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Many high-dimensional hypothesis tests aim to globally examine mar-
ginal or low-dimensional features of a high-dimensional joint distribution,
such as testing of mean vectors, covariance matrices and regression coeffi-
cients. This paper constructs a family of U-statistics as unbiased estimators
of the �p-norms of those features. We show that under the null hypothesis, the
U-statistics of different finite orders are asymptotically independent and nor-
mally distributed. Moreover, they are also asymptotically independent with
the maximum-type test statistic, whose limiting distribution is an extreme
value distribution. Based on the asymptotic independence property, we pro-
pose an adaptive testing procedure which combines p-values computed from
the U-statistics of different orders. We further establish power analysis results
and show that the proposed adaptive procedure maintains high power against
various alternatives.

1. Introduction.

Motivation. Analysis of high-dimensional data, whose dimension p could be much larger
than the sample size n, has emerged as an important and active research area (e.g., [19, 21, 23,
63]). In many large-scale inference problems, one is often interested in globally testing some
overall patterns of low-dimensional features of the high-dimensional random observations.
One example is genome-wide association studies (GWAS), whose primary goal is to identify
single nucleotide polymorphisms (SNPs) associated with certain complex diseases of interest.
A popular approach in GWAS is to perform univariate tests, which examine each SNP one by
one. This, however, may lead to low statistical power due to the weak effect size of each SNP
[47] and the small statistical significance threshold (∼ 10−8) chosen to control the multiple-
comparison type I error [40]. Researchers therefore have proposed to globally test a genetic
marker set with many SNPs [40, 64] in order to achieve higher statistical power and to better
understand the underlying genetic mechanisms.

In this paper, we focus on a family of global testing problems in the high-dimensional
setting, including testing of mean vectors, covariance matrices and regression coefficients in
generalized linear models. These problems can be formulated as H0 : E = 0, where 0 is an
all zero vector, E = {el : l ∈ L} is a parameter vector with L being the index set, and el’s
being the corresponding parameters of interest, for example, elements in mean vectors, co-
variance matrices or coefficients in generalized linear models. For the global testing problem
H0 : E = 0 versus HA : E �= 0, two different types of methods are often used in the literature.
One is sum-of-squares-type statistics. They are usually powerful against “dense” alterna-
tives, where E has a high proportion of nonzero elements with a large ‖E‖2 = ∑

l∈L e2
l or its

weighted variants. See examples in mean testing (e.g., [4, 11, 12, 25, 26, 60, 62]) and covari-
ance testing (e.g., [3, 13, 42, 45]). The other is maximum-type statistics. They are usually
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powerful against “sparse” alternatives, where E has few nonzero elements with a large ‖E‖∞
(e.g., [6, 8, 9, 27, 36, 46, 58]). More recently, [20, 70] also proposed to combine these two
kinds of test statistics. However, for denser or only moderately dense alternatives, neither
of these two types of statistics may be powerful, as will be further illustrated in this paper
both theoretically and numerically. Importantly, in real applications, the underlying truth is
usually unknown, which could be either sparse, dense or in-between. As global testing could
be highly underpowered if an inappropriate testing method is used (e.g., [15]), it is desired in
practice to have a testing procedure with high statistical power against a variety of alterna-
tives.

A family of asymptotically independent U-statistics. To address these issues, we propose a
U-statistics framework and introduce its applications to adaptive high-dimensional testing.
The U-statistics framework constructs unbiased and asymptotically independent estimators
of ‖E‖a

a := ∑
l∈L ea

l for different (positive) integers a, where a = 2 corresponds to a sum-
of-squares-type statistic, and an even integer a → ∞ yields a maximum-type statistic. The
adaptive testing then combines the information from different ‖E‖a

a’s, and our power analysis
shows that it is powerful against a wide range of alternatives, from highly sparse, moderately
sparse to dense, to highly dense.

To illustrate our idea, suppose z1, . . . , zn are n independent and identically distributed
(i.i.d.) copies of a random vector z. We consider the setting where each parameter el has
an unbiased kernel function estimator Kl(zi1, . . . , ziγl

), and γl is the smallest integer such
that for any 1 ≤ i1 �= · · · �= iγl

≤ n, E[Kl(zi1, . . . , ziγl
)] = el . This includes many testing

problems on moments of low orders, such as entries in mean vectors, covariance matri-
ces and score vectors of generalized linear models, which shall be discussed in detail.
The family of U-statistics can be constructed generally as follows. For integers a ≥ 1 and
1 ≤ i1 �= · · · �= iγl

�= · · · �= i(a−1)×γl+1 · · · �= ia×γl
≤ n, since the z’s are i.i.d., we have

E[Kl(zi1, . . . , ziγl
) · · ·Kl(zi(a−1)×γl+1, . . . , zia×γl

)] = ea
l . Therefore, we can construct an unbi-

ased estimator of the parameters of augmented powers ea
l with different a. Then ‖E‖a

a has an
unbiased estimator

U(a) = ∑
l∈L

(
P n

a×γl

)−1 ∑
1≤i1 �=···�=ia×γl

≤n

a∏
k=1

Kl(zi(k−1)×γl+1, . . . , zik×γl
),(1.1)

where P n
k = n!/(n − k)! denotes the number of k-permutations of n. We call a the order of

the U-statistic U(a). If a > b, we say U(a) is of higher order than U(b) and vice versa.
This construction procedure can be applied to many testing problems. We give three com-

mon examples below for illustration and more detailed case studies will be discussed in Sec-
tions 2 and 4.

EXAMPLE 1. Consider one-sample mean testing of H0 : μ = 0, where E = μ is the mean
vector of a p-dimensional random vector x. Suppose x1, . . . ,xn are n i.i.d. copies of x. For
each i = 1, . . . , n, j = 1, . . . , p, xi,j is a simple unbiased estimator of μj , then we can take
the kernel function Kj(xi ) = xi,j . Following (1.1), we know the U-statistic

U(a) = (
P n

a

)−1
p∑

j=1

∑
1≤i1 �=···�=ia≤n

a∏
k=1

xik,j

is an unbiased estimator of ‖E‖a
a = ‖μ‖a

a = ∑p
j=1 μa

j . Please see Section 4.1 for the two-
sample mean testing example and related theoretical properties.
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EXAMPLE 2. Suppose x1, . . . ,xn are n i.i.d. copies of a random vector x with mean
vector μ = 0 and covariance matrix � = {σj1,j2}p×p . For covariance testing H0 : σj1,j2 = 0
for any 1 ≤ j1 �= j2 ≤ p, we have E = {σl : l ∈ L} with L = {(j1, j2) : 1 ≤ j1 �= j2 ≤ p}.
Since xi,j1xi,j2 is a simple unbiased estimator of σj1,j2 , then for each pair l = (j1, j2) ∈ L,
we can take the kernel function Kl(xi ) = xi,j1xi,j2 . Following (1.1), the U-statistic

U(a) = (
P n

a

)−1 ∑
1≤j1 �=j2≤p

∑
1≤i1 �=···�=ia≤n

a∏
k=1

(xik,j1xik,j2)

is an unbiased estimator of ‖E‖a
a = ∑

1≤j1 �=j2≤p σa
j1,j2

. Please see Section 2 for one-sample
covariance testing with unknown μ, and Section 4.2 for two-sample covariance testing.

EXAMPLE 3. Consider a response variable y and its covariates x ∈ Rp following a gen-
eralized linear model: E(y|x) = g−1(xᵀβ), where g is the canonical link function and β ∈ Rp

are the regression coefficients. Suppose that (xi , yi), i = 1, . . . , n, are i.i.d. copies of (x, y).
For testing H0 : β = β0, the score vectors (Si,j = (yi − μ0,i)xi,j : j = 1, . . . , p)ᵀ are often
used in the literature, where μ0,i = g−1(xᵀi β0). Note that E(Si,j ) = 0 under H0. Thus to test
H0, we can take E = {E(Si,j ) : j = 1, . . . , p} and use the U-statistic

U(a) = (
P n

a

)−1
p∑

j=1

∑
1≤i1 �=···�=ia≤n

a∏
k=1

Sik,j ,

which is an unbiased estimator of ‖E‖a
a = ∑p

j=1{E(Si,j )}a . Please see Section 4.3.

Related literature. For high-dimensional testing, some other adaptive testing procedures
have recently been proposed in [52, 65, 67]. These works combine the p-values of a family
of sum-of-powered statistics that are powerful against different ‖E‖a

a’s. However, in these
existing works, to evaluate the p-value of the adaptive test statistic, the joint asymptotic
distribution of the statistics is difficult to obtain or calculate. Accordingly, computationally
expensive resampling methods are often used in practice [40, 52, 69]. For some special cases
such as testing means and the coefficients of generalized linear models, [67] and [65] derived
the limiting distributions of the test statistics under the framework of a family of von Mises V-
statistics. However, the constructed V-statistics are usually correlated and biased estimators
of the target ‖E‖a

a . It follows that in [67] and [65], numerical approximations are still needed
to calculate the tail probabilities of the adaptive test statistics; see Remark 4.1 and Section 4.3.
In addition, these existing adaptive testing works mainly focus on the first-order moments,
and their results do not directly apply to testing second-order moments, such as covariance
matrices.

To overcome these issues, this paper considers the proposed family of unbiased U-
statistics. There are some other recent works providing important results on high-dimensional
U-statistics (e.g., [14, 43, 72]). For instance, [72] considered testing the regression coeffi-
cients in linear models using the fourth-order U-statistic; [43] studied the limiting distribu-
tions of rank-based U-statistics; and [14] studied bootstrap approximation of the second-order
U-statistics. However, these results do not directly apply to the high-order U-statistics con-
sidered in this paper.

Our contributions. We establish the theoretical properties of the U-statistics in various high
dimensional testing problems, including testing mean vectors, regression coefficients of gen-
eralized linear models, and covariance matrices. Our contributions are summarized as fol-
lows.

Under the null hypothesis, we show that the normalized U-statistics of different finite
orders are jointly normally distributed. The result applies generally for any asymptotic regime
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with n → ∞ and p → ∞. In addition, we prove that all the finite-order U-statistics are
asymptotically independent with each other under the null hypothesis. Moreover, we prove
that U-statistics of finite orders are also asymptotically independent of the maximum-type
test statistic with a limiting extreme value distribution.

Under the alternative hypothesis, we further analyze the asymptotic power for U-statistics
of different orders. We show that when E has denser nonzero entries, U(a)’s of lower orders
tend to be more powerful; and when E has sparser nonzero entries, U(a)’s of higher orders
tend to be more powerful. More interestingly, we show that in the boundary case of “mod-
erate” sparsity levels, U(a) with a finite a > 2 gives the highest power among the family of
U-statistics, clearly indicating the inadequacy of both the sum-of-squares- and the maximum-
type statistics.

An important application of the independence property among U(a)’s is to construct adap-
tive testing procedures by combining the information of different U(a)’s, whose univariate
distributions or p-values can be easily combined to form a joint distribution to calculate the
p-value of an adaptive test statistic. Compared with other existing works (e.g., [65, 67]), nu-
merical approximations of tail probabilities are no longer needed. As shown in the power
analysis, an adaptive integration of information across different tests leads to a powerful test-
ing procedure.

The rest of the paper is organized as follows. In Sections 2 and 3, we illustrate the frame-
work by a covariance testing problem. Particularly, in Section 2.1, we study the U-statistics
under null hypothesis; in Section 2.2, we analyze the power of the U-statistics; in Section 2.3,
we develop an adaptive testing procedure. In Sections 3.1 and 3.2, we report simulations and
a real dataset analysis. In Section 4, we study other high-dimensional testing problems, in-
cluding testing means, regression coefficients, and two-sample covariances. In Section 5, we
discuss several extensions of the proposed framework. We give proofs and other stimulations
in Supplementary Material [28].

2. Motivating example: One-sample covariance testing. The constructed family of U-
statistics and adaptive testing procedure can be applied to various high-dimensional testing
problems. In this section, we illustrate the framework with a motivating example of one-
sample covariance testing. Analogous results for other high-dimensional testing problems in
Section 4 can be obtained following similar analyses. We showcase the study of one-sample
covariance testing problem since this is more challenging than mean testing due to the two-
way dependency structure and the one-sample problem can be used as the building block for
more general cases.

Specifically, we focus on testing

(2.1) H0 : σj1,j2 = 0 ∀ 1 ≤ j1 �= j2 ≤ p,

where � = {σj1,j2 : 1 ≤ j1, j2 ≤ p} is the covariance matrix of a p-dimensional real-valued
random vector x = (x1, . . . , xp)ᵀ with E(x) = μ = (μ1, . . . ,μp)ᵀ. The observed data include
n i.i.d. copies of x, denoted by x1, . . . ,xn with xi = (xi,1, . . . , xi,p)ᵀ. In factor analysis, testing
H0 in (2.1) can be used to examine whether � has any significant factor or not [1].

Global testing of covariance structure plays an important role in many statistical analysis
and applications; see a review in [7]. Conventional tests include the likelihood ratio test,
John’s test and Nagao’s test, etc. [1, 50]. These methods, however, often fail in the high-
dimensional setting when both n,p → ∞. To address this issue, new procedures have been
recently proposed (e.g., [3, 8, 13, 36–38, 41, 42, 45, 46, 53, 57–59]). However, these methods
might suffer from loss of power when the sparsity level of the alternative covariance matrix
varies. In the following subsections, we introduce the general U-statistics framework, study
their asymptotic properties and develop a powerful adaptive testing procedure.
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We introduce some notation. For two series of numbers un,p , vn,p that depend on
n, p: un,p = o(vn,p) denotes lim supn,p→∞ |un,p/vn,p| = 0; un,p = O(vn,p) denotes
lim supn,p→∞ |un,p/vn,p| < ∞; un,p = �(vn,p) denotes 0 < lim infn,p→∞ |un,p/vn,p| ≤
lim supn,p→∞ |un,p/vn,p| < ∞; un,p � vn,p denotes limn,p→∞ un,p/vn,p = 1. Moreover,
P−→ and

D−→ represent the convergence in probability and distribution, respectively. For p-
dimensional random vector x with mean μ and ∀j1, . . . , jt ∈ {1, . . . , p}, we write the central
moment as

(2.2) �j1,...,jt = E
[
(xj1 − μj1) · · · (xjt − μjt )

]
.

2.1. Asymptotically independent U-statistics. For testing (2.1), the set of parameters that
we are interested in is E = {σj1,j2 : 1 ≤ j1 �= j2 ≤ p}. Following the previous analysis of (1.1),
since σj1,j2 has a simple unbiased estimator xi1,j1xi1,j2 −xi1,j1xi2,j2 with 1 ≤ i1 �= i2 ≤ n, then
for integers a ≥ 1, an unbiased U-statistic of ‖E‖a

a = ∑
1≤j1 �=j2≤p σa

j1,j2
is

U(a) = (
P n

2a

)−1 ∑
1≤j1 �=j2≤p

∑
1≤i1 �=···�=i2a≤n

a∏
k=1

(xi2k−1,j1xi2k−1,j2 − xi2k−1,j1xi2k,j2).

This is equivalent to

U(a) = ∑
1≤j1 �=j2≤p

a∑
c=0

(−1)c
(
a

c

)
1

P n
a+c

∑
1≤i1 �=···�=ia+c≤n

a−c∏
k=1

(xik,j1xik,j2)

a∏
s=a−c+1

xis,j1

a+c∏
t=a+1

xit ,j2 .

(2.3)

REMARK 2.1. The U-statistics can be constructed by another method equivalently.
Given 1 ≤ j1 �= j2 ≤ p, define ϕj1,j2 = σj1,j2 + μj1μj2 . Then

∑
1≤j1 �=j2≤p

σa
j1,j2

= ∑
1≤j1 �=j2≤p

a∑
c=0

(
a

c

)
ϕa−c

j1,j2
× (−μj1μj2)

c,(2.4)

which is a polynomial function of the moments μj and ϕj1,j2 . Since μj and ϕj1,j2 have
unbiased estimators xi,j and xi,j1xi,j2 respectively, then for 1 ≤ i1 �= · · · �= ia+c ≤ n,
E(

∏a−c
k=1 xik,j1xik,j2

∏a
s=a−c+1 xis,j1

∏a+c
t=a+1 xit ,j2) = ϕa−c

j1,j2
μc

j1
μc

j2
. Given this and (2.4), the

U-statistics (2.3) can be obtained.

REMARK 2.2. The summed term with c = 0 in (2.3) is

Ũ(a) := (
P n

a

)−1 ∑
1≤i1 �=···�=ia≤n

∑
1≤j1 �=j2≤p

a∏
k=1

(xik,j1xik,j2),(2.5)

which has the same form as the simplified U-statistic for mean zero observations in Exam-
ple 2, and is shown to be the leading term of (2.3) in proof.

We next introduce some nice properties of the U-statistics (2.3). The first one is the fol-
lowing location invariant property.

PROPOSITION 2.1. U(a) constructed as in (2.3) is location invariant; that is, for any vec-
tor � ∈ Rp , the U-statistic constructed based on the transformed data {xi +� : i = 1, . . . , n}
is still U(a).
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The following proposition verifies that the constructed U-statistics are unbiased estimators
of ‖E‖a

a = ∑
1≤j1 �=j2≤p σa

j1,j2
.

PROPOSITION 2.2. For any integer a, E[U(a)] = ∑
1≤j1 �=j2≤p σa

j1,j2
. Under H0 in (2.1),

E[U(a)] = 0.

We next study the limiting properties of the constructed U-statistics under H0 given the
following assumptions on the random vector x = (x1, . . . , xp)ᵀ.

CONDITION 2.1 (Moment assumption). limp→∞ max1≤j≤p E(xj − μj)
8 < ∞ and

limp→∞ min1≤j≤p E(xj − μj)
2 > 0.

CONDITION 2.2 (Dependence assumption). For a sequence of random variables z =
{zj : j ≥ 1} and integers a < b, let Zb

a be the σ -algebra generated by {zj : j ∈ {a, . . . , b}}.
For each s ≥ 1, define the α-mixing coefficient αz(s) = supt≥1{|P(A∩B)−P(A)P (B)| : A ∈
Z t

1,B ∈ Z∞
t+s}. We assume that under H0, x is α-mixing with αx(s) ≤ Mδs , where δ ∈ (0,1)

and M > 0 are some constants.

CONDITION 2.2* (Alternative dependence assumption to Condition 2.2). Following the
notation in (2.2), we assume that under H0, for any j1, j2, j3 ∈ {1, . . . , p}, �j1,j2,j3 = 0; for
any j1, j2, j3, j4 ∈ {1, . . . , p}, �j1,j2,j3,j4 = κ1(σj1,j2σj3,j4 + σj1,j3σj2,j4 + σj1,j4σj2,j3) for
some constant κ1 < ∞; and for t = 6,8, and any j1, . . . , jt ∈ {1, . . . , p}, �j1,...,jt = 0 when
at least one of these indexes appears odd times in {j1, . . . , jt }.

Condition 2.1 assumes that the eighth marginal moments of x are uniformly bounded from
above and the second moments are uniformly bounded from below, which are true for most
light-tailed distributions. Condition 2.2 assumes weak dependence among different xj ’s un-
der H0, since the uncorrelatedness of xj ’s under H0 may not imply the independence of them,
especially when xj ’s are non-Gaussian. Under H0, Condition 2.2 automatically holds when
x is Gaussian or m-dependent. The mixing-type weak dependence is similarly considered in
previous works such as [5, 11, 67] and also commonly assumed in time series and spatial
statistics [24, 55]. Moreover, the variables in our motivating genome-wide association stud-
ies have a local dependence structure, with their associations often decreasing to zero as the
corresponding physical distances on a chromosome increase. We note that it suffices to have
Condition 2.2 hold up to a permutation of the variables.

Alternatively, we can substitute Condition 2.2 with Condition 2.2*. Condition 2.2* speci-
fies some higher-order moments of x and is satisfied when x follows an elliptical distribution
with finite eighth moments and covariance � (see [1, 22, 50, 51]). Conditions 2.2* and 2.2
become equivalent when x follows a multivariate Gaussian distribution. The fourth moment
condition is also assumed in other high-dimensional research [6]. In this work, the eighth mo-
ment condition is needed to establish the asymptotic joint distribution of different U-statistics.

The following theorem specifies the asymptotic variances of the finite order U-statistics
and their joint limiting distribution. Since the U-statistics are degenerate under H0, an anal-
ysis different from the asymptotic theory on nondegenerate U-statistics (e.g., [32]) is needed
in the proof.

THEOREM 2.1. Under H0 in (2.1) and Conditions 2.1 and 2.2 (or 2.2*), for U(a)’s
defined in (2.3) and any distinct finite (and positive) integers {a1, . . . , am}, as n,p → ∞,

(2.6)
[U(a1)

σ (a1)
, . . . ,

U(am)

σ (am)

]ᵀ
D−→ N (0, Im),
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where

(2.7) σ 2(a) := var
[
U(a)

] � a!
P n

a

∑
1≤j1 �=j2≤p;1≤j3 �=j4≤p

(�j1,j2,j3,j4)
a,

with �j1,j2,j3,j4 defined in (2.2). Note that σ 2(a) = �(p2n−a).

Theorem 2.1 shows that after normalization, the finite-order U-statistics have a joint nor-
mal limiting distribution with an identity covariance matrix, which implies that they are
asymptotically independent as n,p → ∞. The nice independence property makes it easy
to combine these U-statistics and apply our proposed adaptive testing later. Moreover, the
conclusion holds on general asymptotic regime for n,p → ∞, without any constraint on the
relationship between n and p. We will also see in Section 4 that similar results hold generally
for some other testing problems.

REMARK 2.3. Theorem 2.1 discusses the U-statistics of finite orders, that is, the a values
do not grow with n, p. When {x1, . . . , xp} are independent, Theorem 2.1 can be extended
when a = O(1)min{logε n, logε p} for some ε > 0. On the other hand, we will show in
Section 2.2 that it is usually enough to include U(a)’s of finite a. Therefore, we do not pursue
the general case when a grows with n, p in this work.

In the following, we further discuss the maximum-type test statistic U(∞), which corre-
sponds to the �∞-norm of the parameter vector E = {el : l ∈ L}, that is, ‖E‖∞ = maxl∈L |el|.
In the existing literature, there is already some corresponding established work [8, 36] on the
test statistic:

(2.8) M∗
n := max

1≤j1 �=j2≤p
|σ̂j1,j2/

√
σ̂j1,j1 σ̂j2,j2 |,

where (σ̂j1,j2)p×p = ∑n
i=1(xi − x̄)(xi − x̄)ᵀ/n and x̄ = ∑n

i=1 xi/n. We will take U(∞) = M∗
n

below. The limiting distribution of U(∞) was first studied in [36] and extended by [8, 46,
58]. Next, we restate the result in [8], which gives the limiting distribution of (2.8) under the
following condition.

CONDITION 2.3. Consider the random vector x = (x1, . . . , xp)ᵀ with mean vector μ =
(μ1, . . . ,μp)ᵀ and covariance matrix � = diag(σ1,1, . . . , σp,p). (xj − μj)/

√
σj,j are i.i.d.

for j = 1, . . . , p. Furthermore, Eet0(|x1−μ1|/√σ1,1)
ς

< ∞ for some 0 < ς ≤ 2 and t0 > 0.

THEOREM 2.2 (Cai and Jiang [8], Theorem 2). Assume Condition 2.3 and logp =
o(nβ), where β = ς/(4 + ς). Then P(n × U(∞)2 + �p ≤ u) → G(u) = e−(1/

√
8π)e−u/2

,
where �p = −4 logp + log logp and G(u) is an extreme value distribution of type I.

Theorems 2.1 and 2.2 give the limiting distributions of U(a) of finite orders and U(∞)

respectively; it is of interest to examine their joint distribution. The following theorem shows
that although U(∞) has limiting distribution different from U(a), a < ∞, they are still
asymptotically independent.

THEOREM 2.3. Assume that Condition 2.1 is satisfied, Condition 2.3 holds for ς = 2,
and logp = o(n1/7). For finite integers {a1, . . . , am}, under H0, U(a1), . . . ,U(am) and U(∞)
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are mutually asymptotically independent. Specifically, ∀z1, . . . , zm, y ∈R, as n,p → ∞,∣∣∣∣∣P
(
nU(∞)2 + �p ≥ y,

U(a1)

σ (a1)
≤ z1, . . . ,

U(am)

σ (am)
≤ zm

)

− P
(
nU(∞)2 + �p ≥ y

) ×
m∏

r=1

P

(U(ar)

σ (ar)
≤ zr

)∣∣∣∣∣ → 0.

Theorem 2.1 suggests that all the finite-order U-statistics are asymptotically independent
with each other. Given this, Theorem 2.3 further shows that the maximum-type test statis-
tic U(∞) is also asymptotically mutually independent with those finite-order U-statistics.
The conclusion shares similarity with some classical results on the asymptotic indepen-
dence between the sum-of-squares-type and maximum-type statistics. Specifically, for ran-
dom variables w1, . . . ,wn, [30, 33] proved the asymptotic independence between

∑n
i=1 w2

i

and maxi=1,...,n |wi | for weakly dependent observations. The similar independence proper-
ties were extensively studied in literature (e.g., [31, 34, 44, 48, 54, 67]). However, there are
several differences between existing literature and the results in this paper. First, we discuss
a family of U-statistics U(a)’s, which takes different a values, and U(2) here correspond-
ing to the sum-of-squares-type statistic is only a special case of general U(a). Furthermore,
we have shown not only the asymptotic independence between U(a) and U(∞), but also the
asymptotic independence among U(a)’s of finite a values. Second, the constructed U(a)’s are
unbiased estimators, which are different from the sum-of-squares statistics usually examined
in the literature. Moreover, the x’s are allowed to be dependent and the theoretical devel-
opment in the covariance testing involves a two-way dependence structure, which requires
different proof techniques from the existing studies.

REMARK 2.4. An alternative way to construct U(∞) is to standardize σ̂j1,j2 by its vari-
ance v̂ar(σ̂j1,j2). Specifically, following Cai et al. [6], we take v̂ar(σ̂j1,j2) = n−1 ∑n

i=1{(xi,j1 −
x̄j1)(xi,j2 − x̄j2) − σ̂j1,j2}2. Define M†

n = max1≤j1 �=j2≤p |σ̂j1,j2 |/{v̂ar(σ̂j1,j2)}1/2 and we take
U(∞) = M†

n . Theoretically, we prove that Theorem 2.3 still holds with U(∞) = M†
n in Sup-

plementary Material [28], Section B.11. Numerically, we provide the simulations in Supple-
mentary Material [28], Section C.2, which shows that M∗

n in (2.8) generally has higher power
than M†

n .

To apply hypothesis testing using the asymptotic results in Theorems 2.1 and 2.3, we need
to estimate var{U(a)}. In particular, we propose the following moment estimator of (2.7):

Vu(a) = 2a!
(P n

a )2

∑
1≤j1 �=j2≤p

∑
1≤i1 �=···�=ia≤n

a∏
t=1

(xit ,j1 − x̄j1)
2(xit ,j2 − x̄j2)

2.(2.9)

The next result establishes the statistical consistency of Vu(a).

CONDITION 2.4. For integer a, limp→∞ max1≤j≤p E(xj − μj)
8a < ∞.

THEOREM 2.4. Under H0 in (2.1), assume Conditions 2.1, 2.2 and 2.4 hold. Then

Vu(a)/var{U(a)} P−→ 1.

Theorem 2.4 implies that the asymptotic results in Theorems 2.1 and 2.3 still hold by
replacing var{U(a)} with its estimator Vu(a). Specifically, under H0, [U(a1)/

√
Vu(a1), . . . ,

U(am)/
√
Vu(am)]ᵀ D−→ N (0, Im) under Conditions 2.1, 2.2 and 2.4. Moreover, Theorem 2.3

implies that {U(a)/
√
Vu(a)}’s are asymptotically independent with U(∞).
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2.2. Power analysis. In this section, we analyze the asymptotic power of the U-statistics.
The power of U(2) has been studied in the literature. In particular, [10] studied the hypothesis
testing of a high-dimensional covariance matrix with H0 : � = Ip . The authors characterized
the boundary that distinguishes the testable region from the nontestable region in terms of the
Frobenius norm ‖� − Ip‖F , and showed that the test statistic proposed by [10, 13], which
corresponds to U(2) in this paper, is rate optimal over their considered regime. However in
practice, U(2) may be not powerful if the alternative covariance matrix is sparse with a small
‖� − Ip‖F . When the alternative covariance has different sparsity levels, it is of interest to
further examine which U(a) achieves the best power performance among the constructed
family of U-statistics.

To study the test power, we establish the limiting distributions of U(a)’s under the alterna-
tive hypothesis HA : � = �A, where the alternative covariance matrix �A = (σj1,j2)p×p is
specified in the following Condition 2.5. Define JA = {(j1, j2) : σj1,j2 �= 0,1 ≤ j1 �= j2 ≤ p},
which indicates the nonzero off-diagonal entries in �A. The cardinality of JA, denoted by
|JA|, then represents the sparsity level of �A.

CONDITION 2.5. Assume |JA| = o(p2) and for (j1, j2) ∈ JA, |σj1,j2 | = �(ρ), where
ρ = ∑

(j1,j2)∈JA
|σj1,j2 |/|JA|.

Here ρ represents the average signal strength of �A. In our following power comparison
of two U-statistics U(a) and U(b), we say U(a) is “better” than U(b), if, under the same test
power, U(a) can detect a smaller average signal strength ρ (please see the specific definition
in Criterion 1 on page 163). Condition 2.5 specifies a general family of “local” alternatives,
which include banded covariance matrices, block covariance matrices and sparse covariance
matrices whose nonzero entries are randomly located.

THEOREM 2.5. Suppose Conditions 2.1, 2.5 and A.1 (an analogous condition to Con-
dition 2.2* under HA) in Supplementary Material [28] hold. For U(a) in (2.3) and finite
integers {a1, . . . , am}, if ρ = O(|JA|−1/at p1/at n−1/2) for t = 1, . . . ,m, then as n,p → ∞,[U(a1) − E[U(a1)]

σ(a1)
, . . . ,

U(am) − E[U(am)]
σ(am)

]ᵀ
D−→ N (0, Im),

where for a ∈ {a1, . . . , am}, E[U(a)] = ∑
(j1,j2)∈JA

σ a
j1,j2

and σ 2(a) = var[U(a)] � 2a!κa
1 ×

n−a ∑
1≤j1 �=j2≤p σa

j1,j1
σa

j2,j2
, which is of order �(p2n−a).

Theorem 2.5 shows that for a single U-statistic U(a) of finite order a,

P

( U(a)√
var[U(a)] > z1−α

)
→ 1 − �

(
z1−α − E[U(a)]√

var[U(a)]
)
,(2.10)

where z1−α is the upper α quantile of N (0,1) and �(·) is the cumulative distribution function
of N (0,1). By Theorem 2.5, the asymptotic power of U(a) of the one-sided test depends on

E[U(a)]√
var[U(a)] �

∑
(j1,j2)∈JA

σ a
j1,j2

{2a!κa
1 n−a

∑
1≤j1 �=j2≤p(σj1,j1σj2,j2)

a}1/2 ,(2.11)

where (2.11) = �(|JA|ρap−1na/2). It follows that when E[U(a)] is of the same order of√
var[U(a)], that is, E[U(a)] = O(1)

√
var[U(a)], the constraint of ρ in Theorem 2.5 is satis-

fied.
In the following power analysis, we will first compare U(a)’s of finite a and then compare

them with U(∞). As we focus on studying the relationship between the sparsity level and
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power, we consider an ideal case where σj1,j2 = ρ > 0 for (j1, j2) ∈ JA and σj,j = ν2 > 0
for j = 1, . . . , p. Then

(2.11) � |JA|ρa/
(√

2a!κa
1 ν2apn−a/2

)
.(2.12)

We next show how the order of the “best” U-statistics changes when the sparsity level |JA|
varies. To be specific of the meaning of “best,” we compare the ρ values needed by different
U-statistics to achieve the same asymptotic power. Particularly, we fix E[U(a)]/√var[U(a)],
that is, (2.12) to be some constant M/

√
2 for different a’s and the asymptotic power of each

U(a) is (2.10) = 1 − �(z1−α − M/
√

2). Then by (2.12), the ρ value such that U(a) attains
the power above is

ρa = √
κ1(a!) 1

2a ν2(
Mp/|JA|) 1

a n− 1
2 .(2.13)

By the definition in (2.13), we compare the power of two U-statistics U(a) and U(b) with
a �= b following the Criterion 1 below:

CRITERION 1. We say U(a) is “better” than U(b) if ρa < ρb.

Given values of n, p, |JA| and M , (2.13) is a function of a. Therefore, to find the “best”
U(a), it suffices to find the order, denoted by a0, that gives the smallest ρa value in (2.13).
We then have the following proposition discussing the optimality among the U-statistics of
finite orders in (2.3).

PROPOSITION 2.3. Given n, p, |JA| and any constant M ∈ (0,+∞), we consider ρa in
(2.13) as a function of integer a, then:

(i) when |JA| ≥ Mp, the minimum of ρa is achieved at a0 = 1;
(ii) when |JA| < Mp, the minimum of ρa is achieved at some a0, which increases as

Mp/|JA| increases.

By Proposition 2.3, the order a0 that attains the smallest value of ρa depends on the value
of Mp/|JA| and does not have a closed-form solution. We use numerical plots to demon-
strate the relationship between a0 and the sparsity level. Particularly, let |JA| = p2(1−β),
where β ∈ (0,1) denotes the sparsity level. To have a better visualization, we use g(a) =
log(ρan

1/2κ
−1/2
1 ν−2) = (1/2a) loga!+a−1 log(Mp2β−1) instead of ρa . We plot g(a) curves

in Figure 1 for each β ∈ {0.1, . . . ,0.9} with M = 4 and p ∈ {100,10000}. Other values of M

and p are also taken, which give similar patterns to Figure 1 and are not presented.
Figure 1 shows that the a0 such that g(a) attains the smallest value increases when the

sparsity level β increases. In particular, when the sparsity level β ≤ 0.3, that is, when |JA|
is “very” large and then �A is “very” dense, g(a) has the smallest value at a0 = 1. This is
consistent with the conclusion in Proposition 2.3 (i). When the sparsity level β is between
0.4 and 0.5, we note that a0 = 2 achieves the minimum of g(a). This shows that when |JA| is
“moderately” large and �A is “moderately” dense, U(2) is more powerful than U(1). When
the sparsity level β > 0.5, we find that a0 > 2. This implies that when |JA| becomes smaller
and �A becomes sparser, U-statistics of higher orders are more powerful. Additionally, we
note that a0 increases slowly as β increases, which verifies Proposition 2.3(ii). Moreover,
the curves converge as a increases and the differences of g(a) for large a values (a ≥ 6)
are small. This implies that when selecting the range of considered orders of U-statistics, it
suffices to select an upper bound with a = 6 or 8, which gives better or similar ρa values to
those larger a’s.
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FIG. 1. g(a) versus a with different sparsity level β for p = 100,10000.

In summary, when |JA| is large, that is, �A is dense, a small a tends to obtain a smaller
lower bound in terms of ρ. But when |JA| decreases, that is, �A becomes sparse, a U-statistic
of large finite order (or the maximum-type U-statistic as shown next) tends to obtain a smaller
lower bound in ρ. This observation is consistent with the existing literature [7, 8, 10, 13].

Next, we proceed to examine the power of the maximum-type test statistic U(∞), and
compare it with the U-statistics U(a) of finite a defined in (2.3). By [8], the rejection region
for U(∞) with significance level α is∣∣U(∞)

∣∣ ≥ tp := n−1/2
√

4 logp − log logp − log(8π) − 2 log log(1 − α)−1.

Note tp � 2
√

logp/n and under alternative, the power for U(∞) is

(2.14) P
(∣∣U(∞)

∣∣ ≥ tp
)
.

As discussed, we consider the alternatives satisfying Conditions 2.2* and 2.5, σj1,j2 = ρ > 0
for (j1, j2) ∈ JA, and σj,j = ν2 for j = 1, . . . , p. For simplicity, we assume E(x) = μ and ν2

are given, and focus on the simplified

U(∞) = max
1≤j1<j2≤p

∣∣∣∣∣ν−2n−1
n∑

i=1

(xi,j1 − μj1)(xi,j2 − μj2)

∣∣∣∣∣.(2.15)

We show in the following proposition when the power of U(∞) asymptotically converges to
1 or is strictly smaller than 1 under alternative.

PROPOSITION 2.4. Under the considered alternative �A above, suppose maxj=1,...,p

Eet0|xj−μj |ς < ∞ for some 0 < ς ≤ 2 and t0 > 0, and logp = o(nβ) with β = ς/(4 + ς).
Then for (2.15), when n,p → ∞:

(i) there exists a constant c1 > 2 such that if ρ ≥ c1
√

logp/n, (2.14) → 1;
(ii) there exists another constant 0 < c2 < 2 such that when ρ ≤ c2

√
logp/n, Condi-

tion 2.2* holds for κ1 ≤ 1 and |JA| = o(1)p
2(1−c2/2)2

κ1+m (logp)
1
2 − 1

2(κ1+m) for some m > 0, we
have (2.14) ≤ log(1 − α)−1.

Recall that Proposition 2.3 shows that there exists a finite integer a0, such that ρa0 is the
minimum of (2.13), and ρa0 is a lower bound of ρ value for the finite-order U-statistics to
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achieve the given asymptotic power. With Propositions 2.3 and 2.4, we next compare the
finite-order U-statistics defined in (2.3) with the maximum-type test statistic U(∞).

PROPOSITION 2.5. Under the conditions of Theorem 2.5 and Proposition 2.4, for any
finite integer a, there exist constants c1 and c2 such that when p is sufficiently large:

(i) For any M , when |JA| < c−a
1 (a!) 1

2 κ
a
2

1 (logp)− a
2 Mp, U(∞) has higher asymptotic

power than U(a).

(ii) When M is big enough and |JA| > c−a
2 (a!) 1

2 κ
a
2

1 (logp)− a
2 Mp, U(a) has higher asymp-

totic power than U(∞).

From Proposition 2.3, we know when Mp/|JA| = O(1), there exists a finite a0 such that
U(a0) is the “best” among all the finite-order U-statistics; in this case, Proposition 2.5(ii) fur-
ther indicates that U(a0) has higher asymptotic power than U(∞). Specifically, if Mp/|JA| <
1, a0 = 1, then U(1) is the “best” and its lowest detectable order of ρ is �(p|JA|−1n−1/2).
More interestingly, when �A is moderately dense or moderately sparse with Mp/|JA| > 1
and bounded, some U-statistic of finite order a0 > 1 would become the “best.” By Figure 1,
the value of a0 increases as �A becomes denser. On the other hand, when �A is “very” sparse

with |JA| < c
−a0
1 (a0!) 1

2 κ
a0
2

1 (logp)−
a0
2 Mp, U(∞) is the “best” and its lowest detectable order

of ρ is �(
√

logp/n).

REMARK 2.5. The above power comparison results are under the constructed family
of U-statistics. We note that additional formulation may further enhance the test power. For
instance, [11, 73] showed that an adaptive thresholding in certain �p-type test statistics can
achieve high power under the alternatives with sparse and faint signals. It is of interest to
incorporate the adaptive thresholding into the constructed family of U-statistics, which is left
for future study.

REMARK 2.6. The analysis above focuses on the ideal case where the nonzero off-
diagonal entries of �A are the same for illustration. When these entries of �A are dif-
ferent, similar analysis still applies by Theorem 2.5 for general covariance matrices. In
particular, the asymptotic power of U(a) depends on the mean variance ratio (2.11) and
ρa = √

κ1n
−1/2(a!)1/2a × (M

∑p
j=1 σa

j,j /
∑

1≤j1,j2≤p σa
j1,j2

)1/a . We can then obtain conclu-
sions similar to Propositions 2.3–2.5. One interesting case is when �A contains both posi-
tive and negative entries; the same analysis applies for even-order U-statistics, since σa

j1,j2
’s

are all nonnegative for even a. On the other hand, the odd-order U-statistics would have
low power, since

∑
1≤j1 �=j2≤p σa

j1,j2
could be small due to the cancellation of positive and

negative σa
j1,j2

’s. We have conducted simulations when the nonzero σj1,j2 ’s are different in
Section 3.1, and the results exhibit consistent patterns as expected.

2.3. Application to adaptive testing and computation.

Adaptive testing. Power analysis in Section 2.2 shows that when the sparsity level of the
alternative changes, the test statistic that achieves the highest power could vary. However,
since the truth is often unknown in practice, it is unclear which test statistic should be chosen.
Therefore, we develop an adaptive testing procedure by combining the information from U-
statistics of different orders, which would yield high power against various alternatives.

In particular, we propose to combine the U-statistics through their p-values, which is
widely used in literature [49, 52, 71]. One popular method is the minimum combination,
whose idea is to take the minimum p-value to approximate the maximum power [52, 67, 71].
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Specifically, let � be a candidate set of the orders of U-statistics, which contains both finite
values and ∞. We compute p-values pa’s of the U-statistics U(a)’s satisfying a ∈ �. The
minimum combination takes the statistic TadpUmin = min{pa : a ∈ �} and has the asymptotic
p-value padpUmin = 1 − (1 − TadpUmin)

|�|, where |�| denotes the size of the candidate set �.
We reject H0 if padpUmin < α. Under H0, pa’s are asymptotically independent and uniformly
distributed by the theoretical results in Section 2.1. The type I error is asymptotically con-
trolled as P(padpUmin < α) = P(mina∈� pa < p∗

α) → α, where p∗
α = 1 − (1 − α)1/|�|. Since

P(mina∈� pa < p∗
α) ≥ P(pa < p∗

α), the power of the adaptive test goes to 1 if there exists
a ∈ � such that the power of U(a) goes to 1. We note that the power of the adaptive test
is not necessarily higher than that of all the U-statistics. This is because the power of U(a)

is P(pa < α), and is different from P(pa < p∗
α) since p∗

α < α when |�| > 1. Based on our
extensive simulations, we find that the adaptive test is usually close to or even higher than the
maximum power of the U-statistics.

REMARK 2.7. Fisher’s method [49] is another popular method for combining indepen-
dent p-values. It has the test statistic TadpUf = −2

∑|�|
k=1 logpk , which converges to χ2

2|�|
under H0. By our simulations, the minimum combination and Fisher’s method are generally
comparable, while Fisher’s method has higher power under several cases. Moreover, we can
also use other methods to combine the p-values, such as higher criticism [16, 17]. We leave
the study of how to efficiently combine the p-values for future research.

We select the candidate set � by the power analysis in Section 2.2. We would recommend
including {1,2, . . . ,6,∞}, which can be powerful against a wide spectrum of alternatives. In
particular, by Propositions 2.3 and 2.5, we include a = 1,2 that are powerful against dense
signals; a = ∞ that is powerful against sparse signals; and also a = {3, . . . ,6} for the moder-
ately dense and moderately sparse signals. By Figure 1, it generally suffices to choose finite
a up to 6–8, which often give similar/better performance to/than larger a values. The simu-
lations in Section 3.1 confirm the good performance of this choice of �; and the proposed
adaptive test appears to well approximate the “best” performance even when � may not al-
ways contain the unknown “optimal” U-statistics.

We would like to mention that the adaptive procedure can be generalized to other test-
ing problems, as long as similar theoretical properties are given, such as the examples in
Section 4.

Computation. Next, we discuss the computation in the adaptive testing. A direct calculation
following the form of U(a) in (2.3) and V(a) in (2.9) would be computationally expensive
for large a with a cost of O(p2n2a). To address this issue, we introduce a method that can
reduce the cost.

We first consider a simplified setting when E(xi,j ) = 0 to illustrate the idea. As discussed
in Remark 2.2, we examine Ũ(a) defined in (2.5). Let L = {(j1, j2) : 1 ≤ j1 �= j2 ≤ p} denote
the set of index tuples, and for each index tuple l = (j1, j2) ∈ L, define si,l = xi,j1xi,j2 . Note
that Ũ(a) = (P n

a )−1 ∑
l∈LUl(a), where Ul(a) = ∑

1≤i1 �=···�=ia≤n

∏a
k=1 sik,l . Calculating Ul(a)

directly is of order O(na). We then focus on reducing the computational cost of Ul(a). For
l ∈ L and finite integers t1, . . . , tk , define

V
(t1,...,tk)
l =

k∏
r=1

(
n∑

i=1

s
tr
i,l

)
, U

(t1,...,tk)
l = ∑

1≤i1 �=···�=ik≤n

k∏
r=1

s
tr
i1,l

.(2.16)

We can see that Ul(a) = U
1a

l with 1a being an a-dimensional vector of all ones, and U
(a)
l =

V
(a)
l for any finite integer a. To reduce the computational cost of Ul(a), the main idea is to
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Data: si,l (1 ≤ i ≤ n, l ∈ L).
Result: Ũ(a).
for l ∈ L do

Compute and store V
(k)
l = U

(k)
l = ∑n

i=1 sk
i,l , (k = 1, . . . , a) during the algorithm;

U
11
l = V

(1)
l , U

12
l = U

11
l V

(1)
l − U

(2)
l ;

while 3 ≤ r ≤ a do
Tl = U

(r)
l

for k ← r − 1 to 1 do
Tl = V

(k)
l × U

1r−k

l − (r − k) × Tl

end

U
1r

l = Tl

end
end

Ũ(a) = (P n
a )−1 ∑

l∈L U
1a

l

Algorithm 1: Iterative computation implementation

obtain U
1a

l from V
(t1,...,tk)
l , whose computational cost is O(n). In particular, Ul(a) can be

attained iteratively from V
(t1,...,tk)
l based on the following equation:

U
(k,1r−k)
l = V

(k)
l × U

1r−k

l − (r − k) × U
(k+1,1r−k−1)

l ,(2.17)

which follows from the definitions. Algorithm 1 below summarizes the steps.
We illustrate the idea of the algorithm by some examples. By definition, U

(1)
l = V

(1)
l ,

which can be computed with cost O(n). Next, consider in (2.17), if r = 2 and k = 1, then
U

(1,1)
l = V

(1)
l × U

(1)
l − (2 − 1) × U

(2)
l = V

(1)
l × V

(1)
l − V

(2)
l , which yields U

12
l with cost

O(n). For U
13
l , we first take r = 3 and k = 2 in (2.17), then with cost O(n), we have

U
(2,1)
l = V

(2)
l × U

(1)
l − U

(3)
l = V

(2)
l × V

(1)
l − V

(3)
l , as V

(k)
l = U

(k)
l by the definition. Given

U
12
l and U

(2,1)
l , we obtain U

(1,12)
l = V

(1)
l × U

12
l − 2 × U

(2,11)
l . Thus U

13
l is also computed

with cost O(n). Iteratively, for any finite integer a, we can obtain U
1a

l from V
(t1,...,tk)
l whose

computational cost is O(n). More closed-form formulae representing U
1a

l by V
(t1,...,tk)
l are

given in Section C.1.1 of Supplementary Material [28].
Algorithm 1 reduces the computational cost of Ũ(a) from O(p2na) to O(p2n). Its idea is

general and can be extended to compute other different U-statistics by changing the input si,l .
In particular, the variance estimator V(a) can be computed with cost O(p2n) by specifying
si,l = (xi,j1 − x̄j1)

2(xi,j2 − x̄j2)
2, for each l ∈ L = {(j1, j2) : 1 ≤ j1 �= j2 ≤ p}. Then V(a) =

2a!(P n
a )−2 ∑

l∈L
∑

1≤i1 �=···�=ia≤n

∏a
k=1 sik,l and Algorithm 1 can be applied. Moreover, when

E(xi,j ) is unknown, U(a) can still be computed with cost O(p2n) using the iterative method
similar to Algorithm 1. The details are provided in Section C.1.2 of Supplementary Material
[28].

3. Simulations and real data analysis.

3.1. Simulations. We conduct simulation studies to evaluate the performance of the pro-
posed adaptive testing procedures, and investigate the relationship between the power and
sparsity levels. For one-sample covariance testing discussed in Section 2, we generate n i.i.d.
p-dimensional xi for i = 1, . . . , n, and consider the following five simulation settings.
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Setting 1: xi has p i.i.d. entries of N (0,1) and Gamma(2,0.5), respectively. Under each
case, we take n = 100 and p ∈ {50,100,200,400,600,800,1000} to verify the theoretical
results under H0 and the validity of the adaptive test across different n and p combinations.

For the following settings 2–5, we generate xi from multivariate Gaussian distributions
with mean zero and different covariance matrices �A’s.

Setting 2: �A = (1 − ρ)Ip + ρ1p,k01ᵀp,k0
, where 1p,k0 is a p-dimensional vector with the

first k0 elements one and the rest zero. We take (n,p) ∈ {(100,300), (100,600), (100,1000)},
and study the power with respect to different signal sizes ρ and sparsity levels k0.

Setting 3: The diagonal elements of �A are all one and |JA| number of off-diagonal el-
ements are ρ with random positions. We take (n,p) ∈ {(100,600), (100,1000)} and let the
signal size ρ and sparsity level |JA| vary to examine how the power changes accordingly.

Setting 4: The diagonal elements of �A are all one and |JA| number of off-diagonal
elements are uniformly generated from (0,2ρ) with random positions. We take (n,p) =
(100,1000) and similarly let the signal size ρ and sparsity level |JA| vary to examine how
the power changes accordingly.

Setting 5: We consider the multivariate models in [13]. Specifically, for each i = 1, . . . , n,
xi = �zi +μ, where � is a matrix of dimension p×m, and zi ’s are i.i.d. Gaussian or Gamma
random vectors. Under null hypothesis, m = p, � = Ip , μ = 21p; under alternative hypothe-
sis, m = p + 1, � = (

√
1 − ρIp,

√
2ρ1p), μ = 2(

√
1 − ρ + √

2ρ)1p . We also take the n and
p combination in [13] with (n,p) ∈ {(40,159), (40,331), (80,159), (80,331), (80,642)}.

We compare several methods in the literature, including both maximum-type and sum-
of-squares-type tests. In particular, the maximum-type test statistic in Jiang [36] is taken
as U(∞) in this framework. Since the convergence in [36] is known to be slow, we use
permutation to approximate the distribution in the simulations. In addition, we consider some
sum-of-squares-type methods. Specifically, we examine the identity and sphericity tests in
Chen et al. [13], which are denoted as “Equal” and “Spher,” respectively. We also compare
the methods in Ledoit and Wolf [42] and Schott [57], which are referred to as “LW” and
“Schott,” respectively.

To illustrate, Figure 2 summarizes the numerical results for the setting 3 when n = 100
and p = 1000. All the results are based on 1000 simulations at the 5% nominal significance
level. In Figure 2, we present the power of single U-statistics with orders in {1, . . . ,6,∞}.
“adpUmin” and “adpUf” represent the results of the adaptive testing procedure using the min-
imum combination and Fisher’s method in Section 2.2, respectively. The simulation results
show that the type I error rates of the U-statistics and adaptive test are well controlled under
H0. In addition, Figure 2 exhibits several patterns that are consistent with the power analysis
in Section 2.2. First, it shows that among the U-statistics, when |JA| is very small, U(∞) per-
forms best; and when |JA| increases, the performances of some U-statistics of finite orders
catch up. For instance, when |JA| = 100, U(6) and U(∞) are similar and are better than the
other U-statistics; when |JA| = 400, U(4) and U(5) are similar and better than the other U-
statistics. When �A is relatively dense, U(2) and U(1) become more powerful. Particularly,
when |JA| = 1600, U(2) is powerful; when |JA| becomes larger, such as when |JA| = 3200,
U(1) is overall the most powerful. Second, Figure 2 shows that “LW,” “Schott,” “Equal,”
“Spher” and U(2) perform similarly under various cases. In particular, these methods are not
powerful when the alternative is sparse but becomes more powerful when the alternative gets
denser. This is because they are all sum-of-squares-type statistics that target at dense alterna-
tives. Third and importantly, the two adaptive tests “adpUmin” and “adpUf” maintain high
power across different settings. Specifically, they perform better than most single U-statistics:
their powers are usually close to or even higher than the best single U-statistic. Moreover, “ad-
pUmin” and “adpUf” generally have higher power than the compared existing methods. We
also note that “adpUf” overall performs better than “adpUmin” in this simulation setting. In
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FIG. 2. Power comparison.

summary, Figure 2 demonstrates the relationship between the sparsity levels of alternatives
and the power of the tests, confirming the theoretical conclusions in Section 2.2. Notably, the
proposed adaptive testing procedure is powerful against a wide range of alternatives, and thus
advantageous in practice when the true alternative is unknown.

Due to the space limitation, we provide other extensive numerical studies in Supplemen-
tary Material [28], Section C.2. The conclusions are similar to those of Figure 2, and consis-
tent with the theoretical results in Section 2.2. In particular, the results show that the empirical
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sizes of the tests are close to the nominal level, suggesting the good finite-sample performance
of the asymptotic approximations. Moreover, under highly dense alternatives with only non-
negative entries in the covariance matrix, U(1) is the most powerful one among the U(a)’s
and the other tests in [13, 42, 57], in agreement with the results in Propositions 2.3 and 2.5.
Furthermore, the proposed adaptive testing procedures often have higher power than most
single U-statistics.

3.2. Real data analysis. Alzheimer’s disease (AD) is the most prevalent neurodegener-
ative disease [56] and is ranked as the sixth leading cause of death in the US [68]. Every
65 seconds, someone in the US develops AD [2]. To advance our understanding of AD,
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) was started in 2004, collecting ex-
tensive genetic data for both healthy individuals and AD patients. To gain insight into the
genetic mechanisms of AD, one can test a single SNP a time. However, due to a relatively
small sample size of the ADNI data, scanning across all SNPs failed to identify any genome-
wide significant SNP (with p-value < 5 × 10−8) [40]. To date, the largest meta-analysis of
more than 600,000 individuals identified 29 significant risk loci [35] and can only explain a
small proportion of AD variance. On the other hand, a group of functionally related genes as
annotated in a biological pathway are often involved in the same disease susceptibility and
progression [29]. Thus, pathway-based analyses, which jointly analyze a group of SNPs in a
biological pathway, have become increasingly popular. We retrieve a total of 214 pathways
from the KEGG database [39] for the subsequent analysis.

Although pathway-based analyses with KEGG pathways are common in real studies, for-
mally testing the correlations of the genes in a KEGG pathway has been largely untouched.
Here, we apply our method and other competing methods in [13] to test if all the genes in a
pathway have correlated gene expression levels. Perhaps as expected, all methods reject the
null hypothesis for all pathways with highly significant p-values, since the KEGG pathways
are constructed to include only the genes with similar function into the same pathway [39],
while similar function often implies co-expression (and vice versa). To compare the perfor-
mance of the different tests, for each pathway we randomly select 50 subjects and restrict our
analysis to pathways of at least 50 genes, leading to 103 pathways for the following analy-
sis. Then we perturb the data by shuffling the gene expression levels of randomly selected
100(1 − α)% genes in a pathway before applying each test. Figure 3 shows the performance
of the tests with two significance cutoffs, where “U(2)” represents the single U(2) statistic,

FIG. 3. Power comparison of different methods with ADNI data.
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“adpU” represents our proposed adaptive testing procedure using the minimum combination
with candidate U-statistics of orders in {1, . . . ,6,∞}, and “Equal” and “Spher” represent the
identity and sphericity tests in [13], respectively. Because all pathways are highly significant
with all samples, we can treat all pathways as the true positives. Due to the adaptiveness of our
proposed testing procedure, “adpU” identifies more significant pathways than the competing
methods across all the levels of data perturbation (mimicking the varying sparsity levels of
the alternatives).

4. Other high-dimensional examples. In this section, we apply the proposed U-
statistics framework to other high-dimensional testing problems, including testing means,
two-sample covariances, and regression coefficients in generalized linear regression models.
Similar theoretical results to Section 2 are developed, with detailed proofs and related simu-
lation studies provided in Supplementary Material [28].

4.1. Mean testing. Testing mean vectors is widely used in many statistical analysis and
applications [1, 50]. Under high-dimensional scenarios, for example, in genome-wide studies,
dimension of the data is often much larger than the sample size, so traditional multivariate
tests such as Hotelling’s T 2-test either cannot be directly applied or have low power [18]. To
address this issue, several new procedures for testing high-dimensional mean vectors have
been proposed [4, 9, 11, 12, 16, 17, 25–27, 60, 62, 67]. However, many of the statistics only
target at either sparse or dense alternatives, and suffer from loss of power for other types of
alternatives. We next apply the U-statistics framework to one-sample and two-sample mean
testing problems.

One-sample mean testing. We first discuss the one-sample mean vector testing. Assume that
x1, . . . ,xn are n i.i.d. copies of a p-dimensional real-valued random vector x = (x1, . . . , xp)ᵀ

with mean vector μ = (μ1, . . . ,μp)ᵀ, covariance matrix � = {σj1,j2 : 1 ≤ j1, j2 ≤ p}. We
want to conduct the global test on H0 : μ = μ0 where μ0 = (μ1,0, . . . ,μp,0)

ᵀ is given.
Similar to previous discussion, the parameter set that we are interested in is E = {μ1 −

μ1,0, . . . ,μp −μp,0}. For each j = 1, . . . , p, E(xi,j ) = μj , so Kj(xi ) = xi,j −μj,0 is a kernel
function, which is a simple unbiased estimator of the target. Following our construction, the
U-statistic for finite a is

U(a) =
p∑

j=1

1

P n
a

∑
1≤i1 �=···�=ia≤n

a∏
k=1

(xik,j − μj,0),(4.1)

which targets at ‖E‖a
a = ∑p

j=1(μj − μj,0)
a , and the U-statistic corresponding to ‖E‖∞ is

U(∞) = max1≤j≤p σ−1
j,j (x̄j − μ0,j )

2 with x̄j = ∑n
i=1 xi,j /n.

Given the statistics, we have the theoretical results similar to Theorems 2.1–2.3. The fol-
lowing Theorems 4.1–4.2 are established under similar conditions to that of Theorems 2.1–
2.3. Due to the limited space, we provide the conditions and corresponding discussions in
Supplementary Material [28].

THEOREM 4.1. Under H0: μ = μ0, assume Condition A.2 in Supplementary Ma-
terial [28]. Then for any finite integers {a1, . . . , am}, as n,p → ∞, [U(a1)/σ (a1), . . . ,

U(am)/σ(am)]ᵀ D−→ N (0, Im), where σ 2(a) = var[U(a)] = ∑p
i=1

∑p
j=1 a!σa

i,j /P
n
a with the

order of �(a!pn−a).

THEOREM 4.2. Under H0: μ = μ0, assume Condition A.3 in Supplementary Material
[28]. Then ∀u ∈ R, P(nU(∞) − τp ≤ u) → exp{−π−1/2 exp(−u/2)}, as n,p → ∞, where
τp = 2 logp− log logp. In addition, for any finite integer a, {U(a)/σ (a)} and {nU(∞)− τp}
are asymptotically independent.
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By Theorems 4.1 and 4.2, we obtain the asymptotic independence among the U-statistics
and the corresponding limiting distributions of the U-statistics under H0. Under the alterna-
tive hypothesis, since the power analysis of the one-sample mean testing is similar to that of
the two-sample case, we delay the power analysis after presenting the asymptotic indepen-
dence property of the proposed U-statistics in the two-sample mean testing problem.

Two-sample mean testing. Next, we discuss the two-sample mean testing problem. Suppose
we have two groups of p-dimensional observations {xi}nx

i=1 and {yi}ny

i=1, which are i.i.d. copies
of two independent random vectors x = (x1, . . . , xp)ᵀ and y = (y1, . . . , yp)ᵀ, respectively.
Suppose E(x) = μ = (μ1, . . . ,μp)ᵀ, E(y) = ν = (ν1, . . . , νp)ᵀ, cov(x) = �x and cov(y) =
�y . We write n = nx + ny and assume nx = �(ny). For easy illustration, we first consider
�x = �y = � = {σj1,j2 : 1 ≤ j1, j2 ≤ p}. We will then discuss the case when �x �= �y ,
where similar analysis applies.

The two-sample mean testing examines H0: μ = ν versus HA: μ �= ν, then E = (μ1 −
ν1, . . . ,μp − νp)ᵀ. For 1 ≤ j ≤ p, 1 ≤ k ≤ nx , 1 ≤ s ≤ ny , Kj(xk,ys) = xk,j − ys,j is a
simple unbiased estimator of μj − νj , and thus we construct U(a) = ∑p

j=1(P
nx
a P

ny
a )−1 ×∑

1≤k1 �=···�=ka≤nx;1≤s1 �=···�=sa≤ny

∏a
t=1(xkt ,j − yst ,j ), which is also equivalent to

U(a) =
p∑

j=1

a∑
c=0

(
a

c

)
(−1)a−c

P
nx
c P

ny

a−c

∑
1≤k1 �=···�=kc≤nx

1≤s1 �=···�=sa−c≤ny

c∏
t=1

xkt ,j

a−c∏
m=1

ysm,j .(4.2)

We can check that (4.2) satisfies E{U(a)} = ∑p
j=1(μj − νj )

a , so U(a) is an unbiased estima-

tor of ‖E‖a
a = ∑p

j=1(μj − νj )
a . On the other hand, for ‖E‖∞, following the maximum-type

test statistic in Cai et al. [9], we have

(4.3) U(∞) = max
1≤j≤p

σ−1
j,j (x̄j − ȳj )

2,

where x̄j = ∑nx

i=1 xi,j /nx , ȳj = ∑ny

i=1 yi,j /ny . We then obtain results similar to Theo-
rems 2.1, 2.3 and 2.5. As the conditions are similar to those in Section 2, we only keep the
key conclusions, and the details of conditions and discussions are given in Supplementary
Material [28], Section A.8.

THEOREM 4.3. Under Condition A.4 in Supplementary Material [28], �x = �y and
H0: μ = ν, for any finite integers (a1, . . . , am), as n,p → ∞, [U(a1)/σ (a1), . . . ,U(am)/

σ(am)]ᵀ D−→ N (0, Im), where σ 2(a) � a!∑p
j1,j2=1(nx + ny)

aσ a
j1,j2

/(nxny)
a is of the order

�(a!pn−a).

THEOREM 4.4. Under Condition A.4 in Supplementary Material [28], �x = �y and
H0: μ = ν, ∀u ∈ R, P(

nxny

nx+ny
U(∞) − τp ≤ u) → exp{−π−1/2 exp(−u/2)}, as n,p → ∞,

where τp = 2 logp − log logp. Moreover, {U(a)/σ (a)} of finite integer a and {nxnyU(∞)/

(nx + ny) − τp} are asymptotically independent.

Theorems 4.3 and 4.4 provide the asymptotic properties of finite-order U-statistics and
U(∞) under H0. To analyze the power of U(a)’s, we derive the asymptotic results of U(a)’s
under the alternative hypotheses. We focus on the two-sample mean testing problem, while
one-sample mean testing can be obtained similarly. Specifically, we consider the alternative
EA = {μj −νj = ρ > 0 for j = 1, . . . , k0;μj −νj = 0 for j = k0 +1, . . . , p}. We then obtain
similar conclusions to Theorem 2.5.
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THEOREM 4.5. Assume Condition A.4 in Supplementary Material [28] and k0 = o(p).
For any finite integers {a1, . . . , am}, if ρ in EA satisfies ρ = O(k

−1/at

0 p1/(2at )n−1/2) for t =
1, . . . ,m, then [U(a1) − E{U(a1)}]/σ(a1), . . . , [U(am) − E{U(am)}]/σ(am)]ᵀ D−→ N (0, Im),
as n,p → ∞. Here, E[U(a)] = ‖EA‖a

a = k0ρ
a and σ 2(a) = var{U(a)} � Va , with Va =

a!∑p
j1,j2=k0+1(nx + ny)

aσ a
j1,j2

/(nxny)
a of the order �(a!pn−a).

Next, we compare the power of different U-statistics under alternatives with different
sparsity levels. Theorem 4.5 shows that under the local alternatives, the asymptotic power
of U(a) mainly depends on E{U(a)}/√var{U(a)}. Therefore, by Theorem 4.5, given con-
stant M > 0, for each U(a), if ρ = M1/ak

−1/a
0 V

1/(2a)
a , then E{U(a)}/√var{U(a)} � M ; that

is, different U(a)’s have the same power asymptotically. For easy illustration, we consider
σj1,j2 = 1 when j1 = j2 ∈ {k0 + 1, . . . , p}, and σj1,j2 = 0 when j1 �= j2 ∈ {k0 + 1, . . . , p},
then M1/ak

−1/a
0 V

1/(2a)
a � ρa with

(4.4) ρa := a! 1
2a (M

√
p/k0)

1
a
{
(nx + ny)/(nxny)

} 1
2 .

Therefore, similar to the analysis in Section 2.2, to find the “best” U(a), it suffices to find
the order, denoted by a0, that gives the minimum ρa in (4.4). We have the following result
similar to Proposition 2.3.

PROPOSITION 4.1. Given any constant M ∈ (0,+∞) and n, p, k0, we consider ρa in
(4.4) as a function of positive integers a, then:

(i) when k0 ≥ M
√

p, the minimum of ρa is achieved at a0 = 1;
(ii) when k0 < M

√
p, the minimum of ρa is achieved at some a0, which increases as

M
√

p/|JD| increases.

Proposition 4.1 shows that when the sparsity level k0 is large, that is, Ea is dense, a small a

tends to obtain a smaller lower bound in ρ, and vice versa. As (4.4) and (2.13) are similar, we
have similar patterns to that in Figure 1 when examining the corresponding numerical plots
of ρa . In addition, [9] shows that when ρ = ρ∞ := C1

√
logp/n for a large C1, the power

of U(∞) converges to 1, and
√

logp/n is minimax rate optimal for sparse alternatives; see
also [17]. Thus, if ρ∞ < ρa0 , that is, k0 < MC

−a0
1

√
pa0!/ loga0/2 p, U(∞) is the “best” and

its lowest detectable order of ρ is �(
√

logp/n). On the other hand, Proposition 4.1 shows
that when EA is dense with k0 >

√
Mp, U(1) is the “best” and its lowest detectable order of

ρ is �(
√

pk−1
0 n−1/2). Moreover, for some large M and C2, when EA is “moderately dense”

or “moderately sparse” with C2
√

pa0!/ loga0/2 p < k0 <
√

Mp, U(a0) is the “best” and its

lowest detectable order of ρ is �{(√p/k0)
1
a0 n−1/2}, which is of a smaller order than the

optimal detection boundary of the sparse case �(
√

logp/n).
More generally, when �x �= �y , similar results to Theorems 4.3 and 4.5 can be obtained.

In particular, we have the following corollary.

COROLLARY 4.1. When �x �= �y , under Condition A.4 in Supplementary Material
[28], Theorem 4.3 holds with σ 2(a) � a!∑p

j1,j2=1(σx,j1,j2/nx + σy,j1,j2/ny)
a and Theo-

rem 4.5 holds with Va = a!∑p
j1,j2=k0+1(σx,j1,j2/nx + σy,j1,j2/ny)

a .

Corollary 4.1 shows that the asymptotic power of finite-order U-statistics depends on
E{U(a)}/√var{U(a)}. By the construction of finite-order U-statistics and the proof, we ob-
tain that E{U(a)} = k0ρ

a and var{U(a)} = �(a!pn−a). We then know that for finite-order
U-statistics, similar results to Proposition 4.1 still hold by examining E{U(a)}/√var{U(a)}.
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The above power analysis shows that the optimal U-statistic varies when the alternative
hypothesis changes. To achieve high power across various alternatives, we can develop an
adaptive test similar to that in Section 2.3. Specifically, we calculate the p-values of the
U-statistics (4.1) and (4.2) following the theoretical results above and the algorithm in Sec-
tion 2.3. By combining the p-values as discussed in Section 2.3, the asymptotic power of the
adaptive test goes to 1 if there exists one U(a) whose power goes to 1.

REMARK 4.1. Xu et al. [67] has also discussed the adaptive testing of two-sample mean
that is powerful against various �p-norm-like sums of μ− ν. But [67] is under the framework
of a family of von Mises V-statistics where V(a) = ∑p

j=1(x̄j − ȳj )
a . We note that V(a) is

equivalent to

V(a) =
p∑

j=1

a∑
c=0

(−1)a−c

(
a

c

)(
nx

cny
a−c)−1 ∑

1≤k1,...,kc≤nx
1≤s1,...,sa−c≤ny

c∏
t=1

xkt ,j

a−c∏
m=1

ysm,j ,

which allows the indexes k’s and s’s to be the same, and thus is different from the U-statistics
in (4.2). [67] shows that the constructed V-statistics are biased estimators of ‖μ − ν‖a

a , and
V(a) and V(b) are asymptotically independent if a + b is odd, but are asymptotically cor-
related if a + b is even. The constructed U-statistics in this work extend the properties of
those V-statistics such that U(a) in (4.2) is an unbiased estimator of ‖μ− ν‖a

a , and all U(a)’s
are asymptotically independent with each other. Given these nice statistical properties, it be-
comes easier to obtain the joint asymptotic distribution of the U-statistics, and then apply the
adaptive test.

4.2. Two-sample covariance testing. The U-statistics framework can be applied similar
to testing the equality of two covariance matrices. Suppose {xi}nx

i=1 and {yi}ny

i=1 are i.i.d.
copies of two independent random vectors x = (x1, . . . , xp)ᵀ and y = (y1, . . . , yp)ᵀ, re-
spectively. Denote E(x) = μ = (μ1, . . . ,μp)ᵀ, E(y) = ν = (ν1, . . . , νp)ᵀ; cov(x) = �x =
{σx,j1,j2 : 1 ≤ j1, j2 ≤ p} and cov(y) = �y = {σy,j1,j2 : 1 ≤ j1, j2 ≤ p}. Consider H0 : �x =
�y = � = (σj1,j2)p×p . Given 1 ≤ j1, j2 ≤ p, 1 ≤ k1 �= k2 ≤ nx , and 1 ≤ s1 �= s2 ≤ ny ,
Kj1,j2(xk1,xk2,ys1,ys2) = (xk1,j1xk1,j2 − xk1,j1xk2,j2)− (ys1,j1ys1,j2 − ys1,j1ys2,j2) is a simple
unbiased estimator of σx,j1,j2 −σy,j1,j2 . Therefore, for a finite positive integer a, we have the
U-statistic

U(a) = ∑
1≤j1,j2≤p

1

P
nx

2a P
ny

2a

∑
1≤k1,1 �=k1,2 �=···
�=ka,1 �=ka,2≤nx

∑
1≤s1,1 �=s1,2 �=···
�=sa,1 �=sa,2≤ny

a∏
t=1

Kj1,j2(xkt,1,xkt,2,yst,1,yst,2).

(4.5)

As in Remark 2.1, another formulation of U(a) equivalent to (4.5) is

U(a) =
a∑

c=0

c∑
b1=0

a−c∑
b2=0

(−1)c−b1+b2
∑

1≤j1,j2≤p

∑
1≤i1 �=···�=
i2c−b1≤nx

∑
1≤w1 �=···�=

w2(a−c)−b2≤ny

Cnx,ny,a,c,b1,b2 ×
b1∏

k=1

(xik,j1xik,j2)

c∏
s=b1+1

xis,j1

2c−b1∏
t=c+1

xit ,j2

×
b2∏

m=1

(ywm,j1ywm,j2)

a−c∏
l=b2+1

ywl,j1

2(a−c)−b2∏
q=a−c+1

ywq,j2,

(4.6)
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where Cnx,ny,c,b1,b2 = (P
nx

2c−b1
P

ny

2(a−c)−b2
)−1a!/{b1!(c−b1)!b2!(a − c−b2)!}, and (4.6) shall

be used in the theoretical developments.
We next present the asymptotic results of the constructed U-statistics under the null hy-

pothesis. Here, we assume the regularity Condition A.5 or A.6, whose details and discus-
sions are provided in Section A.13.1 of Supplementary Material [28] due to the space lim-
itation. We mention that Condition A.5 is a mixing-type dependence assumption similar to
Condition 2.2, and Condition A.6 is a moment-type dependence assumption similar to Con-
dition 2.2*. Particularly, Condition A.6 extends the moment assumption for second-order
U-statistics in Li and Chen [45] to U-statistics of general orders; please see the detailed dis-
cussions in Section A.13.1.

THEOREM 4.6. Under H0 and Condition A.5 or A.6 in Supplementary Material [28],

for finite integers {a1, . . . , am}, [U(a1)/σ (a1), . . . ,U(am)/σ(am)]ᵀ D−→ N (0, Im), where for
a ∈ {a1, . . . , am},
σ 2(a) = var

{
U(a)

}
� ∑

1≤j1,j2,j3,j4≤p

a!
{

1

nx

(
�x

j1,j2,j3,j4
− σj1,j2σj3,j4

) + 1

ny

(
�

y
j1,j2,j3,j4

− σj1,j2σj3,j4

)}a

with �x
j1,j2,j3,j4

= E{∏4
t=1(x1,jt − μjt )} and �

y
j1,j2,j3,j4

= E{∏4
t=1(y1,jt − νjt )}.

Theorem 4.6 provides the asymptotic independence and joint normality of the finite-
order U-statistics, which are similar to Theorems 2.1, 4.1 and 4.3. To further study the
power of these finite-order U-statistics, we next consider the alternative hypotheses where
�x �= �y . Let J0 be the largest subset of {1, . . . , p} such that σx,j1,j2 = σy,j1,j2 = σj1,j2 for
any j1, j2 ∈ J0. We then obtain the following theorem under the regularity conditions given
in Section A.14 of Supplementary Material [28].

THEOREM 4.7. Under Conditions A.7 and A.8 in Supplementary Material [28], for fi-

nite integers {a1, . . . , am}, [U(a1)−E{U(a1)}]/σ(a1), . . . , [U(am)−E{U(am)}]/σ(am)]ᵀ D−→
N (0, Im), where

σ 2(a) = var
{
U(a)

} � a!Cκ,a

∑
j1,j2,j3,j4∈J0

σa
j1,j2

σa
j3,j4

,

and Cκ,a = {(κx − 1)/nx + (κy − 1)/ny}a + 2(κx/nx + κy/ny)
a with κx and κy given in

Condition A.7.

Given the asymptotic results under the alternatives, we next analyze the power of
the finite-order U-statistics. By Theorem 4.7, the asymptotic power of U(a) depends
on E{U(a)}/√var{U(a)}. Let JD = {(j1, j2) : σx,j1,j2 �= σy,j1,j2,1 ≤ j1, j2 ≤ p}, then
E{U(a)} = ∑

(j1,j2)∈JD
(σx,j1,j2 − σy,j1,j2)

a . Similar to Section 2.2, to study the relation-
ship between the sparsity level of �x − �y and the power of U-statistics, we consider
the case where the nonzero differences between �x and �y are the same. Specifically,
let σx,j1,j2 − σy,j1,j2 = ρ for (j1, j2) ∈ JD , and then E{U(a)} = |JD|ρa . Following the
analysis in Section 2.2, we compare the ρ values needed by different U(a)’s to achieve
E{U(a)}/√var{U(a)} � M for a given constant M . In particular, for given integer a, suppose
E{U(a)}/√var{U(a)} � M is achieved when ρ = ρa . For any a �= b, we compare U(a) and
U(b) following Criterion 1.

We use the following example as an illustration, where �x and �y satisfy the conditions
of Theorem 4.7. Specifically, we assume that �x = (σx,j1,j2)p×p has the diagonal elements
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σx,j,j = ν2; and the off-diagonal elements σx,j1,j2 = h|j1−j2| ∈ (0, ν2) with h|j1−j2| = �(ν2)

when |j1 − j2| ≤ s, while σx,j1,j2 = 0 when |j1 − j2| > s. This covers the moving average
covariance structure of order s, and �x is a banded matrix with bandwidth s. In addition, we
assume the bandwidth s = o(p) and p − |J0| = o(p). By the definition of J0, the assumption
p − |J0| = o(p) implies that a large square sub-matrix of �x and �y are the same. For
simplicity, we let nx = ny with n = nx + ny , and a similar analysis can be applied when
nx �= ny . By Theorem 4.7, var{U(a)} � (n/2)−aa!{2κa

1 + κa
2 }{pν2a + 2

∑s
t=1 ha

t (p − t)}2,
where κ1 = κx + κy and κ2 = κx + κy − 2. Therefore, we know for given finite integer a,
E{U(a)}/√var{U(a)} � M holds when ρ = ρa defined as

ρa = (a!) 1
2a

√
κ1ν

(n/2)1/2

(
Mp

|JD|
)1/a{

2 +
(

κ2

κ1

)a} 1
2a

{
1 + 2

s∑
t=1

(
ht

ν2

)a(
1 − t

p

)} 1
a

.

We next compare the ρa’s and obtain the following proposition.

PROPOSITION 4.2. There exists D0 that only depends on the given κx , κy , ν2, s, and ht ,
t = 1, . . . , s, and satisfies D0 = �(1/s2) such that:

(i) When |JD| ≥ Mp/
√
D0, the minimum of ρa is achieved at a0 = 1.

(ii) When |JD| < Mp/
√
D0, the minimum of ρa is achieved at some a0, which increases

as Mp/|JD| increases.

Proposition 4.2 is similar to Propositions 2.3 and 4.1. Following the analysis in Sec-
tion 2.2, Proposition 4.2 shows that when the difference �x − �y is “very” dense with
|JD| ≥ Mp/

√
D0, U(1) is the most powerful U-statistic; when �x − �y becomes sparser

as Mp/|JD| decreases, a higher-order U-statistic is more powerful; when the �x − �y is
“moderately” dense or sparse, a U-statistic of finite order a0 > 1 would be the most powerful
one.

The power analysis above shows that the power of the U-statistics varies when the alterna-
tive changes. To maintain high power across different alternatives, we can develop an adaptive
testing procedure similar to that in Section 2.3. Given the asymptotic independence in The-
orem 4.6, an adaptive testing procedure using the constructed U(a)’s is valid with the type I
error asymptotically controlled. Also, the adaptive test achieves high power by combining the
U-statistics as discussed in Section 2.3.

We provide simulation studies on two-sample covariance testing in Supplementary Mate-
rial [28], Section C.3. By the simulations, we first find that the type I errors of the U statistics
and the adaptive test are well controlled under H0. This verifies the theoretical results in
Theorem 4.7. Second, similar to the one-sample covariance testing, we find that generally
when the difference �x − �y is sparser, a U-statistic of higher order is more powerful, and
vice versa. Moreover, under moderately sparse/dense alternatives, U(a0) with a0 > 1 could
achieve the highest power. The results are consistent with Proposition 4.2. Third, we com-
pare the proposed adaptive test with existing methods in literature including [6, 45, 57, 61],
and find that the proposed adaptive testing procedure maintains high power across various
alternatives.

REMARK 4.2. Similar to Section 2, we can let U(∞) be the maximum-type test statis-
tic in [6], and expect that the result similar to Theorem 2.3 holds under certain regularity
conditions. However, as the dependence structure of two-sample covariance matrices is more
complicated than the one-sample case, it is more challenging to establish the asymptotic joint
distribution of U(∞) and finite-order U-statistics. We leave this interesting problem for fu-
ture study, while find in simulations that the performance of U(∞) is similar to high-order
U-statistics U(a)’s.
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4.3. Generalized linear model. In this section, we consider Example 3 of generalized lin-
ear models (on page 156) to show that the proposed framework can be extended to other test-
ing problems. Similar to the results in Section 4.1, we show that the constructed U-statistics
are asymptotically independent and normally distributed, and also establish the power anal-
ysis results of the U-statistics. We provide the details in Section A.16 of Supplementary
Material [28]. Recently, Wu et al. [65] also discussed the adaptive testing of generalized lin-
ear model. But [65] is under the framework of a family of von Mises V-statistics, and thus
is different from the current paper as discussed in Remark 4.1. Moreover, the current work
provides the theoretical power analysis while [65] did not.

5. Discussion. This paper introduces a general U-statistics framework for applications
to high-dimensional adaptive testing. Particularly, we focus on the examples including testing
of means, covariances and regression coefficients in generalized linear models. Under the null
hypothesis, we prove that the U-statistics of finite orders have asymptotic joint normality, and
establish the asymptotic mutual independence among the finite-order U-statistics and U(∞).
Moreover, under alternative hypotheses, we analyze the power of different U-statistics and
demonstrate how the most powerful U-statistic changes with the sparsity level of the alterna-
tive parameters. Based on the theoretical results, we propose an adaptive testing procedure,
which is powerful against different alternatives. The superior performance of this adaptive
testing is confirmed in the simulations and real data analysis.

There are several possible extensions of the U-statistics framework in this paper. First, by
our current proof, the convergence rate in Theorem 2.3 is bounded by O(log−1/2 p), which
is an upper bound and not sharp. From our extensive simulations, we find that the type I error
rate of the adaptive testing is well controlled with a relatively small p, for example, p = 50.
We might obtain a shaper bound of the convergence rate, but more refined concentration
property of the high-dimensional and high-order U-statistics is needed. Second, the proposed
framework requires that the elements in the parameter set E have unbiased estimates. When
we cannot obtain unbiased estimates easily, for example, for the precision matrix, the pro-
posed construction may not follow directly. Nevertheless we may use “nearly” unbiased
estimators to construct “U-statistics” for hypothesis testing, such as the “nearly” unbiased
estimator of the precision matrix proposed in [66]; the main challenge is then to control the
accumulative bias over the parameters under high dimensions. Third, this paper discusses
the examples where the elements in E are comparable. When the parameters in E are not
comparable, such as E containing both means and covariances parameters, the construction
of U-statistics still follows but the theoretical derivation may require a careful case-by-case
examination. Fourth, the construction of the U-statistics treats the parameters in E with equal
weight. More generally, we could assign different weights to different parameter estimators.
For instance, standardizing the data is one example of assigning different weights. As inap-
propriate weight assignments could lead to power loss, when the truth is unknown, how to
effectively assign weights to maximize the test power is an interesting research question. We
shall discuss these extensions in the future as a significant amount of additional work is still
needed.

In addition to the examples in this paper, the proposed U-statistics framework can be ap-
plied to other high-dimensional hypothesis testing problems. For example, it can be applied
to testing the block-diagonality of a covariance matrix, whose theoretical analysis would be
similar to the considered one sample and two sample covariance testing problems. It can also
be used to test high-dimensional regression coefficients in complex regression models other
than the generalized linear models, following a similar construction based on the score func-
tions. A key step is then to characterize the impact of nuisance parameters that are estimated
under the null hypothesis, and challenges arise especially when the nuisance parameters are
high dimensional. Such interesting extensions will be further explored in our follow-up stud-
ies.
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