0.000) 0.000 (0.000)

• d(Ŝ, S)/T , the Hausdorff distance between the set of change point estimators and the set
of the true change points, normalized by T ,

• |K̂ − K|, the absolute difference between the numbers of the change point estimators and
the true change points,

• and Prop, the proportion of simulations (out of 200) for which K̂ = K .

Table 1 presents the results in the form of mean(standard error). The columns labeled
by sub. d(Ŝ, S)/T displays the results only for the simulations in which K̂ = K . All the
numerical analysis were conducted on machines with CPU Intel(R) Xeon(R) CPU E5-2670
0 @ 2.60 GHz.

Since the LR is a local refinement to the NBS, the columns corresponding to the LR
algorithm report, by construction, the same K̂ and, therefore, the same correct proportion.
Due to (20), which requires the LR to be deployed only as a refinement of an estimator that
returns the correct number of change points, in order to show the improvement afforded by
the LR we only considered simulations in which the NBS outputs the correct number of
change points.

As for tuning parameters, recall that we have one tuning parameter τ1 for the NBS, and
two tuning parameters, τ2 and τ3, for the LR. The choices of tuning parameters in these three
different settings are given in Table 2, where Inf is equivalent to no entrywise truncation
in the USTV step, and M is the number of communities in the stochastic block model. In

TABLE 2
Tuning parameter choices

Setting τ1 τ2 τ3

(i) nρ̂ log2(T )/21 Mnρ̂ ρ̂

(ii) nρ̂ log2(T )/20 Mnρ̂ Inf
(iii) 3nρ̂/4 Mnρ̂ Inf
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TABLE 3
Simulation results for the NBS with a default tuning parameter

d(Ŝ, S)/T |K̂ − K| Prop Time (second/repetition)

Setting (i)
T = 180 0.166 (0.010) 1.025 (0.062) 0.360 1.607 (0.030)
T = 240 0.121 (0.010) 0.760 (0.061) 0.520 3.104 (0.055)
T = 360 0.042 (0.006) 0.285 (0.044) 0.805 7.126 (0.060)
T = 600 0.011 (0.002) 0.125 (0.023) 0.875 20.837 (0.149)

Setting (ii)
T = 180 0.332 (0.000) 0.970 (0.012) 0.030 1.061 (0009)
T = 240 0.444 (0.000) 0.955 (0.015) 0.045 2.032 (0.028)
T = 360 0.667 (0.000) 0.985 (0.009) 0.015 3.950 (0.023)
T = 600 1.111 (0.000) 1.000 (0.000) 0.000 10.994 (0.022)

Setting (iii)
n = 150 0.154 (0.013) 0.415 (0.038) 0.610 1.861 (0.004)
n = 180 0.050 (0.006) 0.255 (0.035) 0.770 2.683 (0.010)
n = 210 0.015 (0.002) 0.195 (0.032) 0.825 4.936 (0.021)
n = 240 0.009 (0.001) 0.210 (0.033) 0.815 8.785 (0.039)

selecting the tuning parameters, we have used the true number of communities M ; of course,
in practice, this quantity needs to be estimated from the data (e.g., Chen and Lei (2018)).
Finally, we estimate ρ using ρ̂, defined to be the 95% quantile of{

T −1
T∑

t=1

Aij (t),1 ≤ i, j ≤ n

}
.

It can be seen from Table 1 that, with these choices of the tuning parameters, the per-
formance of both the NBS and LR improves as T , n and ρ increase. In addition, the LR
significantly outperforms the NBS.

For all the settings described above, we have also conducted additional simulations with
an omnibus default choice for the tuning parameter which does not require knowledge of
M : τ1 = nρ̂ log2(T )/20. The results are shown in Table 3. Due to the default choice of the
tuning parameter, it is not easy to show how the performance changes with different model
parameters. Therefore, we only collect the NBS results to demonstrate that we can achieve
good performances in terms of |K̂ − K|, d(Ŝ, S)/T and Prop, with easily chosen tuning
parameter.

It can be seen in Table 3 that with this default choice of tuning parameter, the NBS is still
producing good results.

5. Discussion. We have studied the change point localization problem in sparse dy-
namic network settings. We have proposed two computationally-efficient algorithms based
on CUSUM statistics: Network Binary Segmentation (NBS) and Local Refinement (LR).
The NBS is able to localize multiple change points consistently under virtually all parameter
scalings for which this task is feasible. The LR guarantees sharper localization errors under
slightly stronger scalings and is nearly minimax rate-optimal under those scalings. Our re-
sults are applicable to a wide class of dynamic network models and, in particular, to the ones
assuming a sequence of time-varying stochastic block models.

While we are able to demonstrate a nearly optimal localization procedure only under a
certain low rank assumption (see Assumption 3), it remains an open problem to design a
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TABLE 4
Summary of our rates results

Rate Scaling Algorithm

ε/T = o(1) ρκ2
0 � log2+2ξ (T )

�
1
n Poly

ε/T = εopt
log2(T )

T
ρκ2

0 � log2+2ξ (T )
�

r
n Poly

ρκ2
0 � log2+2ξ (T )

�
(1+r2/n)

n NP

computationally efficient algorithm that is provably optimal across all scalings for which
consistent localization is possible, described in Assumption 2.

The assumptions used in this paper can be possibly generalized in a few directions. If one
wishes to relax the independence across time and/or within networks, or replace the Bernoulli
assumption with other distributional assumptions (e.g., sub-Gaussian), then it will be neces-
sary to change in the proofs of the concentration inequalities and the corresponding large
probability events. This in turn may lead to different scaling requirements for consistency
and optimality, as well as possibly different localization error bounds.

It is worth noting that, assuming a stochastic block model at each time point, replacing
the USVT algorithm used in the LR procedure with an NP-hard graphon-based algorithm
(see, e.g., Gao, Lu and Zhou (2015), Pensky (2019)) will produce the nearly optimal rate (11)
under the scaling

(23) ρκ2
0 � log2+2ξ (T )

�

(1 + r2/n)

n
,

which is weaker than the scaling we assume for our polynomial time algorithms (NBS and
LR), namely (10). Equations (9), (10) and (23) reveal that:

(i) in the very sparse regime, that is, r � √
n, there is no gap between the scaling (23)

required by NP-hard algorithms and the scaling (9);
(ii) in the moderately sparse regime, that is,

√
n � r � n, then there is a gap between

statistical and computational limits;
(iii) in the very dense regime, that is, r  n, (10) and (23) are the same, which means

NP-hard algorithms are not gaining over polynomial methods.

These observations is consistent with similar phenomena observed in other statistical prob-
lems; see, for example, Zhang, Wainwright and Duchi (2012), Loh and Wainwright (2013),
to name but a few.

To summarize, we have the following Table 4.

APPENDIX: PROOFS OF THEOREMS 1, 2 AND 3

For simplicity, we set∥∥�(ηk) − �(ηk − 1)
∥∥

F = κk > 0 for any k = 1, . . . ,K.

PROOF OF THEOREM 1. The value of the constants in statement of the theorem can be
tracked in the proof. The hierarchy can be abstracted as follows: first, c and cT are chosen
such that (16) tends to 0 as T → ∞; then Cβ can be chosen depending on c and cT ; the
constant c2 therefore depends on Cβ and Cα ; finally, a sufficiently large C1 > 0 is chosen
and depends on all the aforementioned constants and CR . In particular, increasing Cα would
decrease the lower bound of C1.
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As the random intervals {(αm,βm)}Mm=1 are generated independently from the data, we
will assume throughout the proof that the event M defined in (22) in Section S.5 holds. By
Lemma S.22, the probability of the complementary event is smaller than

exp
{

log
(

T

�

)
− M�

4CRT

}
,

which vanishes provided that

M � (T /�) log(T /�).

For 0 ≤ s < t < e ≤ T , we consider the event

(24)
A(s, t, e) = {∣∣(Ãs,e(t), B̃s,e(t)

)− ∥∥�̃s,e(t)
∥∥2

F

∣∣
≤ Cβ log(T )

(∥∥�̃s,e(t)
∥∥

F + log1/2(T )ρn
)}

.

Due to Section S.4, it holds that P(A(s, t, e)c) ≤ 6T −cT + 2T −c for some c, cT > 3, and, by
a union bound argument,

P(A) = P
( ⋃

1≤s≤t≤e≤T

A(s, t, e)

)
≥ 1 − (

6T 3−cT + 2T 3−c).
All the analysis in the rest of this proof is conducted on the event A∩M.

The general strategy of the proof is to utilize a standard induction-like argument that is
commonly used in proving the consistency of change point estimators; see, for example,
Fryzlewicz (2014), Wang and Samworth (2018) and Wang, Yu and Rinaldo (2017). Of course,
the specific details and technicalities of this argument are new and challenging in our prob-
lem. In a nutshell, we will show that, on the event A∩M and assuming that the algorithm has
not made any mistakes so far in the detection and localization of change points, the procedure
will also correctly identify any undetected change point and estimate its location within an
error of ε, if such an undetected change point exists. Toward that end, it suffices to consider
any generic time interval (s, e) ⊂ (0, T ) that satisfies

ηr−1 ≤ s ≤ ηr ≤ · · · ≤ ηr+q ≤ e ≤ ηr+q+1, q ≥ −1

and

max
{
min{ηr − s, s − ηr−1},min{ηr+q+1 − e, e − ηr+q}}≤ ε,

where q = −1 indicates that there is no change point contained in (s, e) and ε is given in
(17).

Observe that

ε = C1 log(T )

( √
�

κ0nρ
+ log1/2(T )

κ2
0nρ

)

≤ C1

(
�

Cα log1/2(n) logξ (T )
+ �

C2
α log1/2+2ξ (T )

)
,

(25)

where the inequality follows from Assumption 1 part 1. and Assumption 2. Therefore, using
the previous bound,

ε ≤ 2C1�max
{

1

Cα log1/2(n) logξ (T )
,

1

C2
α log1/2+2ξ (T )

}
≤ �/4,

by appropriately assuming Cα to be large enough. It, therefore, has to be the case that, for
any change point ηp ∈ (0, T ), either |ηp − s| ≤ ε or |ηp − s| ≥ � − ε ≥ 3�/4. This means
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that min{|ηp − e|, |ηp − s|} ≤ ε indicates that ηp is a change point that has been previously
detected and estimated within an error of magnitude ε in the previous induction step, even
if ηp ∈ (s, e). Below we will say that a change point ηp in [s, e] is undetected if min{ηp −
s, ηp − e} ≥ 3�/4.

In order to complete the induction step, it suffices to show that NBS((s, e), {(αm,

βm)}Mm=1, τ ) (i) will not detect any new change point in (s, e) if all the change points in
that interval have been previously detected, and (ii) will find a point b in (s, e) such that
|ηp − b| ≤ ε if there exists at least one undetected change point in (s, e).

Step 1. Suppose that there does not exist any undetected change points within (s, e). Then,
for any (s′

m, e′
m) = (αm,βm) ∩ (s, e), one of the following situations must hold:

(a) there is no change point within (s′
m, e′

m);
(b) there exists only one change point ηr within (s′

m, e′
m) and min{ηr − s′

m, e′
m − ηr} ≤ ε

or
(c) there exist two change points ηr , ηr+1 within (s′

m, e′
m) and max{ηr − s′

m, e′
m −

ηr+1} ≤ ε.

We will analyze situation (c) only, as the other two cases are similar and in fact simpler.
Observe that if (c) holds, then by (25) and (15),

ε ≤ 64−1� ≤ 64−1(e′
m − s′

m

)
,

where the second inequality is fulfilled by choosing a sufficiently large Cα . Therefore, the
interval

[sm, em] = [
s′
m + 64−1(e′

m − s′
m

)
, e′

m − 64−1(e′
m − s′

m

)]
,

contains no change points. To see this, notice that, on the event A, �̃sm,em(t) = 0 for all
t ∈ (sm, em), as there is no change point in [sm, em]. Furthermore, by Section S.4, there exists
a large enough constant Cβ > 0 such that

max
sm<t<em

(
Ãsm,em(t), B̃sm,em(t)

)≤ Cβρn log3/2(T ).

Thus, with the input parameter τ satisfying

τ ≥ Cβρn log3/2(T ),

we conclude that NBS((s, e), {(αm,βm)}Mm=1, τ ) will always correctly reject the existence of
undetected change points.

Step 2. Suppose now that there exists a change point ηp ∈ (s, e) such that min{ηp − s, ηp −
e} ≥ 3�/4. Let am, bm and m∗ be defined as in NBS((s, e), {(αm,βm)}Mm=1, τ ). On the event
M, for any ηp ∈ (s, e) such that min{ηp − s, e−ηp} ≥ 3�/4, there exists an interval [s′

m, e′
m]

containing only one change point ηp such that

ηp − 3�/4 ≤ s ′
m ≤ ηp − �/2 and ηp + �/2 ≤ e′

m ≤ ηp + 3�/4.

Therefore, if [sm, em] = [s′
m + 64−1(e′

m − s′
m), e′

m − 64−1(e′
m − s′

m)], then one has that

(26) ηp − �3/4 ≤ sm ≤ ηp − �/8 and ηp + �/8 ≤ em ≤ ηp + �3/4.

Next, on the event A, it holds that(
Ãsm,em(ηp), B̃sm,em(ηp)

)≥ ∥∥�̃sm,em(ηp)
∥∥2

F − Cβ log(T )
(
log1/2(T )ρn + ∥∥�̃sm,em(ηp)

∥∥
F

)
.

It then follows from Section S.15 that∥∥�̃sm,em(ηp)
∥∥2

F = (ηp − sm)(em − ηp)

em − sm
κ2
p ≥ min{em − ηp, ηp − sm}κ2

p ≥ κ2
p�/8,
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where the last inequality stems from (26). Thus, due to Assumption 1 part1. and Assump-
tion 2, we conclude that

κ2
p�/16 ≥ κ2

0n2ρ2�/16 ≥ C2
α/16nρ log2+2ξ (T ) > Cβnρ log3/2(T ),

and

κp

√
�/4 ≥ κ0nρ

√
�/4 ≥ Cα/4

√
nρ log1+ξ (T )

≥ Cα/4 log1/2(n) log1+ξ (T ) > 2Cβ log(T ),
(27)

provided that, for n,T ≥ 2,

(28) Cβ < min
{
8−1Cα logξ (T ) log1/2(n),C2

α/16 log1/2+2ξ (T )
}
.

We remark that as for the hierarchy of all the absolute constants involved, (28) is a constraint
on Cα . Thus, with a large enough Cα , there exists an absolute constant c2 > 0, such that(

Ãsm,em(ηp), B̃sm,em(ηp)
)≥ c2κ

2
p�.

By the definition of m∗, one then obtain the inequality

am∗ = (
Ãsm∗,em∗(bm∗), B̃sm∗,em∗(bm∗)

)≥ c2
(
κs,e

max
)2

�,(29)

where κs,e
max = max{κk : min{ηp −s, e−ηp} ≥ 3�/4}. Thus, with input parameter τ satisfying

τ < c2κ
2
0n2ρ2�.

The NBS can consistently detect the existence of undetected change points.
Step 3. Assume next that there exists at least one undetected change point ηp ∈ (s, e) such

that min{ηp − s, ηp − e} ≥ 3�/4. Let am, bm and m∗ be defined as in Algorithmic 1.
To complete the induction step and, therefore, the proof, it suffices to show that there exists

a (necessarily undetected) change point ηp ∈ [sm∗, em∗] such that

(30) min{ηp − s, ηp − e} ≥ 3�/4

and that

(31) |bm∗ − ηp| ≤ ε.

In this step, we will prove that (30) holds. Denote

[sm∗, em∗] = [
s′
m∗ + 64−1(e′

m∗ − s′
m∗
)
, em∗ − 64−1(e′

m∗ − s′
m∗
)]

.

Suppose for the sake of contradiction that

max
sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥2

F < c2
(
κs,e

max
)2

�/2.(32)

Then

max
sm∗<t<em∗

(
Ãsm∗,em∗(t), B̃sm∗,em∗(t)

)
≤ max

sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥2

F + Cβ log(T )
(
log1/2(T )ρn + max

sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥

F

)
,

≤ c2
(
κs,e

max
)2

�/2 + Cβ log3/2(T )ρn + Cβ log(T )
√

c2/2κs,e
max

√
�

< c2
(
κs,e

max
)2

�/2 + c2
(
κs,e

max
)2

�/4 + c2
(
κs,e

max
)2

�/4 = c2
(
κs,e

max
)2

�,
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where the first inequality is due to the definition of the event A, the second inequality follows
from (32) and the third inequality from Assumption 2, for an appropriately large Cα . This
contradicts (29). Therefore,

max
sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥2

F ≥ c2
(
κs,e

max
)2

�/2.(33)

Observe that if [sm∗, em∗] contains two change points, then em∗−sm∗ ≥ � and if [sm∗, em∗]
contains one change point η, then it has to be the case that min{η − sm∗, em∗ − η} ≥ c2�/2,
as otherwise by Section S.15,

max
sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥2

F = ∥∥�̃sm∗,em∗(η)
∥∥2

F ≤ c2
(
κs,e

max
)2

�/2,

which contradicts (33).
Therefore, since em∗ − sm∗ ≥ c2�/2, the bound (25) implies that

(34) ε ≤ C1

(
�

Cα log1/2(n) logξ (T )
+ �

C2
α log1/2+2ξ (T )

)
≤ 64−1(e′

m∗ − s′
m∗
)
,

where the second inequality follows if Cα is sufficiently large. By a similar argument as
in Step 1, [sm∗, em∗] contains no detected change points. Observe that by (29), [sm∗, em∗]
contains at least one undetected change point.

Step 4. In the final step of the proof, we will show that (31) occurs. To that end, we will
apply Section S.5. Let

(35) λ = max
sm∗<t<em∗

∣∣(Ãsm∗,em∗(t), B̃sm∗,em∗(t)
)− ∥∥�̃sm∗,em∗(t)

∥∥2
F

∣∣.
Observe that (33) and (27) imply that

c3 max
sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥2

F/2 > Cβ log(T ) max
sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥

F,

and

c3 max
sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥2

F/2 > Cβ log3/2(T )ρn,

for a sufficiently large c3 > 0. Then, due to the definition of the event A,

(36)
λ ≤ Cβ log(T )

(
log1/2(T )ρn + max

sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥

F

)
≤ c3 max

sm∗<t<em∗

∥∥�̃sm∗,em∗(t)
∥∥2

F.

Since (2) in Section S.2.2 of the Supplementary Material follows from (29), (3) follows from
(35), and (4) follows from (36), all the conditions in Section S.5 hold. Section S.5 implies
that there exists an undetected change point ηp within [s, e] such that

|ηk − b| ≤ C3�λ

‖�̃sm∗,em∗(ηk)‖2
F

and
∥∥�̃sm∗,em∗(ηk)

∥∥2
F ≥ c′ max

sm∗≤t≤em∗

∥∥�̃sm∗,em∗(t)
∥∥2

F

and this combining with (33) provides that

|ηk − b| ≤ 2C3Cβ

c2(c′)2

log3/2(T )

κ2
0nρ

+
√

2C3Cβ

c′√c2

√
� log(T )

κ0nρ
≤ C1 log(T )

(
log1/2(T )

κ2
0nρ

+
√

�

κ0nρ

)
,

where C1 >
2C3Cβ

c2(c
′)2 +

√
2C3Cβ

c′√c2
and c′ < 2 log(2)Cβ/c3. This completes the induction. �

PROOF OF THEOREM 2. The dependence among the constants involved in Theorem 2
is as follows. First, C and Cε are chosen to guarantee that 2T 3−3Cε/4 → 0. Second, C3 is
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chosen such that 4T 3−3C2
3/8 → 0. In particular, we may take C > 64 × 21/4e2, Cε > 12

and C3 > 2
√

2. Finally, the leading constant C2 > 0 in the error bound depends on all the
aforementioned constants and the signal-to-noise ratio constant Cα in Assumption 3, which
should be chosen to be sufficiently large.

For convenience, we have broken down the proof in five steps, each of which is applied to
every k ∈ {1, . . . ,K}. Before proceeding to the details, we have an overview of all steps.

In Step 1, we are to show that each working interval (s, e) contains one and only one true
change point, and the two endpoints are well separated; Step 2 shows that the population
CUSUM statistics within each working interval has good performances; the reasoning of the
choices of the parameters in Algorithms 2 and 3, and the good performances of the sampler
CUSUM statistics in large probability events, will be detailed in Step 3; additional proba-
bility controls regarding data splitting are demonstrated in Step 4; and finally to show the
localization rates, we are to transfer the network CUSUM statistics into a univariate case in
Step 5.

Step 1. By (20), ηk ∈ [νk−1, νk+1] and

ηk − νk−1 ≥ ηk − ηk−1 − |ηk−1 − νk−1| ≥ � − �/6 ≥ 5�/6,

νk+1 − ηk ≥ ηk+1 − ηk − |ηk+1 − νk+1| ≥ � − �/6 ≥ 5�/6.

Similar calculations show also that

min{νk − νk−1, νk+1 − νk} ≥ 2�/3.

Therefore, it holds that

1/2 min{νk − νk−1, νk+1 − νk} ≥ �/6.

As a result, the interval

[s, e] = [
νk−1 + 1/2(νk − νk−1), νk+1 − 1/2(νk+1 − νk)

]
contains only one change point ηk . We have that

νk − s = (1 − 1/2)(νk − νk−1) ≥ (1 − 1/2)2�/3 = �/3,

and e − νk ≥ �/3. Therefore, min{e − νk, νk − s} ≥ �/3.
Step 2. Let �(k) = �(ηk) − �(ηk−1). Then, by Section S.15,

∥∥�̃s,e(t)
∥∥2

F =

⎧⎪⎪⎨⎪⎪⎩
t − s

(e − s)(e − t)
(e − ηk)

2∥∥�(k)
∥∥2

F t ≤ ηk,

e − t

(e − s)(t − s)
(ηk − s)2∥∥�(k)

∥∥2
F t ≥ ηk.

Next, we set

�̃k =
√

(νk − s)(e − νk)

e − s

and, without loss of generality, we may assume that νk ≤ ηk . Since

�̃k ≥ min{νk − s, e − νk}/2 ≥ �/6,

we obtain that∥∥�̃s,e(νk)
∥∥2

F = νk − s

(e − s)(e − νk)
(e − ηk)

2∥∥�(k)
∥∥2

F = �̃2
k

(
e − ηk

e − νk

)2
κ2
k

= �̃2
k

(
1 − ηk − νk

e − νk

)2
κ2
k ≥ �

6

(
1 − �/6

�/3

)2
κ2
k ≥ �κ2

k /24.

(37)
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Step 3. We next apply Lemma S.6 by letting ε = Cε log(T ), with Cε > 12. Define the event

A=
{

sup
0≤s<t<e≤T

∥∥Ãs,e(t) − �̃s,e(t)
∥∥

op ≤ C
√

nρ + Cε log(T )
}
,

where C > 64 × 21/4e2. Due to Lemma S.6, we have P(A) ≥ 1 − 2T 3−Cε/4.
We then apply Lemma S.9. Set τ2 = (3/4)(C

√
nρ + Cε log(T )), and define

B =
{

sup
0≤s<t<e≤T

∥∥USVT
(
Ãs,e(t), τ2,∞)− �̃s,e(t)

∥∥
F ≤ 3

√
r
(
C

√
nρ + Cε log(T )

)}
.

In order to apply Lemma S.9, let A = Ãs,e(t), B = �̃s,e(t) and τ = τ2. We then have P(B) ≥
1 − 2T 3−Cε/4.

Let

Âs,e(νk) = USVT
(
Ãs,e(νk), τ2, τ3�̃k

)
.(38)

Since νk ≤ ηk , for any i, j = 1, . . . , n, it holds that

�̃
s,e
ij (νk) =

√
νk − s

(e − s)(e − νk)
(e − ηk)�ij (k) ≤ �̃kρ

e − ηk

e − νk

≤ �̃kρ = �̃kτ3.

On the event B,∥∥Âs,e(νk) − �̃s,e(νk)
∥∥

F ≤ ∥∥USVT
(
Ãs,e(νk), τ2,∞)− �̃s,e(νk)

∥∥
F

≤ 3
√

r
(
C

√
nρ + Cε log(T )

)
.

By the triangle inequality and Assumption 3, we have that∥∥Âs,e(νk)
∥∥

F ≥ ∥∥�̃s,e(νk)
∥∥

F − 3
√

r
(
C

√
nρ + Cε log(T )

)≥ c′
1

√
�κk,(39)

where

c′
1 ≤ 1/

√
24 − 3C

Cα log1+ξ (2)
− 3Cε

Cα log1/2+ξ (2)
,

for any n,T ≥ 2. As a consequence,

2
(

�̃s,e(νk)

‖�̃s,e(νk)‖F
,

Âs,e(νk)

‖Âs,e(νk)‖F

)
= 2 −

∥∥∥∥ �̃s,e(νk)

‖�̃s,e(νk)‖F
− Âs,e(νk)

‖Âs,e(νk)‖F

∥∥∥∥2

F

≥ 2 − 4
( ‖�̃s,e(νk) − Âs,e(νk)‖F

max{‖�̃s,e(νk)‖F,‖Âs,e(νk)‖F}
)2

≥ 2 − 9r(C
√

nρ + Cε log(T ))2

(c′
1)

2κ2
k �

≥ 1,

where the second inequality follows from the definition of the event B and from (37), while
the last inequality follows from Assumption 3 with a sufficiently large Cα . Therefore,

(40)
(
�̃s,e(νk), Â

s,e(νk)/
∥∥Âs,e(νk)

∥∥
F

)≥ ∥∥�̃s,e(νk)
∥∥

F/2 ≥ (4
√

6)−1
√

�κk,

where in the last inequality we have used again (37).
Step 4. Since {B(t)}Tt=1 is independent of {A(t)}Tt=, the distribution of {B(t)}Tt=1 does not

change on the event B. Observe that, from (38),∥∥Âs,e(νk)
∥∥∞ ≤ �̃kτ3 = �̃kρ.
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In combination with (39), the previous inequality implies that

(e − s)−1/2∥∥Âs,e(νk)
∥∥∞/

∥∥Âs,e(νk)
∥∥
F ≤ ρ

c′
1

√
�κk

.

Using this bound along with Lemma S.2, we obtain that, for any ε > 0,

P

(∣∣∣∣∣ 1√
e − s

e∑
t=s+1

(
�(t)−B(t), Âs,e(νk)/

∥∥Âs,e(νk)
∥∥

F

)∣∣∣∣∣≥ ε

)
≤ 2 exp

( −3/2ε2

3ρ + ερ/(c′
1κk

√
�)

)
.

Setting ε = C
√

ρ log(T ), with C > 2
√

2, we finally obtain the probabilistic bound

P

(∣∣∣∣∣ 1√
e − s

e∑
t=s

(
�(t) − B(t), Âs,e(νk)/

∥∥Âs,e(νk)
∥∥

F

)∣∣∣∣∣≥ C
√

ρ log(T )

)
≤ 2T −3C2/8.(41)

Similar arguments also show that

P
(∣∣(�̃s,e(t) − B̃s,e(t), Âs,e(νk)/

∥∥Âs,e(νk)
∥∥

F

)∣∣≥ C
√

ρ log(T )
)≤ 2T −3C2/8.(42)

Step 5. Consider the one-dimensional time series y(t) = (B(t), Âs,e(νk)/‖Âs,e(νk)‖F).
Conditional on {A(t)}Tt=1, on the event B, it holds that

t ∈ [s, e] 	→ f (t) := E
(
y(t)

)= (
�(t), Âs,e(νk)/

∥∥Âs,e(νk)
)∥∥

F)

is a piecewise constant function with only one change point, namely ηk . Due to (40), it holds
that∣∣f̃ s,e(ηk)

∣∣= ∣∣(�̃s,e(ηk), Â
s,e(νk)/

∥∥Âs,e(νk)
∥∥

F

)∣∣≥ ∣∣(�̃s,e(νk), Â
s,e(νk)/

∥∥Âs,e(νk)
∥∥

F

)∣∣
≥ (4

√
6)−1

√
�κk,

and, by (41) and (42),

P

(
sup

s≤t≤e

∣∣∣∣∣ 1√
e − s

e∑
t=s

(
x(t) − f (t)

)∣∣∣∣∣≥ C
√

ρ log(T )

)
≤ 2T −c

and

P
(

sup
s≤t≤e

∣∣x̃s,e(t) − f̃ s,e(t)
∣∣≥ C

√
ρ log(T )

)
≤ 2T −c,

where c = 3(C2/8 − 1) > 0. We then apply Lemma 12 in Wang, Yu and Rinaldo (2017) by
setting λ = C

√
ρ log(T ). It follows that bk = arg maxs<t<e |x̃s,e(t)| is an undetected change

point such that, for a large enough constant C2 > 0,

|bk − ηk| ≤ C2
ρ(logT )2

κ2
k

. �

PROOF OF THEOREM 3. In the proof of Theorem 2, note that arguments in Steps 1 and 2
still hold under Assumptions in this theorem, and arguments in Steps 4 and 5 will still hold if
the conclusions in Step 3 still hold.

Let [s, e] be defined as that in the proof of Theorem 2. We apply Lemma S.6 by letting
ε = Cε log(T ), with Cε > 12. Define the event

A′ =
{

sup
0≤s<t<e≤T

∥∥Ãs,e(t) − �̃s,e(t)
∥∥

op ≤ C
√

nρ + Cε log(T )
}
,

where C > 64 × 21/4e2. Due to Lemma S.6, we have P(A′) ≥ 1 − 2T 3−Cε/4.
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For t ∈ {1, . . . , T }, define �(t) to be the block structure matrix satisfying

�(t) − diag
(
�(t)

)= �(t);
in addition, for any s < t < e, define

�̃s,e(t) =
√

e − t

(e − s)(t − s)

t∑
i=s+1

�(i) −
√

t − s

(e − s)(e − t)

e∑
i=t+1

�(i).

By Lemma S.11, on the event A′, it holds that

B′ =
{

sup
0≤s<t<e≤T

∥∥USVT
(
Ãs,e(t), τ2,∞)− �̃s,e(t)

∥∥2
F

≤ 9r
(
C

√
nρ + Cε log(T )

)2 + 512
∥∥diag

(
�̃s,e(νk)

)∥∥2
F

}
.

Let

Âs,e(νk) = USVT
(
Ãs,e(νk), τ2, �̃kτ3

)
.

Observe that since νk ≤ ηk and ‖�̃s,e(νk)‖∞ ≤ �̃kτ3, on the event B′ it holds that∥∥Âs,e(νk) − �̃s,e(νk)
∥∥

F ≤ ∥∥USVT
(
Ãs,e(νk), τ2,∞)− �̃s,e(νk)

∥∥
F

≤ 3
√

r
(
C

√
nρ + Cε log(T )

)+ 16
√

2
∥∥diag

(
�̃s,e(νk)

)∥∥
F.

Since [s, e] contains only one change point ηk , by Assumption 5 and Section S.15,∥∥Âs,e(νk)
∥∥

F ≥ ∥∥�̃s,e(νk)
∥∥

F − 3
√

r
(
C

√
nρ + Cε log(T )

)− 16
√

2
∥∥diag

(
�̃s,e(νk)

)∥∥
F

≥ (1 − 16
√

2/C�)
∥∥�̃s,e(νk)

∥∥
F − 3

√
r
(
C

√
nρ + Cε log(T )

)
≥ 1 − 16

√
2/C�

1 + C�

∥∥�̃s,e(νk)
∥∥

F − 3
√

r
(
C

√
nρ + Cε log(T )

)≥ c′
1

√
�κk,

(43)

with c′
1 > 0 by choosing proper constants. Equation (43) follows from the fact that∥∥�̃s,e(νk)

∥∥
F ≤ ∥∥�̃s,e(νk)

∥∥
F + ∥∥diag

(
�̃s,e(νk)

)∥∥
F ≤ (1 + C�)

∥∥�̃s,e(νk)
∥∥

F.

As a consequence,

2
(

�̃s,e(νk)

‖�̃s,e(νk)‖F
,

Âs,e(νk)

‖Âs,e(νk)‖F

)

= 2 −
∥∥∥∥ �̃s,e(νk)

‖�̃s,e(νk)‖F
− Âs,e(νk)

‖Âs,e(νk)‖F

∥∥∥∥2

F

= 2 − ‖‖Âs,e(νk)‖F�s,e(νk) − ‖�̃s,e(νk)‖FÂs,e(νk)‖2
F

‖�̃s,e(νk)‖2
F‖Âs,e(νk)‖2

F

≥ 2 − ‖�̃s,e(νk) − Âs,e(νk)‖2
F

‖�̃s,e(νk)‖2
F

− |‖Âs,e(νk)‖2
F − ‖�̃s,e(νk)‖2

F|
‖�̃s,e(νk)‖2

F

≥ 2 − 2
‖�̃s,e(νk) − Âs,e(νk)‖2

F

‖�̃s,e(νk)‖2
F

≥ 2 − 2
(

9r(C
√

nρ + Cε log(T ))2

(c′
1)

2κ2
k �

+ 513‖diag(�̃s,e(νk))‖F

‖�̃s,e(νk)‖F

)
≥ 1,
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where the second inequality follows from (37) and the event B′, and the last inequality follows
from Assumption 4 and (43). Therefore,(

�̃s,e(νk), Â
s,e(νk)/

∥∥Âs,e(νk)
∥∥

F

)≥ 1/2
∥∥�̃s,e(νk)

∥∥
F ≥ c′′√�κk.

Thus all the conclusions in Step 3 of the proof of Theorem 2 still hold. �
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SUPPLEMENTARY MATERIAL

Supplement to “Optimal change point detection and localization in sparse dynamic
networks” (DOI: 10.1214/20-AOS1953SUPP; .pdf). We moved the appendices containing
many of the technical proofs and detailed discussions to the supplementary document (Wang,
Yu and Rinaldo (2020)).
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