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The two-dimensional directed spanning forest (DSF) introduced by Bac-
celli and Bordenave is a planar directed forest whose vertex set is given by a
homogeneous Poisson point process N on R2. If the DSF has direction −ey ,
the ancestor h(u) of a vertex u ∈ N is the nearest Poisson point (in the L2
distance) having strictly larger y-coordinate. This construction induces com-
plex geometrical dependencies. In this paper, we show that the collection of
DSF paths, properly scaled, converges in distribution to the Brownian web
(BW). This verifies a conjecture made by Baccelli and Bordenave in 2007
(Ann. Appl. Probab. 17 (2007) 305–359).
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1. Introduction and results.

1.1. The DSF and its conjectured scaling limit. Let us consider a homogeneous Poisson
point process (PPP) N with intensity λ > 0 on the plane R2, equipped with the Euclidean
distance ‖x‖2

2 = x2(1) + x2(2), where we denote by x(i), for i = 1,2, the ith coordinate of
x ∈ R2. In this work, horizontal and vertical axes will be respectively interpreted as space and
time axes. Let us also denote by H+(l) := {x ∈ R2 : x(2) ≥ l} the half-plane of points with
ordinates greater than l ∈ R. The ancestor of x ∈N is defined as the closest Poisson point to
x in the open half-plane {y ∈ R2 : y(2) > x(2)}:
(1.1) h(x,N ) := argmin

{‖y − x‖2 : y ∈ N ,y(2) > x(2)
}
.

In most occasions, we drop the second argument for h(x,N ) and merely denote it by h(x). It
is useful to observe that for all x ∈ R2, the point h(x) is well defined. The Directed Spanning
Forest (DSF) with direction −ey on R2 is the random geometric graph F with vertex set N
and edge set E := {(x, h(x)) : x ∈ N }. Since for any x ∈ N , the point h(x) a.s. denotes a
unique Poisson point, the DSF is a directed outdegree-one graph without cycle. This justifies
it is called a forest.

The DSF was introduced in 2007 by Baccelli and Bordenave [5] as a tool to study the
asymptotic properties of the Radial Spanning Tree (RST), which actually was the main
subject of study in [5]. The RST is a tree rooted at the origin O of R2, with vertex set
N ∪ {O}, in which each x ∈ N is connected to the closest Poisson point inside the open ball
{y ∈R2 : ‖y‖2 < ‖x‖2}. The authors showed that the DSF is an approximation of the RST, in
distribution, locally and far from the origin.

However, the DSF appears as truly interesting in itself since it admits beautiful conjec-
tures, already mentioned in [5]. A trajectory of the DSF is a sequence (x, h(x), h(h(x)), . . .)

of successive ancestors. First, is it true that any two given trajectories of the DSF eventually
coalesce with probability 1? In other words, is the DSF a tree? This question was solved in
[13] by Coupier and Tran using an efficient percolation technique, namely the Burton and
Keane argument [8]. Besides, Baccelli and Bordenave showed that under diffusive scaling,
any trajectory of the DSF converges in distribution to a Brownian motion. Then they conjec-
tured a stronger result [5], Section 7.3: the convergence under this diffusive scaling, of the
whole forest F to the so-called Brownian web (BW).

In this paper, we prove this second and stronger conjecture. In fact, we prove a slightly
stronger result in the sense that we construct a dual forest and show that under diffusive
scaling, the DSF and its dual jointly converge in distribution to the BW and its dual.

A natural strategy to answer these questions would be to exhibit some independence
(or Markov) properties in time (i.e., w.r.t. the vertical axis) for any couple of trajectories
of the DSF. But this strategy runs up against strong dependencies, due to the construction
rule of the DSF F, which are of two types: between different trajectories on the one hand
and within a single trajectory on the other hand. See Figure 1 for an illustration of these
two dependence phenomena. Let us denote by B(x, r) the closed Euclidean ball with ra-
dius r . The construction of the ancestor h(x) of x implies that the interior of the semi-ball
B+(x,‖x − h(x)‖2) := B(x,‖x − h(x)‖2) ∩H+(x(2)) is empty of Poisson points. Since this
semi-ball overlaps the half-plane H+(h(x)(2)), we have information coming from the past
steps: the ancestor of h(x) cannot belong to the resulting intersection. Roughly speaking,
the past of a DSF trajectory may influence its future. Furthermore, when the successive an-
cestors of x are constructed, the resulting empty region, called the history set, may have a
complicated shape: it is a union of semi-balls centered at already visited vertices intersected
with a proper half-plane (we shall be more precise in the sequel). This random region is not
necessarily connected and cannot be a priori bounded.
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FIG. 1. (a) This picture illustrates the dependence phenomenon within a single trajectory and how the past
trajectory may influence its next steps. It represents a Poisson point x and its first two ancestors, that is, y = h(x)

and z = h(h(x)), and the two resulting semi-balls. The grey area corresponds to the history set of this trajectory
which cannot have Poisson points in its interior. It is worth pointing out here that the (large) empty semi-ball
B+(x,‖x − h(x)‖2) may influence the construction of many ancestors of the initial vertex x. (b) This second
picture illustrates the dependence phenomenon between two DSF trajectories when the resulting semi-balls cor-
responding to their constructions overlap. This overlapping locally acts as a repulsive effect between trajectories
starting at x and y.

In [15], Fontes et al. introduced a suitable Polish space to study the BW, characterized
its distribution (in Theorem 1.1 below) and provided criteria ensuring weak convergence to
the BW (see Theorem 6.2 in Section 6.1). Since then, convergence to the BW for various
directed forests or navigation schemes have been extensively studied and thence, the BW ap-
peared as the universal scaling limit for a large number of seemingly unrelated models. Let
us cite: [7, 19] in the context of coalescing system of independent nonsimple random walks;
[10, 14] in the context of drainage networks; [23] for an oriented percolation model; possibly
in spatial queueing models [1]; [20] in connection with Hastings–Levitov planar aggregation
models; and [7, 9, 10, 12] in the context of radial systems of coalescing trajectories. In many
of these papers, the choice of the ancestor of any vertex x does not depend on the past, that
is, on what happens below ordinate x(2), allowing to easily introduce Markov processes and
use martingale convergence theorems or Lyapunov functions. As explained above, this is no
longer true for the DSF because of complex geometrical dependencies. Recently, several pa-
pers [22, 28]—Saha and Sarkar are involved in the first one—have considered modifications
of the DSF in order to make the problem more tractable but until this paper, the conjecture of
Baccelli and Bordenave remained open.

1.2. The Brownian web. The BW appeared for the first time in the literature in the semi-
nal papers of Arratia [2, 3]. In [3], the author studied the diffusive scaling limit of coalescing
simple symmetric random walks starting from every point of 2Z at time 0 and showed that
this collection converges to a collection of coalescing Brownian motions starting from every
point on R at time 0. In [2], Arratia generalizes this by proposing a construction with paths
starting from space-time points instead of just starting at time 0. For a general review on the
BW, see [24] and references therein. Later Tóth and Werner [27] gave a construction of a
system of coalescing Brownian motions starting from every point in space-time plane R2 and
used it to construct the true self-repelling motion.

The framework (topologies, spaces, characterization and convergence criteria) that we will
use in this paper have been provided by Fontes et al. in [15]. Let us recall some relevant
details. Let R2

c be the completion of the space time plane R2 with respect to the metric

ρ
(
(x1, t1), (x2, t2)

) := ∣∣tanh(t1) − tanh(t2)
∣∣∨ ∣∣∣∣ tanh(x1)

1 + |t1| − tanh(x2)

1 + |t2|
∣∣∣∣.
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As a topological space, R2
c can be identified with the continuous image of [−∞,∞]2 un-

der a map that identifies the line [−∞,∞] × {∞} with the point (∗,∞), and the line
[−∞,∞] × {−∞} with the point (∗,−∞). We define a path π with starting time σπ ∈
[−∞,∞] as a continuous mapping π : [σπ,∞] → [−∞,∞] ∪ {∗} such that π(∞) = ∗ and,
when σπ = −∞, π(−∞) = ∗. Notice that the mapping t �→ (π(t), t) ∈ (R2

c, ρ) is continu-
ous on [σπ,∞]. We then define � to be the space of all paths in R2

c with all possible starting
times in [−∞,∞]. The following metric, for π1, π2 ∈ �,

d�(π1, π2) := ∣∣tanh(σπ1) − tanh(σπ2)
∣∣

∨ sup
t≥σπ1∧σπ2

∣∣∣∣ tanh(π1(t ∨ σπ1))

1 + |t | − tanh(π2(t ∨ σπ2))

1 + |t |
∣∣∣∣

makes � a complete, separable metric space. The metric d� is slightly different from the
original choice in [15] which is somewhat less natural as explained in [26]. Convergence
according to this metric can be described as locally uniform convergence of paths as well as
convergence of starting times. Let H be the space of compact subsets of (�,d�) equipped
with the Hausdorff metric dH given by

dH(K1,K2) := sup
π1∈K1

inf
π2∈K2

d�(π1, π2) ∨ sup
π2∈K2

inf
π1∈K1

d�(π1, π2).

The couple (H, dH) is a complete separable metric space. Let also BH be the Borel σ -algebra
on the metric space (H, dH). The Brownian web W is then defined and characterized by the
following result.

THEOREM 1.1 (Theorem 2.1 of [15]). There exists an (H,BH)-valued random variable
W whose distribution is uniquely determined by the following properties:

(a) from any deterministic point x ∈ R2, there is almost surely a unique path πx ∈ W
starting from x;

(b) for a finite set of deterministic points x1, . . . ,xk ∈ R2, the collection (πx1
, . . . , πxk

) is
distributed as coalescing Brownian motions starting from x1, . . . ,xk ;

(c) for any countable deterministic dense set D of R2, W is the closure of {πx : x ∈D} in
(�,d�) almost surely.

The above theorem shows that the collection is almost surely determined by countably
many coalescing Brownian motions.

1.3. Our convergence theorem and the key ideas of the proof. Let us return to the
DSF. To state our result formally, we need to introduce some more notation. From a
vertex u ∈ N , define h0(u) := u and hk(u) := h(hk−1(u)), for k ≥ 1. Taking the edges
{(hk−1(u), hk(u)) : k ≥ 1} to be straight line segments, we parameterize the path started
from u and formed by these edges as the piecewise linear function πu : [u(2),∞) → R

such that πu(hk(u)(2)) := hk(u)(1) for every k ≥ 0 and πu(t) is linear in the interval
[hk(u)(2), hk+1(u)(2)]. The collection of all DSF paths is denoted by X := {πu : u ∈N }.

For given real numbers γ,σ > 0, integer n ≥ 1 and for a path π with starting time σπ , the
diffusively scaled path πn(γ, σ ) : [σπ/n2γ,∞] → [−∞,∞] is given by

(1.2) πn(γ, σ )(t) := π(n2γ t)

nσ
.

Hence, the scaled path πn(γ, σ ) has the starting time σπn(γ,σ ) = σπ/n2γ . For each n ≥ 1,
let Xn(γ, σ ) := {πu

n (γ, σ ) : u ∈ N } be the collection of all the scaled paths. The closure
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FIG. 2. Simulations of the directed spanning forest with direction −ex (this direction is chosen for the con-
venience of the graphical representations). The trajectories coming from vertices with abscissa 0 ≤ x ≤ 5 and
ordinates 0 ≤ y ≤ 100 are represented in bold red lines. These simulations are taken from [13]. On (b), the red
paths clearly look like coalescing Brownian motions and they all coalesce before time 1500.

X n(γ, σ ) of Xn(γ, σ ) in (�,d�) is a (H,BH)-valued random variable which a.s. consists of
noncrossing paths only. This property will be used in the sequel frequently.

Recall that λ > 0 is the intensity of the homogeneous PPP N . Our main result, illustrated
by Figure 2, solves the conjecture of Baccelli and Bordenave [5] (see their Section 7.3).

THEOREM 1.2. There exist σ = σ(λ) > 0 and γ = γ (λ) > 0 such that the sequence
{X n(γ, σ ) : n ≥ 1} converges in distribution to W as (H,BH)-valued random variables as
n → ∞.

In Section 6 (Theorem 6.1), we prove a stronger version of Theorem 1.2 by showing that
the DSF and its dual forest (which is defined later) jointly converge to the Brownian web and
its dual process.

Our proof actually appears as the combination of three main arguments or ideas described
below. First, the criteria ensuring (weak) convergence to the BW have been meaningfully re-
laxed since the original convergence result in [15], recalled here in Theorem 6.2 (Section 6.1).
Indeed, in the literature [10, 14], the proofs of criterion (B2) systematically require that the
considered forest satisfies some FKG inequality (on its trajectories). But, this strong property
becomes difficult to check, or even false, when dependence phenomena arise as it is the case
for the DSF. Recently, in the context of noncrossing path models, Schertzer et al. [24] (see
their Theorem 6.6), have replaced criterion (B2) with a wedge condition involving a suitable
dual of the considered forest. In this paper, we provide a new criteria (Theorem 6.3), simi-
lar in the spirit to the Theorem 6.6 of [24], in which criterion (B2) is replaced with the fact
that “no limiting primal and dual paths can spend positive Lebesgue time together.” This is
condition (iv) of Theorem 6.3.

The second key tool is a new and general Laplace type argument, stated in Theorem 5.2,
allowing to establish a coalescence time estimate for any couple of trajectories of the DSF
(Theorem 5.1). Obtaining such coalescence time estimate is always a crucial step in the liter-
ature to prove convergence to the BW. We also think that Theorem 5.2 is interesting in itself
and very robust. In particular, it should provide the required coalescence time estimates for
all the drainage network models in the basin of attraction of the BW [9, 10, 14, 22, 28]. See
Remark 5.8 for further details. The coalescence time estimate for the DSF (Theorem 5.1)
plays a central role in the proof of condition (iv) previously cited.



440 COUPIER, SAHA, SARKAR AND TRAN

The third main ingredient is a very accurate study, conducted in Section 4, of the joint
evolution of DSF trajectories. Exploiting the geometric properties of the DSF, we are able
to exhibit some renewal events (at some random times) for the joint evolution of multiple
trajectories. In case of evolution of a single trajectory, these renewal events give some suit-
able configurations allowing us to recover Markovian structure (see Proposition 4.5). For
joint evolution of two paths, we show that the distance between the paths observed at these
random times behaves like a random walk when the paths are sufficiently far apart. More-
over, we show that both time and width of the explored region (by the trajectories) between
two consecutive renewal events admit tail distributions with subexponential decays. All these
properties allow us to show that the distance process satisfies the conditions of the Laplace
argument, more precisely conditions of Theorem 5.4.

1.4. Application to the RST: The highways and byways problem. In the Theorem 2.1 of
[5], Baccelli and Bordenave also described the semi-infinite paths of the Radial Spanning
Tree (RST). In particular, they showed that the (random) number χr of semi-infinite paths of
the RST crossing the circle Cr—centered at the origin O and with radius r—tends to infinity
with probability 1 as r → ∞. A natural question is then to specify the growth rate of χr w.r.t.
the radius r . Since the article of Hammersley and Welsh [16], this question is known as the
highways and byways problem.

A general method, recently proposed by Coupier [11] and applied to various geometrical
random trees, asserts that χr is negligible w.r.t. r . Such result for the RST was already known
since [6]. Furthermore, this method can be performed whenever the considered tree satisfies
the two following conditions (see Section 6 of [11]). First, it can be approximated, locally
and far from the origin, by a directed forest—as the DSF approximates the RST. Second, the
approximating directed forest has to satisfy a suitable coalescence time estimate. Theorem 5.1
fulfills this last condition for the DSF. Hence, the method developed in Section 6 of [11]
applies without major modifications to the RST and leads to the following result.

THEOREM 1.3. For any ε > 0, r−(3/4+ε)χr tends to 0, almost surely and in expectation,
as r tends to infinity.

1.5. Organization of the paper. In Section 2, a discrete process called the joint explo-
ration process is introduced to describe the joint evolution of DSF paths. The dependence
structure of this process is encoded with the notion of history set. In Section 3, we able to
obtain good control over the evolution of history sets. Some particular random times, called
renewal steps and corresponding to the renewal events mentioned above, are put forward in
Section 4. In Section 5.1, we present a general technique to study the coalescence time tail
decay based on a Laplace criterion. The coalescence time estimate (Theorem 5.1) is stated
and proved by applying this criterion in Section 5.2. In Section 6.1, we describe new criteria
(Theorem 6.3) ensuring the weak convergence of a forest and a suitable dual to the BW and
its dual.

Several qualitative results of this paper involve constants. For the sake of clarity, we will
use C0 and C1 to denote two positive constants, whose exact values may change from one
line to the other. The important thing is that both C0 and C1 are universal constants whose
values will depend only on the intensity of the PPP, the number k of considered trajectories
and a constant κ that we will introduce to describe the renewal steps (see (3.1) and (4.1)).

2. The joint exploration process.

2.1. Construction. Let k ∈ N be a positive integer. Let us consider k starting points
u1, . . . ,uk ∈ R2. In this section, following [22], we define a discrete time process {(gn(u1),
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. . . , gn(uk),Hn) : n ≥ 0} in an inductive way for the joint exploration of the k paths
πu1, . . . , πuk so that they move together. This discrete time process is the joint exploration
process which makes the subject of this section. The sequence {(gn(u1), . . . , gn(uk)) : n ≥ 0}
is a representation of the trajectories while {Hn : n ≥ 0} will be the associated dependence
set.

Before defining precisely the joint exploration process, let us first discuss the typical initial
configuration (u1, . . . ,uk,H0) from which the joint exploration process starts. The starting
points u1, . . . ,uk can be deterministic, and possibly with the same ordinate (as in Section 5),
or merely points of the PPP N . In order to cover the case of configurations obtained at good
step, we have to take into account some initial extra information encoded with a random
compact set H0. Sometimes (as in Section 5), H0 will be empty. For the moment, we only
demand that H0 a.s. satisfies

(2.1)
(
N ∪ {u1, . . . ,uk})∩ int(H0) = ∅,

where int(H0) denotes the interior of H0. Notice that the points u1, . . . ,uk can be on the
boundary of H0. Extra conditions will be added in Section 3 but we can omit them for the
moment.

Set g0(ui ) = ui for i = 1, . . . , k. In the joint exploration process, only the lowest vertex
moves, denoted by Wmove

n , while the k − 1 other ones remain unchanged. In case several
vertices have the same lower ordinate, we move them one by one starting from the leftmost
one:

(i) Wmove
0 := argmin{w(1) : w ∈ {u1, . . . ,uk} and w(2) = r0} where r0 := min{u1(2),

. . . ,uk(2)}, and W
stay
0 := {u1, . . . ,uk} \ Wmove

0 ;
(ii) For 1 ≤ i ≤ k,

g1(ui ) :=
{
h
(
g0(ui ),N ∪ W

stay
0

)
if g0(ui ) = Wmove

0 ,

g0(ui) otherwise.

After the first step, the history set H0 is updated into H1 = H1(u1, . . . ,uk):

H1 := (
H0 ∪ B+(Wmove

0 ,
∥∥h(Wmove

0
)− Wmove

0

∥∥
2

))∩H+(Wmove
1 (2)

)
,

where Wmove
1 (2) := min{g1(ui )(2) : 1 ≤ i ≤ k} is the next moving vertex.

By induction, given (gn(u1), . . . , gn(uk),Hn(u1, . . . ,uk)), for any n ≥ 1, let us set

(i) Wmove
n := argmin{w(1) : w ∈ {gn(u1), . . . , gn(uk)} and w(2) = rn} where rn :=

min{gn(u1)(2), . . . , gn(uk)(2)}, and W
stay
n := {gn(ui ) : 1 ≤ i ≤ k} \ Wmove

n ;
(ii) For 1 ≤ i ≤ k,

gn+1(ui) :=
{
h
(
gn(ui ),N ∪ W stay

n

)
if gn(ui ) = Wmove

n ,

gn(ui ) otherwise.

When gn(u1), . . . , gn(uk) all have different ordinates—and this is a.s. the case whenever
they are points of N—, Wmove

n is given by the gn(ui ) having the smallest ordinate. When
this smallest ordinate is realized by at least two vertices, then Wmove

n corresponds to the one
having the smallest abscissa.

After the (n + 1)-th move, the new level Wmove
n+1 (2) := min{gn+1(ui )(2),1 ≤ i ≤ k} allows

to define the next history set Hn+1 = Hn+1(u1, . . . ,uk):

Hn+1 := (
Hn ∪ B+(Wmove

n ,
∥∥h(Wmove

n

)− Wmove
n

∥∥
2

))∩H+(Wmove
n+1 (2)

)
.

In the sequel, we need to work with a filtration encoding all the information until the
current step including the initial configuration (u1, . . . ,uk,H0). For any integer n, let us set

Fn := σ
{
gl(ui), i ∈ {1, . . . k},0 ≤ l ≤ n,H0

}
.
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FIG. 3. First 6 steps of the joint process (gn(u1), gn(u2), gn(u3))n≥0 starting from u1, u2, u3 (given by the
squares). To simplify the picture, we take H0 = ∅. The first move concerns u2, that is, Wmove

0 = u2, while the
second and third ones concern the trajectory starting at u3. The triplet (g3(u1), g3(u2), g3(u3)) is represented
by red vertices. Until the fourth step, u1 has not moved yet: g4(u1) = u1. And at the fifth step, the ancestor of
Wmove

4 = g4(u1) is an element of W
stay
4 , namely g4(u2), which means that πu1 and πu2 coalesce. The grey area

corresponds to H6(u1,u2,u3). On both sides of the picture, the levels Wmove
n (2), 0 ≤ n ≤ 6, are indicated.

The next result summarizes some elementary properties of the joint exploration process
which can be proved by induction.

LEMMA 2.1. Under Assumption (2.1), the following properties hold:

(i) The joint exploration process {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0} is an (Fn)-Markov
chain with state space (R2)k × {A ⊆ R2 : A is compact}.

(ii) A.s. and for any n, (N ∪ {u1, . . . ,uk}) ∩ int(Hn) =∅.
(iii) A.s. and for any n, any 1 ≤ i ≤ k, the vertex gn(ui ) necessarily lies on the boundary

of H+(Wmove
n (2)) \ Hn whenever it is different from the ui’s (see Figure 3).

(iv) A.s. the sequence (Wmove
n (2))n≥0 is nondecreasing.

2.2. An auxiliary process. The fact that the interior part of Hn avoids the PPP N pro-
vides information (coming from past steps) on which the next steps of the joint exploration
process {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0} depend. This dependence phenomenon is the main
obstacle to the study of the joint exploration process since it kills all direct Markov properties.

A first tool to deal with this difficulty consists in the use of an auxiliary discrete
time process {g̃n(u1), . . . , g̃n(uk), H̃n : n ≥ 0} starting from the same initial configuration
(u1, . . . ,uk,H0). This new exploration process obeys the same evolution rule as the original
one—this is the claim of Proposition 2.2 below—but each move uses a new PPP on R2, in-
dependent of those previously used. The use of independent PPPs at each move will be very
useful to exhibit independent r.v.’s in the sequel. This amounts to throwing at each step of the
construction a new PPP outside the region already explored, namely the dependence set. This
technique was already used in [5] without being clearly stated.

Let us explain this more precisely. Consider a collection {Nn : n ∈ N} of i.i.d. Poisson point
processes on R2, independent of the original process N from which {gn(u1), . . . , gn(uk),Hn :
n ≥ 0} is defined. Set g̃0(ui ) = ui for 1 ≤ i ≤ k, H̃0 = H0.

(i) W̃move
0 := argmin{w(1) : w ∈ {u1, . . . ,uk} and w(2) = r̃0} where r̃0 := min{u1(2),

. . . ,uk(2)}, and W̃
stay
0 := {u1, . . . ,uk} \ W̃move

0 ;
(ii) For 1 ≤ i ≤ k,

g̃1(ui ) :=
{
h
(
g̃0(ui ), (N1 \ H̃0) ∪ W̃

stay
0

)
if g̃0(ui ) = W̃move

0 ,

g̃0(ui) otherwise.
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We use the PPP N1 \ H̃0 to construct g̃1(u1), . . . g̃1(uk). The history set H̃1 = H̃1(u1,

. . . ,uk) after the first move is defined as

H̃1 := (H̃0 ∪ B+(W̃move
0 ,

∥∥h(W̃move
0

)− W̃move
0

∥∥
2

)
) ∩H+(W̃move

1 (2)
)
,

where W̃move
1 (2) := min{g̃1(ui )(2) : 1 ≤ i ≤ k}.

Conditional on (g̃n(u1), . . . , g̃n(uk), H̃n) let

(i) W̃move
n := argmin{w(1) : w ∈ {g̃n(u1), . . . , g̃n(uk)} and w(2) = r̃n} where r̃n :=

min{g̃n(u1)(2), . . . , g̃n(uk)(2)}, and W̃
stay
n := {g̃n(ui ) : 1 ≤ i ≤ k} \ W̃move

n ;
(ii) For 1 ≤ i ≤ k,

g̃n+1(ui) :=
{
h
(
g̃n(ui ), (Nn+1 \ H̃n) ∪ W̃ stay

n

)
if g̃n(ui ) = W̃move

n ,

g̃n(ui ) otherwise.

Note that, to get g̃n+1(ui ) in the above definition, we resample the PPP only outside the
explored region, that is, with Nn+1 \ H̃n, since the PPP Nn+1 may have points in H̃n. This
precaution was not required for the original exploration process since it uses at each step the
same PPP N which avoids the current history set Hn.

The joint history set H̃n+1 = H̃n+1(u1, . . . ,uk) at the (n + 1)-th move is given by

H̃n+1 := (
H̃n ∪ B+(W̃move

n ,
∥∥h(W̃move

n

)− W̃move
n

∥∥
2

))∩H+(W̃move
n+1 (2)

)
,

where W̃move
n+1 (2) = min{g̃n+1(ui)(2) : 1 ≤ i ≤ k}.

PROPOSITION 2.2. Under Assumption (2.1), the joint exploration process {(gn(u1), . . . ,

gn(uk),Hn) : n ≥ 0} and the auxiliary exploration process {(g̃n(u1), . . . , g̃n(uk), H̃n) : n ≥ 0}
are identically distributed.

PROOF. Let {Nn : n ∈ N} be a collection of i.i.d. Poisson processes on R2. We work con-
ditional on (gn(u1), . . . , gn(uk),Hn) = (x1, . . . ,xk,�n), for some x1, . . . ,xk ∈ R2 and �n ⊂
R2, on {(gj (u1), . . . , gj (uk),Hj ) : j < n} and on N ∩ H0 = ∅. The region H+(min{xi (2) :
1 ≤ i ≤ k}) \ �n has not been explored yet and the PPP N on this region can be replaced
with any independent PPP Nn+1. Thus, we have in distribution that

gn+1(ui)
d=
{
h
(
xi , (Nn+1 \ �n) ∪ {x1, . . . ,xk}) if xi = Wmove

n ,

xi otherwise.

For xi = Wmove
n , setting x′

i := h(xi , (Nn+1 \ �n) ∪ {x1, . . . ,xk}), we have

Hn+1
d= (

B+(xi ,
∥∥xi − x′

i

∥∥
2

)∪ �n

)∩H+(x′
i (2) ∧ min

{
xj (2) : j �= i

})
.

Hence, the original joint exploration process and the auxiliary one have the same transition
probabilities. They are identically distributed.

Moreover, conditional on Fn, the process (gn+1(u1), . . . , gn+1(uk),Hn+1) admits a ran-
dom mapping representation of the form(

gn+1(u1), . . . , gn+1(uk),Hn+1
) d= f

((
gn(u1), . . . , gn(uk),Hn

)
,Nn+1

)
for some measurable mapping f . This gives its Markovian character (see [17]). �
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3. Good steps. Let us define the height of any nonempty bounded subset � of R2, as

L(�) := sup
{
y(2) − x(2) : x,y ∈ �

}
and L(∅) = 0. The goal of this section, Proposition 3.1, consists in stating that the height
of the history set L(Hn) returns regularly under a given positive integer κ which will be
specified later.

Precisely, let us set τ0 = τ0(u1, . . . ,uk) = 0 and for j ≥ 1,

(3.1) τj = τj (u1, . . . ,uk) := inf

{
kn > τj−1 : n ≥ 1,L(Hkn) ≤ κ and

Wmove
kn (2) ≥ Wmove

τj−1
(2) + κ + 1

}
.

Such a step is called a good step of the joint process {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0}. At a
good step, the height of the history set is at most κ . The condition that Wmove

τj
(2)−Wmove

τj−1
(2)

should be more than κ + 1 is to ensure that the history regions involved at different good
steps are disjoint. As additional and technical requirements, τj has to be a multiple of the
number k of trajectories. This condition portends that in the sequel we will consider blocks
of k consecutive steps. Let us also remark that the τj ’s are stopping times w.r.t. the filtration
(Fn)n≥0.

In Section 4, we will select some suitable (in some sense) good steps and will call them
renewal steps.

Only for this section, we will work with the auxiliary exploration process {(g̃n(u1), . . . ,

g̃n(uk), H̃n) : n ≥ 0} instead of the (original) joint exploration process, and for ease of nota-
tion, we denote this process itself by {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0}.

Proposition 3.1 holds whenever the following conditions on the initial configuration
(u1, . . . ,uk,H0) are satisfied.

(H1) Shape of H0. The initial history set H0 is a compact set defined as the intersection
with H+(Wmove

0 (2)) of a finite number of closed balls whose centers are in H−(Wmove
0 (2)).

Moreover, the height of H0 is such that L(H0) ≤ κ .
(H2) Locations of u1, . . . ,uk . The starting points u1, . . . ,uk are deterministic. They be-

long to the closure of H+(Wmove
0 (2)) \ H0 and satisfy

max
{
u1(2), . . . ,uk(2)

} ≤ Wmove
0 (2) + κ.

Roughly speaking, Assumption (H1) says that the initial history set H0 is a finite union
of balls intersected with the half-space H+(Wmove

0 (2)) and whose height is bounded by κ .
Assumption (H2) requires that all the information associated to the initial configuration is
contained in a strip of height κ , which is a little bit more than avoiding the interior part of
H0: the reason for this will appear clearly in the proof of Lemma 3.2.

Mainly two types of initial configurations will be considered. Either H0 = ∅—this case is
covered by (H1)—and the starting points are deterministic with possibly the same ordinate
(as in Section 5). Or H0 �= ∅ and the ui’s are located on the boundary of H+(Wmove

0 (2))\H0.
This second type exactly corresponds to configurations obtained at a good step. An example
of this second type is given by (g6(u1), g6(u2), g6(u3),H6) in Figure 3.

From now on, we assume that (H1) and (H2) hold. Proposition 3.1 states that the number
of steps between two consecutive good steps can be stochastically dominated by a r.v. having
exponential decay.

PROPOSITION 3.1. Let j ≥ 0. There exists a r.v. T whose distribution does not depend
on Fτj

such that, for all n,

(3.2) P(τj+1 − τj ≥ n | Fτj
) ≤ P(T ≥ n) ≤ C0e

−C1n.
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We will prove Proposition 3.1 through a sequence of lemmas. To understand how our proof
is organized, we start with describing the evolution of the height of the history set during a
single step. Two situations may actually occur. If the semi-ball B+(Wmove

n ,‖h(Wmove
n ) −

Wmove
n ‖2) created during the (n+ 1)-th move, does not exceed the horizontal line {x : x(2) =

Wmove
n (2) + L(Hn)} then

L(Hn+1) = L(Hn) − (
Wmove

n+1 (2) − Wmove
n (2)

)
< L(Hn).

In this case, the height of the history set is decreasing and, on some suitable events (of positive
probability), we will be able to quantify its decrease. See Lemmas 3.4, 3.5 and 3.6.

Otherwise, the new height L(Hn+1) is realized by the last created semi-ball B+(Wmove
n ,

‖h(Wmove
n ) − Wmove

n ‖2) and

L(Hn+1) = ∥∥h(Wmove
n

)− Wmove
n

∥∥
2 − (

Wmove
n+1 (2) − Wmove

n (2)
)
.

In this second case, the height of the history set may increase or not. A priori, a large distance
‖h(Wmove

n )−Wmove
n ‖2 should occur with small probability since this would force the PPP to

avoid the (large) semi-ball B+(Wmove
n ,‖h(Wmove

n )−Wmove
n ‖2). However, a large part of that

semi-ball can be already covered by the history set Hn, which by definition avoids the PPP.
In this case, having a large distance ‖h(Wmove

n )−Wmove
n ‖2 becomes quite possible. Lemmas

3.2 and 3.3 allow us to overcome this obstacle and to control the growth of L(Hn).
In both situations, the sequence {L(Hn) : n ≥ 0} satisfies the following fundamental and

useful induction relation: a.s. and for any n,

(3.3) L(Hn+1) ≤ max
{
L(Hn),

∥∥h(Wmove
n

)− Wmove
n

∥∥
2

}
.

At the end of this section, we will combine these results in Lemmas 3.7 and 3.8 to get
Proposition 3.1.

3.1. How much is L(Hn) increasing?. Let us introduce some notation. For a real number
l > 0 and an integer n ≥ 0, let us set

g↑,l
n := Wmove

n + (0, l)

(recall that Wmove
n a.s. denotes a single point). Let

Cπ/2(0) := {
reiθ : r > 0, θ ∈ [π/4,3π/4]}

be the cone with apex 0 and making an angle π/4 with the vertical axis. We also define, for
x ∈ R2, Cπ/2(x) := x + Cπ/2(0).

Conditional on the current configuration (gn(u1), . . . , gn(uk),Hn), the next lemma ex-
hibits deterministic regions avoiding the history set Hn. Such regions are unexplored yet and
will allow us to control how the history set grows (see Lemma 3.3). Notice that Baccelli and
Bordenave used in [5] a similar geometric argument which is false (see their Lemma 4.2).
Actually, it is impossible to exhibit a cone, with a positive and deterministic angle and with
apex at the moving vertex Wmove

n , which almost surely avoids the history set Hn. To get such
a property, the cone has to be pushed upward and this is what we do with g

↑,l
n .

LEMMA 3.2. For all n ≥ 0 and for any l ≥ L(Hn)/2, the cone Cπ/2(g
↑,l
n ) a.s. avoids the

history set Hn, that is, Cπ/2(g
↑,l
n ) ∩ Hn = ∅.

Remark that although the unexplored cone Cπ/2(g
↑,L(Hn)/2
n ) avoids the history set Hn, it

could contain a starting point gn(ui) = ui which has not moved yet (until step n) and could
still be outside Hn.
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FIG. 4. Black vertices are Poisson points. The gray area corresponds to the history set Hn. The white point,

denoted by x, is g
↑,L(Hn)/2
n . The cone with apex x and bisector the ordinate axis is the unexplored cone and

avoids the history set Hn.

PROOF OF LEMMA 3.2. Let l ≥ L(Hn)/2. By definition of the history set Hn, we have
to check that the cone Cπ/2(g

↑,l
n ) avoids each semi-ball B+(Wmove

m ,‖Wmove
m − h(Wmove

m )‖2)

created at a previous step m < n and each semi-ball contributing to H0 (recall Assumption
(H1)). Let us denote by B+(A,R) such generic semi-ball.

By translation and symmetry, we can assume without loss of generality that g
↑,l
n = (0,0).

So Wmove
n = (0,−l). Here, we use in a crucial way that Wmove

n belongs to the bound-
ary of H+(Wmove

n (2)) \ Hn, that is, Assumption (H2). Also, by Assumption (H1), A(2) ≤
Wmove

n (2) = −l and B+(A,R) is below the horizontal line with ordinate l as l ≥ L(Hn)/2.
So, the worst case is obtained when the semi-ball B+(A,R) realizes the height L(Hn) and is
tangent to Wmove

n with a maximal ordinate A(2), that is, A = (Wmove
n (1) + 2l,Wmove

n (2)) =
(2l,−l) and R = 2l. See Figure 4 for an illustration of this worst situation.

Finally, we end with an elementary geometric computation. If the cone Cπ/2(g
↑,l
n ) overlaps

B+(A,2l) then the point M = (l/2, l/2) has to belong to B+(A,2l) since it is the closest
point to A in the cone. But ‖A − M‖2

2 = 18l2/4 > (2l)2. This concludes the proof. �

For n ≥ 0, we denote by ζn+1 the distance between g
↑,L(Hn)/2
n and its nearest Poisson point

inside the unexplored cone Cπ/2(g
↑,L(Hn)/2
n ):

(3.4) ζn+1 := inf
{∥∥g↑,L(Hn)/2

n − x
∥∥

2 : x ∈ Nn+1 ∩ Cπ/2
(
g↑,L(Hn)/2

n

)}
.

As we will consider blocks of k consecutive steps in the sequel, let us introduce for n ≥ 0,

(3.5) Xn+1 :=
k∑

j=1

(�2ζkn+j� + 1
)
.

The random variable Xn+1 is an integer-valued random variable and the reason for choos-
ing �2ζkn+j� + 1 will appear in the proof of Lemma 3.3. Later, this integer valued random
variable Xn+1 will be used to construct a discrete state space Markov chain to dominate the
“height” process L(Hn).

The next result says that when the height of the history set increases between steps kn

and k(n + 1) then the new height L(Hk(n+1)) is bounded from above by the r.v. Xn+1 which
admits an exponential tail.

LEMMA 3.3. Using the previous notation:

(i) For all n ≥ 0, the following inequality holds with probability 1:

L(Hk(n+1))1{L(Hk(n+1))>L(Hkn)} ≤ Xn+1.
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(ii) The r.v.’s {Xn+1 : n ≥ 0} are i.i.d. and satisfy ∀n,m ≥ 0,

(3.6) P(Xn+1 > m) ≤ C0e
−C1m.

PROOF. Let us first show (i). For a single trajectory (i.e., k = 1), we have a.s.

(3.7) L(Hn+1)1{L(Hn+1)>L(Hn)} ≤ �2ζn+1� + 1.

This implies that L(Hn+1) ≤ max{L(Hn), �2ζn+1� + 1}. Applying this inequality k times
leads to Item (i) for any k ≥ 2.

Denoting by y the element of the unexplored cone realizing the r.v. ζn+1, it follows:∥∥h(Wmove
n

)− Wmove
n

∥∥
2 ≤ ∥∥y − Wmove

n

∥∥
2

≤ ζn+1 + ∥∥g↑,L(Hn)/2
n − Wmove

n

∥∥
2(3.8)

= ζn+1 + L(Hn)/2.

If L(Hn+1) > L(Hn), then the last created semi-ball increases the history set. So,∥∥h(Wmove
n

)− Wmove
n

∥∥
2 ≥ L(Hn+1) ≥ L(Hn).

With (3.8), we get ζn+1 ≥ L(Hn)/2 and L(Hn+1) ≤ 2ζn+1. And (3.7) follows.
Item (ii) is mainly based on the independence between the random variables ζn+1, n ≥ 0,

which is due to the fact that independent PPPs are used for each step of the joint process
{(gn(u1), . . . , gn(uk),Hn) : n ≥ 0}. Moreover, by Lemma 3.2, the r.v. ζn+1’s are i.i.d. with an
exponential tail distribution since P(ζn+1 > r) is the probability that there is no Poisson point
in Cπ/2(0) ∩ B(0, r). The same holds for the Xn+1’s. �

3.2. How much is L(Hn) decreasing?. Now let us show that (L(Hn))n≥0 is submitted
to a “negative drift” so that the sequence regularly returns to small values. We introduce an
event of positive probability on which the ordinate of the moving vertex indeed increases of
at least 1 between the knth and k(n + 1)-th steps. Working a bit more, we will obtain as a
consequence that the height of the history set decreases by at least 1 on this event if it is
greater than κ . Notice that such event also allows to control the number of steps needed for
the ordinate of the moving vertex to reach a distance at least κ + 1 from the last good step.

For x ∈ R2 and for w, l > 0, the rectangle of width 2w and of height l, whose base is
centered at x, is denoted by

Rec(x;w, l) := x + [−w,w] × [0, l].
Thus we set

(3.9) ln := inf
{
l ≥ 0 : Area

(
Rec

(
g↑,1

n ;1, l
) \ Hn

) ≥ 1/2
}
.

In other words, ln is the random height of the rectangle centered at Wmove
n + (0,1) with

width 2 so that the area of its unexplored part becomes at least 1/2. The justification of the
constant 1/2 in the definition of ln will appear in the proof of Lemma 3.5. Besides, the overlap
of Rec(g↑,1

n ;1,L(Hn)/2) with the unexplored cone Cπ/2(g
↑,L(Hn)/2
n ) has area 1. Thanks to

Lemma 3.2, this means that a.s.

(3.10) ln ≤ L(Hn)

2
.

For any integer n ≥ 0, In+1 is the indicator random variable defined as

In+1 := 1{(Rec(g↑,1
n ;1,ln)\Hn)∩Nn+1 �=∅ and Rec(Wmove

n ;5,1)∩Nn+1=∅}.
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FIG. 5. The red rectangle represents Rec(g↑,1
n ;1, ln), where g

↑,1
n = Wmove

n + (0,1), which is partially covered

by the history set Hn (the gray regions). By definition of ln, the area of Rec(g↑,1
n ;1, ln) \ Hn is equal to 1/2. The

vertex Y is an element of W
stay
n while Z is a Poisson point of Nn+1. This picture illustrates the tricky situation

occurring in the proof of Lemma 3.5: although In+1 = 1, Wmove
n+1 (2) is not larger than Wmove

n (2) + 1 since
h(Wmove

n ) = Y .

Let us now explain the ideas behind Lemmas 3.4, 3.5 and 3.6. First, notice that Rec(g↑,1
n ;

1, ln) \ Hn and Rec(Wmove
n ;5,1) are two disjoint regions with area 1/2 and 10 respectively.

So the events indicated by the In+1’s all occur with the same fixed positive probability, de-
noted by p0 in Lemma 3.4. Such an event will be pleasant in the sense that, provided there
is no point of W

stay
n in the horizontal rectangle Rec(Wmove

n ;5,1), the ancestor h(Wmove
n ) ad-

vances by at least 1 in ordinate w.r.t. Wmove
n . Combining this with (3.10) should force the

height of the history set to decrease by at least 1 during the (n + 1)-th move. However, it can
happen that some points of W

stay
n are in Rec(Wmove

n ;5,1) (or Rec(g↑,1
n ;1, ln)) as illustrated

in Figure 5. In this case, h(Wmove
n ) ∈ W

stay
n and the increment h(Wmove

n )(2)−Wmove
n (2) can-

not be bounded from below. But, this situation corresponds to the coalescence of two paths
among the πu1, . . . , πuk . Here is the reason why we consider blocks of k consecutive steps:
on the event {∏k

j=1 Ikn+j = 1} where such pleasant events occur between the knth and the
k(n + 1)-th steps, the ordinate of the current moving vertex is forced to progress by at least 1
(Lemma 3.5) and the history set to decrease by at least 1 (Lemma 3.6).

LEMMA 3.4. Let p0 := (1 − e−λ/2)e−10λ > 0 where λ denotes the (common) intensity
of the Poisson point processes. Then, for any n ≥ 0,

P(In = 1) = p0 and P

(
k∏

j=1

Ikn+j = 1

)
= pk

0.

PROOF. Recall that the process {(gn(u1), . . . , gn(uk),Hn) : n ≥ 0} is an Fn-Markov
chain. Since Rec(g↑,1

n ;1, ln) \ Hn and Rec(Wmove
n ;5,1) are disjoint sets with constant ar-

eas, we get a.s.,

E(In+1|Fn) = P
((

Rec
(
g↑,1

n ;1, ln
) \ Hn

)∩Nn+1 �= ∅ | Fn

)
× P

(
Rec

(
Wmove

n ;5,1
)∩Nn+1 = ∅ | Fn

)
= (

1 − e−λ/2)e−10λ =: p0.

Taking expectation, P(In+1 = 1) also equals p0.
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Thus, the conditional expectation E(
∏k

j=1 Ikn+j |Fkn) can be written as

E

(
k−1∏
j=1

Ikn+jE(Ik(n+1) | Fkn,Nkn+1, . . . ,Nk(n+1)−1)
∣∣∣Fkn

)

where

E(Ik(n+1) | Fkn,Nkn+1, . . . ,Nk(n+1)−1) = E(Ik(n+1) | Fk(n+1)−1) = p0

a.s. thanks to the previous computation. Taking expectation, we get

P

(
k∏

j=1

Ikn+j = 1

)
= p0P

(
k−1∏
j=1

Ikn+j = 1

)
= pk

0 a.s.

by an immediate induction. �

LEMMA 3.5. On the event {∏k
j=1 Ikn+j = 1}, the ordinate of the moving vertex increases

by at least 1 between the kn-th and the k(n + 1)-th steps:

(3.11) Wmove
k(n+1)(2) ≥ Wmove

kn (2) + 1 a.s.

PROOF. Let us first prove it for only one path, that is, k = 1. On the event {In+1 = 1}, the
rectangle Rec(g↑,1

n ;1, ln) contains at least one Poisson point. So, X := h(Wmove
n ) = Wmove

n+1
belongs to B+(Wmove

n , ln + 2). Let us prove that X(2) ≥ Wmove
n (2) + 1. This is clear by

definition of {In+1 = 1} whenever ln ≤ 3. We can now focus on the case ln > 3. Without loss
of generality, we assume that Wmove

n = (0,0). Since k = 1 (and so W
stay
n = ∅), it suffices to

prove that the set

U := {
x ∈ R2 : 1 ≤ ∣∣x(1)

∣∣ ≤ ln + 2 and 0 ≤ x(2) ≤ 1
}

is included in Hn and, consequently, contains no Poisson point. This means that the moving
vertex will make a vertical progress of at least 1. To do so, let us remark that both points
A := (1, ln + 1/2) and B := (−1, ln + 1/2) belong to the history set Hn. Otherwise, the
region Rec(g↑,1

n ;1, ln) \ Hn would contain at least one of the two rectangles [B(1),0] ×
[ln + 1/2, ln + 1] or [0,A(1)] × [ln + 1/2, ln + 1], each of area 1/2, which is impossible by
definition of ln (recall (3.9)). Now, it is not difficult to check that any semi-ball B+(gm(u1), ·),
for 0 ≤ m ≤ n − 1, which contains A but not Wmove

n = (0,0) in its interior, also contains the
strip [1, ln + 2] × [0,1] when ln > 3. By symmetry, the same holds for the left part of U .

It remains to prove (3.11) for any k ≥ 2. If Wmove
kn+1(2) is already larger than Wmove

kn (2) + 1
then this is also the case for Wmove

k(n+1)(2). Otherwise, the ancestor of Wmove
kn coincides with an

element of W
stay
kn : this is the tricky situation described in Figure 5. Actually, the worst case is

the following: Wmove
kn , . . . ,Wmove

k(n+1)−2 are k − 1 different vertices which have all merged with
Wmove

k(n+1)−1 during the k − 1 last steps. In other words, the k paths starting from u1, . . . ,uk

were still disjoint at the knth step but have all coalesced k − 1 steps after. Then it remains to
apply the argument for k = 1 to the only remaining path, that is, to Wmove

k(n+1)−1:

Wmove
k(n+1)(2) = h

(
Wmove

k(n+1)−1
)
(2) ≥ Wmove

k(n+1)−1(2) + 1 ≥ Wmove
kn (2) + 1.

It is the above tricky situation, described in Figure 5, which justifies that we consider
blocks of k steps when defining the τj ’s. �

Lemma 3.5 leads to the next result which provides a “drift condition”: on the event
{∏k

j=1 Ikn+j = 1}, the height of the history set has to decrease by at least 1 between the
steps kn and k(n + 1), if it is larger than κ .



450 COUPIER, SAHA, SARKAR AND TRAN

LEMMA 3.6. Without loss of generality, we will assume that the constant κ appearing
in the definition of the τj ’s (3.1) is an integer larger than 6. For any n ≥ 0, on the event
{∏k

j=1 Ikn+j = 1}, we have a.s. that

L(Hk(n+1)) ≤ max
{
L(Hkn) − 1, κ

}
.

PROOF. Let n ≥ 0. Let us first assume that L(Hkn) ≤ κ . If Ikn+1 = 1 there is a Poisson
point in Rec(g↑,1

kn ;1, lkn). So, by (3.10),∥∥h(Wmove
kn

)− Wmove
kn

∥∥
2 ≤ lkn + 2 ≤ L(Hkn)/2 + 2 ≤ κ

since κ ≥ 6. By (3.3), we deduce that L(Hkn+1) is also smaller than κ . By induction, the
same holds for L(Hk(n+1)).

From now on, let us assume that L(Hkn) ≥ κ . Two cases must be distinguished.
If none of the semi-balls

B+(Wmove
kn+j ,

∥∥h(Wmove
kn+j

)− Wmove
kn+j

∥∥
2

)
, j = 0, . . . , k − 1,

generated between the (kn + 1)-th and the k(n + 1)-th steps exceed the horizontal line {x :
x(2) = Wmove

kn (2) + L(Hkn)} then

L(Hk(n+1)) ≤ L(Hkn) − (
Wmove

k(n+1)(2) − Wmove
kn (2)

) ≤ L(Hkn) − 1,

by Lemma 3.5.
Otherwise, we necessarily have

(3.12) L(Hk(n+1)) ≤ max
0≤j≤k−1

∥∥h(Wmove
kn+j

)− Wmove
kn+j

∥∥
2.

Combining Ikn+1 = 1 and (3.10), we get∥∥h(Wmove
kn

)− Wmove
kn

∥∥
2 ≤ lkn + 2 ≤ L(Hkn)/2 + 2 ≤ L(Hkn) − 1

whenever L(Hkn) ≥ κ ≥ 6. Here is the justification for the choice of κ ≥ 6. This and (3.3)
imply that L(Hkn+1) ≤ L(Hkn). Then Ikn+2 = 1 and∥∥h(Wmove

kn+1
)− Wmove

kn+1

∥∥
2 ≤ L(Hkn+1)/2 + 2 ≤ L(Hkn)/2 + 2 ≤ L(Hkn) − 1

since L(Hkn) ≥ κ . By induction, we have on {∏k
j=1 Ikn+j = 1} that, for all j ∈ {0, . . . k − 1},

L(Hkn+j ) ≤ L(Hkn) and ‖h(Wmove
kn+j ) − Wmove

kn+j‖2 ≤ L(Hkn) − 1. Hence,

max
0≤j≤k−1

∥∥h(Wmove
kn+j

)− Wmove
kn+j

∥∥
2 ≤ L(Hkn) − 1,

which by (3.12) concludes the proof. �

3.3. Synthesis. Now we are going to define inductively a discrete time integer-valued
process {Mn = Mn(u1, . . . ,uk) : n ≥ 1} whose role is to dominate the height of the history
set. Set M0 := κ+1, where κ is the integer introduced in (3.1). For n ≥ 0 given Mn, we define
Mn+1 as follows:

(3.13) Mn+1 :=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
max{Mn − 1, κ} if

(κ+1)k∏
j=1

I(κ+1)kn+j = 1,

max

{
Mn,

(κ+1)∑
j=1

X(κ+1)n+j , (κ + 1)

}
otherwise,
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where the r.v.’s Xn are defined in (3.5). The sequence {Mn : n ≥ 1} is a Markov chain with
state space {κ, κ + 1, κ + 2, . . .}. Let τM be the hitting time of κ :

(3.14) τM := inf{n ≥ 1 : Mn = κ}.
In order to hit the level κ starting from M0 = κ +1, the Markov chain (Mn) has to decrease

by 1 at least once, that is, the event

(κ+1)k∏
j=1

I(κ+1)kn+j = 1

has to occur at least once before τM . This happens with probability p
(κ+1)k
0 . By Lemma 3.5,

considering blocks of (κ + 1)k steps guarantees a progress of at least κ + 1 for the ordinate
of the moving vertex when this event happens, which is the last condition required for good
steps; see (3.1).

The r.v. Mn is built in order to dominate the height L(H(κ+1)kn).

LEMMA 3.7. The inequality L(H(κ+1)kn) ≤ Mn holds a.s. for all n ≥ 0. As a conse-
quence, the random time τ1 defined in (3.1) satisfies a.s. τ1 ≤ (κ + 1)kτM .

PROOF. Let us first prove L(H(κ+1)kn) ≤ Mn by induction. Assumption (H1) says
L(H0) ≤ κ ≤ M0. Assume that L(H(κ+1)kn) ≤ Mn for some n ≥ 0. Either∏(κ+1)k

j=1 I(κ+1)kn+j = 1, and then by Lemma 3.6,

L(H(κ+1)kn+k) ≤ max
{
L(H(κ+1)kn) − 1, κ

}≤ max{Mn − 1, κ} = Mn+1.

We can easily iterate the argument, still applying Lemma 3.6:

L(H(κ+1)kn+2k) ≤ max
{
L(H(κ+1)kn+k) − 1, κ

} ≤ Mn+1

to finally get L(H(κ+1)k(n+1)) ≤ Mn+1.

Or,
∏(κ+1)k

j=1 I(κ+1)kn+j = 0 and then, by Lemma 3.3 (i),

L(H(κ+1)k(n+1)) ≤ max
{
L(H(κ+1)kn+κk),X(κ+1)n+(κ+1)

}
≤ max

{
L(H(κ+1)kn+(κ−1)k),X(κ+1)n+κ + X(κ+1)n+(κ+1)

}
≤ max

{
L(H(κ+1)kn),X(κ+1)n+1 + · · · + X(κ+1)n+(κ+1)

}
≤ Mn+1.

This completes the proof by induction. As a consequence, at the (κ + 1)kτM -th step the
height L(H(κ+1)kτM ) is smaller than κ . Moreover, by construction of the chain (Mn), there

exists an integer m′ < τM such that
∏(κ+1)k

j=1 I(κ+1)km′+j = 1. Lemma 3.5, applied (κ + 1)

times, implies

Wmove
(κ+1)kτM (2) ≥ Wmove

(κ+1)k(m′+1)(2) ≥ Wmove
(κ+1)km′(2) + (κ + 1) ≥ Wmove

0 (2) + (κ + 1).

We finally get τ1 ≤ (κ + 1)kτM . �

A proof similar to the one of Lemma 2.6 in [22] leads to the next result.

LEMMA 3.8. For any n ∈ N, we have

P
(
τM > n

) ≤ C0e
−C1n.
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PROOF. Thanks to Proposition 5.5, Chapter 1 in [4] (see also Chapter 15 in [18]), it is
enough to show that there exists a function f : N → R+, an integer n0 and real numbers
r > 1, δ > 0 such that:

• f (l) > δ for any l ∈ N;
• E[f (M1)|M0 = l] < ∞ for any l ≤ n0;
• and E[f (M1)|M0 = l] ≤ f (l)/r for any l > n0.

Indeed, this implies the existence of some r > 1 such that E(rτM(n0)|M0 = n0) < ∞ where
τM(n0) := inf{n ≥ 1 : Mn ∈ [0, n0]}. In other words, the hitting time τM(n0) admits an ex-
ponential moment. Finally, Lemma 3.8 follows from the fact that starting from any l ≤ n0,
p

(κ+1)kn0
0 > 0 gives a lower bound for the probability that the chain hits the state κ within the

next n0 steps where p0 is defined in Lemma 3.4.
We take f : N → R+ to be f (l) := eαl where α > 0 is small enough so that E[eαY ] < ∞

with Y := max{X1 + · · · + X(κ+1), (κ + 1)}. This is possible by Lemma 3.3. So, for any
l ≤ n0,

E
[
f (M1)|M0 = l

] ≤ eαn0E
[
eα(M1−M0)|M0 = l

] ≤ eαn0E
[
eαY ] < ∞.

Then, pick r > 1 such that e−αp
(κ+1)k
0 + (1 −p

(κ+1)k
0 ) < 1/r . Using (3.13), we can write for

l ≥ n0 > κ :

E
[
eα(M1−M0)|M0 = l

]
= E

[
eα(M0−1−M0)1∏(κ+1)k

j=1 Ij=1
|M0 = l

]+E
[
eα(max(M0,Y )−M0)1∏(κ+1)k

j=1 Ij=0
|M0 = l

]
≤ e−αp

(κ+1)k
0 + (

1 − p
(κ+1)k
0

)+ e−αlE
[
1{Y>l}eαY ]

< 1/r ′,
for n0 large enough and r ′ ∈ (1, r). This completes the proof. �

We are now able to prove Proposition 3.1. As suggested by Lemma 3.7, the dominating
r.v. T occurring in Proposition 3.1 is given by (κ + 1)kτM .

PROOF OF PROPOSITION 3.1. Let us first start with the case j = 0. Lemmas 3.7 and 3.8
ensure that

P(τ1 − τ0 ≥ n | Fτ0) = P(τ1 ≥ n | F0) ≤ P
(
(κ + 1)kτM ≥ n

) ≤ C0e
−C1n

for suitable positive constants C0, C1. So, conditional to F0 (which contains the information
given by the initial configuration (u1, . . . ,uk,H0)), τ1 − τ0 is stochastically dominated by
T := (κ + 1)kτM .

Now, let us prove the result for j = 1; we will deduce the result for any j similarly. The
idea consists in working conditionally on the σ -algebra Fτ1 and applying the previous strat-
egy (i.e., Lemmas 3.2 to 3.8) to the “new starting configuration” (gτ1(u1), . . . , gτ1(uk),Hτ1).
First, remark that the elements gτ1(u1), . . . , gτ1(uk) as well as the history set Hτ1 are measur-
able w.r.t. Fτ1 : they are deterministic conditionally to Fτ1 . Assumptions (H1) and (H2) are
also clearly satisfied by the definition of the hitting time τ1 and by the construction of the
joint exploration process (see Lemma 2.1).

Then, from step τ1 onwards, we can apply the strategy developed throughout this section,
and dominate the height of the history set by a new Markov chain, say (M ′

n), built as in (3.13)
and distributed as (Mn). Hence, conditionally to Fτ1 , the increment τ2 − τ1 is stochastically
dominated by a r.v. τM ′

where τM ′
is the hitting time of κ for the chain (M ′

n). Of course, τM ′

and τM are identically distributed. �
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4. Renewal steps. From now on, we come back to the original joint exploration pro-
cess built with a single PPP N and starting from an initial configuration (u1, . . . ,uk,H0)

satisfying (H1) and (H2).
Before describing the mathematical details of renewal steps, we provide the general idea.

Let us first introduce some notation. Consider the j th good step with j ≥ 1. Let us set for any
1 ≤ i ≤ k,

g↓
τj

(ui) := (
gτj

(ui)(1),Wmove
τj

(2)
)

and g↑
τj

(ui) := (
gτj

(ui)(1),Wmove
τj

(2) + κ
)
,

respectively, the projections of gτj
(ui ) onto the horizontal axes with ordinates Wmove

τj
(2) and

Wmove
τj

(2) + κ . The vertices gτj
(ui )’s lie in the horizontal strip delimited by these two axes.

Let us now define the following “renewal” events.

DEFINITION 1. For j ≥ 1, the j th good step is called a renewal step, if the following
event, henceforth called the renewal event, Aj = Aj(u1, . . . ,uk) occurs:

Aj :=
k⋂

i=1

{
Card

((
B+(g↓

τj
(ui ), κ + 1

) \ Hτj

)∩N
) = 1

and Card
(
B+(g↑

τj
(ui ),1

)∩N
) = 1

}
.

(4.1)

Note that the definition of Aj is associated with the j th good step and then, only good
steps can be renewal steps.

The event Aj asserts that for any index i, the semi-ball B+(g
↓
τj (ui ), κ + 1) contains

only one Poisson point which is actually included in B+(g
↑
τj (ui),1). Besides, the semi-balls

B+(g
↑
τj (ui),1)’s may have nonempty intersections and the corresponding Poisson points (in-

volved by Aj ) may not necessarily be distinct in this case.
Thus we set γ0 = 0 and for � ≥ 1, let γ� = γ�(u1, . . . ,uk) be the number of good steps

required for the �th renewal step:

γ� := inf{j > γ�−1 : the event Aj occurs}.
Moreover,

(4.2) β� := τγ�

denotes the total number of steps required for �th renewal step. In the sequel, we will break
down the DSF paths starting from u1, . . . ,uk according to these renewal steps β�, � ≥ 1, in
order to obtain the searched decay of the tail distribution for the coalescence time of two paths
(Theorem 5.1 of Section 5) and the convergence of scaled DSF paths to coalescing Brownian
motions (Section 6.2.1).

In this section, we first show that the renewal times are a.s. finite and establish an expo-
nential decay for the tail distribution of the number of steps between two consecutive renewal
steps (Section 4.1) as well as the size of the region explored by the DSF paths between two
consecutive renewal steps (Section 4.2). Though we define the renewal events for k paths,
with a general integer k, only two cases will be important for us: the single path case in Sec-
tion 4.3, in which the role of the renewal event Aj is explained, and the two paths case in
Section 4.4.

Because of the event Aj concerns the PPP N inside H+(Wmove
τj

(2)) \ Hτj
, it does not

belong to the σ -field Fτj
. Hence, for any � ≥ 1, the r.v. γ� is not a (Fτj

)-stopping time.
This is the reason why we enrich the σ -field Fτj

by including the events A1,A2, . . . ,Aj . Let
S0 = F0 and, for j ≥ 1, we consider the enhanced σ -field:

(4.3) Sj := σ(Fτj
,A1,A2, . . . ,Aj ).
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For any � ≥ 0, the r.v. γ� is then a stopping time w.r.t. the filtration {Sj : j ≥ 0}. Next, we
introduce the filtration {G� : � ≥ 0} where

(4.4) G� := Sγ�
.

LEMMA 4.1. The sequence of r.v.’s {β� : � ≥ 0} denoting the total number of steps re-
quired for �th renewal step is adapted to the filtration {G� : � ≥ 0}.

4.1. Tail distribution of the number of steps between consecutive renewal steps (for k

paths). We first show that the probability of a renewal event occurring at a good step is
bounded strictly away from 0 as well as 1, conditionally on the previous steps. This will be
used to show that the renewal steps must occur and that a geometric number of good steps at
most are required to reach a renewal step. We commented that renewal events for only two
values of k, namely, k = 1 and k = 2 will be useful for us and our argument regarding decay
of renewal steps works for these two values of k only. It is certainly possible to extend this
proof for general choice of k. But it is not required for our purpose and in this paper, we make
no such attempt. The main result of the current section is the following.

PROPOSITION 4.2. There exist positive constants C0, C1 such that for any � ≥ 0, for any
n ≥ 1,

(4.5) P(β�+1 − β� ≥ n | G�) ≤ C0e
−C1n.

In order to prove the above proposition, we need the following result.

LEMMA 4.3. There exist 0 < p1 ≤ p2 < 1 depending only on k, κ , λ such that, for any
j ≥ 1, the following holds:

(4.6) P(Aj | Fτj
,1A1, . . . ,1Aj−1) = P(Aj | Fτj

) ∈ [p1,p2].
PROOF. We first show that (4.6) holds for j = 1 (where we set 1A0 = 1). Observe that

Fτ1 does not contain any information about the PPP in the half-plane H+(Wmove
τ1

(2)+κ +1).
We can choose

p2 := P
(
Card

(
B+(g↑

τ1
(u1),1

)∩N
) = 1

) = λπ

2
exp(−λπ/2)

as an upper bound strictly smaller than 1.
For a single path, the lower bound is straightforward. In fact, the event {N ∩ (B+(g

↓
τ1(u1),

κ + 1) \ B+(g
↑
τ1(u1),1)) = ∅,Card(N ∩ B+(g

↑
τ1(u1),1)) = 1} implies that renewal occurs,

and hence provides a lower bound. However, finding a strictly positive lower bound for two
path requires more work as the paths may close and corresponding regions may overlap.

For k = 2, we observe that the probability of the regeneration event P(A1) is continuous in
the location of the projected points (g

↑
τ1(u1), g

↑
τ1(u2)). Since g

↑
τ1(u1)(2) = g

↑
τ1(u2)(2), using

translation invariance of our model we further have that P(A1) is jointly continuous in r :=
|g↑

τ1(u1)(1) − g
↑
τ1(u2)(1)|, the distance between the x-coordinates of the projected points.

Whenever r > 2(κ + 1), the two regions B+(g
↓
τ1(u1), κ + 1) and B+(g

↓
τ1(u2), κ + 1) do not

overlap and due to independence of Poisson points over disjoint regions, the lower bound is
straightforward. In this situation, let us denote it as p3 > 0. Now for any r ∈ [0,2(κ + 1)] we
observe that the probability of the regeneration event is strictly positive. Hence, as an overall
lower bound for two paths, we can take

min
{
P
(
Aj | ∣∣g↑

τ1
(u1)(1) − g↑

τ1
(u2)(1)

∣∣ = r
) : r ∈ [

0,2(κ + 1)
]}∧ p3 > 0.

This completes the proof for j = 1.
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Next consider Equation (4.6) for j = 2. Recall that the random variable 1A1 depends only
on the PPP in the half-plane H−(Wmove

τ1
(2)+κ +1), where H−(l) := {x ∈ R2 : x(2) ≤ l}, and

by definition we have Wmove
τ2

(2) − Wmove
τ1

(2) > κ + 1. Given Fτ2 , since the subsequent steps
as well as the event A2 depend only on the PPP in the half-plane H+(Wmove

τ2
(2)) we have

P(A2 | Fτ2,1A1) = P(A2 | Fτ2),

and then the proof follows using the same argument as in the case of j = 1. Finally, for
general j ≥ 1, the proof follows by method of induction. �

Now we are ready to prove Proposition 4.2.

PROOF. We work conditionally on G�, for � ≥ 0. Let us first show that

P(γ�+1 − γ� > j | G�) ≤ P(G > j),

where G is a geometric r.v. with success probability p1. In other words, the r.v. γ�+1 − γ� is
stochastically dominated by G. First we prove it for � = 0. The argument for general � ≥ 0 is
the same. In what follows, Ac denotes the complement event of A:

P(γ1 − γ0 > j | G0) = P
(
Ac

1,A
c
2, . . . ,A

c
j | G0

)
= E

[j−1∏
i=1

1Ac
i
E[1Ac

j
| Sj−1,Fτj

]
∣∣∣ G0

]

= E

[j−1∏
i=1

1Ac
i
E[1Ac

j
| Fτj

]
∣∣∣ G0

]

≤ (1 − p1)E

[j−1∏
i=1

1Ac
i

∣∣∣ G0

]

≤ (1 − p1)
j ,

by Lemma 4.3 and a direct recursion. Next, we show that given the σ -field Sj , the difference
τj+1 − τj still decays exponentially fast. Observe that the events A1, . . . ,Aj−1 depend only
on the Poisson points in H−(Wmove

τj−1
(2) + κ + 1) while τj+1 − τj depends on the points in

H+(Wmove
τj

(2)), and hence are independent given Fτj
:

(4.7)

P(τj+1 − τj ≥ n | Sj )

= P
(
τj+1 − τj ≥ n | σ(Fτj

,Aj−1)
)

= P(τj+1 − τj ≥ n,Ac
j | Fτj

)

P(Ac
j | Fτj

)
1Ac

j
+ P(τj+1 − τj ≥ n,Aj | Fτj

)

P(Aj | Fτj
)

1Aj

≤ P(τj+1 − τj ≥ n | Fτj
)

(
1

P(Ac
j | Fτj

)
+ 1

P(Aj | Fτj
)

)
.

So, using Proposition 3.1 and Lemma 4.3, we obtain the expected decay:

P(τj+1 − τj ≥ n | Sj ) ≤ C0 exp (−C1n),

where C0,C1 > 0 are constants only depending on k, κ , λ.
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Therefore, we can construct a random variable T satisfying P(T ≥ n) ≤ C0 exp (−C1n)

and stochastically dominating the difference τj+1 − τj | Sj . Further, we can stochastically
bound, for any �, m, the sum

m−1∑
j=0

τγ�+j+1 − τγ�+j

conditionally to G� by T1 + · · · + Tm where the Tj ’s are i.i.d. copies of the r.v. T defined
above. Now, let ϑ > 0 small enough so that E(eϑT ) < ∞. Then, for any constant c > 0, we
write

P(β�+1 − β� ≥ n | G�)

≤ P

(�cn�∑
j=0

τγ�+j+1 − τγ�+j ≥ n
∣∣∣ G�

)
+ P

(
G > �cn� | G�

)

≤ P

(�cn�∑
j=0

Tj ≥ n

)
+ (1 − p1)

�cn�

≤ e−ϑnE
(
eϑT )�cn� + (1 − p1)

�cn�.

This completes the proof of (4.5) by choosing c = c(ϑ) sufficiently small. �

4.2. Size of the renewal blocks (for k paths). Let u1, . . . ,uk be the starting points and fix
� ≥ 0. In this section, our goal is to exhibit random rectangles containing the regions explored
by the k trajectories of the joint exploration process {(gn(u1), . . . , gn(uk)) : n ≥ 0} between
the �th and the (� + 1)-th renewal steps. We define

(4.8) W�+1 = W�+1(u1, . . . ,uk) :=
β�+1−1∑
m=β�

∥∥Wmove
m − h

(
Wmove

m

)∥∥
2.

By construction the r.v. W�+1 is such that, for any 1 ≤ i ≤ k, the random set

(4.9)
β�+1−1⋃
m=β�

B+(gm(ui),
∥∥gm(ui) − gm+1(ui )

∥∥
2

)
,

where the union is made up with all the semi-balls created by the path starting at ui between
the �th and the (�+1)-th renewal steps, is included in gβ�

(ui )+[−W�+1,W�+1]×[0,W�+1].
This rectangle is called a renewal block. This is the reason why W�+1 is termed as the size of
these renewal blocks.

It is important to remark that the k trajectories between the �th and the (� + 1)-th re-
newal steps depend only on the Poisson points inside the random set (4.9). Hence, these
k trajectories are not altered by any change of the PPP N outside the renewal blocks
gβ�

(ui) + [−W�+1,W�+1] × [0,W�+1]’s. This suggests that two paths far from each other
evolve almost independently; such argument will be used in the proof of Theorem 5.1.

PROPOSITION 4.4. There exist constants C0,C1 > 0 such that for any � ≥ 0, for all
n ≥ 1,

(4.10) P(W�+1 ≥ n | G�) ≤ C0e
−C1n

1/2
.
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This shows that the conditional distribution of W�+1 | G� is dominated by a random vari-
able W with sub-exponential tail given by C0e

−C1n
1/2

. With more works, it could be possible
to show that the distribution of W admits an exponentially decaying tail, but (4.10) will be
sufficient for our purpose.

PROOF. Let � ≥ 0. We will work conditionally on G�. Let us recall the definition of the
random variables {ζm+1 : m ≥ 0} in (3.4) which are i.i.d. with exponentially decaying tails.
Let us now show by recursion that, for any m ≥ 0,

(4.11)
∥∥Wmove

β�+m − h
(
Wmove

β�+m

)∥∥
2 ≤ max

0≤n≤m

(�2ζn+1� + 1
)+ κ + 1.

First, (4.11) holds for m = 0 since, on the renewal event,∥∥gβ�
(ui ) − h

(
gβ�

(ui)
)∥∥

2 ≤ κ + 1.

Thus, assume that (4.11) holds for a given integer m. If∥∥Wmove
β�+m+1 − h

(
Wmove

β�+m+1
)∥∥

2 ≤ max
0≤n≤m

∥∥Wmove
β�+n − h

(
Wmove

β�+n

)∥∥
2,

then (4.11) is obviously satisfied for m + 1. Otherwise, we have∥∥Wmove
β�+m+1 − h

(
Wmove

β�+m+1
)∥∥

2 > max
0≤n≤m

∥∥Wmove
β�+n − h

(
Wmove

β�+n

)∥∥
2 ≥ L(Hβ�+m),

which forces, via similar arguments to those developed in the proof of Lemma 3.3, part (i),
that ∥∥Wmove

β�+m+1 − h
(
Wmove

β�+m+1
)∥∥

2 ≤ �2ζm+2� + 1.

This concludes the proof of (4.11).
The fact that the r.v.’s {maxn≤m�2ζn+1� + κ + 2 : m ∈ Z+} are not identically distributed

prevents us from immediately obtaining exponential decay for the r.v. W�+1 | G�. So we con-
tent ourself with the following computation leading to sub-exponential decay. First,

P(W�+1 ≥ n | G�) ≤ P

(�n1/2�∑
m=0

max
l≤m

(�2ζl+1� + κ + 2
) ≥ n

)

+ P
(
β�+1 − β� ≥ n1/2 | G�

)
.

(4.12)

The second term of the left-hand side of (4.12) is bounded from above by C0e
−C1n

1/2
thanks

to Proposition 4.2 while the first one is treated as follows:

P

(�n1/2�∑
m=0

max
l≤m

(�2ζl+1� + κ + 2
) ≥ n

)

≤ P

( ⋃
m≤�n1/2�

{�2ζm+1� + κ + 2 ≥ n1/2 − 1
})

≤ (⌊
n1/2⌋+ 1

)
P
(�2ζ1� + κ + 2 ≥ n1/2 − 1

)
≤ (⌊

n1/2⌋+ 1
)
C0e

−C1(n
1/2−κ−3)

by (3.6). We conclude by adjusting the constants C0,C1 > 0. �



458 COUPIER, SAHA, SARKAR AND TRAN

FIG. 6. Left hand picture represents the two successive renewal steps with positions of the path being y1 and y2,

respectively, at those steps. The new path started from y↑
1 continues together with the original path. The right-hand

picture shows how translating to the origin provides the distribution of the increment z0.

4.3. Renewals for a single path (k = 1). Now we explore the properties of a single path
decomposed into renewal epochs using the definition of renewal steps (Definition 1). Con-
sider the path started from the single vertex u1. Suppose that we are at the j th good step τj

and let us set

y1 := gτj
(u1) = g↓

τj
(u1) = y↓

1 and y↑
1 := g↑

τj
(u1).

The realization of the renewal event Aj means that the semi-ball B+(y↓
1 , κ + 1) contains

exactly one Poisson point, say X, which is actually included in B+(y↑
1 ,1). It is important

to remark that conditionally to the occurrence of Aj , the location of the Poisson point X is

completely free inside B+(y↑
1 ,1) and it is uniformly distributed on B+(y↑

1 ,1). Let τj ′ with
j ′ > j be another good step which is the next renewal step after τj . Let y2 := gτj ′ (u1). On
the renewal event Aj , the vertex y1 is connected in one step to the (unique) Poisson point X

inside B+(y↑
1 ,1). Now let us consider a new DSF path, called a regenerated path, starting

from the projected point y↑
1 . Like y1, the projected point y↑

1 is also connected in one step to
X so that the original path (from u1) and the regenerated path (from y1) coincide beyond X;
see Figure 6.

Let us remark that by construction the two semi-balls generated by the connections of y1

and y↑
1 to the same ancestor X ∈ B+(y↑

1 ,1) are included in B+(y1, κ + 1). So no information
about the PPP,

N ∩ (
H+(y↑

1

) \ B+(y1, κ + 1)
)

is revealed.
Thus, let us think of the projected point y↑

1 as the origin. So, by translation invariance of

the Poisson process, the evolution of the regenerated path from y↑
1 until τj ′ (the next renewal

step) can be constructed as follows. Start a path from 0 until the occurrence of the first renewal
event with the following set of initial information:

(a) Distribute a single point uniformly in B+(0,1);
(b) The set (B+((0,−κ), κ + 1) \ B+(0,1)) ∩H+(0) has no point;
(c) Take an independent Poisson process on H+(0) \ (B+((0,−κ), κ + 1).

Let z0 be the position of the above path be at the first renewal step (see Figure 6). Now,
translate this path to the projected point y↑

1 to get the position of the next renewal. Therefore,
we must have that

(4.13) y2 − y1
d= z0 + (0, κ).
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Let us show the latter rigorously. Consider the process {gβ�
(u1) : � ≥ 0}, where the renewal

times β� have been introduced in (4.2). Define

(4.14) Y� = Y�(u1) := gβ�
(u1) for � ≥ 0.

PROPOSITION 4.5. The process {Y� − Y�−1 : � ≥ 2} is a sequence of i.i.d. random vec-
tors, whose distribution is given by z0 + (0, κ) where z0 is as defined in equation (4.13).

Because u1 does not benefit from a renewal environment, the first increment Y1 − Y0 =
Y1 − u1 is not distributed according to the other increments Y� − Y�−1, for � ≥ 2. Since the
definition of z0 does not depend on the starting vertex u1, the same holds for the increment
distribution, for � ≥ 2.

PROOF. Fix m ≥ 3 and Borel subsets B2, . . . ,Bm of R2. Let I�(B�) be the indicator
random variable of the event {Y� − Y�−1 ∈ B�}. Then we have

P(Y� − Y�−1 ∈ B� for � = 2, . . . ,m)

= E

(
m∏

�=2

I�(B�)

)

= E

(
E

(
m∏

�=2

I�(B�)
∣∣∣ Gm−1

))
= E

(
m−1∏
�=2

I�(B�)E
(
Im(Bm) | Gm−1

))

as the random variables I�(B�) are measurable w.r.t. Gm−1 for � = 2, . . . ,m − 1. Note that
the σ -algebra Gm−1 = Gm−1(u1) contains the information brought by the single path started
at u1 until its (m − 1)-th renewal step.

Since any renewal step is first a good step, history regions are bounded below the horizontal
line y = gβm−1(u1)(2) + κ . Therefore, only information of relevance carried at the (m − 1)-

th renewal step for constructing the path from g
↑
βm−1

(u1) is that there is exactly one point

in B+(g
↑
βm−1

(u1),1) (hence it must be uniformly distributed inside B+(g
↑
βm−1

(u1),1)) and

no point in (B+(g
↓
βm−1

(u1), κ + 1) \ B+(g
↑
βm−1

(u1),1)) ∩ H+(g
↑
βm−1

(u1)(2)). Therefore, all
information that is used to construct the path until the good step resulting in the (m − 1)-th
renewal is no more required (see Figure 6).

Together with the properties of the PPP, these observations allow us to use the discussion
before equation (4.13) to say that the conditional distribution of gβm(u1) − g

↑
βm−1

(u1) given
Gm−1 is given by z0. Therefore, we have

gβm(u1) − gβm−1(u1) | Gm−1(u1)
d= z0 + (0, κ)

so that we obtain

P(Y� − Y�−1 ∈ B� for � = 2, . . . ,m) = E

(
m−1∏
�=2

I�(B�)E
(
Im(Bm) | Gm−1

))

= P(
(
z0 + (0, κ) ∈ Bm

)
E

(
m−1∏
�=2

I�(B�)

)
.

Now, induction on m completes the proof. �

The distribution of z0 depends only on the uniformly distributed point in B+(0,1) and an
independent Poisson process on H+(0) \ B+((0,−κ), κ + 1). Therefore, from the symmetry
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property of Poisson process and symmetry of the regions considered above (by reflecting
the configuration with respect to the y-axis), we have that the first coordinate of z0 has a
symmetric distribution, which we sum up in the following.

COROLLARY 4.6. The process {Y�+1(1) − Y�(1) : � ≥ 1} is a sequence of i.i.d. random
variables, whose distribution is symmetric and independent of the starting point.

In the next section, we will show that the increment random variable Y�+1 − Y� has mo-
ments of all orders. This and Corollary 4.6 imply that a (single) diffusively scaled DSF path
converges to the Brownian motion.

4.4. Renewal for two paths (k = 2). Let us consider two starting points u1, u2 with
u2(1) ≥ u1(1) and |u2(2)−u1(2)| ≤ κ . Like the single path case, our idea is again to start two
regenerated paths from the projected points g

↑
β�

(u1) and g
↑
β�

(u2). For � ≥ 0 and i ∈ {1,2}, we
define

Y�(ui ) := g
↑
β�

(ui).

Moreover, the random variable Z� denotes the distance between the two trajectories started
at u1 and u2 projected on the horizontal axis and at the �th renewal step:

(4.15) Z� = Z�(u1,u2) := g
↑
β�

(u2)(1) − g
↑
β�

(u1)(1).

As the DSF paths are noncrossing, the process {Z� : � ≥ 0} is nonnegative with zero being an
absorbing state.

Writing

|Z�+1 − Z�| ≤ ∣∣g↑
β�+1

(u2)(1) − g
↑
β�

(u2)(1)
∣∣+ ∣∣g↑

β�+1
(u1)(1) − g

↑
β�

(u1)(1)
∣∣

≤ ∥∥Y�+1(u2) − Y�(u2)
∥∥

2 + ∥∥Y�+1(u1) − Y�(u1)
∥∥

2

≤ 2W�+1,

where W�+1 is the size of the (� + 1)-th renewal block, defined in (4.8), we immediately
deduce from Proposition 4.4 the next result.

COROLLARY 4.7. For any two vertices u1,u2 ∈ R2 with u1(1) < u2(1) and |u1(2) −
u2(2)| ≤ κ ,

(1) the random variables Y�+1(ui) − Y�(ui ), for � ≥ 0 and i ∈ {1,2} have moments of all
orders and

(2) the increments of the process {Z� : � ≥ 0} have moments of all orders.

There is a crucial difference between the single path case and the two paths case. Indeed,
at the �th renewal step, if the distance between gβ�

(u1) and gβ�
(u2) is smaller than κ + 1,

it may happen that the two paths coalesce during the next step; see Figure 7. When this is
the case, the two original paths (from u1 and u2) coincide beyond this renewal step and are
no longer equal to the two regenerated paths (from g

↑
β�

(u1) and g
↑
β�

(u2)). They are actually
equal to one of the regenerated paths. This means in particular that coalescence between the
two original paths may occur before that the process {Z� : � ≥ 0} hits zero.

However, if the vertices gβ�
(u1) and gβ�

(u2) are far away (at least κ + 1), it is easy to
observe that the original paths and the regenerated paths starting from the projected points
g

↑
β�

(u1) and g
↑
β�

(u2) would proceed together.



THE DSF CONVERGES TO THE BW 461

FIG. 7. This picture represents a renewal step of the joint exploration process {(gn(u1), gn(u2),Hn) : n ≥ 0}
(with only k = 2 trajectories): the event Aj occurs where β = τj . The red dots represent g

↑
β (u1) and g

↑
β (u2).

Observe that the vertex gβ(u1) connects to gβ(u2) and not to the uniformly distributed point in B+(g
↑
β (u1),1),

that is, the two trajectories of the DSF merge.

Let us focus now on the case where Z� = g
↑
β�

(u2)(1) − g
↑
β�

(u1)(1) is large, precisely on
F� := {W�+1 ≤ Z�/3}. On this event, the regions explored by the DSF paths between the �-th
and the (� + 1)-th renewal steps are each included in rectangles centered at the respective
projected vertices g

↑
β�

(u1) and g
↑
β�

(u2), and of width W�+1 smaller than Z�/3. So they are
disjoint. We can then proceed to the following transformation: we interchange the point con-
figurations of both disjoint rectangles without changing the outside. Let us denote N ∗ the
resulting PPP. This transformation provides

Z�+1
(
N ∗)− Z�

(
N ∗) = −(

Z�+1(N ) − Z�(N )
)
,

that is, the distribution of the increment Z�+1 − Z� is symmetric on the event F� = {W�+1 ≤
Z�/3}. Details are given in the proof below. This is the main result of Corollary 4.8 and this
will be crucially used to obtain the tail decay of the coalescing time; see Section 5.

In other words, the next result says that, far from the origin, the process {Z� : � ≥ 0}
behaves like a symmetric random walk satisfying certain moment bounds.

COROLLARY 4.8. Fix any two vertices u1,u2 ∈ R2 with u1(1) ≤ u2(1) and |u2(2) −
u1(2)| ≤ κ . Then there exist positive constants M0, C0, C1, C2 and C3 such that:

(i) For any � ≥ 0, let us set F� := {W�+1 ≤ Z�/3}. Then, on the event {Z� ≥ M0}, we
have P(F c

� | G�) ≤ C3/(Z�)
3 and

E
[
(Z�+1 − Z�)1F�

| G�

] = 0.

(ii) For any � ≥ 0, on the event {Z� ≤ M0},
E
[
(Z�+1 − Z�) | G�

] ≤ C0.

(iii) For any � ≥ 0 and m > 0, there exists cm > 0 such that, on the event {Z� ∈ (0,m]},
P(Z�+1 = 0 | G�) ≥ cm.

(iv) For any � ≥ 0, on the event {Z� > M0},
E
[
(Z�+1 − Z�)

2 | G�

] ≥ C1 and E
[|Z�+1 − Z�|3 | G�

] ≤ C2.

PROOF. For part (i), take M0 sufficiently large and Proposition 4.4 gives us that on the
event {Z� ≥ M0}, we have P(F c

� | G�) ≤ C3/(Z�)
3 for some positive constant C3.

Now let us consider the trajectories of two paths starting from the vertices u1 and u2
between the �th and (� + 1)-th renewal steps. Note that the trajectories of these regener-
ated paths can be constructed with a resampled PPP over the region H+(Wmove

β�
(2) + κ) \
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(B+(g
↓
β�

(u1), κ + 1) ∪ B+(g
↓
β�

(u2), κ + 1)) and resampled independent uniform distribu-

tions over the (disjoint) semi-balls B+(g
↑
β�

(u1),1) and B+(g
↑
β�

(u2),1) without changing the
joint distribution of the trajectories. Recall that there are no Poisson points in the region

2⋃
i=1

(
H+(Wmove

β�
(2) + κ

)∩ B+(g↓
β�

(ui), κ + 1
)) \ B+(g↑

β�
(ui ),1

)
.

We construct a new point process in the following way:

(1) Given G�, the realizations of the point process in the rectangles R1 = g
↑
β�

(u1) +
[−Z�/3,Z�/3]×[0,Z�/3] and R2 = g

↑
β�

(u2)+[−Z�/3,Z�/3]×[0,Z�/3] are interchanged.
(2) The realization of the PPP N outside these two rectangles is kept as it is.

We should note that both these rectangles R1 and R2 contain the unique Poisson point uni-
formly distributed over the semi-balls B+(g

↑
β�

(u1),1) and B+(g
↑
β�

(u2),1) as well. We ob-
serve that the newly constructed point process N ∗ has the same distribution as a PPP con-
ditioned to have a unique point in the semi-balls B+(g

↑
β�

(ui ),1) and no point in the regions

H+(Wmove
β�

(2) + κ) ∩ B+(g
↓
β�

(ui), κ + 1)) \ B+(g
↑
β�

(ui ),1) for i = 1,2.
Now, we restrict our attention to the event F� = {W�+1 ≤ Z�/3} and consider the trajec-

tories in between �th and (� + 1)-th renewal steps using the newly constructed PPP N ∗. We
remark that for this “new” regenerated paths, the number of steps until the next renewal step
and the size of the corresponding renewal block have not changed. Moreover, the increment
of each path between the �th and the (� + 1)-th renewal steps have been interchanged. This
means that the increment Z�+1 −Z� has become −(Z�+1 −Z�). This completes the proof of
Item (i).

Item (ii) follows readily from the fact that

E
[
(Z�+1 − Z�) | G�

] ≤ E
[|Z�+1 − Z�| | G�

] ≤ E(2W�+1 | G�) < ∞,

since conditionally on G�, W�+1 admits subexponential decay (see Proposition 4.4 for de-
tails).

For Item (iii), we recall the fact that the σ -field G� does not contain any information about
the PPP in the region H+(Wmove

β�
(2)+κ)\(B+(g

↓
β�

(u1), κ +1)∪B+(g
↓
β�

(u2), κ +1)). Hence,
it is not difficult to convince oneself that the conditional probability P(Z�+1 = 0 | G�) is
strictly positive (suitable configurations are easy to build).

It then remains to check Item (iv). We observe that

E
[
(Z�+1 − Z�)

2 | G�

] ≥ E
[
(Z�+1 − Z�)

21(|Z�+1−Z�|2≥1) | G�

]
≥ P

(
(Z�+1 − Z�)

2 ≥ 1 | G�

)
.

Again on the event {Z� > M0}, it is not difficult to observe that the probability P((Z�+1 −
Z�)

2 ≥ 1 | G�) is strictly positive. For the third moment,

E
[
(Z�+1 − Z�)

3 | G�

] ≤ E
[|Z�+1 − Z�|3 | G�

] ≤ E
(
(2W�+1)

3 | G�

)
< ∞. �

5. Tail distribution for the coalescence time of two paths. In this section, we start
with two points u1, u2 in R2 such that u1(1) < u2(1) and u1(2) = u2(2) = 0. The initial
history set H0 is assumed empty. As explained in the Introduction, a key result for proving
the convergence of the DSF to the BW, lies in a precise estimate for the tail distribution of
the coalescence time of two paths of the DSF:

(5.1) T (u1,u2) := inf
{
t ≥ 0 : πu1(t) = πu2(t)

}
,
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where πui = (πui (t))t≥0 denotes the parametrization of the path πui . This random time is
known to be almost surely finite [13]. In this section, we prove the following theorem on the
tail decay of the coalescing time T (u1,u2) of two DSF paths πu1 and πu2 .

THEOREM 5.1. Assume u2(1) − u1(1) > 0 and u2(2) = u1(2) = 0. There exists a con-
stant C0 > 0 which does not depend on u1, u2 such that, for any t > 0,

P
(
T (u1,u2) > t

) ≤ C0√
t

max
{
1,u2(1) − u1(1)

}
.

In order to prove Theorem 5.1, we develop a robust technique to obtain such an estimate
for certain class of processes which need not be Markov and can be applied to a large class of
models (see Remark 5.8). We will show that processes which behave like symmetric random
walks away from the origin and satisfy certain moment bounds belong to this class (for a
precise statement we refer to Corollary 5.6). As a consequence, Corollary 4.8 allows us to
apply this technique for the DSF paths and gives a suitable tail decay in terms of number of
renewal steps. With some additional work, we obtain the tail distribution of coalescing time.

For the sequel, it will be crucial that the factor u2(1) − u1(1) occurs in the upper bound
of P(T (u1,u2) > t). Theorem 5.1 will be applied, in the proofs of criteria (ii) and (iv) of
Theorem 6.3, to starting points satisfying at each time u2(1) − u1(1) ≥ 1.

5.1. A general result for upper bounding hitting time tails. For this section, we introduce
the following notation: for a discrete-time process {Yt : t ≥ 0} taking nonnegative values, let
νY be the first hitting time to 0, that is,

(5.2) νY := inf{t ≥ 1 : Yt = 0}.
In this section, we obtain tail decay for the hitting time of 0 for certain class of processes

which need not to be Markov. To start with, we assume that the process is supermartingale.

THEOREM 5.2. Let {Yt : t ≥ 0} be a {Gt : t ≥ 0} discrete-time adapted stochastic process
taking values in R+. Suppose that:

(i) For any t ≥ 0, on the event {Yt > 0} we have

E
[
(Yt+1 − Yt ) | Gt

] ≤ 0 a.s.

(ii) There exist constants C0,C1 > 0 such that for any t ≥ 0, we have

E
[
(Yt+1 − Yt )

2 | Gt

] ≥ C0 and E
[|Yt+1 − Yt |3 | Gt

] ≤ C1,

on the event {Yt > 0}.
Then νY < ∞ almost surely. Further, there exists a constant C2 > 0 such that for any y > 0
and any integer n,

P
(
νY > n | Y0 = y

) ≤ C2y√
n

.

PROOF. We will denote the conditional probability and the conditional expectation given
Y0 = y as Py and Ey , respectively. The proof is divided into three steps.

Step 1: Assume that there exist constants C3, θ0 > 0 such that for all 0 < θ < θ0

(5.3) Ey

(
exp

(−C3θ
2νY )) ≥ exp(−θy).
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Using that x �→ 1 − exp(−C3θ
2x) is a nondecreasing function for any θ > 0, the Markov

inequality and (5.3), we get

Py

(
νY > n

) ≤ Ey(1 − exp(−C3θ
2νY ))

1 − exp(−C3θ2n)
≤ 1 − exp(−θy)

1 − exp(−C3θ2n)

provided that θ < θ0. Hence, for θ = 1/
√

n with n > 1/θ2
0 ,

Py

(
νY > n

) ≤ 1 − exp(−y/
√

n)

1 − exp(−C3)
≤ y√

n(1 − exp(−C3))
,

which is the announced result with C2 = (1 − exp(−C3))
−1.

Step 2: It remains to prove the estimate (5.3) on the Laplace transform of νY . To do it, we
use martingale techniques. For θ > 0 and j ≥ 0, let us set

ψθ,j := E
(
exp

(−θ(Yj+1 − Yj )
) | Gj

)
.

Thus we define a discrete time process as follows: Z0 := exp(−θY0) = exp(−θy) P-a.s. and
for t ≥ 1,

(5.4) Zt := exp(−θYt )∏t−1
j=0 ψθ,j

.

This process is a {Gt : t ≥ 0}-martingale since

E(Zt+1 | Gt ) = E

[
exp(−θ(Yt+1 − Yt )) exp(−θYt )∏t

j=0 ψθ,j

∣∣∣ Gt

]

= Zt

ψθ,t

E
[
exp

(−θ(Yt+1 − Yt )
) | Gt

] = Zt .

Then (Zt∧νY )t≥0 is also a nonnegative {Gt : t ≥ 0}-martingale and for any t ≥ 0,

(5.5) Ey(Zt∧νY ) = Ey(Z0) = exp(−θy).

For the moment, let us assume that there exist constants C3, θ0 > 0 such that for all θ ∈
(0, θ0) and for all index t ,

(5.6) exp
(−θYt∧νY − (

t ∧ νY )C3θ
2) ≥ Zt∧νY .

Assuming this, we first show that P(νY < ∞) = 1. For any ω such that νY (ω) < ∞, we
obtain that, letting by t ↑ ∞,

exp
(−θYt∧νY − (

t ∧ νY )C3θ
2) → exp

(−θYνY − νY C3θ
2) = exp

(−νY C3θ
2)

since YνY (ω)(ω) = 0. On the other hand, for ω such that νY (ω) = ∞, we get

exp
(−θYt∧νY − (

t ∧ νY )C3θ
2) ≤ exp

(−(
t ∧ νY )C3θ

2) → 0,

as C3 is positive and Yt is nonnegative. We observe that exp(−θYt∧νY − (t ∧ νY )C3θ
2) is

smaller than 1 for all t since Yt is nonnegative. Applying the dominated convergence theorem,
along with (5.6) and (5.5), we can write:

(5.7)
Ey

(
1{νY <∞} exp

(−C3θ
2νY )) = lim

t→∞Ey

(
exp

(−θYt∧νY − (
t ∧ νY )C3θ

2))
≥ lim sup

t→∞
Ey(Zt∧νY ) = exp(−θy).
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Next, we let θ ↓ 0 in (5.7). Again applying the dominated convergence theorem, we obtain
that Ey(1{νY <∞} exp(−C3θ

2νY )) → Py(ν
Y < ∞) while the right-hand side of the above in-

equality converges to 1. Thus, we have Py(ν
Y < ∞) ≥ 1. Now, using the fact that {νY < ∞}

almost surely in (5.7), we obtain the desired relation (5.3).
Step 3: If there exist constants C3, θ0 > 0 such that, for any θ ∈ (0, θ0) and any j ∈

{0,1, . . . , t ∧ νY − 1},
(5.8) log(ψθ,j ) ≥ C3θ

2

then
∑t∧νY −1

j=0 log(ψθ,j ) ≥ (t ∧ νY )C3θ
2 from which (5.6) easily follows. We observe that,

for any x ∈ R, by Taylor’s expansion, ex = 1 + x + x2/2 + x3/6 + ex0x4
0/4! where x0 is

some point in between 0 and x. Thus, for all x ∈R, ex ≥ 1 + x + x2/2 + x3/6. Now, fix any
index j ∈ {0,1, . . . , t ∧ νY − 1} so that Yj > 0. Using hypotheses (i) and (ii), we have, for
any θ ∈ [0,∞),

ψθ,j = E
(
e−θ(Yj+1−Yj ) | Gj

)
≥ 1 − θE(Yj+1 − Yj | Gj ) + θ2

2
E
(
(Yj+1 − Yj )

2 | Gj

)− θ3

6
E
(
(Yj+1 − Yj )

3 | Gj

)
≥ 1 + C0

θ2

2
− C1

θ3

6
.

The constants C0, C1 do not depend on j . The function θ ∈ [0,∞) �→ 1 + C0θ
2/2 − C1θ

3/6
is continuous, equal to 1 at θ = 0 and increasing on the neighborhood of 1. Hence, it is
possible to pick θ0 > 0 such that for all 0 < θ < θ0, 1 < 1 + C0θ

2/2 − C1θ
3/6 < 2. Since

log(x) ≥ (x − 1)/2 for x ∈ (1,2), we obtain for any 0 < θ < θ0,

1

θ2 log(ψθ,j ) ≥ 1

θ2 log
(

1 + C0
θ2

2
− C1

θ3

6

)
≥ C0

4
− C1θ

12
.

We then deduce (5.8) for θ0 > 0 small enough and C3 = C0/8. �

REMARK 5.3. If we use the bound ex ≥ 1 + x + (x+)2/2 for x ∈ R where x+ =
max(x,0), the requirements in (ii) could be reduced to E[((Yt+1 − Yt )

+)2 | Gt ] ≥ C0 on
the set {Yt > 0}.

Theorem 5.2 assumes the supermartingale structure which is often not available for the
whole set of values that the process may take. Next, we prove a result which only assumes
the supermartingale structure when the process is away from the origin.

THEOREM 5.4. Let {Yt : t ≥ 0} be a {Gt : t ≥ 0} adapted stochastic process taking values
in R+. Suppose that there exist positive constants M , C0, C1, C2 and 0 < c̃0 < 1 such that

(i) for any t ≥ 0,

E[Yt+1 − Yt | Gt ] ≤ C01{Yt∈(0,M]};
(ii) for any t ≥ 0,

P(Yt+1 = 0 | Gt ) ≥ c̃0 on the event
{
Yt ∈ (0,M]};

(iii) for any t ≥ 0, on the event {Yt > M}, a.s. we have

E
[
(Yt+1 − Yt )

2 | Gt

] ≥ C1 and E
[|Yt+1 − Yt |3 | Gt

] ≤ C2.
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Then νY < ∞ almost surely. Further, there exist positive constants C3, C4 such that for any
y > 0 and any integer n,

P
(
νY > n | Y0 = y

) ≤ C3 + C4y√
n

.

PROOF. The proof follows similar steps as in the proof of Theorem 5.2. Again we use
the same notation as in the previous theorem and the proof is divided into steps.

We will show in Step 1 that there exist constants C4,C5 > 0, 0 < θ0 < − log(1− c̃0)/(2C5)

such that for all 0 < θ < θ0

(5.9) Ey

(
exp

(−C4θ
2νY )) ≥ e−2θye−2C5θ

1 − (1 − c̃0)e
2C5θ

c̃0
.

Choosing θ = 1/
√

n as earlier and making few algebraic simplifications, we have the desired
result.

Step 1: To obtain (5.9), we consider the same exponential martingale again. For θ > 0, we
set Z0 := exp(−θY0) = exp(−θy) P-a.s. and for t ≥ 1,

Zt := exp(−θYt )∏t−1
j=0 ψθ,j

,

where ψθ,j is as defined in (5.4).
Let us define Tt as the number of visits of the process to the set (0,M] up to time t , that is,

(5.10) Tt =
t∑

j=0

1{Yj∈(0,M]}.

Assume that there exist constants C6, C7 and θ0 > 0 such that for all θ ∈ (0, θ0) and for all
index t ≥ 0,

(5.11) exp
(−θYt∧νY − (

t ∧ νY )C6θ
2 + θC7Tt∧νY −1

) ≥ Zt∧νY .

This will be proved in Step 2.
First, we argue that νY < ∞ almost surely. Consider the case y > M . Let us take Y

(M)
t :=

Yt1{Yt>M}. We observe that the conditions of Theorem 5.2 are satisfied by the process {Y (M)
t :

t ≥ 0}, and hence by the previous Theorem the process Y
(M)
t will hit 0 in finite time, that is,

the process Yt will enter the set [0,M] in finite time. If, at this point, the process {Yt } is
already at 0, we are done. Otherwise, by assumption (ii), it has a strictly positive probability
c̃0 of hitting 0 at the next step. So, in finitely many steps, the process will either hit 0, which
again shows that νY < ∞ almost surely, or will go out to the set (M,∞). In the latter case,
we are back to the starting situation. So, again the process will hit the set [0,M] in finite
time and so on. Since c̃0 > 0, the process can only go out of (0,M] to (M,∞) finitely many
times, before it hits 0. Thus, the process will hit the set 0 in finite time almost surely. When
the process starts in (0,M], the situation is as above without having first to hit the set [0,M].
So, in all cases, νY < ∞ almost surely.

Now we observe that Tt∧νY −1 is a nondecreasing in t , and hence converges to TνY −1 as
t ↑ ∞. Since at each time point the process is in the set (0,M], there is at least a probability of
c̃0 of hitting 0, the number of visits in (0,M] before hitting 0 is stochastically dominated by a
geometric random variable G (the total number of trials before a success) with probability of
success c̃0. Thus, TνY −1 is finite almost surely and is stochastically dominated by the above
described geometric random variable G.

Now, we impose further restriction on θ0. Assume that θ0 < − log(1 − c̃0)/(2C7). Hence,
we note that, for 0 < θ < θ0, we have Ey(exp(2θC7G)) < +∞. Letting t ↑ ∞ in (5.11), we
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have that the left-hand side converges to exp(−C6θ
2νY + θC7TνY −1). Furthermore, for any

t ≥ 0, the left-hand side is bounded by exp(θC7Tt∧νY −1) ≤ exp(θC7TνY −1). Since TνY −1 is
stochastically dominated by G and Ey(exp(θC7G)) < ∞, the dominated convergence theo-
rem may be applied to conclude

exp(−θy) = lim
t→∞Ey(Zt∧νY )

≤ lim
t→∞Ey

[
exp

(−θYt∧νY − (
t ∧ νY )C6θ

2 + θC7Tt∧νY −1
)]

= Ey

[
exp

(−C6θ
2νY + θC7TνY −1

)]
≤ (

Ey

[
exp

(−2C6θ
2νY )])1/2(

Ey

[
exp(2θC7TνY −1)

])1/2

≤ (
Ey

[
exp

(−2C6θ
2νY )])1/2(

Ey

[
exp(2θC7G)

])1/2
,

where the inequality in fourth line is obtained by applying Cauchy–Schwarz inequality and
where the final inequality is obtained by stochastic domination. By choice of θ0, the moment
generating function of G is finite for 0 < θ < θ0. Using the expression of G and squaring the
right-hand side, we obtain the inequality in (5.9).

Step 2: To obtain (5.11), we follow similar steps. Fix any index j ∈ {0,1, . . . , t ∧ νY − 1}
so that Yj > 0. If Yj > M , we have, as earlier, for suitable choice of θ1 > 0,

log(ψθ,j ) ≥ C8θ
2

for 0 < θ < θ1. For the case Yj ∈ (0,M], we note that ex = 1 + x + ex0x2/2 for some x0 in
between 0 and x so that ex ≥ 1 + x. Thus, we have

ψθ,j = E
(
e−θ(Yj+1−Yj ) | Gj

) ≥ 1 − θE(Yj+1 − Yj | Gj ) ≥ 1 − C0θ.

Note that for θ2 = 1/(2C0) > 0, we have for all 0 < θ < θ2 that 1 > 1 − C0θ > 1/2. Since
log(x) ≥ 2(x − 1) for x ∈ (1/2,1), we obtain for any 0 < θ < θ2,

log(ψθ,j ) ≥ −2C0θ

for 0 < θ < θ2. Combining these two inequalities, for 0 < θ < min{θ1, θ2,1} = θ0, we have

t∧νY −1∑
j=0

log(ψθ,j ) ≥ C8θ
2

t∧νY −1∑
j=0

I
({

Yj ∈ (M,∞)
})− 2C0θ

t∧νY −1∑
j=0

I({Yj ∈ (
0,M]})

= C8θ
2(t ∧ νY − Tt∧νY −1

)− 2C0θTt∧νY −1

≥ C8θ
2(t ∧ νY )− (2C0 + C8)θTt∧νY −1.

This completes the proof of (5.11). �

REMARK 5.5. Here also, we can use the bound ex = 1 + x + (x+)2/2 for x ∈ R. In such
a case, we can replace condition (iii) by E[((Yt+1 − Yt )

+)2 | Gt ] ≥ C0 on the set {Yt > M}.

Finally, we deal with situations where the increments of the process {Yt : t ≥ 0} have a null
expectation on an event with high probability. This is typically the case when the considered
process closely resembles to a random walk when it is far from the origin.

COROLLARY 5.6. Let {Yt : t ≥ 0} be a {Gt : t ≥ 0} adapted stochastic process taking
values in R+. Let νY := inf{t ≥ 1 : Yt = 0} be the first hitting time to 0. Suppose for any t ≥ 0
there exist positive constants M0, C0, C1, C2, C3 such that:
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(i) There exists an event Ft such that, on the event {Yt > M0}, we have P(F c
t | Gt ) ≤

C0/Y 3
t and

E
[
(Yt+1 − Yt )1Ft | Gt

] = 0.

(ii) For any t ≥ 0, on the event {Yt ≤ M0},
E
[
(Yt+1 − Yt ) | Gt

] ≤ C1.

(iii) For any t ≥ 0 and m > 0, there exists cm > 0 such that, on the event {Yt ∈ (0,m]},
P(Yt+1 = 0 | Gt ) ≥ cm.

(iv) For any t ≥ 0, on the event {Yt > M0}, we have

E
[
(Yt+1 − Yt )

2 | Gt

] ≥ C2 and E
[|Yt+1 − Yt |3 | Gt

] ≤ C3.

Then νY < ∞ almost surely. Further, there exist positive constants C4, C5 such that for any
y > 0 and any integer n,

P
(
νY > n | Y0 = y

) ≤ C4 + C5y√
n

.

Recall that, by Corollary 4.8, the four hypotheses (i)–(iv) of Corollary 5.6 are satisfied by
the process {Z� : � ≥ 0} defined in (4.15) by Z� = g

↑
β�

(u2)(1) − g
↑
β�

(u1)(1).

PROOF. Let us define φ : [0,∞) → [0,∞) by

φ(u) = 1 + 1

(1 + u)1/3 .

Clearly, φ is positive, in fact, 1 ≤ φ(u) ≤ 2 for all u ∈ [0,∞). Furthermore,

φ(1)(u) = − 1

3(1 + u)4/3 , φ(2)(u) = 4

9(1 + u)7/3 and

φ(3)(u) = − 28

27(1 + u)10/3 < 0.

Now define the function f : [0,∞) → [0,∞) by f (0) = 0 and for x > 0, f (x) = ∫ x
0 φ(u)du.

Then f (1)(u) = φ(u) and f (k)(u) = φ(k−1)(u) for k ≥ 2. Since φ is positive, the function f

is strictly increasing.
Define the process Zt = f (Yt ) for all t ≥ 0. Since f is strictly increasing, we observe that

Zt = 0 if and only if Yt = 0. Therefore, we have that νY = νZ . We choose M ≥ f (M0) so that
the function C(1+u)7/3 −3C2u

2(1+u)+4C3u
2 < 0 for all u > M where C = C3/C

2/3
0 . We

show that for M , the process {Zt : t ≥ 0} satisfy the conditions of Theorem 5.4. Therefore,
using Theorem 5.4, for suitable constants C4,C5 > 0, we conclude that

P
(
νY > n|Y0 = y

) = P
(
νZ > n|Z0 = f (y)

) ≤ C4 + C5f (y)√
n

≤ C4 + 2C5y√
n

using the fact that f (1)(u) = φ(u) ≤ 2 for u > 0.
To verify the conditions of Theorem 5.4 for the process {Zt : t ≥ 0}, we have that (Zt+1 −

Zt)
2 = (f (Yt+1)−f (Yt ))

2 = (f (1)(W)(Yt+1 −Yt ))
2 = (φ(W))2(Yt+1 −Yt )

2 ≥ (Yt+1 −Yt )
2

where W is some point between Yt and Yt+1. Similarly, |Zt+1 − Zt |3 ≤ 8|Yt+1 − Yt |3. Thus,
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condition (iii) of Theorem 5.4 follows easily from (iv) and the choice of M . Also, condition
(ii) is satisfied with c̃0 = cM , and it is easy to check that

E(Zt+1 − Zt | Gt )

= E
(
f (Yt+1) − f (Yt ) | Gt

)
≤ f (1)(Yt )E(Yt+1 − Yt | Gt )

≤ 2C11{Yt∈(0,M0]} + 2C
1/3
3 1{Yt∈(M0,∞)},

where we have used the fact that f (2)(u) = φ(1)(u) < 0 for all u > 0 in the Taylor’s expan-
sion. Finally, we have to show that when Zt > M , E(Zt+1 − Zt | Gt ) ≤ 0. Using Taylor’s
expansion again and the fact that f (4)(u) < 0, we have

E(Zt+1 − Zt | Gt ) = E
(
f (Yt+1) − f (Yt ) | Gt

)
≤ f (1)(Yt )E(Yt+1 − Yt | Gt ) + f (2)(Yt )

2
E
(
(Yt+1 − Yt )

2 | Gt

)
+ f (3)(Yt )

6
E
(
(Yt+1 − Yt )

3 | Gt

)
≤ 2

∣∣E(Yt+1 − Yt | Gt )
∣∣+ f (2)(Yt )

2
E
(
(Yt+1 − Yt )

2 | Gt

)
+ f (3)(Yt )

6
E
(
(Yt+1 − Yt )

3 | Gt

)
.

We observe the second term is bounded by −C2/[3(1+Yt )
4/3] while the last term is bounded

by 4C3/[9(1 + Yt )
7/3]. The first term is broken into two parts and the choice M ensures that

Yt > M0 and we have∣∣E(Yt+1 − Yt | Gt )
∣∣

= ∣∣E((Yt+1 − Yt )1Ft | Gt

)+E
(
(Yt+1 − Yt )1Fc

t
| Gt

)∣∣
= ∣∣E((Yt+1 − Yt )1Fc

t
| Gt

)∣∣
≤ E

(|Yt+1 − Yt |1Fc
t

| Gt

)
≤ [

E
(|Yt+1 − Yt |3 | Gt

)]1/3[
P
(
Fc

t | Gt

)]2/3

≤ C
1/3
3

[
C0/Y 3

t

]2/3 = C′
3

Y 2
t

.

Putting back, we have that

E(Zt+1 − Zt | Gt )

≤ 2
C′

3

Y 2
t

− C2

3(1 + Yt )4/3 + 4C3

9(1 + Yt )7/3

= 1

9Y 2
t (1 + Yt )7/3

[
C(1 + Yt )

7/3 − 3C2Y
2
t (1 + Yt ) + 4C3Y

2
t

]
< 0

whenever Yt > M0. This completes the proof. �
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5.2. Tail distribution of coalescence time for DSF paths. Let us denote by ν = ν(u1,u2)

the number of (renewal) steps required by the process {Z� : � ≥ 1} to hit 0:

(5.12) ν := inf{� ≥ 1 : Z� = 0}.
Clearly the ordinate Tν := gβν (u1)(2) − u1(2) gives an upper bound for the coalescence time
T (u1,u2) of the two paths πu1 and πu2 . To establish Theorem 5.1, we first focus on ν.
Combining Corollaries 4.8 and 5.6, we immediately get the following.

PROPOSITION 5.7. There exist a positive constant C0 such that for any integer n,

(5.13) P(ν > n) ≤ C0√
n

max
{
1,u2(1) − u1(1)

}
.

The above proposition allows us to prove Theorem 5.1.

PROOF OF THEOREM 5.1. It is easy to observe that

gβν (u1) = gβν (u2) implies that gm(u1) = gm(u2)

for some m such that m ≤ βν . In other words,

Tν := gβν (u1)
↑(2) − u1(2) = gβν (u1)

↑(2) − u2(2)

dominates the actual coalescing time T (u1,u2) of the two paths. For any � ≥ 0, clearly the
time taken between �th and � + 1-th renewals are dominated by the width random variable
W�+1 as defined in (4.8). Consider an i.i.d. sequence {Wi : i ≥ 1}, each having the same dis-
tribution as W , where W is a random variable with subexponentially decaying tail such that
the conditional distribution of W�+1 | G� is dominated by W (for details see Proposition 4.4).
Choose c = 1/(E(2W)) and we have

P(Tν > t) ≤ P

(�ct�+1∑
�=1

W� ≥ t

)
+ P(ν > ct)

≤ P

(�ct�+1∑
�=1

(
W� −E(W)

) ≥ t
(
1 − cE(W)

))+ C0√
ct

max
{
1,u2(1) − u1(1)

}

≤ Var(
∑�ct�+1

�=1 W�)

(t (1 − cE(W))2 + C0√
ct

max
{
1,u2(1) − u1(1)

}
≤ (�ct� + 1)Var(W)

(t/2)2 + C0√
ct

max
{
1,u2(1) − u1(1)

}
≤ C1√

t
max

{
1,u2(1) − u1(1)

}
,

for a suitable choice of constant C1 > 0. This completes the proof. �

REMARK 5.8. Let us end this section with a final remark. For the DSF, Coupier and
Tran showed that the coalescence time between any two DSF paths is almost surely finite
[13], which uses Burton–Keane argument. Theorem 5.1 gives an independent proof that the
coalescence time between DSF paths πu1 and πu2 is almost surely finite. It is also important
to observe that this new method is very robust. Similar arguments as above show that the
conditions of Theorem 5.4 hold for other drainage network models which are also in the
basin of attraction of the BW [9, 10, 14, 22, 28]. Actually both models studied in [9, 28]
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have crossing paths and we can easily apply Corollary 5.6 to deal with processes which arise
from absolute distance between paths, which may cross over without coalescing. In such
situations, if we have that the paths behave nearly independently when they are far apart and
increments for marginal paths are of mean zero satisfying certain moment bounds, almost all
the conditions go through as above. While dealing with crossing paths, when two paths are
far apart, we may define a suitable event which occurs with high probability and ensures that
the paths do not cross each other and behave essentially independently on that event.

6. Convergence to the Brownian web. This section is devoted to the proof of our main
result, namely Theorem 1.2, but in fact we prove a stronger version stating that the sequence
{(Xn, X̂n) : n ≥ 1}, where Xn denotes the scaled DSF and X̂n its scaled dual forest, converges
in distribution to the BW and its dual (W,Ŵ). Before stating Theorem 1.2, we define the
scaled dual forest X̂n and the dual Brownian web Ŵ .

Let us first specify a dual forest F̂ to the DSF F. See Figure 8. We start with the dual vertex
set V̂ . For any (x, t) ∈ R2, let (x, t)r ∈ N be the unique Poisson point such that:

• (x, t)r (2) < t , h((x, t)r )(2) ≥ t and π(x,t)r (t) > x where π(x,t)r denotes the path in X
starting from (x, t)r ;

• there is no path π ∈ X with σπ < t and π(t) ∈ (x,π(x,t)r (t)).

Hence, π(x,t)r is the nearest path in X to the right of (x, t) starting strictly before time t . It
is useful to observe that π(x,t)r is defined for any (x, t) ∈ R2. Similarly, π(x,t)l denotes the
nearest path to the left of (x, t) which starts strictly before time t . Now, for each (x, t) ∈ N
the nearest left and right dual vertices are respectively defined as

r̂(x,t) := ((
x + π(x,t)r (t)

)
/2, t

)
and l̂(x,t) := ((

x + π(x,t)l (t)
)
/2, t

)
.

Then the dual vertex set V̂ is given by V̂ := {̂r(x,t), l̂(x,t) : (x, t) ∈ N }.
Next, let us define the dual ancestor ĥ(y, s) = ĥ((y, s),N ) of (y, s) ∈ V̂ as the unique

vertex in V̂ given by

ĥ(y, s) :=
{̂
l(y,s)r if (y, s)r(2) > (y, s)l(2),

r̂(y,s)l otherwise.

The dual edge set is then Ê := {〈(y, s), ĥ(y, s)〉 : (y, s) ∈ V̂ }. Clearly, each dual vertex has
exactly one outgoing edge which goes in the downward direction. Hence, the dual graph F̂ :=

FIG. 8. Here is a picture of the DSF F (in upward direction) and its dual forest F̂ (in downward direction).
Vertices of the DSF are black circles whereas dual vertices are grey squares. In particular, the vertex x produces
two dual vertices l̂x and r̂x. On this picture, (̂rx)r = xr and (̂rx)l = xl with xr (2) > xl (2): this implies that
ĥ(̂rx) = l̂xr . The same is true for l̂x.
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(V̂ , Ê) does not contain any cycle. This forest is entirely determined from F without extra
randomness. We obtain a dual (or backward) path π̂ (y,s) ∈ �̂ starting at (y, s), by linearly
joining the successive ĥ(·) steps. Thus, X̂ := {π̂ (y,s) : (y, s) ∈ V̂ } denotes the collection of
all dual paths obtained from F̂.

Let us recall that Xn = Xn(γ, σ ) for γ,σ > 0 and n ≥ 1, is the collection of nth order dif-
fusively scaled paths. See (1.2). In the same way, we define X̂n = X̂n(γ, σ ) as the collection
of diffusively scaled dual paths. For any dual path π̂ with starting time σπ̂ , the scaled dual
path π̂n(γ, σ ) : [−∞, σπ̂/n2γ ] → [−∞,∞] is given by

(6.1) π̂n(γ, σ )(t) := π̂
(
n2γ t

)
/nσ.

For each n ≥ 1, the closure X̂ n of X̂n in (�̂, d�̂) is a (Ĥ,BĤ)-valued random variable.
Now, let us introduce the dual Brownian web Ŵ . For this, we need a topology on the

family of backward paths similar to the one associated to (�,d�). As in the definition of
�, let �̂ be the collection of all continuous paths π̂ with starting time σπ̂ ∈ [−∞,∞] such
that π̂ : [−∞, σπ̂ ] → [−∞,∞] ∪ {∗} with π̂(−∞) = ∗ and, when σπ̂ = ∞, π̂(∞) = ∗. As
earlier t �→ (π̂(t), t) is continuous from [−∞, σπ̂ ] to (R2

c, ρ). We thus equip �̂ with the
metric

d�̂(π̂1, π̂2) = ∣∣tanh(σπ̂1) − tanh(σπ̂2)
∣∣

∨ sup
t≤σπ̂1

∨σπ̂2

∣∣∣∣ tanh(π̂1(t ∧ σπ̂1))

1 + |t | − tanh(π̂2(t ∧ σπ̂2))

1 + |t |
∣∣∣∣

making (�̂, d�̂) a complete, separable metric space. Let us recall that with a slight abuse of
notation, the closure of any element X in (�,d�) or (�̂, d�̂) will be still denoted by X.

The metric space of compact sets of �̂ is denoted by (Ĥ, dĤ), where dĤ is the Hausdorff
metric on Ĥ, and let BĤ be the corresponding Borel σ -field. The BW and its dual denoted by
(W,Ŵ) are a (H× Ĥ,BH ×BĤ)-valued random variable such that:

(i) Ŵ is distributed as −W , the BW rotated 180◦ about the origin;
(ii) W and Ŵ uniquely determine each other: Ŵ consists of a collection of coalescing

paths running backward in time and that a.s. do not cross the paths of W , in the sense that for
any paths π ∈ W and π̂ ∈ Ŵ such that σπ < σπ̂ , we have for all s, t such that σπ ≤ s < t ≤
σπ̂ , (

π(s) − π̂ (s)
)(

π(t) − π̂(t)
) ≥ 0.(6.2)

See Schertzer et al. [24], Theorem 2.4. The interaction between the paths in W and Ŵ is that
of Skorohod reflection (see [25]).

We can finally state our main result.

THEOREM 6.1. There exist σ = σ(λ) > 0 and γ = γ (λ) > 0 such that the sequence{(
X n(γ, σ ), X̂ n(γ, σ )

) : n ≥ 1
}

converges in distribution to (W,Ŵ) as (H×Ĥ,BH×Ĥ)-valued random variables as n → ∞.

Because of the intricate dependencies of the DSF model, we are not able to apply the earlier
techniques available in the literature, as Theorem 6.2 below, in order to obtain Theorem 1.2.
This is the reason why we provide in Section 6.1 new convergence criteria (Theorem 6.3)
regarding joint convergence to (W,Ŵ) for noncrossing path models. Let us mention here
that ideas sustaining this result are already present in [21] (Section 2.3). In Section 6.2, we
use results obtained in Sections 4 and 5 to show that the sequence {(Xn, X̂n) : n ≥ 1} satisfies
the conditions of Theorem 6.3.
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6.1. Convergence criteria for noncrossing path models. Let us recall and comment the
first convergence criteria to the BW, provided by Fontes et al. [15], in order to motivate new
convergence criteria given in Theorem 6.3. This section focuses on non-crossing path models.
The reader may refer to [24] for a very complete overview on the topic.

Let � ⊂ �. For t > 0 and t0, a, b ∈ R with a < b, consider the counting random variable
η�(t0, t;a, b) defined as

(6.3) η�(t0, t;a, b) := Card
{
π(t0 + t) : π ∈ �,σπ ≤ t0 and π(t0) ∈ [a, b]}

which considers all paths in �, born before t0, that intersect [a, b] at time t0 and counts the
number of different positions these paths occupy at time t0 + t . In Theorem 2.2 of [15], Fontes
et al. provided the following convergence criteria.

THEOREM 6.2 (Theorem 2.2 of [15]). Let {�n : n ∈N} be a sequence of (H,BH) valued
random variables with noncrossing paths. Assume that the following conditions hold:

(I1) Fix a deterministic countable dense set D of R2. For each x ∈ D, there ex-
ists πx

n ∈ �n such that for any finite set of points x1, . . . ,xk ∈ D, as n → ∞, we have

(πx1

n , . . . , πxk

n ) converges in distribution to (W x1
, . . . ,W xk

), where (W x1
, . . . ,W xk

) denotes
coalescing Brownian motions starting from the points x1, . . . ,xk .

(B1) For all t > 0, lim supn→∞ sup(a,t0)∈R2 P(η�n(t0, t;a, a + ε) ≥ 2) → 0 as ε ↓ 0.

(B2) For all t > 0, 1
ε

lim supn→∞ sup(a,t0)∈R2 P(η�n(t0, t;a, a + ε) ≥ 3) → 0 as ε ↓ 0.

Then �n converges in distribution to the standard Brownian web W as n → ∞.

Let us first mention that for a sequence of (H,BH)-valued random variables {�n : n ∈ N}
with noncrossing paths, Criterion (I1) implies tightness (see Proposition B.2 in the Appendix
of [15] or Proposition 6.4 in [24]) and hence subsequential limit(s) always exists. Moreover,
Criterion (B1) has in fact been shown to be redundant with (I1) for noncrossing path mod-
els (see Theorem 6.5 of [24]). Combining (I1) with Theorem 1.1, we obtain that any such
subsequential limit � a.s. contains a random subset which is distributed as the standard BW
W .

There are several approaches to prove the other inclusion � ⊂ W . Criterion (B2) is of-
ten verified by applying an FKG type correlation inequality together with a bound on the
distribution of the coalescence time between two paths. However, FKG is a strong property
which may not hold for models with interactions. This strategy seems really hard to carry
out in the DSF context. In the literature, new criteria have been suggested to replace (B2):
let us mention for instance Criterion (E) proposed by Newman et al. [19]. See also Theo-
rem 6.3 of Schertzer et al. [24]. In the same reference, Schertzer et al. have given in Theo-
rem 6.6 a new criterion replacing (B2), called the wedge condition. Our convergence result
(Theorem 6.3 below) appears as a generalization of Theorem 6.6 of [24] by considering the
joint convergence of {(�n, �̂n) : n ≥ 1} to the BW and its dual. Here, �̂n merely denotes a
(Ĥ, B̂Ĥ)-valued random variable made up of paths running backward in time. Theorem 6.3
also replaces the wedge condition by the fact that no limiting primal and dual paths can spend
positive Lebesgue time together: this is condition (iv). We believe that Theorem 6.3 is robust
and can be applied for studying convergence to the BW for a large variety of models with
noncrossing paths.

THEOREM 6.3. Let {(�n, �̂n) : n ≥ 1} be a sequence of (H×Ĥ,BH×Ĥ)-valued random
variables with noncrossing paths only, satisfying the following assumptions:
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(i) For each n ≥ 1, paths in �n do not cross (backward) paths in �̂n almost surely: there
does not exist any π ∈ �n, π̂ ∈ �̂n and t1, t2 ∈ (σπ , σπ̂ ) such that (π̂(t1) − π(t1))(π̂(t2) −
π(t2)) < 0 almost surely.

(ii) {�n : n ∈ N} satisfies (I1).
(iii) {(π̂n(σπ̂n), σπ̂n) : π̂n ∈ �̂n}, the collection of starting points of all the backward paths

in �̂n, as n → ∞, becomes dense in R2.
(iv) For any subsequential limit (Z, Ẑ) of {(�n, �̂n) : n ∈ N}, paths of Z do not spend

positive Lebesgue measure time together with paths of Ẑ , that is, almost surely there do not
exist π ∈ Z and π̂ ∈ Ẑ such that

∫ σπ̂
σπ

1π(t)=π̂(t) dt > 0.

Then (�n, �̂n) converges in distribution to (W,Ŵ) as n → ∞.

This section ends with the proof of Theorem 6.3.

PROOF. As mentioned in Section 6.2 of [24], conditions (i) and (ii) imply that the se-
quence {(�n, �̂n) : n ≥ 1} is jointly tight and then subsequential limit(s) always exists. Let
(Z, Ẑ) be one of them. Our goal is to identify the distribution of this limiting value with
(W,Ŵ).

As the sequence {�n : n ≥ 1} satisfies (I1), for any (x, t) ∈ Q2, there a.s. exists a path
π(x,t) in Z starting from the point (x, t) and distributed as a Brownian motion starting from
x at time t . Because of the noncrossing paths property of the limit Z—which inherits this
property from �n (condition (i))—similar arguments as in the proof of Proposition 3.1 of
[15] ensure that π(x,t) is a.s. the only path in Z starting at (x, t). This means that ZQ2 is
distributed as a collection of coalescing Brownian motions:

(6.4) ZQ2
d= WQ2 .

(See also discussions in Section 6.2 of [24]).
In order to assert that the closure Z of ZQ2 in (�,d�) is a standard Brownian web, we have

to prove that Z contains no more paths than W . This is the role of the wedge condition and
Theorem 6.6 of [24]. Let us first introduce some notation. For any backward paths π̂ l and π̂ r

in �̂ that are ordered with π̂ l(s) < π̂r(s) at time s := min{σπ̂r , σπ̂ l }, we define T (π̂ l, π̂ r ) :=
sup{t < s : π̂ l(t) = π̂ r (t)} (possibly equal to −∞) as the first hitting time of π̂ l and π̂ r

(which is actually the coalescing time of these paths). The wedge with left boundary π̂ l and
right boundary π̂ r is the following open set of R2:

(6.5) A
(
π̂ l, π̂ r) := {

(y, u) ∈ R2 : T (
π̂ l, π̂ r) < u < s and π̂ l(u) < y < π̂r(u)

}
.

A path π ∈ �, is said to enter the wedge A(π̂ l, π̂ r ) from outside if there exist t1, t2 with σπ <

t1 < t2 such that (π(t1), t1) /∈ Ā and (π(t2), t2) ∈ A, where Ā denotes the closure of A in R2.
The bottom point of A(π̂ l, π̂ r ) is (π̂ l(T (π̂ l, π̂ r )), T (π̂ l, π̂ r )) = (π̂ r (T (π̂ l, π̂ r )), T (π̂ l, π̂ r )).
The wedge condition states that

a.s. no path in Z enters any wedge of ẐQ2 from outside.

This is Criterion (U) of [24]. This condition combined with (i), (ii) and (iii) implies (The-
orem 6.6 of [24]) that �n converges in distribution to W as n tends to infinity, that is, Z
is distributed as W . By condition (i), primal and dual paths do not cross with probability 1.
Hence, the only way for a path π in Z to enter a wedge of ẐQ2 from outside is through its
bottom point by spending a time of positive Lebesgue measure with the dual path started
from the bottom point of the wedge. But this is forbidden by condition (iv). So the wedge
condition holds and Z is distributed as W .
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Next, we focus on the dual paths in Ẑ . From condition (iii), it follows that for any (x, t) ∈
Q2, a.s. there exists a backward path π̂ (x,t) in Ẑ starting from (x, t). Since paths in Z and Ẑ
do not cross, the position of π̂ (x,t) at the rational time s < t can be specified as follows:

π̂ (x,t)(s) = sup
{
y ∈ Q : π(y,s) ∈ZQ2, π

(y,s)(t) < x
}

= inf
{
y ∈ Q : π(y,s) ∈ ZQ2, π

(y,s)(t) > x
}
,

which means that the dual paths in ẐQ2 are uniquely determined by the forward paths in ZQ2 .
Since the dual paths in Ŵ do not cross the paths in W , it follows that the dual paths in ŴQ2

are also a.s. determined by the forward paths in WQ2 . We then deduce from (6.4) that

ẐQ2
d= ŴQ2 .

As previously, we can conclude using conditions (i) and (iv) that a.s. paths of Ẑ do not
enter any wedge in ZQ2 , which has the same distribution as WQ2 , from outside. We then
conclude thanks to the next result which is a slight variant of Theorem 1.9 of [26] (see also
Theorem 3.9 in [24] and the following remark), whose proof is omitted here.

LEMMA 6.4. Let (W, Ẑ) be a (H × Ĥ,BH×Ĥ)-valued random variable with W denot-
ing the Brownian web such that a.s. paths of Ẑ do not enter any wedge in WQ2 from outside
and the set of starting points of dual paths in Ẑ , given by {σπ̂ : π̂ ∈ Ẑ}, is dense in R2. Then
we have

Ẑ d= Ŵ.

This completes the proof of Theorem 6.3: the distribution of the subsequential limit (Z, Ẑ)

is identified as (W,Ŵ). �

6.2. Verification of conditions of Theorem 6.3. In this section, we show that the sequence
of diffusively scaled path families {(Xn, X̂n) : n ≥ 1} obtained from the DSF and its dual
forest satisfies the conditions in Theorem 6.3.

Conditions (i) and (iii) of Theorem 6.3 hold by construction. Indeed, paths of X do not
cross (backward) paths of X̂ with probability 1. The same holds for the scaled sets Xn and
X̂n. Moreover, the collection {(π̂n(σπ̂n), σπ̂n) : π̂n ∈ �̂n} of all starting points of the scaled
backward paths in �̂n becomes dense in R2 as n → ∞.

The next two sections are respectively devoted to the proofs of conditions (ii) and (iv).
This will conclude the proof of Theorem 1.2.

REMARK 6.5. In [13], it was proved that a.s. there is no biinfinite path in the DSF. It
was also asked whether the nonexistence of biinfinite path in the DSF could be proved using
some duality argument. The joint convergence of the scaled DSF and its dual to the double
Brownian web (W,Ŵ) gives a positive answer to this question. From the construction, it is
evident that the DSF has a biinfinite path if and only if the dual graph is not connected. Now
if there are dual paths which do not coalesce but converge to coalescing Brownian motions
under diffusive scaling, then we have at least one scaled forward path entrapped between these
two scaled dual paths. The joint convergence to the double Brownian web (W,Ŵ) forces
that there must be a limiting forward Brownian path approximating this entrapped forward
scaled path. Further, this limiting Brownian path must spend positive Lebesgue measure time
together with a backward Brownian path leading to a contradiction and proves that there is
no biinfinite path in the DSF a.s.
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6.2.1. Verification of condition (ii). Let us prove that the diffusively scaled sequence
{Xn : n ≥ 1} satisfies condition (ii), that is, Criterion (I1) of Theorem 6.2. The main ingre-
dients on which (I1) is based have been stated in Section 4. On one hand, single path of
the DSF can be simultaneously broken down into independent pieces through renewals steps
(Proposition 4.5). On the other hand, for multiple paths, they behave independently as long
as they explore disjoint regions and the size of renewal block between any two consecutive
renewal steps admits subexponentially decaying tails (Proposition 4.4). Thenceforth, to get
(I1), we follow the strategy of Ferrari et al. [14], which was also used in [22]. The proof here
is very similar to that of [22] (see Section 5.1) but in a continuous setting. For this reason, we
only provide the main steps so that the reader may understand the method without referring
to [22].

Let us first focus on a single path, π0 starting at the origin u(0)
1 = 0. Let {u(�)

1 : � ≥ 0} be
the sequence of renewal vertices allowing to break down π0 into independent pieces. Let us
scale π0 into π0

n as in (1.2) with

σ := (
Var

(
u(2)

1 (1) − u(1)
1 (1)

))1/2 and γ := E
(
u(2)

1 (2) − u(1)
1 (2)

)
.

The parameters σ and γ depend on λ, k and κ . From now on, the diffusively scaled sequence
{Xn : n ≥ 1} is considered w.r.t. these parameters, but for ease of writing, we drop (γ, σ )

from our notation. Proposition 4.5 together with Corollary 4.7 allow us an application of
Donsker’s invariance principle to show that π0

n converges in distribution in (�,d�) to B0 a
standard Brownian motion started at 0.

Thus we obtain that, for any sequences (vn) and (wn) such that vn(2) = wn(2) = 0,
wn(1) < 0 < vn(1) with (vn(1) − wn(1))/n → 0, the couple (π

wn
n ,π

vn
n ) converges in dis-

tribution (in the suitable product metric space) to (B0,B0). This result means that whenever
two paths are close to each other, precisely within a o(n) distance, then they will quickly
coalesce. Although we can deal without it (see, e.g., [14]), this is directly implied by the
estimated on the coalescing time that we have established at Theorem 5.1: for any t > 0,
P(T (vn,wn) > n2γ t) = on(1).

For showing the joint convergence of multiple paths, we use the fact that paths behave (al-
most) independently when they are separated by a large distance (roughly, at least of order n).
This is possible since the size of renewal blocks between two consecutive renewal steps ad-
mits subexponentially decaying tails. Hence, distributions of two paths far enough from each
other can be realized using independent PPPs. Thus, when paths come close to each other,
they coalesce very quickly as indicated just above.

This strategy dealing with dependent paths, originally introduced in [14], has been modi-
fied later to treat the case of long range interactions in [10] and [22]. We again emphasize the
fact that the dependency structure of the DSF model is much more complicated compared to
models previously cited.

The main change w.r.t. the proof in Section 5.1 of [22] concerns Proposition 5.4, which
estimates the horizontal deviations of a path in terms of the height of the rectangle on which
the configuration is known. Here is the result corresponding to our setting.

PROPOSITION 6.6. Let 0 < β < α. Consider the rectangle R := [−mβ,mβ] × [0,mβ]
for some m ≥ 1. Let π0 be the path of the DSF starting at 0. Then

P
(

sup
0≤s≤mβ

∣∣π0(s)
∣∣ ≥ 3mα

∣∣∣N ∩ R
)

≤ C0 exp
(−C1m

α−β
2
)
.

PROOF. We first consider the case where sup0≤s≤mβ π0(s) ≥ 3mα . The proof for the
other case, that is, sup0≤s≤mβ π0(s) ≤ −3mα is similar, and hence omitted. Let N ′ be another
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PPP independent of N . We consider two paths, say π(2mα,0) and π
(2mα,0)
new , both starting from

(2mα,0), and using respectively the PPP’s N and (N ′ ∩ R) ∪ (N ∩ Rc). In other words, for
the path π

(2mα,0)
new , the PPP inside the rectangle R has been re-sampled. Since both paths π0

and π(2mα,0) are constructed with the same PPP N , the noncrossing path property applies
and gives

sup
0≤s≤mβ

π0(s) ≥ 3mα ⇒ sup
0≤s≤mβ

π(2mα,0)(s) ≥ mα.

Now, let us consider the sequence (Wj )j≥1 of sizes of renewal blocks associated with the

single path π
(2mα,0)
new . By construction, it does not depend on the configuration N ∩ R. After

each renewal step, the y-ordinate of the moving vertex increases by at least κ ≥ 6, and hence
the path π

(2mα,0)
new can admit at most �mβ� renewal steps before crossing the horizontal line

{x : x(2) = mβ}. So, on the event

A :=
{�mβ�∑

j=1

Wj ≤ mα

}
,

π
(2mα,0)
new cannot exit the rectangle [mα,3mα] × [0,mβ]. Moreover, on A, the paths π(2mα,0)

and π
(2mα,0)
new must agree over time interval [0,mβ]. We can then write:

P
(

sup
0≤s≤mβ

π0(s) ≥ 3mα
∣∣∣N ∩ R

)
≤ P

(
sup

0≤s≤mβ

π(2mα,0)(s) ≥ mα
∣∣∣N ∩ R

)
≤ P

(
sup

0≤s≤mβ

π(2mα,0)
new (s) ≥ mα,A

∣∣∣N ∩ R
)

+ P
(
Ac | N ∩ R

)
= P

(
Ac |N ∩ R

) = P
(
Ac).

We conclude using Proposition 4.4:

P
(
Ac) ≤ ⌊

mβ⌋P(W ≥ mα−β) ≤ C0 exp
(−C1m

α−β
2
)
,

for suitable positive constants C0, C1.
Similar argument using paths starting from the point (−2mα,0) completes the proof. �

6.2.2. Verification of condition (iv). To show condition (iv), we mainly follow the proof
of Theorem 2.9 in [21], which was in a discrete setting. As a key ingredient, the coalescence
time estimate (Theorem 5.1) will be used in the proof of Lemma 6.7 below.

Let (Z, Ẑ) be any subsequential limit of {(Xn, X̂n) : n ≥ 1}. By Skorokhod’s representa-
tion theorem, we may assume that the convergence happens almost surely. Instead of working
with a subsequence, for ease of notation we may assume that the sequence {(Xn, X̂n) : n ≥ 1}
converges to (Z, Ẑ) almost surely in the (H× Ĥ, dH×Ĥ) metric space.

We have to prove that, with probability 1, paths in Z do not spend positive Lebesgue
measure time together with the dual paths in Ẑ . This means that for any δ > 0 and any
integer m ≥ 1, the probability of the event

A(δ,m) :=

⎧⎪⎪⎨⎪⎪⎩
∃ paths π ∈ Z, π̂ ∈ Ẑ

and t0 ∈ R s.t.
−m < σπ < t0 < t0 + δ < σπ̂ < m and − m < π(t) = π̂(t) < m

for all t ∈ [t0, t0 + δ]

⎫⎪⎪⎬⎪⎪⎭
has to be 0.
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To show that P(A(δ,m)) = 0, we introduce a generic event Bε
n(δ,m) defined as follows.

Given an integer m ≥ 1 and δ, ε > 0,

Bε
n(δ,m)

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∃ paths πn

1 , πn
2 , πn

3 ∈ Xn s.t. σπn
1
, σπn

2
≤ 0, σπn

3
≤ δ

and πn
1 (0),πn

1 (δ) ∈ [−m,m]
with

∣∣πn
1 (0) − πn

2 (0)
∣∣ < ε but πn

1 (δ) �= πn
2 (δ)

and with
∣∣πn

1 (δ) − πn
3 (δ)

∣∣ < ε but πn
1 (2δ) �= πn

3 (2δ)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

The event Bε
n(δ,m) means that there exists a path πn

1 localized in [−m,m] at time 0 as well
as at time δ which is approached (within distance ε) by two path πn

2 and πn
3 , respectively, at

times 0 and δ while still being different from them respectively at time δ and 2δ. Thanks to
the coalescence time estimate (Theorem 5.1), the following lemma, proved at the end of the
section, shows that Bε

n(δ,m) has a small probability.

LEMMA 6.7. For any integer m ≥ 1, real numbers ε, δ > 0, there exists a constant
C0(δ,m) > 0 (only depending on δ and m) s. t. for all large n,

P
(
Bε

n(δ,m)
) ≤ C0(δ,m)ε.

Let us now explain how Lemma 6.7 allows us to conclude. For j = 1, . . . , �6m
δ

�, let us set
t j := −m + (jδ)/3 and

Bε
n(δ,m; j)

:=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∃ paths πn

1 , πn
2 , πn

3 ∈Xn s.t. σπn
1
, σπn

2
≤ tj , σπn

3
≤ tj+1 and

πn
1
(
tj
)
, πn

1
(
tj+1) ∈ [−2m,2m] with

∣∣πn
1
(
tj
)− πn

2
(
tj
)∣∣ < 4ε

but πn
1
(
tj+1) �= πn

2
(
tj+1) and with

∣∣πn
1
(
tj+1)− πn

3
(
tj+1)∣∣ < 4ε

but πn
1
(
tj+2) �= πn

3
(
tj+2)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .

The event Bε
n(δ,m; j) corresponds to the event B4ε

n (δ/3,2m) considered in Lemma 6.7, and
shifted up by t j . Hence, by the translation invariance property of the DSF and Lemma 6.7:

P
(
Bε

n(δ,m; j)
) = P

(
B4ε

n (δ/3,2m)
) ≤ 4C0(δ/3,2m)ε

for all n large enough. The expected result will follow from

(6.6) A(δ,m) ⊂ lim inf
n→∞

� 6m
δ

�⋃
j=1

Bε
n(δ,m; j),

since we then have

P
(
A(δ,m)

) ≤ lim sup
ε→0

P

(
lim inf
n→∞

� 6m
δ

�⋃
j=1

Bε
n(δ,m; j)

)

≤ lim sup
ε→0

lim inf
n→∞

� 6m
δ

�∑
j=1

P
(
Bε

n(δ,m; j)
)

≤ lim sup
ε→0

6m

δ
4C0(δ/3,2m)ε = 0.

It then remains to prove (6.6). Recall that (Z, Ẑ) is a subsequential limit for (Xn, X̂n).
By Skorohod’s representation theorem, we may assume that the convergence happens almost
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surely. Let us work on the event A(δ,m), and consider π ∈ Z , π̂ ∈ Ẑ and t0 ∈ (σπ , σπ̂ ) as
in the definition the event A(δ,m). It is useful to recall that the convergence of (Xn, X̂n) to
(Z, Ẑ) w.r.t. the Hausdorff metric implies that, for all n large enough, we can find πn in Xn

starting before time t0 and π̂n ∈ X̂n starting after t0 + δ that approximate π and π̂ in the sense
that

max
{
|σπ − σπn |, |σπ̂ − σπ̂n |, ∣∣π(σπ) − πn(σπn)

∣∣, ∣∣π̂(σπ̂ ) − π̂n(σπ̂n)
∣∣,

sup
t∈[t0,t0+δ]

∣∣π(t) − πn(t)
∣∣∨ ∣∣π̂(t) − π̂n(t)

∣∣} < ε1.

Let us first assume that πn(t0) < π̂n(t0). Since by construction paths in Xn cannot cross
paths in X̂n, we must have πn(t) < π̂n(t) on the whole time interval [t0, t0 + δ]. Let j0 be
the first index such that j0 := min{j ≥ 1 : −m + (jδ)/3 ≥ t0}. πn plays the role of πn

1 as in
the definition of Bε

n(δ,m; j0) and as πn
2 , we consider the (scaled) DSF path starting from the

nearest scaled Poisson point (x, t) to the point (π̂n(t
j0), tj0) with t < tj0 and x > π̂n(t). As

the forward paths in Xn cannot cross the dual paths in X̂n, we must have πn
1 (tj0 + δ/3) �=

πn
2 (tj0 + δ/3). It is not difficult to observe that for all large n, the paths πn

1 and πn
2 satisfies

the definition of Bε
n(δ,m; j). With a similar proof, we can show the existence of a third path

πn
3 satisfying the requirements Bε

n(δ,m; j). The other case, that is, πn(t0) > π̂n(t0) can be
treated similarly. This completes the proof of (6.6).

Let us end with the proof of Lemma 6.7 which is close to the proof of Lemma 2.11 of
[21]. Both results are mainly based on the coalescence time tail estimates. With respect
to Lemma 2.11 of [21] two additional difficulties appear here: paths of the DSF are non-
Markovian and constructed on a Poisson point process. Proposition 4.4 will help us to control
this long range dependence.

PROOF OF LEMMA 6.7. Fix 0 < 2β < α < 1. First, with high probability, we show that
it is enough to consider the (unscaled) paths starting from Poisson vertices in a ‘thin’ rectan-
gular strip S to study the event Bε

n(δ,m):

S := [−2nσm,2nσm] × [−2nβ,0
]
.

This will help us to control the explored region until these paths cross the line {x ∈ R2 :
x(2) = n2γ δ}.

Define the boxes of side length nβ with lower sides on the lines y = −2nβ , y = −nβ and
y = 0. These boxes are given for 0 ≤ j ≤ �4nσm/nβ� and 0 ≤ l ≤ 2 by

Rl(j) := [−2nσm + jnβ,−2nσm + (j + 1)nβ]× [−lnβ, (−l + 1)nβ].
Define the event Dn as

Dn :=
�4nσm/nβ�⋂

j=0

2⋂
l=0

{
Rl(j) ∩N �= ∅

}
.

In other words, the event Dn states that each of the above boxes must contain at least one
Poisson point. It is not difficult to see that limn→∞P(Dc

n) = 0. We observe that on the event
Dn, all the paths crossing the segment [−nσm,nσm] × {0} must start from Poisson points
inside the rectangular strip S otherwise it contradicts the fact that interior of a history semi-
ball must be free of Poisson points. Hence on the event Bε

n(δ,m) ∩ Dn, the scaled paths πn
1

and πn
2 considered in Bε

n(δ,m) must start from the (scaled) Poisson vertices in the rectangular
strip S.
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Next, we show that evolution of the paths starting from Poisson points in S until they cross
the line y = n2γ δ is independent of the point process N ∩H+(n2γ δ +2nβ). Define the event

En := {
There exists a path π starting from Poisson point in S

such that the history generated by it until it crosses

the line y = n2γ δ does not intersect with H+(n2γ δ + nβ)}.
Since between any two successive (marginal) renewals, the concerned path must progress at
least κ + 1, any path starting from a Poisson point in S can have at most �(n2γ δ + 2nβ)/(κ +
1)� + 1 renewals until it crosses the line y = n2γ δ. Thanks to Proposition 4.4, as the width
of the region explored between any two successive renewals decays subexponentially and the
region S has area 4nσm × 2nβ , by applying union bound we have that the probability P(Ec

n)

decays subexponentially. Hence for all large n, we can focus on the event P(Bε
n(δ,m)∩Dn ∩

En).
We consider the event {Bε

n(δ,m),Dn,En,nσπn
1 (δ) ∈ [k, k + 1)} for k ∈ Z. Define the

event Gε
n(δ,m) as

Gε
n(δ,m) :=

{∃ paths πn
1 , πn

2 ∈ Xn s.t. σπn
1
, σπn

2
≤ 0 and πn

1 (0),πn
1 (δ) ∈ [−m,m]

with
∣∣πn

1 (0) − πn
2 (0)

∣∣ < ε but πn
1 (δ) �= πn

2 (δ)

}
.

Because of the noncrossing nature of paths, we must have{
Bε

n(δ,m),Dn,En,nσπn
1 (δ) ∈ [k, k + 1)

}
⊂ {

π(k−nσε,n2γ δ)(2n2γ δ
) �= π(k+nσε,n2γ δ)(2n2γ δ

)
,

Gε
n(δ,m),Dn,En,nσπn

1 (δ) ∈ [k, k + 1)
}
,

because these paths are separated by πn
1 and πn

3 .
For �−nσm� − 1 ≤ k ≤ �nσm�, define the event Fn(k) as

Fn(k) := {
k − nσε − nα ≤ π(k−nσε,n2γ δ)(n2γ δ + nβ)

≤ π(k+nσε,n2γ δ)(n2γ δ + nβ) ≤ k + nσε + nα}.
The event Fn(k) asks that the paths starting at (k − nσε,n2γ δ) and (k + nσε,n2γ δ) do
not fluctuate too much until time n2γ δ + nβ . We showed earlier that, on the event Bε

n(δ) ∩
Dn ∩ En, the DSF paths starting from Poisson vertices in the rectangular strip S do not
explore the point process N ∩ H+(n2γ δ + nβ) until they cross the line y = n2γ δ. Recall
that 0 < 2β < α < 1 and observe that on the event Fn(k)c, at least one of the two paths
starting from (k − nσε,n2γ δ) and (k + nσε,n2γ δ) admits fluctuations larger than nα on
the time interval [n2γ δ,n2γ δ + nβ]. By Proposition 6.6, this has a probability smaller than
C0e

−C1n
(α−β)/2

. This gives that for any �−nσm� − 1 ≤ k ≤ �nσm�, the probability of the
event (

Fn(k)
)c ∩ {

nσπn
1 (δ) ∈ [k, k + 1)

}∩ Bε
n(δ,m) ∩ Dn ∩ En

decays to 0 subexponentially and uniformly in k. Hence we can focus on the event Fn(k) ∩
{nσπn

1 (δ) ∈ [k, k + 1)} ∩ Bε
n(δ,m) ∩ Dn ∩ En, and the noncrossing path property forces the

paths starting at (k−nσε−nα,n2γ δ+nβ) and (k+nσε+nα,n2γ δ+nβ) to be still different
at time 2n2γ δ. So we obtain

(6.7)

P
(
Fn(k) ∩ {

nσπn
1 (δ) ∈ [k, k + 1)

}∩ Bε
n(δ,m) ∩ Dn ∩ En

)
≤ P

({
π(k−nσε−nα,n2γ δ+nβ)(2n2γ δ

) �= π(k+nσε+nα,n2γ δ+nβ)(2n2γ δ
)}

∩ {
nσπn

1 (δ) ∈ [k, k + 1)
}∩ Gε

n(δ,m) ∩ Dn ∩ En

)
.
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Observe that the event {π(k−nσε−nα,n2γ δ+nβ)(2n2γ δ) �= π(k+nσε+nα,n2γ δ+nβ)(2n2γ δ)} de-
pends only on the point process N ∩ H+(n2γ δ + nβ) and the event {nσπn

1 (δ) ∈ [k, k +
1)} ∩ Gε

n(δ,m) ∩ Dn ∩ En depends only on the point process N ∩ H−(n2γ δ + nβ). Hence
we have independence of the two events in (6.7) and Theorem 5.1 gives that for all large n,

P
(
π(k−nσε−nα,n2γ δ+nβ)(2n2γ δ

) �= π(k+nσε+nα,n2γ δ+nβ)(2n2γ δ
))

≤ C0(2nσε + 2nα)√
n2γ δ − nβ

≤ C0ε,

where C0 = C0(δ) > 0 is suitably chosen.
As the events {nσπn

1 (δ) ∈ [k, k + 1)} are disjoint for different k ∈ Z. It follows:

�nσm�∑
k=�−nσm�−1

P
({

nσπn
1 (δ) ∈ [k, k + 1

)}∩ Gε
n(δ,m) ∩ Dn ∩ En) ≤ P

(
Gε

n(δ,m)
)
.

Fix any 0 < θ < 1. The above discussion shows that for all large n we have

P
(
Bε

n(δ,m)
) ≤ θ + C0εP

(
Gε

n(δ,m)
)
.

In order to estimate the probability of Gε
n(δ,m), we define another event

Hε(δ,m, l) := {
π(l,0)(n2γ δ

) �= π(l+1,0)(n2γ δ
)}

for �−nσm� − 1 ≤ l ≤ �nσm�.
By noncrossing property, we have that Gε

n(δ,m) ⊂ ⋃�nσm�
l=�−nσm�−1 Hε(δ,m, l). To observe this

inclusion relation, consider the event Bε
n ∩{πn

1 (0) < πn
2 (0)} and observe that the paths starting

from the points (�πn
1 (0)�,0) and (�πn

2 (0)� + 1,0) must be different at time n2γ δ. Similar
reasoning follows for the event Bε

n ∩ {πn
1 (0) > πn

2 (0)}. Translation invariance of Poisson
point process and use of Theorem 5.1 give that for all �−nσm� − 1 ≤ l ≤ �nσm�

P
(
Hε(δ,m, l)

) ≤ C0√
n2γ δ

.

Hence, for all large n we have

P
(
Bε(δ,m)

) ≤ θ + C0εP
(
Gε

n(δ,m)
) ≤ θ + C0ε(2nσm + 1)P

(
Hε(δ,m, l)

)
≤ θ + C0ε,

where C0(m, δ) > 0 is adjusted accordingly. Since θ > 0 is chosen arbitrarily, This completes
the proof. �

7. Theorem 1.3: A sketch of the proof. Recall that the Radial Spanning Tree (RST),
initially introduced in [5], is a tree rooted at the origin O with vertex set N ∪ {O} in which
each vertex x ∈ N is connected to the closest Poisson point to x but inside the open ball
{y ∈R2 : ‖y‖2 < ‖x‖2}. Theorem 2.1 of [5] states that the RST a.s. admits semi-infinite paths
in each direction θ ∈ [0,2π). In particular, the (random) number χr of semi-infinite paths of
the RST crossing the circle Cr with radius r , tends to infinity with probability 1. Theorem 1.3
claims that

(7.1) Eχr = o
(
r3/4+ε),

for any ε > 0. Actually, our strategy to prove (7.1) has been already developed in Section 6
of [11] for a similar geometric random tree called the Radial Poisson Tree. So we only focus
here on the (minor) changes w.r.t. [11].
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By isotropy, it is sufficient to prove that, for 0 < α < 1/4, Eχr(2rα) tends to 0 as r → ∞
where χr(2rα) counts the intersection points between the semi-infinite paths of the RST and
the arc of the circle Cr , centred at (0,−r) and with length 2rα . Approximating the RST
around (0,−r) by the DSF with direction −ey (especially using Lemma 3.4 of [5] instead of
Lemma 6.4 of [11]) we show that

(7.2) lim sup
r→∞

Eχr

(
2rα) ≤ lim sup

r→∞
Eηr(α,β, ε),

where ε,β > 0 are such that α < β/2 and β + ε < 1/2, and where ηr(α,β, ε) counts the
intersection points between the horizontal segment [−rα, rα] × {−r} and paths of the DSF
starting from the outside of the rectangle [−rβ/2+ε, rβ/2+ε] × [−r,−r − rβ].

Controlling with high probability the deviations of DSF paths (with Theorem 4.10 of
[5] instead of Lemma 6.6 of [11]), (7.2) also holds if paths counted by ηr(α,β, ε) are as-
sumed to cross the lower side of the corresponding rectangle, that is, the horizontal segment
[−rβ/2+ε, rβ/2+ε] × {−r − rβ}. Thus, standard arguments based on the invariant translation
property of the DSF (see the proof of Lemma 6.7 of [11]) leads to

(7.3) lim sup
r→∞

Eχr

(
2rα) ≤ lim sup

r→∞
Eη̃r (α,β),

where η̃r (α,β) is defined as the number of intersection points between the horizontal axis
R× {−r} and DSF paths crossing the segment [−rα, rα] × {−r − rβ}. Thenceforth,

(7.4) lim sup
r→∞

Eη̃r (α,β) ≤ 1

allows to conclude. Indeed (7.4) implies that c(α) := lim supEχr(2rα) is smaller than 1 for
any 0 < α < 1/4. Let M > 0 and α < α′ < 1/4. By isotropy of the RST and for r large
enough, we get Eχr(2rα′

) ≥ MEχr(2rα). Taking supremum limits, the inequality 1 ≥ Mc(α)

follows. When M → ∞, this forces c(α) = 0.
It remains to prove (7.4). For i = �−rα�, . . . , �rα�, let us denote by γi the DSF path start-

ing at the deterministic point (i,−r − rβ) and by Yi the number of edges crossing the hori-
zontal unit segment [i, i + 1) × {−r − rβ}. Then a.s.

(7.5) η̃r (α,β) ≤ 1 +
�rα�∑

i=�−rα�
(Yi + 1)1{γi �=γi+1 at time −r},

where the event {γi �= γi+1 at time − r} means that paths γi and γi+1 are still disjoint when
they cross the horizontal axis R × {−r}. Since α < β/2, one can find parameters p,q > 1
such that α < β/(2p) and 1/p + 1/q = 1. Then the Hölder’s inequality combined with our
coalescence time estimate (Theorem 5.1) gives

Eη̃r (α,β) ≤ 1 + 3rαE(Y0 + 1)1{γ0 �=γ1 at time −r}

≤ 1 + 3rα(E(Y0 + 1)q
)1/q

P(γ0 �= γ1 at time − r)1/p

≤ 1 + 3
(
E(Y0 + 1)q

)1/q C
1/p
0 rα

rβ/(2p)

which tends to 1 as r → ∞. Above, we have used the fact that the number Y0 of DSF edges
crossing an horizontal segment with unit length, admits moments of all orders. Indeed, the
event {Y0 > �} with large �, forces the existence of an edge counted by Y0 with length larger
than �δ , for some δ > 0. This implies the existence of an empty semi-ball with radius �δ and
the claim easily follows.

In the proof of limEχr(2rα) = 0, we have worked through a rectangle whose horizontal
and vertical sizes rα and rβ have been chosen as follows. On the one hand, DSF paths inside
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this rectangle have to coalesce with high probability, which is ensured whenever α ≤ β/2
(Theorem 5.1). On the other hand, the approximation of RST paths by DSF paths has to be
valid in the whole rectangle, which requires β < 1/2. The combination of these two condi-
tions explains the exponent 3/4 in Theorem 1.3.

Finally, the proof of the almost sure convergence of χr/r3/4+ε to 0 follows from the con-
vergence in expectation using the same arguments as in Section 7 of [11].
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